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Abstract 

 

Self-adaptive systems are capable of dealing with uncertainty at runtime handling 

complex issues as resource variability, changing user needs, and system intrusions or faults. 

If the system requirements depend on context, runtime uncertainty will affect the execution 

of these contextual requirements. This work presents SACRE, a proof-of-concept 

implementation of an existing approach, ACon, developed by researchers of the Univ. of 

Victoria (Canada) in collaboration with the UPC (Spain). ACon uses an adaptation 

feedback loop to detect contextual requirements affected by uncertainty and data mining 

techniques to determine the best operationalization of contexts on top of sensed data at 

runtime. The implementation is placed in the domain of smart vehicles and the contextual 

requirements involved are aim to provide the functionality of detect and support drowsy 

drivers. The results obtained with SACRE validate satisfactorily the ACon approach and 

corroborates that this novel approach is applicable in real world and real-time domains. 

This prototype could become the seed of more sophisticated tools that eventually could be 

integrated in real systems. Finally, this work contributes in both research and industry 

communities. It shows advances in the requirements engineering field for researchers 

interested in contextual requirements evolution at runtime, at the same time it materializes 

these advances in a currently trending topic application, demonstrating its potential in the 

industry. 
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Chapter 1 

Introduction 

 

1.1 Context 

The complexity of current software systems and uncertainty in their environments 

has led the software engineering community to look for inspiration in diverse related fields 

(e.g., robotics, artificial intelligence, control theory, and biology) for new ways to design 

and manage systems and services [1-4]. The first research areas in computer science and 

engineering in paying attention to the adaptation phenomenon were the control theory and 

cybernetics. The initial works were based on the physiological homoeostatic principles 

stated by the early works of Cannon [5] and specialized later by Wiener [6] with the 

introduction of the closed loop control paradigm that basically consists in the interaction 

between two elements: an environment and a control system [7]. 

Nowadays, self-adaptive systems are capable of dealing with uncertainty at runtime 

handling complex issues as resource variability, changing user needs, and system intrusions 

or faults. This means that they are able to deal with emerging requirements not present at 

design-time which increases the system availability and its robustness. In order to 

accomplish this goal, self-adaptive systems execute basic requirements engineering 

activities by themselves at runtime [12]. While these systems promise to deal with 

uncertainty, they challenge current software engineering practices, particularly the activities 

of requirements definition and satisfaction in uncertain environments [24].  
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Classical requirements engineering is based on the assumption that the 

environmental context is static and can be understood sufficiently. In the presence of these 

two environment assumptions, traditional requirements engineering can be performed well. 

This might be still possible in some environments where the speed of change is slow 

enough; therefore, existing techniques are still capable of capturing, managing and adapting 

these contextual changes [8]. However, novel contexts such as smart cities or smart 

vehicles have to deal with unforeseen conditions at very high speed rate. This dynamicity 

and uncertainty are the two main obstacles in order to understand, discover, formulate, 

validate, reason and manage the requirements both at design and especially at runtime [8].  

In the self-adaptive software field, the requirements described above are well known 

as contextual requirements. Contextual requirements should be understood as requirements 

that are characterized to be valid only in a specific context [9-11]. More specifically, based 

on [12]: 

 

 A contextual requirement consists of a 2-tuple of the 

expected system behaviour and the specific context within 

which this expected behaviour is valid. 

 

 

 Deeper discussion about self-adaptive systems and contextual requirements 

challenges as well as proposed solutions to deal with will be presented in later sections. 

1.2 Motivation 

The capability of the systems, natural and artificial, to adjust their behaviour in 

response to the environment in the form of self-adaptation has become one of the most 

promising research directions in the field. In computer science, a great endeavour has been 

done in order to study the complex combination of some terms present in the nature such 

as: intelligence, rationality, learning, anticipation and adaptation [7]. Studying them 

separately seems little promising since the objective of the software engineers is to mimic 

nature systems.  

The computer science community: researchers, developers, industry, etc. is 

requested to find new and better ways of satisfy the more and more changing and 

demanding society requirements in uncertain environments. The study, research, 

development, experimentation and testing of self-adaptive software should be one of the 

most important topics in the next years. This thesis is motivated by the need of both society 

and computer science community to advance more and more in the development of systems 

that minimize the dissatisfaction of requirements due changing contexts.  
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1.3 Objectives 

The ACon (Adaptation of Contextual requirements) approach, presented in [12], has 

emerged as an approach to address the problem of dealing with runtime uncertainty in the 

presence of contextual requirements [12] and can represent a great advance for the research 

and industry communities. This thesis has the objective of validate the ACon approach in a 

real-time and innovative application domain through the implementation of a proof-of-

concept tool. The application domain should be extremely demanding and should have the 

factor of uncertainty in the environment which it applies.   

The validation is done through a proof-of-concept implementation called SACRE 

(Smart Adaptation through Contextual REquirements) which is the material result and co-

lateral objective of this work. SACRE pretends to be the seed of more sophisticated tools 

that mix both self-adaptive and contextual requirements evolution fields in uncertain 

environments. 

1.4 Methodology 

This thesis has been developed in 17 weeks. It has been developed using an agile 

method. Agile methods have demonstrated massive progress in contrast to classic waterfall 

approaches in the field of software development [13]. Moreover, agile methods are known 

for reducing time to market, increasing productivity, and gaining cost effectiveness and 

efficiency of software development efforts [14], which are really desirable characteristics in 

the current competitive industry. 

Furthermore, this approach assumes that requirements changes will occur (at 

production state) and can be managed effectively. That is why a frequent feedback from the 

customer is provided, ensuring and enhancing the customer satisfaction. In the case of this 

thesis the roles of customer, stakeholders as well as product owner (the role that 

communicates the customers with the work team) have been developed by the thesis 

advisors and the team role has been played by the student. In order to formalize the 

approach, the agile manifesto defines four basic core values: 

1. Individuals and interactions over processes and tools; 

2. Working software over comprehensive documentation; 

3. Customer collaboration over contract negotiation; 

4. Responding to change over following a plan. 
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In addition, in [33] there is defined a set of principles that form guidelines for 

development. Scrum is one of the paradigmatic agile methods, it provides a project 

management framework that focuses development into 15-30 day sprint cycles in which a 

set of backlog features are delivered [15]. Scrum defines a daily 15-minutes team meeting 

for coordination and integration, which in the case of this thesis has been done individually 

in order to enumerate the activities and objectives planned for each day and in order to 

evaluate the advances.   

The approach only takes into account the process of software development; 

nevertheless it has been adapted for being applied also to the research phase of this thesis. 

The deliverables of the research phase have been also visualizations of the advances, just in 

the same way as a software prototype would be presented. The sprints in this work have 

been stated as 15-day periods and the backlog features have been recorded in the Mingle
1 

tool as it is shown in Figure 1. Moreover, minutes summarizing discussed items and to-do 

items are produced in each sprint meeting.  

 

 

 

Fig. 1: Backlog of features in Mingle tool 
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Chapter 2 

State of the Art 

 

2.1 Self-adaptive systems 

The simultaneous explosion of information, the integration of technology, and the 

continuous evolution from software-intensive systems to ultra-large-scale systems require 

new and innovative approaches for building, running, and managing software systems [16]. 

As a consequence, nowadays, software systems must be flexible, robust, customizable and 

self-optimizing, among other characteristics usually fulfil by adapting to changing 

operational context, environments or system features. For the purpose of this work, based 

on [17], a self-adaptive system is defined as follows: 

 

A self-adaptive system is a system able to adjust its 

behaviour in response to its perception of the environment 

and the system itself. 

 

 

Self-adaptive systems have become an important research topic. According to [17], 

in all the many initiatives to explore self-adaptive behaviour, the common element that 

enables the provision of self-adaptability is usually software. Moreover, the application 

areas of this kind of systems are really wide, increasing the importance of its study, 

development, experimentation, testing and finally the introduction of them in the industry. 
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Some of the applications mentioned in [17] are: adaptable user interfaces, autonomic 

computing, dependable computing, embedded systems, mobile ad hoc networks, mobile 

and autonomous robots, multi-agent systems, peer-to-peer applications, sensor networks, 

service-oriented architectures, and ubiquitous computing. Furthermore, the combinations 

and resulting branches of these applications generate a whole world of opportunities for the 

self-adaptive systems.  

Given the application diversity, research initiatives have emerged from different 

points of view, each of them investigating solutions from its own perspective. It can be 

mentioned fields such as fault-tolerant computing, distributed systems, biologically inspired 

computing, distributed artificial intelligences, integrated management, robotics, knowledge 

based systems, machine learning, control theory, etc. [17]. This thesis explores the idea of 

merging some of them in order to find synergies that provides new and better solutions for 

the self-adaptation challenge. 

Self-adaptive systems are needed in fields where the environment changes to 

uncertain states at an unpredictable moment. These changes in the environment include 

resources availability, user actions or needs, system faults, etc. All these changes that result 

from a specific operational context at specific moment can be translated as an evolution of 

the system’s requirements. If the requirements depend on context, runtime uncertainty will 

affect the execution of these contextual requirements.  

In the last years the trending solution provided by the research and industry 

community for designing self-adaptive systems are feedback loops, previously used only 

for controlling and monitoring systems. Currently the systems use these loops in order to 

execute basic requirements engineering tasks at runtime. One of the most famous feedback 

loops is the autonomic element shown in Figure 2 (introduced by Kephart and Chess [18] 

and popularized with the IBM’s architectural blueprint for autonomic computing [19]); it is 

the first architecture for self-adaptive systems that explicitly exposes the feedback control 

loop [20]. 

Based on [20], an autonomic element consists of a managed element and an 

autonomic manager with a feedback control loop at its core. The manager or controller is 

composed of two manageability interfaces, the sensor and the effector, and the monitor-

analyze-plan-execute (MAPE-K) engine consisting of a monitor, an analyzer, a planner, 

and an executor which share a common knowledge base. 

The loop described in [20] has the following steps: 1) the monitor senses the 

managed process and its context, filters the accumulated sensor data, and stores relevant 

events in the knowledge base for future reference; 2) the analyzer compares event data 

against patterns in the knowledge base to diagnose symptoms and stores the symptoms for 
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future reference in the knowledge base; 3) the planner interprets the symptoms and devises 

a plan to execute the change in the managed process through its effectors. 

 

Fig. 2: IBM’s autonomic element consisting of a managed element and an autonomic 

manager with a MAPE-K feedback loop as its core (from [12], [18], [19]). 

The manageability interfaces, each of which consists of a set of sensors and 

effectors, are standardized across managed elements and autonomic building blocks, to 

facilitate collaboration and data and control integration among autonomic elements. The 

autonomic manager gathers measurements from the managed element as well as 

information from the current and past states from various knowledge sources and then 

adjusts the managed element if necessary through its manageability interface according to 

its control objective [20]. More details about the feedback loop instance used by ACon will 

be provided in next sections. 

2.2 Contextual requirements 

In order to execute an adaptation, self-adaptive systems must continuously monitor 

changes in their context and react accordingly. As stated in [17], it is obvious that a system 

cannot monitor everything and must decide what to monitor in order to fulfil a set of high-

level goals that should be satisfied regardless the current operational context or 

environmental conditions. Moreover, non-critical goals could be relaxed in order to 

minimize the number of non-satisfied goals at every moment, increasing the degree of the 

system’s flexibility and robustness during and/or after adaptation. 

