15 research outputs found

    Sleep and Wake Classification With ECG and Respiratory Effort Signals

    Full text link

    Sleep stage and obstructive apneaic epoch classification using single-lead ECG

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polysomnography (PSG) is used to define physiological sleep and different physiological sleep stages, to assess sleep quality and diagnose many types of sleep disorders such as obstructive sleep apnea. However, PSG requires not only the connection of various sensors and electrodes to the subject but also spending the night in a bed that is different from the subject's own bed. This study is designed to investigate the feasibility of automatic classification of sleep stages and obstructive apneaic epochs using only the features derived from a single-lead electrocardiography (ECG) signal.</p> <p>Methods</p> <p>For this purpose, PSG recordings (ECG included) were obtained during the night's sleep (mean duration 7 hours) of 17 subjects (5 men) with ages between 26 and 67. Based on these recordings, sleep experts performed sleep scoring for each subject. This study consisted of the following steps: (1) Visual inspection of ECG data corresponding to each 30-second epoch, and selection of epochs with relatively clean signals, (2) beat-to-beat interval (RR interval) computation using an R-peak detection algorithm, (3) feature extraction from RR interval values, and (4) classification of sleep stages (or obstructive apneaic periods) using one-versus-rest approach. The features used in the study were the median value, the difference between the 75 and 25 percentile values, and mean absolute deviations of the RR intervals computed for each epoch. The k-nearest-neighbor (kNN), quadratic discriminant analysis (QDA), and support vector machines (SVM) methods were used as the classification tools. In the testing procedure 10-fold cross-validation was employed.</p> <p>Results</p> <p>QDA and SVM performed similarly well and significantly better than kNN for both sleep stage and apneaic epoch classification studies. The classification accuracy rates were between 80 and 90% for the stages other than non-rapid-eye-movement stage 2. The accuracies were 60 or 70% for that specific stage. In five obstructive sleep apnea (OSA) patients, the accurate apneaic epoch detection rates were over 89% for QDA and SVM.</p> <p>Conclusion</p> <p>This study, in general, showed that RR-interval based classification, which requires only single-lead ECG, is feasible for sleep stage and apneaic epoch determination and can pave the road for a simple automatic classification system suitable for home-use.</p

    Wireless body area sensor networks signal processing and communication framework: Survey on sensing, communication technologies, delivery and feedback

    Get PDF
    Problem statement: The Wireless Body Area Sensor Networks (WBASNs) is a wireless network used for communication among sensor nodes operating on or inside the human body in order to monitor vital body parameters and movements.This study surveys the state-of-the-art on Wireless Body Area Networks, discussing the major components of research in this area including physiological sensing and preprocessing, WBASNs communication techniques and data fusion for gathering data from sensors.In addition, data analysis and feedback will be presented including feature extraction, detection and classification of human related phenomena.Approach: Comparative studies of the technologies and techniques used in such systems will be provided in this study, using qualitative comparisons and use case analysis to give insight on potential uses for different techniques.Results and Conclusion: Wireless Sensor Networks (WSNs) technologies are considered as one of the key of the research areas in computer science and healthcare application industries.Sensor supply chain and communication technologies used within the system and power consumption therein, depend largely on the use case and the characteristics of the application.Authors conclude that Life-saving applications and thorough studies and tests should be conducted before WBANs can be widely applied to humans, particularly to address the challenges related to robust techniques for detection and classification to increase the accuracy and hence the confidence of applying such techniques without physician intervention

    Continuous vital monitoring during sleep and light activity using carbon-black elastomer sensors

    Get PDF
    The comfortable, continuous monitoring of vital parameters is still a challenge. The long-term measurement of respiration and cardiovascular signals is required to diagnose cardiovascular and respiratory diseases. Similarly, sleep quality assessment and the recovery period following acute treatments require long-term vital parameter datalogging. To address these requirements, we have developed “VitalCore”, a wearable continuous vital parameter monitoring device in the form of a T-shirt targeting the uninterrupted monitoring of respiration, pulse, and actigraphy. VitalCore uses polymer-based stretchable resistive bands as the primary sensor to capture breathing and pulse patterns from chest expansion. The carbon black-impregnated polymer is implemented in a U-shaped configuration and attached to the T-shirt with “interfacing” material along with the accompanying electronics. In this paper, VitalCore is bench tested and compared to gold standard respiration and pulse measurements to verify its functionality and further to assess the quality of data captured during sleep and during light exercise (walking). We show that these polymer-based sensors could identify respiratory peaks with a sensitivity of 99.44%, precision of 96.23%, and false-negative rate of 0.557% during sleep. We also show that this T-shirt configuration allows the wearer to sleep in all sleeping positions with a negligible difference of data quality. The device was also able to capture breathing during gait with 88.9%–100% accuracy in respiratory peak detection