Against the classical requirements engineering process, the requirements 

engineering process for self-adaptive systems it is not focused on what the system should 
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do and under which constraints; instead it focuses on addressing which adaptations are 

possible and which constraints affect how those adaptations are done [17]. This particular 

requirement engineering process has two main challenges: 1) not all possible environment 

conditions are known at design time; 2) in consequence, not all the possible adaptations can 

be anticipated. The requirements specification for self-adaptive systems, according to [17], 

should cope with:  

- the incomplete information about the environment and the resulting 

incomplete information about the respective behaviour that the system 

should expose; 

- the evolution of the requirements at runtime 

Some efforts have been done in the research community in order to tackle the 

problem of understanding and modelling these requirements. Currently, the goal-oriented 

requirements engineering (GORE) and modelling approach seems to be the one that best 

supports the uncertainty and adaptability that this kind of systems entails.  The author in [9] 

proposes contextual goal models to capture the relation between variants for goal 

satisfaction and context which will be use in this work. 

This approach assumes that the context may influence on human’s goals and their 

choices to reach such goals. Moreover, the software developed to meet user’s needs has to 

reflect user adaptation to context, while reaching his/her goals, to derive a set of 

functionalities to execute. Contextual goal models propose an extension of the basic goal 

modelling paradigm, being its two main contributions: 

- a set of variation points where context might intervene to decide applicable 

alternatives for goal satisfaction. 

- a set of constructs to analyze context. This analysis is for discovering the 

information that a system needs to capture of its environment to judge if an 

analyzed context holds. 

The main components participating in these models are: actors, goals, tasks, soft 

goals, and contributions to soft goals, dependencies, means-end, decompositions and 

contexts. Their definitions could be found in [9], nevertheless due to its relevance in this 

work the definition of context based on [9] is provided below: 

 

A context is a partial state of the world that is relevant to an 

actor’s goals. 
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Context analysis should allow for a systematic way in discovering alternative sets of 

facts an actor may verify trying to judge if a context applies [9]. It is important to note that 

a context, in order to be evaluated as true or false, should be monitorable by an actor, 

implying that should be composed by verifiable world predicates (facts) that evidence it. A 

fact should be understood as a world predicate F that can be verified by and actor A [9]. For 

example, the world predicate “a student S assists to class C” is a fact since it can be verified 

revising the current students present in the class. 

The approach goes deeper in the explanation and modelling of the contextual 

requirements, however, thanks to the simplicity of the contextual requirements contained in 

this work, complex entities are not needed. Figure 3 shows an example of a typical Tropos 

goal model running the example of a promotion information system, extracted from [9]. 

This model is useful to realize the contrast with Figure 4, also extracted form [9] which is 

also a goal model but it considers contexts.  

The squares that appear with a letter C plus a number in this last model are the 

contexts affecting the ways to fulfil the main goal. Depending on the context experienced, 

the goal will be satisfied with one or another set of tasks. As it has been mentioned before 

each context could be formed by statements and facts. Even facts are more desirable 

because its verifiability, both elements could be present in a context definition. Both 

entities relate to each other as it is shown in the context model example exposed by Figure 

5 extracted from [9]. 

 

 

Fig. 3: Tropos goal model example [9] 
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    Fig. 4: A goal model annotated with context at its variations points [9] 

 

Fig. 5: The context analysis for C1 [9] 
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The model shown in Figure 4 will be used later in this document as template for 

modelling the main SACRE goals. While the model exposed in Figure 5 will be used for 

describe the contexts considered by the SACRE’s goal models.  

2.3 ACon 

In [12] the authors propose the ACon approach that emerges as a solution for 

dealing with the challenges mentioned in the previous sections about self-adaptive systems 

and the presence of contextual requirements in uncertain environments. The approach 

depicts the relationship between a contextual requirement, the environment and the context 

operationalization in terms of the observed environment. In agreement with [12] it can be 

asserted that changes in the environment result in invalid measured context for a contextual 

requirement, while changes to the monitoring infrastructure affect system’s ability to 

recognize the context in which contextual requirements are valid.  

Both conditions provoke that the system is not able to satisfy contextual 

requirements and thus provide the expected system behaviour. In order to fix this problem, 

the system must adapt the requirement’s context to changes in the environment or in the 

monitoring infrastructure. ACon has the objective of adapting the measurable context in 

which contextual requirements are valid to maximize the number of these requirements that 

are satisfied in the face of runtime uncertainty [12]. 

2.3.1 Fundamentals 

ACon takes the position that self-adaptive systems, in order to respond to 

unpredictable changes in their operating environment, need to learn from the environmental 

data that they have available at runtime and execute the adaptation of their contextual 

requirements in the basis of this apprenticeship [12]. To leverage the great volumes of data 

available in operating environments (e.g. through sensors), ACon uses machine learning 

techniques to analyze and detect patterns in the context data. The application of machine 

learning on contextual data is a novel strategy to detect certain conditions that change over 

time and to support the reasoning about adaptation decisions. 

As authors explain in [12], ACon uses a feedback loop to maintain an up-to-date 

knowledge about contextual requirements based on up-to date information about the 

context in which contextual requirements are valid at runtime. Upon detecting that 

contextual requirements are affected by runtime uncertainty, ACon integrates data mining 

algorithms that analyze contextual data to determine the context in which contextual 

requirements are valid and adapt them. ACon includes the interaction with end-users as part 

of a semi-automatic approach in which the human is in the loop. 
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As self-adaptive system, ACon aims at reacting to changes that make requirements 

unsatisfied. In the case of contextual requirements, the particular situation to avoid is 

having requirements whose context is not operationalized or is not satisfied while the 

behaviour is which are the two cases that violate the notion of satisfaction of contextual 

requirements [12]. The operationalization is the set of variables and values for these 

variables that define a context allowing the system to determine if a context is present or 

not. In order to accomplish this goal, ACon will continuously try to operationalize contexts 

not yet operationalized, and will react as soon as possible to unpredictable environment 

changes and monitoring problems. 

2.3.2 Adaptation feedback loop 

As it has been mentioned before, feedback loops are first-class entities of 

engineering self-adaptation. ACon is based on an instance of the IBM’s loop cited before, 

which implements a feedback loop that is known as the MAPE-K loop. The IBM’s 

autonomic element consists of an autonomic manager, and one or more managed elements. 

The autonomic manager implements two manageability interfaces – sensors and effectors. 

Through sensors the autonomic manager gathers information from the environment or other 

autonomic elements. Through effectors, the autonomic manager adjusts the managed 

element as needed.  

An autonomic element itself can be a managed element, therefore consisting of 

sensors and effectors at the top of the autonomic manager. Through the effectors at the top 

the autonomic manager can receive policies that drive the adaptation and evolution of the 

system [12]. The MAPE-K loop, as is explained in [12], contains four components: 

monitor, analyzer, planner, and executor and the knowledge base. The knowledge base 

represents the communication channel between the four components of the autonomic 

manager.  

In the case of ACon, the managed element of the feedback loop consists of all 

contextual requirements of the system. The novel contribution of ACon to this MAPE-K 

loop is the usage of machine learning to mine context at runtime so that the system can 

continuously adapt its contextual requirements. According to [12], the purpose of the usage 

of ACon in the system is the adaptation of the context operationalization in which 

contextual requirements are valid and differ from previous works that only focus in 

predefined evolution of requirements without considering uncertainty at runtime. The 

feedback loop proposed by ACon is called: Adaptation of Contextual Requirements 

Feedback Loop (short: Adaptation Feedback Loop). Figure 6 gives an overview of the 

elements and activities taking place in the Adaptation Feedback Loop. In the remainder of 

this section, based on [12], each component will be described. 
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Fig. 6: The Adaptation Feedback Loop in ACon responsible for                                                 

the adaptation of contextual requirements [12] 

 

A. Monitor 

The monitor senses the managed element and the context, filters the collected sensor 

data, and decides on relevant events (e.g. requirements violation, sensor relevant change, 

etc.) that could indicate the need for an action of the autonomic manager. These relevant 

events are called symptoms and are communicated to the analyzer for further analysis [21]. 

The monitoring component continuously executes two main tasks:  

1)  Evaluating the satisfaction of contextual requirements, and  

2)  Collecting available sensor data related.  

ACon considers four different cases that can point to uncertainty affecting the 

satisfaction of contextual requirements:  

- Case 1: No operationalized context: This case will arise typically when the 

context has not been operationalized at design time and still there is not enough 

data for the data mining algorithm to propose a context at runtime. Eventually, it 

also may happen that a context becomes un-operationalized at runtime since no 

feasible operationalization can be found at a certain moment. 
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- Case 2: An unpredictable monitoring framework state: When the context is 

operationalized, some of the sensors might become unavailable temporarily or 

permanently. Even if the signal is not lost, the data may be incorrect because the 

sensor requires re-calibration. In any case, the system will not be able to satisfy 

those contextual requirements which contain the sensor that is malfunctioning in 

their operationalization. To identify this situation, all sensors that are part of the 

current operationalized context for the contextual requirements are monitored. 

Three possible situations are detected in [12]:  

 

a. The sensor stops sending data. 

b. The sensor is sending wrong data.  

c. The sensor regains a correct state. Either because it gets re-calibrated or 

comes back into operation again. Requirements that have this sensor in 

their operationalization are affected, as well as all other requirements 

that had it at some moment in their history. This second type includes 

both requirements whose context is not currently operationalized as well 

as others that are operationalized because it may happen that the current 

operationalization does not behave as well as the one involving the 

recovered sensor. 

 

- Case 3: Contextual requirement not satisfied: This situation may occur in two 

completely different circumstances. First, it may happen that the context has 

been operationalized in an incorrect or inaccurate way or because the action that 

leads to the satisfaction of the behaviour has not been executed yet. The reason 

will be found out in the next phase of the cycle (analysis), determining then the 

adequate actions for the next loop. 

 

- Case 4: Effects of environmental uncertainty: Cases occur in which the 

operationalization is not satisfied but the expected system behaviour is. 

Especially at the beginning, when the data mining classifier is not properly 

trained because it does not have enough historical data, this case will appear as 

the system has to learn over time. In this case the user executes an action that 

makes the specified system behaviour to be fulfilled, triggering the system to re-

operationalize the context considering the current context state in the new 

operationalization. 

 

B. Analyzer 

The analyzer correlates the received symptoms and in case it decides about the need 

to adapt the managed element it sends a request for change to the planner. A symptom 

contains relevant information for the indication on uncertainty so that the analyzer can 
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analyze the situation and make a decision on whether to act on the indications or not. The 

analyzer uses data mining on the collected sensor data to determine an appropriate 

operationalization. The decisions will depend on the case that the monitor sends, as 

follows: 

- Case 1: For the case of a symptom of a contextual requirement with no 

operationalized context no further analysis is needed in the analyzer. It 

operationalizes the context based on given sensors and collected sensor data up 

to the current point in time. 

 

- Case 2:  

 

a. A symptom that points to a sensor failure is ignored up to the point 

where the analyzer detects symptoms that point to a sensor failure for the 

same sensor for the x last iterations. The analyzer identifies the missing 

sensor and re-operationalizes the context, making sure that the sensor is 

not included in the operationalization. 

 

b. The analyzer handles symptoms for a sensor that is sending wrong data 

in the same way as case 2 a). It waits for symptoms of type 2 b) for 

several iterations and re-operationalizes the context for affected 

requirements excluding the affected sensor. 

 

c. In case of symptoms for a regained sensor the analyzer waits for several 

iterations and re-operationalizes the context for all contextual 

requirements that had this sensor in the operationalization in the past. 

The analyzer includes the regained sensor when applying data mining. 

 

- Case 3 and Case 4: In both cases the system behaviour is not as expected and the 

analyzer re-operationalizes the context considering the corrected behaviour. 

In the analyzer, ACon relies on lightweight data mining algorithms (i.e. rule-based 

classifiers) which can be easily rerun many times as newer data instances become available. 