    Dealing with uncertainty in contextual requirements at runtime: A proof of concept

    Get PDF
    This work presents SACRE, a proof-of-concept implementation of an existing approach, ACon. ACon uses a feedback loop to detect contextual requirements affected by uncertainty and data mining techniques to determine the best operationalization of contexts on top of sensed data

    Machine learning algorithms development for sleep cycles detection and general physical activity based on biosignals

    Get PDF
    In this work, machine learning algorithms for automatic sleep cycles detection were developed. The features were selected based on the AASM manual, which is considered the gold standard for human technicians. These include features such as saturation of peripheral oxygen or others related to heart rate variation. As normally, the sleep phases naturally differ in frequency, to balance the classes within the dataset, we either oversampled the least common sleep stages or undersampled the most common, allowing for a less skewed performance favouring the most represented stages, while simultaneously improving worst-stage classification. For training the models we used MESA, a database containing 2056 full overnight unattended polysomnographies from a group of 2237 participants. With the goal of developing an algorithm that would only require a PPG device to be able to accurately predict sleep stages and quality, the main channels used from this dataset were SpO2 and PPG. Employing several popular Python libraries used for the development of machine learning and deep learning algorithms, we exhaustively explored the optimisation of the manifold parameters and hyperparameters conditioning both the training and architecture of these models in order for them to better fit our purposes. As a result of these strategies, we were able to develop a neural network model (Multilayer perceptron) with 80.50% accuracy, 0.7586 Cohen’s kappa, and 77.38% F1- score, for five sleep stages. The performance of our algorithm does not seem to be correlated with sleep quality or the number of transitional epochs in each recording, suggesting uniform performance regardless of the presence of sleep disorders. To test its performance in a different real-world scenario we compared the classifications attributed by a popular sleep stage classification android app, which collected information using a smartwatch, and our algorithm, using signals obtained from a device developed by PLUX. These algorithms displayed a strong level of agreement (90.96% agreement, 0.8663 Cohen’s kappa).Neste trabalho, foram desenvolvidos algoritmos de aprendizagem de máquinas para a detecção automática de ciclos de sono. Os sinais específicos captados durante a extração de características foram selecionados com base no manual AASM, que é considerado o padrão-ouro para técnicos. Estas incluem características como a saturação do oxigénio periférico ou outras relacionadas com a variação do ritmo cardíaco. A fim de equilibrar a frequência das classes dentro do conjunto de dados, ora se fez a sobreamostragem das fases menos comuns do sono, ora se fez a subamostragem das mais comuns, permitindo um desempenho menos enviesado em favor das fases mais representadas e, simultaneamente, melhorando a classificação das fases com pior desempenho. Para o treino dos modelos criados, utilizámos MESA, uma base de dados contendo 2056 polissonografias completas, feitas durante a noite e sem vigilância, de um grupo de 2237 participantes. Do conjunto de dados escolhido, os principais canais utilizados foram SpO2 e PPG, com o objetivo de desenvolver um algoritmo que apenas exigiria um dispositivo PPG para poder prever com precisão as fases e a qualidade do sono. Utilizando várias bibliotecas populares de Python para o desenvolvimento de algoritmos de aprendizagem de máquinas e de aprendizagem profunda, explorámos exaustivamente a optimização dos múltiplos parâmetros e hiperparâmetros que tanto condicionam a formação como a arquitetura destes modelos, de modo a que se ajustem melhor aos nossos propósitos. Como resultado disto, fomos capazes de desenvolver um modelo de rede neural (Multilayer perceptron) com 80.50% de precisão, 0.7586 kappa de Cohen e F1-score de 77.38%, para cinco fases de sono. O desempenho do nosso algoritmo não parece estar correlacionado com a qualidade do sono ou o número de épocas de transição em cada gravação, sugerindo um desempenho uniforme independentemente da presença de distúrbios do sono. Para testar o seu desempenho num cenário de mundo real diferente, comparámos as classificações atribuídas por uma aplicação Android de classificação de fases do sono popular, através da recolha de informação por um smartwatch, e o nosso algoritmo, utilizando sinais obtidos a partir de um dispositivo desenvolvido pela PLUX. Estes algoritmos demonstraram um forte nível de concordância (90.96% de concordância, 0.8663 kappa de Cohen)

    Dealing with uncertainty in contextual requirements at runtime: A proof of concept

    Get PDF
    This work presents SACRE, a proof-of-concept implementation of an existing approach, ACon. ACon uses a feedback loop to detect contextual requirements affected by uncertainty and data mining techniques to determine the best operationalization of contexts on top of sensed data
    corecore