The outcome of applying such data mining algorithm is the identification of patterns, so 

called rules which represent the operationalization of context. Rules are produced on 

contextual data collected by the monitor at runtime and represent the operationalization of 

the desired context in which the contextual requirement is valid. Many different rules can 

exist for one contextual requirement, depending on how many patterns the data mining 

algorithm finds in the contextual data. This means that there will exist many 

operationalizations for the context of one contextual requirement. 
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C. Planner 

The planner defines the activity to execute by considering the policy and create the 

change plan. In order to do that, the planner compares the error thrown by the rules 

produced by the data mining algorithm against the policy that is given. The policy can 

represent either an error threshold given by the system provider or given by the users. In 

ACon, the users can define this threshold at design time and change it at runtime. If the 

error is smaller than the threshold, the system updates the contextual requirements with the 

new rules produced by the data mining algorithm. 

D. Executor 

The executor adapts or evolves the system accordingly following the change plan 

[22]. The change plan contains the accepted rules produced by the data mining algorithms 

representing a new operationalization that the executor updates in the knowledge base. 

E. Knowledge base 

The knowledge base stores relevant information about:  

1) Contextual requirements. For simplicity all information about requirements is 

stored in the knowledge base. Every requirement is stored as a 2-tuple <context, 

expected behaviour>. 

2) Sensor data as preparation to apply data mining on. The data used for data 

mining will come from sensors of different types. Before data mining can be 

applied on the sensor data, the incoming raw sensor data from the available 

sensors has to be pre-processed. Pre-processing of the contextual data depends 

on the characteristics of the sensors and data collected. The frequencies of 

sensor readings that are taken into account for the operationalization have to be 

determined and can change at runtime. The sensor data has to be normalized to 

lay within a range between 0 and 1 so that data mining algorithms that rely on 

Euclidian distance can be applied for operationalization.  

After pre-processing of sensor data, [12] proposes another step necessary to prepare 

the contextual data for data mining. It consist in the calculation of an additional attribute, 

the indicator attribute (short: IA), this attribute is stored together with the sensor data in the 

knowledge base and is needed to determine the operationalization of the context in which a 

contextual requirement is valid. Every time the expected system behaviour was satisfied it 

stores the current context together with a value true for the indicator attribute, false 

otherwise. 
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2.3.3 Data mining 

As it has been mentioned before, ACon relies on lightweight data mining algorithms 

which can be easily rerun many times as newer data instances become available. 

Lightweight data mining algorithms, based on [23], are algorithms with low complexity 

which classify data with relatively fast speed and high transparency of their results 

classifiers. Fast classification speed is a really important factor in applications with 

constantly changing environments, as SACRE. 

The outcome of applying such data mining algorithm is the identification of 

patterns, so called rules which represent the operationalization of context. In the application 

example provided by [12] the rule-based classifier used is JRip. Since SACRE shares 

similar characteristics (e.g. limited computational resources) with the application in [12], 

the data mining algorithm considered by this work is also the JRip. This algorithm uses 

relatively few resources and produces a series of rules that can be converted into a series of 

if...then statements for system implementation, and which would represent the sensors and 

associated threshold values that characterize the context conditions for a particular 

contextual requirement [12]. 

In [23], an extensive study of the feasibility of integrating data mining algorithms 

into self-adaptive systems for context awareness and requirements evolution is provided. 

The author in [23] supports the choice taken by [12] and later taken by this work about the 

data mining algorithm to use, recognizing the JRip classifier as robust enough in several 

testing cases providing high levels of accuracy, precision, and recall even with sensor 

configuration changes and abrupt changes in normal user behaviour. The precision is the 

measurement that shows how many of the cases that were identified as desired context 

conditions by the classifier are actually correct; the recall shows how many of all desired 

context instances existing in the sensor data set are also found by the classifier. This work 

takes into account other measurement: f-measure. This measure is also used by [12] and is 

defined as the harmonic mean of precision and recall. 

 In order to obtain the measurements a 10-fold cross validation is applied. The 10-

fold cross validation trains and classifies the context conditions on past collected data. Both 

the algorithm execution over sensed data and the 10-fold cross validation are done in [12] 

using Weka. SACRE takes advantage of the results presented by [12] and uses the Weka 

tool as well for the same purpose. According to [34], Weka is a collection of machine 

learning algorithms for data mining tasks. The algorithms can either be applied directly to a 

dataset or called from Java code. Weka contains tools for data pre-processing, 

classification, regression, clustering, association rules, and visualization. It is also well-

suited for developing new machine learning schemes. Following sections depict more 

details about this useful tool and the way it is used by SACRE.  
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Chapter 3 

SACRE 

 

3.1 Description 

3.1.1    General purpose 

SACRE is a proof-of-concept implementation of the previously explained ACon 

approach. It is placed in the specific application context of smart vehicles, which is a 

domain where contextual requirements are constantly affected by uncertainty due to the 

changing environment. The contextual requirements in SACRE have been designed to 

provide the functionality of detecting and supporting drowsy drivers. The purpose of the 

SACRE implementation is to provide the opportunity of validating the ACon approach 

performance in an extremely demanding situation, as smart vehicles are. This validation is 

different from the one done in [12] because SACRE runs the approach in real-time 

providing evidence of its adaptation capabilities at runtime.  

The validation in [12] provides a first idea about the ACon capabilities and the 

advantages of using data mining techniques for adaptation. SACRE provides a complete 

view of ACon exploiting all the characteristics mentioned in [12]. These changes in the 

validation process could affect ACon’s performance but at the same time could provide 

evidence of its suitability for be used in real world applications. The results obtained from 

this work are really relevant for the ACon approach acceptance in the research and industry 

community. 
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3.1.2 Application domain 

Smart vehicles or intelligent vehicles have become more and more popular in the 

automotive industry community. In consequence the importance of this domain in the 

research community has increased. Because smart vehicles are so relevant for industry, 

their study has been encouraged from the competitiveness between automotive companies 

which results in an exponentially growing studied field. The domain has interesting but at 

the same time challenging characteristics such as uncertainty, self-adaptability, self-

configurability, high-level of human interaction, etc. The adaptations executed by smart 

vehicles are not only based on streets’ shape, obstacles or weather but also in the user 

preferences and needs. The smart vehicles, when perform well, improve vehicle and driver 

safety and performance. 

In SACRE just a part of a smart vehicle is implemented because of the thesis’ time 

constraints. Concretely, SACRE offers the functionality of detecting and supporting drowsy 

drivers at different stages. For this purpose SACRE considers a set of sensors and actuators, 

graphically shown in Figure 7 and Figure 8, that detects the driver’s state and the vehicle 

position in the lane respectively, and respond with actions in case they are needed. A 

conceptual model of this domain is provided in Appendix A. The sensors considered are: 

1) Driver’s vigilance level: this sensor is based in the prototype proposed in [25], 

an image processor for real-time acquisition of a driver’s images aiming at 

monitoring driver’s vigilance in real time. This sensor, as shown in Figure 7, is 

assumed to be placed in the vehicle dashboard. The prototype in [25] proposes 

to calculate, with this sensor, six parameters: percent eye closure, eye closure 

duration, blink frequency, nodding frequency, face position, and fixed gaze. In 

this work, two simple parameters, assumed to be measurable by this sensor, are 

considered: eye state (visible driver’s pupil ratio) used by [25] for calculating 

more complex parameters, and face position (frontal/non-frontal). 

The simulation of the eyes state measure, in SACRE, is simplified and supposed 

to be reported as an average of the state of both eyes. The measure is reported in 

percentages, i.e. the sensor reports a 46% of visible driver’s pupil at a particular 

moment; in normal conditions this means that the driver’s eyelids are covering 

54%; or, if the sensor reports 0% of visible driver’s pupil at a particular 

moment, in normal conditions it should be understood that the driver has the 

eyes closed. Further calculations in the adaptation feedback loop are done over 

this measure.  
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About the face position measure, in SACRE it has been simplified to report only 

two states. Agreeing with [25], SACRE assumes a symptom of driver’s fatigue 

when the driver’s face orientation is non-frontal, even sometimes it could means 

only minor distractions. More details are depicted later in this work. 

 

2) Electrocardiogram: this sensor is placed in the driver’s seat and provides the 

measure of driver’s hearth beats per minute (hbpm). Some studies such as [25] 

and [27] have shown that the hbpm value of a person differs considerably when 

s/he is asleep or awake. Moreover, [27] concludes that the electrocardiogram 

measure can discriminate with high accuracy between sleep and awake states. 

Nevertheless, the changes and normal values of this measure differ from one 

person to another which implies the need of a training phase. SACRE adapts 

this measure’s thresholds at runtime depending on the driver using the vehicle in 

order to increase its accuracy. 

 

3) Pressure sensitive: this sensor is placed in the steering wheel and measures the 

number of hands on it. This measure relates inversely the number of hands in 

the steering wheel with the degree of drowsiness of the driver. There are three 

possible options: 0 hands, 1 hand, 2 hands. This means, less hands on steering 

wheel more degree of drowsiness the drive is experiencing. Even this is not an 

exhaustive designed measure; it works well as complementary variable to be 

taken into account in order to increase the total drowsiness degree detection 

accuracy of SACRE.  

 

4) Lane keeping control: these are two sensors assumed to be placed in the edges 

of the driving mirror. The sensors (referred as right and left sensor) provide 

information about the vehicle position in lane. In [28] the authors deal with the 

problem of finding the optimal position and optimal number of these sensors 

that should be used in a smart vehicle in order to offer a fault-tolerance lane 

keeping control. For simplicity, and in agreement with current advertisements 

[35][36], this work considers only 2 sensors situated as explained before. Even 

the vehicle position calculation is simulated by SACRE, the measures are based 

in real world physics, for example the ones presented in [29]. The variables 

measured by these sensors are:  

 

a. Lateral distances: the lateral distances are measured by each sensor 

regarding its corresponding line side. This means, the right sensor 

measures the distance between the vehicle’s right frontal wheel and 

the right street’s line and the left sensor measures the distance 

between the vehicle’s left frontal wheel and the left street’s line.  
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Because the lane and vehicle dimensions could change, the optimal 

distances are calculated based on the specific instantiated vehicle 

placed on the middle of the specific lane instance. Even, if the 

demonstration of SACRE in this work is done using always the same 

vehicle instance and road dimensions (but not the same shape), the 

tool can load other instances as well. 

 

b.Frontal distances: the frontal distances follow the same principles as 

the lateral distances measures, but instead of measuring the distance 

between the wheels street’s lines perpendicularly they represent the 

distances measured parallel. The desired measure is infinite (not 

street line in front of the vehicle), meaning that the vehicle rotation 

angle is exactly the same as the lane angle. Any other frontal 

distance value would mean that the vehicle has a disposition 

regarding the lane.  

 

This situation could occur when the driver rotates unnecessarily the 

steering wheel or when a curve approaches and the driver has not 

rotated sufficiently the steering wheel. This measure is useful for 

correct the vehicle angle regarding lane shape changes serving as a 

predictive measure. 

 

c. Deviation angle: Considering the measures presented before, the lane 

keeping control could provide the deviation angle variable which is 

not more than the difference between the current vehicle angle and 

the street angle in the current vehicle position (resulting in a positive 

or negative value). This measure is also useful for correct the vehicle 

angle rotating the steering wheel, but differs in its functionality from 

the frontal distances measure because it is not predictive. More 

details about its calculation are provided later in following sections. 
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Fig. 7: Vehicle Sensors 

 The possible stages of a driver defined by SACRE and resulting from some of the 

sensors’ measures mentioned above are: awake, tired, dangerously tired and asleep; 

ascendingly ordered regarding the driver drowsiness degree each of them represents. In 

order to support the driver in each of these states, SACRE provides the following actuators: 

1) Support lane keeping: when the support lane keeping actuator results to be 

activated it takes the control of the vehicle, basically it controls the accelerator, 

brake and steering wheel, in order to maintain the vehicle in the lane. The 

support lane keeping should fulfil some soft requirements such as don’t apply 

abrupt changes in these three devices and ensure the diver’s safety. When 

support lane keeping is activated a target speed is maintained according to the 

context (e.g. if a curve is approaching the speed is decreased and maintained 

around 20 km/h). Future iterations of SACRE could include sensors for 

detecting weather conditions (i.e. detect if it is raining) which would also affect 

support lane keeping performance. This actuator can be turned on, off and 

disabled by the driver resulting in candidate adaptations of SACRE.  

 

2) Vibration alarm: the vibration alarm is placed in the driver’s seat. It is turned on 

by SACRE in order to alert the driver when s/he is presenting drowsiness 

symptoms. The vibration of this alarm is supposed to be the adequate for 

driver’s alerting and not for driver’s drowsiness encourage. In future versions of 

SACRE the vibration power could be also adapted regarding context, for 

example, street’s pavement quality which could affect the impact of the 
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vibration in the driver. For this prototype this is not feasible since no sensor has 

been considered for detecting that context.  

 

The driver can turn the vibration alarm off (when activated by the system) and 

disable it when s/he wants to maintain it off indiscriminately. As the same case 

as with support lane keeping, these actions will result in candidate adaptations 

of SACRE.     

 

3) Sound-light alarm: the sound-light alarm follows the same principles as the 

vibration alarm, being activated when the driver shows drowsiness symptoms. 

The decision of activate the vibration or the sound-light alarm depends on the 

contextual requirements’ operationalization that will be presented in following 

sections. The sound-light alarm could also be calibrated according to the context 

in future versions of this prototype, for example taking into account the 

environmental sound and light noise; however, no sensors, for measuring this 

context, are considered for this tool iteration.  

 

The sound-light alarm can also be turned off by the driver (when activated by 

the system) and disabled when s/he wants to maintain it off indiscriminately. 

The alarms differ from the support lane keeping because they cannot be turned 

on which is totally obvious because their nature. As it can be supposed the 

driver’s interaction with the sound-light alarm will also result in candidate 

adaptations of SACRE. 

The candidate adaptations, due to driver’s interaction with the actuators, have to be 

later evaluated by the adaptation feedback of ACon in order to accept or reject them. The 

criteria and procedure followed in this evaluation is explained later in this document. 
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Fig. 8: Vehicle Actuators 

3.2 Architecture 

In self-adaptive systems, it is necessary to make explicit feedback loops in the 

architecture design in order to reason about its behaviour and to analyze the adaptation 

mechanism separately from the target system operation [30]. SACRE keeps, at the higher 

level of abstraction, the ACon adaptation feedback loop as its core. Nevertheless, the design 

and implementation of SACRE will be clearer if some modules are explained in detail. At 

the lower level some architectural decisions have been taken due to the technologies 

required for the specific domain application. The whole architecture has been conceived 

following the model-view-controller pattern. The following sections depict the details of 

SACRE’s architecture. 

3.2.1 Adaptation feedback loop in SACRE 

As it has been mentioned before the adaptation feedback loop proposed by [12] has 

been taken as SACRE’s core. However, some changes have been applied in order to better 

fit with SACRE’s implementation. The version of the adaptation feedback loop used by this 

work is shown in Figure 9 and the explanation of the changes is presented below. Also, a 

component-based diagram of the SACRE’s architecture is provided in Appendix A. 
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Fig. 9: Adaptation feedback loop in SACRE  

The changes applied to the ACon’s adaptation feedback loop are: 

1) The policy element is replicated for all the modules. This change is useful in 

order to assign user and organization preferences to each element in the loop at 

design time, increasing the adaptation accuracy at runtime and user satisfaction. 

This also contributes to the specific domain application abstraction from the 

loop, increasing the architecture reusability. Although the designed architecture 

allows changing the policies at runtime, in the implementation this facility has 

not been provided. The reason is that a smart vehicle, more than a service, is a 

product that once is out of the providers’ ownership they have no control over it 

unless, for instance, they offer an online support which is not the case of 

SACRE.  

 

For this reason, a policy’s change at runtime is not considered. Moreover, a 

driver is intended to interact with the vehicle’s actuators and controls and not to 

know how to manipulate low level characteristics such as the data mining 

statistics. For instance, imagine that this facility is provided and the user 

calibrates the data mining acceptable error wrongly; this could cause an unsafety 

vehicle’s behaviour and provoke an accident. Furthermore, the domain specific 

variables contained in the policies elements are not intended to change over 

time. The parameters provided, by the policy element in each module, are 

shown in Table 1.  
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Table 1: Policy element’s parameters per module 

Module Variables Observations 

Knowledge 

Base 
 Monitor context’s inter-

readings time  

 Minimum number of 

symptoms before monitor 

send a symptom document 

These variables are supposed to be 

adapted by the effectors (not done in this 

demonstration) and communicated to 

the monitor through the knowledge 

base. 

Sensors  Specific domain variables 

 Maximum variables’ values 

 Minimum variables’ values 

 Operations to be applied 

over sensors’ values to 

calculate variables 

The minimum and maximum values are 

useful for normalizing the variables’ 

values and for detecting damaged 

sensors. 

Monitor  Specific domain variables 

 Maximum normal 

variables’ values 

 Minimum normal 

variables’ values 

The minimum and maximum normal 

values are useful for detecting 

symptoms (i.e. outliers). 

Analyze  Algorithm to be used 

 Tool to be used 

 Parameters for composing 

the request to the tool; see 

Appendix B for more 

details 

 Data mining algorithm 

statistics to extract from the 

response 

The request to the tool is prepared for 

the specifications of the tool used in this 

demonstration and should be changed if 

another tool is used instead. 

Plan  Data mining algorithm 

statistics to check 

 Data mining algorithm 

statistics’ thresholds 

These thresholds as mentioned before 

are useful for accept or reject 

adaptations proposed by the analyzer. 

Execute 

- 

In this implementation the policy 

element of the executor is empty 

because the commands’ simplicity it 

should generate. In more complex 

implementations instructions about how 

to translate the change plan into 

commands would be useful. 

Effectors 

- 

In this implementation this policy is 

empty because the adaptations are aimed 

only to the contextual requirements. 

More complex implementations should 

use this policy for help the module to 

effect correctly over the corresponding 

managed element. 
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2) In this work, the specific domain application element has been added to the 

managed elements module. In this way, both the target application and the 

contextual requirements element enter in the loop and are adapted. This could be 

taken as an explicit integration of the application in the loop and not as a really 

change since, as it has been interpreted by this work, [12] assumes its 

integration. 

 

3.2.2 Data mining in SACRE 

This section depicts more details of the analyzer module. As it has been mentioned 

before, the analyzer component uses data mining techniques in order to determine 

candidate adaptations finding patterns in the historical data. Moreover it receives the 

symptoms from the monitor module, interpret them, add or remove sensors from the set to 

be taken into account in the data mining algorithm and generate the request for change 

document.  

In order to increase the architecture’s reusability, the data mining module has been 

designed as an external service letting the opportunity to other implementation to try with 

other techniques that could provide better results than the machine learning techniques or 

aggraded techniques to improve the adaptations accuracy. In the case of SACRE the data 

mining service is offered by the Weka tool API which at the implementation level also 

implies a clear separation from the rest of the modules. The resulting split of the analyzer 

module is shown in Figure 10. More details about this service are depicted later in this 

document. 

 

Fig. 10: Expanded analyzer module  
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In SACRE, the analyzer removes or adds a variable when the variable shows 

symptoms for 3 iterations as proposed by [12]. In the same way the monitor waits 3 

iterations with symptoms before send them to the analyzer. This decision was taken 

thinking of the calls to the data mining algorithm (JRip) which is well known to provide 

better results when more evidence is provided, which means more data for finding patterns 

[12]. This also ensures that the symptom is not an isolate case. The selection of the 

optimum number of iterations to wait before sending a symptom implies an exhaustive 

experimental study of data mining results for this application and it is not aim of this thesis. 

In this first version, SACRE searches for a trade-off between the data mining results’ 

quality and the system adaptations dynamicity. 

 Because the driver’s safety and the driver’s comfort factors’ importance in this 

domain is high, the system should respond fast to adaptions minimizing the number of 

unsatisfied contextual requirements at any time as stated in [12]. At the same time it should 

ensure high accuracy when adapting, this accuracy depending on the data mining results. 

The decision of waiting for three iterations is useful for deadlock in case contradictory data 

exist. For instance, imagine that the last three SACRE iterations have report symptoms over 

the same variable as follows: outlier, mal-functioning, outlier. If just the two first iterations 

would be used the system could not know if the variable is in an outlier or mal-functioning 

case, and the third iteration would introduce a deadlock situation.  

3.2.3 Managed Elements 

The managed elements module in the adaptation feedback loop of SACRE is 

composed of two entities, the contextual requirements and the specific domain application. 

As it has been mentioned above, the specific domain application in SACRE is that of smart 

vehicles. The managed elements maintain a communication channel with the sensors and 

effectors modules; nevertheless, in SACRE the communication channel between the 

effectors and the smart vehicle is not exploited. More details are depicted in the next 

section.  

3.2.3.1 Smart Vehicle 

In SACRE, the smart vehicle element has been decomposed due to the variety of 

functionalities that it provides. The logics of the smart vehicle behaviour are kept in a 

controller module that communicates directly with the adaptation feedback loop. 

Meanwhile, the user visualization or view module is kept totally independently and never 

communicates directly with the adaptation loop. This visualization is created in order to 

increase the comprehensibility of the SACRE adaptations, to attract users and to facilitate 

user interaction with the system. In order to communicate the view with the smart vehicle 

controller an intermediate service has been designed. A second visualization showing the 
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vehicle in the path has been created. Both visualizations communicate directly to each other 

without using any middleware service. 

It is worth to mention that this design is not affecting the reusability of the abstract 

architecture shown in Figure 6. What is inside of the specific domain application 

architecture depends only on this domain which will change for other implementations. On 

the other hand the proposal about keeping the data mining module as an external service 

increases the reusability of the internal analyzer architecture. Figure 11 shows the smart 

vehicle managed element architecture in a lower abstraction level.   

 

Fig. 11: Expanded application domain module 

The entire SACRE cycle flow, taking into account all the considerations mentioned 

in this section, is shown in Figure 12. Also, a sequence diagram in Appendix A of this 

process is provided. The cycle can be described to work as follows: 

1) The smart vehicle view, containing the controls and variables, communicates the 

sensors’ values changes to the smart vehicle controller through the intermediate 

service. 

 

2) The smart vehicle controller pushes the sensors’ values changes to the sensors 

module. Analogously, the contextual requirements notify its contextual 

requirements’ operationalization changes to the sensors module.  
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3) The sensors module for the smart vehicle information performs some 

calculations in order to generate a set of variables. These variables are the ones 

that the monitor should use in order to determine if a contextual requirement is 

satisfied or not. The monitor as well as the sensors module receives the variables 

and the way to calculate them as initial configuration parameters in their own 

policy element.  

 

With the contextual requirements’ operationalization changes, the sensors 

module does nothing, just passes the information to the monitor, when it request 

it, so it can evaluate the contextual requirements taking into account this new 

operationalization and the calculated variables. 

 

4) After calculating the variables and in order to enhance the smart vehicle 

response time to the user, the sensors module communicates the results to the 

smart vehicle controller. 

 

5) The smart vehicle controller has a communication channel with the contextual 

requirements element. After receive the variables values from the sensors 

module it checks the contextual requirements and apply the changes regarding 

them to the vehicle. Some actions could be not possible to execute since the user 

intervene, e.g. turn on an actuator disabled by the user.  

 

6) In order to apply the changes the smart vehicle controller not only change its 

local values but also use the intermediate service for make them explicit in the 

smart vehicle view module. 

 

7) The smart vehicle view module updates the values and show them to the user 

through the user view (a display). This smart vehicle view could be updated 

from the environment (simulating a receptor of hardware changes in the real 

world) and from the smart vehicle controller being obligated to maintain an 

aggregated and updated set of changes to the user view. This module 

discriminates between entities’ priorities in order to do the updates. More details 

about this module are provided in following sections.    

 

8) Meanwhile the steps 4, 5, 6 and 7 are occurring, the monitor module could ask 

at any configured time the current context to the sensors module. The sensors 

module could respond that it does not have any data yet or could respond with 

the variables values and contextual requirements’ current operationalization. 

 

9) With the variables’ values and an updated version of the contextual 

requirements’ operationalization, the monitor is able to calculate contextual 



31 
 

requirements satisfaction. In case it finds a symptom, the monitor categorizes it 

in any of the four possible cases considered in Section 2.3.2. Then it should 

check if the symptom has been found in the last x iterations (being x a 

customizable value, currently 3) and in this case, it pushes a symptom document 

to the analyzer module. The monitor module could find symptoms for each tuple 

of contextual requirements. 

 

10)  The analyzer communicates with the data mining service in order to find 

patterns in the historical data for the contextual requirements affected by the 

symptoms and communicate the results to the planner through a request for 

change document. Using its policy element the analyzer decides the tool and the 

specific algorithm to use in order to effectuate the data mining.  

 

The Weka data mining tool and the JRip algorithm are the only initial 

parameters considered by the demonstration shown in this work; nevertheless, 

any tool and algorithm could be used if its respective connector module is 

implemented since each tool and algorithm has its own request/response and 

data format or API. Creating connectors for alternative tools and algorithms is 

out of the scope of this work. 

 

11) The planner uses its policy element to discriminate adaptation proposals and 

communicates its decision to the executor. The statistics used in SACRE, 

resulting from a 10-fold-cross-validation realized over the JRip algorithm 

results, are: precision, recall, f-measure and error. 

 

12) The executor manipulates the instructions provided by the planner as it is stated 

in [12] and communicates specific actions to apply over the managed elements 

to the effectors module. 

 

13) As it has been mentioned above, the adaptations considered by SACRE and 

ACon are the ones regarding to contextual requirements. The smart vehicle 

behaviour is not in charge of the loop but the rules of its behaviour that depend 

on context (contextual requirements) are. Anyway the adapted contextual 

requirements are later consulted by the smart vehicle. 

 

The decision of maintaining the smart vehicle functionalities out of the cycle is 

necessary in order to maintain an adequate response time of the smart vehicle, 

keeping the requirements that do not depend on context out of the loop. With 

these considerations, the effector applies the actions indicated by the executor 

module (that always correspond to the contextual requirements managed 
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element) that are not more than updates of the contextual requirements’ 

operationalizations.  

 

14) If the contextual requirements element changes it announce it to the sensors 

module closing the loop. 

 

Fig. 12: SACRE’s cycle  

3.3 Contextual Requirements 

 The contextual requirements modelling field nowadays is work in progress, not yet 

standardized or exhaustively studied. Researchers have done some efforts proposing 

approaches for modelling this kind of requirements, nevertheless further investigation and 

discussion should be done. Because this work is not aim to provide a proposal of contextual 

requirements modelling it takes the approach exposed in [9] with this purpose.  

For the purposes of this work they have been detected two main SACRE‘s goals: 1) 

vehicle keeps in lane, 2) driver does not sleep. Figures 13 and 17 show the models of these 
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two goals annotated with contexts at their variations points. Meanwhile, Figures 14-16 and 

18-23 present the models of the contexts considered by each goal model, respectively. 

 

Fig. 13: Vehicle keeps in lane - Goal Model 

 

Fig. 14: Smart vehicle is On – Context Model 
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Fig. 15: Driver is asleep and support lane keeping is On – Context Model 

 

  Fig. 16: Lane keeping control sensors are OK – Context Model 
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Fig. 17: Driver does not sleep - Goal Model 
*Context C0 is the same context than C0 in goal model: Vehicle keeps in lane 

 
 

 
Fig. 18: Electrocardiogram sensor is OK – Context Model 

 



36 
 

 

 

Fig. 19: Driver’s vigilance level sensors are OK – Context Model 

 

 

 

Fig. 20: Pressure sensitive sensor is OK – Context Model 
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Fig. 21: Driver shows drowsiness symptoms – Context Model 

  

Fig. 22: Driver is tired – Context Model 

 

 

Fig. 23: Driver is dangerously tired – Context Model 
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For the demonstration of SACRE presented in this work and taking into account the 

models above, three contextual requirements have been derived. These contextual 

requirements as well as their operationalization are introduced as an initial configuration 

parameter to the tool. The operationalization of a contextual requirement consists of all the 

variables that should be considered (called variables involved) in order to describe the 

context of the contextual requirement and the values (that can be range of values) of the 

variables that allow the system to decide whether a context holds or not [12]. The 

operationalization could be represented as an arbitrary formula but always should result in a 

true or false response. In SACRE, the operationalizations’ formulae are logical 

aggregations (ANDs) of the evaluation of the variables values (normalized). 

The set of contextual requirements as well as their operationalization are shown in 

Table 2. The rightmost column of the table shows the variables’ values before the 

normalization. The normalization has been done taking into account the same minimum 

and maximum variables’ values stated in the sensors module’s policy explained before.  

Table 2: SACRE’s contextual requirements 

CR Context Behaviour Operationalization 
Operationalization 

(non-normalized) 

cr1 
Driver is 

tired 

Activate seat 

vibration 

alarm 

Perclosed>0.15 AND 

FacePosition=1 

Perclosed>15% AND 

FacePosition=Non-frontal 

cr2 

Driver is 

dangerously 

tired 

Activate 

sound-light 

alarm 

FacePosition=1 AND 

HandsOnSteeringWheel<1 

FacePosition=Non-frontal 

AND 

HandsOnSteeringWheel<2 

cr3 
Driver is 

sleeping 

Activate 

support lane 

keeping 

Perclosed>0.25 AND 

HeartBeatsPerMinute<0.46 

AND 

HandsOnSteeringWheel<1 

Perclosed>25% AND 

HeartBeatsPerMinute<55 

AND 

HandsOnSteeringWheel<2 

 

The contextual requirements of SACRE are aimed to detect and support drowsy 

drivers. Since the description of a context when a driver is tired, dangerously tired or asleep 

is subjective and depends a lot on the context (user, sensors measures accuracy, etc.) it is a 

great example in order to validate ACon. The operationalization of these three contextual 

requirements is changing constantly at runtime, since the interaction between the driver and 

the actuators use to be high. Moreover, the drivers’ state could be misunderstood easily and 

should be adapted frequently. 

 It can be noticed that the sensors related with the support lane keeping are not 

involved in the contextual requirements. This work considers that the requirements related 

to maintaining the vehicle in the lane don’t depend on context; what is depending on 

context is the activation or not of the support lane keeping capability. This means that the 
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functionality of maintaining the vehicle in the lane is in the same set of requirements as for 

example that the user can open automatically the windows or that the vehicle must has an 

USB input, etc.  

 The variables describing the contexts of the contextual requirements are the ones 

calculated by the sensors module and do not always match exactly with the sensors in the 

specific domain application. For example, the driver’s vigilance level sensor used to 

measure the eye state is not present in the contextual requirements table directly. The 

perclosed variable (percentage of the time the eyes have been “closed”), based on [25] but 

renamed for this work because the calculations differences, accumulates the eyes state 

along the whole execution and reports the percentage of this accumulation where the eyes 

were in closed state. 

 In order to calculate the perclosed, the following steps are done: 

1. Based on the visible driver’s pupil ratio at x time reported by the driver’s 

vigilance level sensor: 

- An open state is accumulated if the visible driver’s pupil ratio is more or 

equal than 40%. 

- A closed state is accumulated if the visible driver’s pupil ratio is less 

than 40%. 

- No transition states are considered for this work. 

 

2. A ratio between the accumulated closed and open states regarding the total 

elapsed time is calculated and reported as the perclosed measure.  

For example, if have elapsed three iterations and after apply the discriminator 

criteria (i.e. 0%-40% the eyes are closed and 40%-100% the eyes are open, considering that 

the eyes blink at the same time or that the percentage represent an average of both eyes 

states) the eyes state result in: open, closed, open; the perclosed would report 33.33% 

which is the percentage of time (simplified by discrete iterations) that the eyes were closed. 

 For the SACRE implementation some assumptions not clarified in [12] should be 

used in order to manage the translation of the sensors values in variables. For example, the 

sensors module based on its policy element revises if a sensor is malfunctioning; if it is 

malfunctioning the sensors’ module does not consider it for the variables’ calculation. Later 

on, the monitor based on its own policy element decides if the variables’ values do not 

correspond to normal values and classify these ones into the corresponding symptom 

(outlier, malfunctioning, etc.).  

With this assumption, the translation of the symptoms to specific sensors is 

discarded being its relation one to many and not one to one. This factor could limit the 

SACRE’s adaptation performance when trying to explain with precision what is exactly 
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wrong in the specific domain application. The values of the variables in Table 1 have been 

not exhaustively studied since in any case they will be adapted at runtime, however they are 

based on the literature mentioned before in which each sensor interpretation is based 

(section 3.1.2).  

3.4 Functionalities 

The SACRE tool is presented to the user as an interactive dashboard. This display 

shows the most important variables of the simulated part of a smart vehicle. Moreover a 

second display is provided showing graphically the position of the vehicle in the road. The 

communication between both displays is really important since a change in any of the 

displays related with the position of the vehicle in the lane should be communicated to the 

other display immediately in order to create a sense of realism to the user. Furthermore the 

interactive display should communicate with the smart vehicle controller as it has been 

explained in previous sections. 

The changes in the controls’ display basically correspond to accelerate, brake and 

rotate the steering wheel; while the changes in the second vehicle and path display 

correspond to the calculation of lateral and frontal distance and the deviation angle 

regarding the lane shape (graphically approximated) taking into account the new values of 

the accelerator, brake and steering wheel provided by the controls’ display. In order to keep 

it simple, the small vehicle position changes are not considered. The accelerator, brake and 

steering wheel can be manipulated from different sources, more details are explained 

below. 

 SACRE offers a set of user-manageable sensors and actuators. The degree of the 

manageability depends on the setting selected at the initial stage of the tool, shown in 

Figure 24. There are two options:  

a) manual, which allows the user to have full control of the application, changing 

the values of the variables as s/he wants, except the dependent variables such as 

lateral and frontal distances and the deviation angle which are calculated based on 

the input of the user for the rest of the variables. In this setting the user accelerates, 

decelerates and rotates the steering wheel using the keyboard. 

b) automatic, an option without user assistance through a set of predefined scenarios 

running automatically in the tool. The independent variables such as: acceleration, 

brake and steering wheel rotation are read from a file, simulating the user input. 

In both cases the user can manipulate the actuators (support lane keeping, vibration 

alarm, and sound-light alarm) which will trigger the adaptations and for commodity the 

values regarding the user state are extracted from a file. Also in both cases the user receives 
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the feedback about the contextual requirements evolution through the variables 

visualization and can evaluate the system performance comparing the decisions taken by 

the tool against the expected ones. However, at runtime sometimes it is difficult to follow 

the adaptations; thus SACRE, for evaluation purpose, provides a historical record of the 

adaptations (among other data) generated during the execution, showing them in console. 

Figure 25 shows an example of this output.  

 

Fig. 24: SACRE setting selection 
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Fig. 25: SACRE historical adaptations record 

SACRE provides a second menu where a user can select the path style s/he wants 

the vehicle to follow and the context conditions for different driver states (e.g., tired driver). 

An instance of this menu is shown in Figure 26. As it can be noticed the number of 

configuration parameters in SACRE is high and if the interaction with the user is 

aggregated it is obvious that each execution of SACRE will be different. The possible 

adaptations as well as their order are unfeasible to calculate, recurrent characteristic in self-

adaptive software.  
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Fig. 26: SACRE path and driver’s state menu 

Figure 27 shows the controls’ display of SACRE, managed by the smart vehicle 

view module. This display contains the values of the following variables:  

 Regarding the driver:  

- eyes state 

- face position 

- hands on the steering wheel 

- driver’s heart beats per minute (hbpm)  

 

 Regarding the vehicle’s position:  

- lateral and frontal distances between the vehicle and the street’s lateral 

lines 

- deviation angle of the vehicle regarding the estimated correct position it 

should have  

 

 Regarding the vehicle’s controls:  

- speed 

- acceleration rate 

- deceleration rate 

 

 Regarding the actuators’ state:  
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- support lane keeping 

- sound-light alarm 

- seat vibration alarm 

 

Fig. 27: SACRE controls display 

 

Fig. 28: SACRE air street view 
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The secondary SACRE’s display is provided in order to illustrate the vehicle 

position on the street; an instance of this display is shown by Figure 28. This display 

responds to the accelerator, brake and steering wheel changes moving graphically the 

vehicle in the road according them. This display should be understood as a complementary 

evidence of SACRE intended to arise the interest of the stakeholders involved in the topic 

of self-adaptive systems and to demonstrate its applicability in real world implementations. 

Once the support lane keeping is activated it is in charge of maintain the vehicle in the lane 

taking into account the calculation graphically generated by this display. Later, in the 

implementation section more details about this display are provided. Moreover, a use case 

diagram describing all of these functionalities is provided in Appendix A. 

3.5 Implementation 

SACRE is a proof-of-concept implementation of the ACon approach and as it has 

been mentioned in Section 3.1.2 it is placed in the application domain of smart vehicles. 

The software developed for smart vehicles is usually done in the environment of embedded 

systems. The smart vehicles as well as other smart embedded devices nowadays should 

provide more and better functionalities to the users using less and less amount of resources. 

3.5.1 Technologies 

In the case of SACRE’s implementation the resources limitation is taken into 

account; nevertheless, for demonstration and testing purposes a part of the tool should be 

implemented as a desktop application. Moreover, a way to simulate the embedded device is 

desirable in order to monitor its adaptation performances. Finally, an important fact should 

be taken into account, the data mining tool Weka offers an API not suitable for embedded 

environments because its size (~6MB). 

3.5.1.1 Rationale 

According to [31], embedded system applications were once written in assembly 

language. But as embedded computer hardware resources grew, pressures such as time-to-

market and development cost drove a shift to the more portable and less error-prone C and 

C++ languages. These languages required more memory and more CPU cycles, but 

declining hardware costs and rising software complexity made the trade worthwhile. 

The C language currently is the most commonly used programming language for 

embedded software development and gives the programmers a relatively extensive writing 

flexibility, accordingly to [32]. However, this flexibility could affect the system’s 

performance since the code quality will highly depend on the programmer. On the other 

hand, Java language has become more and more popular in the last years, gaining a great 
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worldwide population of developers trained in enterprises and schools. The consideration 

of Java in the embedded world also has increased and now is an attractive alternative. 

Some advantages of Java over C and C++ in embedded systems, based on [31], are: 

- Java is a modern, object-oriented, language without the error-inducing 

complexity of C++. Objects are natural representations for sensors and 

actuators. 

 

- Java is less prone to errors than C. For example, there are no pointers, and 

memory management is automatic. 

 

- Highly portable; Java classes do not need to be recompiled to run on a different 

CPU or operating system. 

 

- Security, oriented. Java libraries support encrypting sensitive data sent to or 

from embedded devices, and validating digitally signed code downloaded to 

update or extend embedded applications in the field. 

 

- Multi-threaded, enabling the natural expression of parallel activities and their 

simultaneous execution on platforms whose operating system thread model 

takes advantage of multiple CPU cores. 

 

- Equipped with a large collection of OS-independent libraries including database 

access and graphical user interfaces. 

 

- Tunable to match hardware resources and application needs. For example, there 

are multiple options for runtime compilation to native instructions, and for how 

and when unused (garbage) memory is reclaimed. 

 

- Extensible with native methods written in C that interact with special purpose 

embedded system hardware. 

 

- Debuggable on the desktop and remotely. A desktop Java Runtime 

Environment has the same APIs as one that runs on an embedded computer, 

except for hardware-specific interfaces and behaviours. Most functional 

debugging can be done on a desktop computer. An embedded system that has a 

network connection can be debugged and profiled remotely. 

 

As it is stated before Java’s popularity is really high and the complexity of its use in 

embedded systems is relatively low against C and C++ according to the points enlisted 
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before. Taking into account these considerations Java seems the better choice for SACRE’s 

implementation. Moreover other reasons could be provided: 

1) The stronger programming abilities of the author of this work are placed in the 

Java world. Even a special edition for embedded system should be used, the 

learning curve is preferable than the one for starting with other languages. 

 

2) The Weka tool API is offered to be used in Java code, so the use of Java in all 

the modules will facilitate the integration of SACRE’s.  

 

3) Using Java, the simulation of the embedded device as well as the creation of the 

view modules are trivial.  

 

3.5.1.2 SACRE 

 

3.5.1.2.1 Modules 

Taking into account the justification presented in the previous section, a mixture of 

Java technologies are used for the SACRE’s implementation which is presented in this 

section. The advantage of this implementation is its proximity to a real world embedded 

application since it has been developed in an emulated embedded device. This argument 

corresponds to the core of SACRE (the adaptation feedback loop and managed elements 

controllers), but not to the graphical part of the smart vehicle (the smart vehicle view 

modules) which in theory simulate the device hardware visualization. Code for controlling 

the real hardware, i.e. LEDs, sounds, etc. should be developed in order to substitute the 

simulated actuators in the SACRE’s view. 

SACRE was implemented as follows:  

 Java ME (Java Micro Edition Embedded) 8.1 has been used for the emulated 

embedded application that contains the adaptation feedback loop modules, 

specifically the MAPE-K loop modules plus the policies documents, and the 

Managed Elements Controllers. 

 

 Java SE (Java Platform, Standard Edition) 1.8 has been used for develop the 

smart vehicle view modules (both displays) and for develop two RESTful 

services which fulfil the following tasks:  

- A smart vehicle middleware service designed and developed for 

communicate the Java ME smart vehicle controller module with the 

Java SE smart vehicle view module containing the controls; and, 
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- A data mining service with the objective of communicate the Java 

ME data mining module that controls the data source and 

symptomatic contextual requirements with the Java SE data mining 

module that manage the Weka API usage in order to execute the JRip 

algorithm over the data.  

 

The sensors, contextual requirements and smart vehicle controller and view modules 

were been designed to follow the pattern of observer-observable in order to keep updated 

context data and to manage the changes in the displays. In the case of the Java ME 

modules, this pattern has been developed from scratch (as well as other functionalities) 

because it is not included in the Java libraries available. 

3.5.1.2.2 Data persistence 

Another important topic to discuss is the data persistence process which in the case 

of SACRE requires a lot of resources. SACRE’s adaptations performance is based on the 

correctness of the data mining results. In turn, the quality of the data mining results for the 

JRip algorithm depend on the amount of data it has in order to find patterns, as much data 

as better results it provides. Taking into account the dependencies mentioned above, a 

really reliable and optimized way to persist the data in SACRE should be used. 

In order to tackle this challenge, SACRE uses the Java ME API: RMS (Record 

Management System). RMS provides the functionality of store application data that persist 

across invocations. It is a very simple record store that can be seen as a simple database 

which consists on key-value style data storage. The greatest problem is that the keys are 

automatically assigned reducing its utility. 

If more complex data should be stored, for example involving more than one 

column or even worse, if complex calculations like aggregation, join, etc. should be 

executed, they have to be managed by code from scratch. Moreover, the data stored in each 

value of a record has a limited size (maximum 32 characters). Even if RMS seems highly 

restrictive, it allowed executing successfully the testing phase of SACRE. For sure, in real 

world applications the amount and complexity of data is much more higher which will 

obligate the developers to use other techniques of data persistence, totally out of the scope 

of the proof-of-concept implementation shown in this work.  

The SACRE’s architecture presented in section 3.2 is now provided for clarification 

purposes, in Figures 29, 30 and 31, at lower level of abstraction exposing the places 

occupied by the technologies discussed in this implementation section. 
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Fig. 29: Adaptation feedback loop in SACRE (technologies) 

 

Fig. 30: Expanded analyzer module (technologies) 
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 Fig. 31: Expanded application domain module (technologies)  

 

3.5.2 Challenges 

From the previous sections some challenges could be already foreseen. Apart of 

those challenges, for example the device’s resources limitation, some others have emerged 

along the SACRE’s design and implementation. In this work the challenges have been 

divided in two kinds: technical and domain-related. Even if both kind of challenges depend 

on the specific domain application selected, the first ones refers to the technologies and 

techniques used for implement SACRE; meanwhile, the second ones regard to the 

implications of simulate SACRE’s domain because hardware absence, not strictly related 

with code. 

3.5.2.1 Technical 

As it has been mentioned before, SACRE’s implementation results in a mixture of 

Java technologies. This situation carries the following technical challenges:  

- Combining Java ME and Java SE without affecting the performance of the 

whole application. The combination is effectuated through the communication 

channels established by the RESTful service which sometimes could experience 
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a de-synchronization due to the unsynchronized calls by both parts. Issue 

already fixed, but that could add delays of data freshness or time response. 

  

Moreover, these services are highly loaded with calls because the cycles of the 

system are short, for example: the smart vehicle controller asks every second to 

the view (through the corresponding service) the sensors’ values; and, the 

monitor element requests the context to the sensors module every 2 seconds 

which later trigger a data mining service call by the data mining module 

embedded in the analyzer element.  

 

- Finding the common characteristics between Java ME and Java SE 

environments and exploit them in order to be transparent for the user. For 

example, the information interchange between the modules, through the 

RESTful services, is done in a common structure of data: JSON. This decision 

facilitates the avoidance of data misunderstanding, data incompleteness, etc. 

Problems usually experienced when transform data from one structure to 

another.   

 

- Maintaining as much modules as possible in the Java ME environment in order 

to provide a lightweight application. A great effort has been done in order to 

maintain as much modules as possible. The only modules out of the Java ME 

are the views of the specific domain application, which don’t should affect the 

cycle performances, the service that communicates them with the cycle, which 

would not exist in case the views would be removed. And, the data mining 

service convenient for its substitution or even for have more than one data 

mining provider serving the adaptation feedback loop. 

 

-  

3.5.2.2 Domain 

SACRE implements a part of the functionalities of a smart vehicle. The tasks in 

charge of the sensors and actuators should be simulated in some way, as well as the scaled 

view from the air of the vehicle in the path. The challenges carried by the implementation 

of these simulations are following explained. 

- Simulating sensors. The sensors mentioned in section 3.1.2 should provide 

realistic measures in order to simulate the sensor hardware behaviour in real-

world. For the sensors related to measure the driver state, the measures’ values 

were based in previous works for each of the specialized areas: for example, 

drowsy people eyes behaviour studies, heart beats behaviour experimental 

studies when people is asleep and awake, etc. and the sensors currently available 
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in the market for these purposes in order to increase SACRE’s applicability in 

real world. The challenge with these sensors is to simulate a long period driver’s 

behaviour according to the states considered by this demonstration (awake, 

tired, dangerously tires and asleep) without overlap and create confusion of the 

driver’s state that is intend to be simulated. This task is challenging because 

even in real-world these states are subjective and not well delimited. 

 

Regarding the sensors aimed to report the vehicle position: lateral and frontal 

distances and the deviation angle; the challenges emerged from the measures 

simulation and their calculation at any time taking into account user input (or, 

simulated user input) and the scaled view. In real-world the sensors would 

report the measures to SACRE which could delimit its scope to only process 

these measures and propose the adaptations; but, for this demonstration an 

approximation has been calculated based in the smart vehicle and path view 

through trigonometry theory principles, as shown in Figure 32, 33 and 34. The 

approximation of the measures calculations is necessary because the inter 

repaint time and all the communication this displays has to managed.  

 

- Simulating view from air of the vehicle in the path. This simulation is totally out 

of the main purpose of SACRE. Nevertheless, it is a really useful 

complementary evidence of its performance, particularly when the support lane 

keeping is activated. This simulation requires the study of graphics theory and a 

little incursion in video games principles. Moreover, the study of automotive 

physics has been needed in order to maintain a minimum degree of realism.  

This part of SACRE has been developed using the Java 2D APIs which also 

implies some time for its study and testing before reach the final product. 

Because this view plays a complementary role it has been kept simple. 

 

- Simulating actuators. While the vibration and sound-light alarms are easy to 

simulate (only indicated by the activation or deactivation of a button) the 

support lane keeping actuator represents more work. The support lane keeping is 

a trend in the smart vehicles and really attractive for the community. Adding the 

challenges to calculate vehicle position and simulate it in an aerial view, an 

algorithm for the support lane keeping actuator should be designed. This 

algorithm has been kept simple since also is not in the main purpose of this 

work. The algorithm should take into account soft-requirements such as: safety 

and realism. The pseudo code of the algorithm used by the support lane keeping 

is shown in Figure 35. 
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Fig. 32: Lateral distances calculation 

 

Fig. 33: Frontal distances calculation 
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 Fig. 34: Deviation angle calculation  

 

Fig. 35: Support lane keeping algorithm. 
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Chapter 4 

Evaluation 

 

4.1 Experiments 

In this chapter a set of experiments executed over SACRE is presented. These 

experiments not only will be useful to evaluate SACRE’s performance, but also to validate 

the ACon approach implemented by SACRE. Because the contextual requirements 

designed are oriented to detect and support drowsy drivers, the scenarios of the 

experiments, in order to test SACRE’s adaptations’ accuracy, are based on the driver’s state 

changes. The path (curve or straight) and kind of setting (automatic or manual) selected in 

the scenarios are parameters that do not affect the adaptations but since they are some of the 

SACRE’s functionalities, their performance should be evaluated as well. Finally, the 

support lane keeping actuator’s decisions’ correctness, when activated, is neither affecting 

the adaptations as it has been explained in previous sections; nevertheless, it is evaluated in 

the scenarios as a complementary functionality.  

The scenarios considered by this work have the goal of evaluating the contextual 

requirements’ adaptations at runtime and validate the approach behind these adaptations 

(ACon). The configuration of the scenarios is presented in Table 3. The table’s columns are 

the possible input parameters of SACRE and the execution duration time of each scenario; 

while the rows are the initial values for each parameter considered in each scenario. A brief 

explanation of the scenarios is provided below. 
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Table 3: Experiments’ scenarios 

Scenario Setting Path Driver’s state Execution 

time 

1 Manual Curved Awake 10 minutes 

2 Automatic Curved Tired 15 minutes 

3 Manual Straight Dangerously Tired 10 minutes 

4 Automatic Straight Asleep 15 minutes 

5 Automatic Straight Awake
*
 15 minutes 

 

- Scenario 1: The first scenario corresponds to a manual setting which means that 

the accelerator, decelerator and steering wheel rotation controls’ manipulation is 

in charge of the user. As it has been mentioned before these controls can be 

manipulated using the keyword (arrows). The path selected is a path with curves 

that the user must follow with the controls. The driver’s state selected is awake. 

This implies that any actuator should be activated by the system since the 

actuators have been designed for support drowsy drivers. The sensors’ values 

related with the driver’s information are read from a file and correspond to 

values which a person in normal conditions would show if s/he is awake.  

 

This scenario has been designed in order to demonstrate a normal flow of 

SACRE’s behaviour in which the driver does not interact with the actuators. 

This means that no adaptation is expected; instead what it is expected is to have 

all the contextual requirements satisfied during the whole execution. Because of 

the simplicity of this scenario and the expected absence of adaptations, the 

execution time has been left to 10 minutes.  

  

- Scenario 2: The second scenario corresponds to an automatic setting which 

means that not only the sensors values defining the driver’s state are read from a 

file but also the values of the controls: accelerator, decelerator and steering 

wheel rotation. In case the support lane keeping actuator is turned on, by the 

system or by the user, the controls’ values are going to be read from the support 

lane keeping system and not from the file. Once the support lane keeping is 

turned off, the controls’ values are going to be read again from the file, in this 

automatic setting.  

 

The path selected has curves and the driver’s state selected is tired. This driver’s 

state, according to the initial contextual requirements’ operationalization shown 

in Section 3.3, triggers the vibration alarm actuator. But, in order to incentive an 

adaptation and evaluate the actuator performance, the support lane keeping 

actuator is manually turned on (using the mouse) triggering a symptomatic state 
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and letting the system in charge of the controls. It is expected, apart from the 

adaptation, that the vehicle is maintained in the lane without abrupt changes and 

procuring driver’s and vehicle’s safety.   

 

The activation of the support lane keeping would indicate that the driver wants 

that the system in the future triggers this actuator when s/he experiences the 

current context and not necessarily when the system detects her/him asleep, as 

the initial contextual requirements’ operationalization indicates. Or also could 

be understood as that the current context is actually describing a slept driver and 

not a tired driver from the user’s point of view.  

 

In SACRE, if the support lane keeping actuator is activated, any other alarm 

could not be activated. Particularly, in the case of manual activation of the 

support lane keeping actuator the contradiction of having it activated instead of 

other alarms (in case they are triggered by the system and unable to be 

activated) the system will show symptoms. These symptoms correspond to false 

IAFactors (variable based on [12] defining if a behaviour is true or false) which 

means that the system will not adapt since some patterns describing when they 

are true are provided. This situation could be fixed turning off the support lane 

keeping and letting the alarms turn on when system requires (storing context’s 

patterns where they are on); however, this has not been considered for this 

experiment. 

 

This scenario has been previously trained with the first scenario, where no 

actuator is activated. The reason of training the system is to provide to the data 

mining algorithm more meaningful data to contrast and in consequence facilitate 

the task of finding patterns. Because of the complexity of this scenario, a period 

of 15 minutes has been selected for its execution time. 

 

- Scenario 3: The third scenario corresponds to a manual setting in a straight path 

with a dangerously tired driver. This experiment is intended to demonstrate a 

SACRE’s scenario in which the alarms are turned on by the system because 

driver’s tiredness, provoking an ephemeral awake state in the driver who later 

shows dangerously tiredness symptoms again. This driver’s states cycle will be 

repeated during the whole execution. The alarms will be turned on and off only 

by the system and the driver will not interact with them. This means that any 

adaptation is expected to be triggered since the driver considers the system 

behaviour accurate. The alarms fulfil their aim, wake the driver up, and the 

requirements should be satisfied all the time.  
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This scenario is useful for evaluating the initial SACRE’s contextual 

requirements’ operationalization performance in normal conditions (without 

driver disagreements). Because the scenario’s simplicity it has been left a period 

of 10 minutes for the execution time.   

 

Scenario 4: For the fourth scenario an automatic setting and a straight path have 

been selected. This scenario has a slept driver in the vehicle which should cause 

the system to eventually turn on the support lane keeping actuator. However, in 

this scenario, the driver turns off all the alarms at the beginning of the execution 

and never turns them on again. This could be translated into the situation in 

which the driver wants to drive the vehicle even if s/he is tired and does not 

want to experience any alarm; or, that the current context actually is describing 

an awake driver from this driver’s point of view (because the concept of 

tiredness maybe different from one drive to another). 

 

The driver’s actions should trigger some adaptations. The file of asleep driver 

contains some intervals where the driver is not totally slept which could provoke 

that from time to time all the requirements are satisfied. But, in general they 

should be not. This scenario is expected to generate some adaptations in the long 

term; therefore a 15-minute period of time has been stated for its execution. 

 

- Scenario 5: This fifth scenario corresponds to an automatic setting in a straight 

path with an awake driver. The peculiarity of this scenario is that the file that 

reports the sensors’ values in charge of monitoring the driver’s state contains 

some wrong values. The errors in the values simulate that the driver’s vigilance 

level sensor is damaged during those periods of time. The facility to select the 

presence of damaged sensors is not provided to the user in this SACRE’s 

version, but has been developed for testing purposes. Since the file has been 

designed to report these wrong numbers soon in the execution, the adaptions 

should not take much time to appear.  

 

The damaged sensor is expected to be removed from the variables. This will 

trigger some symptoms that in consequence are expected to provoke the removal 

of the affected variables from the contextual requirements’ operationalizations. 

After some time, the variables are recovered (the file has normal sensors’ values 

again) and the sensors module and analyzer module include them again in their 

operations. This eventually should trigger an adaptation that re-integrates them 

in the contextual requirements’ operationalization. A period of 15 minutes has 

been assigned to this execution.   
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4.2 Results 

This section provides the results of the execution of the scenarios detailed in the 

previous section. A set of screenshots per experiment is provided in order to show the 

parameters selected and decisions taken by the user and the system in each scenario. Also a 

brief description of the results obtained in each scenario is provided. Later, in the 

Discussion section some insights resulting from the results of the experiments are 

presented. 

 Results of Scenario 1. Manual – Curved – Awake 

 
Fig. 36: Manual Setting 

 
Fig. 37: Curved path and awake driver 

 

Figures 36 and 37 show the initial parameters selected, for this scenario, in the 

configuration menus provided by SACRE. 

 

 

Fig. 38: SACRE with actuators deactivated 
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After some minutes of execution SACRE has not experienced any actuators 

activation as shown in Figure 38. This is because the driver is awake and the 

actuators have been designed, as mentioned before, for drowsy drivers. In 

consequence in Figure 39 it can be seen that any adaption or symptom has been 

detected during this experiment. This is a scenario exemplifying a typical day 

of use of a smart vehicle, assumed as the most used to be experienced in real 

world.  

 

Fig. 39: SACRE all requirements satisfied 

 

 Results of Scenario 2. Automatic – Curved – Tired 

 
Fig. 40: Automatic Setting 

 
Fig. 41: Curved path and tired driver 
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Figures 40 and 41 show the initial parameters selected, for this scenario, in the 

configuration menus provided by SACRE, after the training phase (1 minute). 

In this experiment the driver’s state is tired, and even s/he could well 

manipulate the controls (accelerator, decelerator and steering wheel) it has been 

assumed that s/he has decided not to do it and turn on the support lane keeping 

actuator as shown in Figure 42.  

 

 
Fig. 42: SACRE with support lane keeping activated 

 

 

Fig. 43: SACRE view from air 
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The support lane keeping is in charge of maintaining the vehicle in the lane. 

During this experiment the vehicle has never gone out of the lane even 

considering the difficulty that a path with curves implies and the simple 

algorithm used for this task. In this demonstration, when the support lane 

keeping actuator is activated the speed for a straight stretch is maintained 

around 30 km/h; if a curve appears in the path the speed is decreased and 

maintained around 20 km/h. A view from the air of the vehicle in the path 

during this execution is shown in Figure 43. 

 

The driver’s decision of turning on the support lane keeping triggers a set of 

symptoms in the monitor element as expected: from time to time a symptom 

about the contextual requirement 1 in case 3 (context true, behaviour false); and 

most of the time, another one about contextual requirement 3 in case 4 (context 

false and behaviour true). An example of symptom is shown in Figure 44, area 

number 1. Meanwhile, examples of the adaptions effectuated over SACRE’s 

contextual requirements’ operationalization in this scenario are indicated in the 

areas 2a and 2b. 

 

About the adaptations, the keys var1, var2, var3 and var4 present in Figure 44 

(areas 2a and 2b) correspond to the variables: perclosed, face position, heart 

beats per minute and hands on steering wheel respectively. This legend is used 

for simplification in all the console outputs. 
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Fig. 44: SACRE with symptoms and adaptations 

 Results of Scenario 3. Manual – Straight – Dangerously Tired 

 
Fig. 45: Manual Setting 

 
Fig. 46: Straight path and dangerously 

tired driver 

 

 

 2a 

 2b 

1 
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Figures 45 and 46 show the initial parameters selected, for this scenario, in the 

configuration menus provided by SACRE. 

 

 

Fig. 47: SACRE with sound-light alarm activated 

The driver’s state in this scenario is dangerously tired; the actuator related to 

this scenario is the sound-light alarm. Figure 47 shows the moment when the 

context of the contextual requirement aimed to detect dangerously tired drivers 

holds (because its operationalization is fulfilled) and the alarm is activated by 

the system. 

 

The driver accepts the correctness of the alarm occurrence and does nothing to 

change its activation. The driver ephemerally awakes when hears the alarm 

provoking that the system turns it off. Later s/he falls again in the same state of 

dangerously tired and the system turns on the alarm again, this cycle is repeated 

during the whole execution as expected. Because the driver never contradicts 

the initial contextual requirements configuration the requirements are satisfied 

during the whole execution and any adaption is effectuated as shown in Figure 

48. 
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Fig. 48: SACRE all requirements satisfied 

 Results of Scenario 4. Automatic – Straight – Asleep 

 
Fig. 49: Automatic Setting 

 
Fig. 50: Straight path and asleep driver 

 

Figures 49 and 50 show the initial parameters selected, for this scenario, in the 

configuration menus provided by SACRE. 
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Fig. 51: SACRE with all actuators disabled 

In this scenario, for trigger an adaption, it has been simulated that even if the 

driver shows drowsiness symptoms s/he decides to deactivate all the actuators 

at the beginning of the execution and never enable them again. This context is 

shown in Figure 51.  

 

Fig. 52: SACRE with symptoms and adaptations 

 

 

1 

3 

 2 
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Even if this scenario has a slept driver in the vehicle, in the real world a driver 

is not expected to be totally asleep, from time to time s/he would show some 

symptoms of being awake. So, the file with the sensor’s values describing a 

slept person has being designed following this idea. In the intervals where the 

driver is awake, the support lane keeping is supposed to be off and all 

requirements should be satisfied but for the other time intervals (when the 

driver is asleep) the system triggers symptoms as shown in Figure 52, area 

number 1.  

 

After some iterations showing symptoms and calling the data mining service, 

SACRE has adapted the contextual requirement’s operationalization related 

with the support lane keeping activation (contextual requirement 3). This 

adaptation is shown in Figure 52, in the area indicated with number 2. 

Meanwhile, in area number 3 it can be noticed that after the adaptation, all the 

contextual requirements are satisfied. This means, that the third contextual 

requirement is now also satisfied because its context’s operationalization has 

been adapted. 

 

 Results of Scenario 5. Automatic  – Straight – Awake 

 
Fig. 53: Automatic Setting 

 
Fig. 54: Straight path and awake 

driver 

 

Figures 53 and 54 show the initial parameters selected, for this scenario, in the 

configuration menus provided by SACRE. The source file containing driver’s 

information has been modified, but the file corresponding to the automatic 

setting is the same as in previous scenarios. 
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Fig. 55: SACRE sensors failure 

After some seconds, the driver’s vigilance level sensor fails as shown in Figure 

55 (showing unknown values for the variables linked with it). The system 

should adapt and re-operationalize the contextual requirements only with the 

sensors’ values it has available. This could affect driver’s satisfaction but is the 

only way SACRE’s and the ACon approach have to deal with this uncertainty. 

Further adaptations would be provoked if the user would start to interact with 

the actuators but it is not the case of this scenario. In this scenario the driver 

agrees with the adaptations and smart vehicle’s behaviour. Some adaptations of 

this scenario are shown in Figure 56.  

 

First, the monitor finds symptoms, then the analyzer propose adaptations and 

the contextual requirements managed element is adapted. As it can be seen in 

area number 2, the first contextual requirement that depends on the two 

variables resulting from the driver’s vigilance level sensor has been left without 

operationalization. In area number 3, this situation triggers a case 1 symptom 

(contextual requirement’s context no operationalized), which will be fixed only 

when this requirement is operationalized again. Also in area number 3, it can be 

noticed that the driver’s vigilance level sensor is up again, since case 2c 

symptoms (sensor up again) are experienced. This will eventually cause that the 

analyzer adds it again in the data mining requests. 
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Fig. 56: SACRE with symptoms and adaptations 

In future implementations, the facility to manipulate sensors’ operation is a 

priority for testing purposes. The prototype shown in this work provides a 

display closer to a real world smart vehicle display than to a testing purpose 

display. Moreover, if hardware would be used, the sensors’ operation would be 

in charge of them, as it has been mentioned before, and have to be not 

simulated by the tool.   

 

 

 

 

 

 

 

1 

2 

3 
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Discussion 

 

In this work the proof-of-concept implementation, SACRE, of the novel ACon 

approach has been presented. The SACRE tool has used the data mining techniques as well 

as the architecture proposed by ACon [12] at its core for dealing with uncertainty in 

contextual requirements at runtime. The integration of the end-user in the adaption 

feedback loop is an important factor that increases the user satisfaction in any application. 

The contextual requirements as shown in the experiments section have experienced an 

adaptation process along the system execution time thanks to the requirements engineering 

tasks effectuated by SACRE, and proposed by ACon, at runtime.  

The aim of SACRE, as well as any other implementation of ACon, is to minimize 

the number of unsatisfied contextual requirements at every moment. In order to accomplish 

this main goal, the system adapts the contextual requirements’ operationalization 

continuously at runtime. The experiments run for the SACRE’s evaluation and ACon 

validation shown in the previous section expose these adaptations in different situations.  

For this demonstration, SACRE relies in the data mining algorithm proposed in 

[12]. Nevertheless, during the experiments some difficulties to obtain an acceptable 

adaptation have been experienced. These difficulties could be due to the few amounts of 

data provided to the algorithm which is a well-known factor that may affect its 

performance. In the future, some other techniques or algorithms should be investigated and 

applied in situations where the application has this few amounts of data. However, this fact 

is not affecting the evaluation of SACRE and validation of ACon since in real world the 

amount of data available in the applications’ environments used to be huge. Actually, 

nowadays for some applications the amount of data grows exponentially, for example, in 

smart city applications with a lot of users interacting with them. 
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The consequence, in SACRE, of not having great amounts of data available is the 

emergence of useless patterns in some iterations, for example the ones shown in Figure 57. 

These patterns are useless because they are no related to a specific IAFactor which defines 

if a behaviour is true or false. So, even if the patterns would be translated to an 

operationalization, the system would not know to which contextual requirement 

corresponds or which context this new operationalization describes. More experiments 

during larger periods of time or training phases to persist data over executions, should be 

necessary in order to deeply test the algorithm, as done in [23]. Nevertheless, this task has 

been never considered in the scope of this work because it has been not foreseen.  

 

Fig. 57: Useless patterns 

 In order to minimize this issue, SACRE offers the opportunity to accumulate data 

from different smart vehicle’s usage providing an ON-OFF button. Moreover, the 

possibility of re-start the view, after turning off the vehicle, without affecting the adaptation 

feedback loop execution (running in an emulated device) is provided. The data has not been 

designed to be accumulated over loops’ executions in order to avoid possible noise, mainly 

in the testing process. In SACRE, each adaptation feedback loop’s execution simulates a 

different vehicle, in consequence different historical data. The ON-OFF button as its name 

suggest turns on and off the smart vehicle, simulating for example that the driver has 

arrived to her/his destination. The vehicle could be though to be used by the same driver or 

by different drivers (i.e. family members) each time it is turned on.  
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The facility to change the parameters selected in configuration menus during a 

smart vehicle’s view execution (even the vehicle is turned off) is not provided for 

simplicity. But the parameters could be changed if the user turns off the vehicle and re-

starts the application without restarting the emulated device. The variables’ values that use 

accumulators in the adaptation feedback loop are also restarted every time the vehicle is 

turned on (i.e. the perclosed variable value).   

In analysing SACRE, it has shown good results implementing the ACon approach. 

The adjustments to the adaptation feedback loop in [12] have represented good 

improvements to take into account for future implementations. Moreover, the adaptations 

resulting from the SACRE’s executions, taking into account the amount of data limitation, 

have been the ones expected by the user. SACRE’s results reaffirm the ACon approach 

applicability in real world implementations. The specific domain application developed for 

this demonstration has made evident the power of ACon and SACRE to deal with 

extremely demanding applications with human interaction and running in real time.  

 Thanks to uncertainty, SACRE has an innumerable variety of possible scenarios in 

which it could be tested. Since, the tool adapts and responds to every possible user 

interaction (infinite possibilities because of the human factor) each SACRE’s execution 

will be different. Extensions of SACRE as well as other implementations of the novel 

ACon approach are expected for the future. The goal is to further validate the ACon 

approach in other to support its acceptance. In the case of SACRE, the extensions are aimed 

to improve its adaptations’ accuracy (improve statistics) and timeliness and the whole 

system performance i.e. time response, user experience, etc. 
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Conclusions and future work 

 

SACRE is a first step towards the validation of the novel ACon approach presented 

in [12]. This validation has been developed in an extremely demanding application domain 

executed in real-time. The evaluation and validation in charge of this work corroborate that 

this novel approach is applicable in real-world domains, where self-adaptive systems are 

increasingly present. Specifically, in the smart vehicles domain, a currently trending topic 

with opportunities in both communities: industry and research. 

This proof-of-concept implementation also works as a complementary tool for the 

ACon validation effectuated in [12] automatizing the tasks that have been manually done in 

that process and also executing in real-time, unlike the validation performed in [12] which 

was a post-mortem analysis. Out of the ACon approach validation, this tool is useful for 

researchers interested in the requirements engineering field, particularly the evolution of 

contextual requirements at runtime in uncertain environments and the modelling of this 

kind of requirements. Moreover, it is interesting for the community developing self-

adaptive software as a possible solution for their historical experienced challenges.  

As it has been mentioned before in future work improved versions of this prototype 

have been considered. These improved versions could be thought to be integrated in real-

world contexts with simulation purposes, and could become the seed of more sophisticated 

tools that could eventually be integrated in real-time systems. More investigations about 

machine learning and other techniques must be done in order to improve the performance 

of this kind of applications. Probably, a great classification of these techniques by domain 

and performance could result helpful for the interested community’s support.  
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 Appendix A 

 

A set of UML diagrams is provided in this Appendix as complementary evidence to 

support this work. The diagrams describe the system’s domain, architecture’s component, 

process flow and functionalities. 

 

Fig. 58: SACRE’s domain - Conceptual Model 
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 Fig. 59: SACRE’s architecture - Component Diagram 

 

Fig. 60: SACRE’s process flow – Sequence Diagram 
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Fig. 61: SACRE’s functionalities – Use Case Diagram 
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Appendix B 

 

The data mining tool that has been used in this work is Weka. In order to send a 

request to the Weka Java API an Attribute-Relation File Format (ARFF) document should 

be submitted. The specification of the structure of this document is provided in: 

http://www.cs.waikato.ac.nz/ml/weka/arff.html. 

In SACRE, the training (one for each contextual requirement) and execution time 

.arff documents are composed as follows: 

@relation sensorData 

 

@attribute IAFactorCr {True,False} 

@attribute perclosed {-1,<0.05,0.05-0.14,0.15-0.20,0.21-0.30,>0.30} 

@attribute facePosition {-1,<0,0,1,>1} 

@attribute heartBeatsPerMinute {-1,<0.30,0.30-0.45,0.46-0.55,0.56-0.75,>0.75} 

@attribute handsOnSteeringWheel {-1,<0,0,0.5,1,>1}     

 

@data 

False,>0.30,0,0.56-0.75,1 

False,>0.30,0,0.56-0.75,0 

… 
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