212 research outputs found

    Skyline queries computation on crowdsourced- enabled incomplete database

    Get PDF
    Data incompleteness becomes a frequent phenomenon in a large number of contemporary database applications such as web autonomous databases, big data, and crowd-sourced databases. Processing skyline queries over incomplete databases impose a number of challenges that negatively influence processing the skyline queries. Most importantly, the skylines derived from incomplete databases are also incomplete in which some values are missing. Retrieving skylines with missing values is undesirable, particularly, for recommendation and decision-making systems. Furthermore, running skyline queries on a database with incomplete data raises a number of issues influence processing skyline queries such as losing the transitivity property of the skyline technique and cyclic dominance between the tuples. The issue of estimating the missing values of skylines has been discussed and examined in the database literature. Most recently, several studies have suggested exploiting the crowd-sourced databases in order to estimate the missing values by generating plausible values using the crowd. Crowd-sourced databases have proved to be a powerful solution to perform user-given tasks by integrating human intelligence and experience to process the tasks. However, task processing using crowd-sourced incurs additional monetary cost and increases the time latency. Also, it is not always possible to produce a satisfactory result that meets the user's preferences. This paper proposes an approach for estimating the missing values of the skylines by first exploiting the available data and utilizes the implicit relationships between the attributes in order to impute the missing values of the skylines. This process aims at reducing the number of values to be estimated using the crowd when local estimation is inappropriate. Intensive experiments on both synthetic and real datasets have been accomplished. The experimental results have proven that the proposed approach for estimating the missing values of the skylines over crowd-sourced enabled incomplete databases is scalable and outperforms the other existing approaches

    A model for computing skyline data items in cloud incomplete databases

    Get PDF
    Skyline queries intend to retrieve the most superior data items in the database that best fit with the user’s given preference. However, processing skyline queries are expensive and uneasy when applying on large distributed databases such as cloud databases. Moreover, it would be further sophisticated to process skyline queries if these distributed databases have missing values in certain dimensions. The effect of data incompleteness on skyline process is extremely severe because missing values result in un-hold the transitivity property of skyline technique and leads to the problem of cyclic dominance. This paper proposes an efficient model for computing skyline data items in cloud incomplete databases. The model focuses on processing skyline queries in cloud incomplete databases aiming at reducing the domination tests between data items, the processing time, and the amount of data transfer among the involved datacenters. Various set of experiments are conducted over two different types of datasets and the result demonstrates that the proposed solution outperforms the previous approaches in terms of domination tests, processing time, and amount of data transferred

    Answering skyline queries over incomplete data with crowdsourcing (Extended Abstract)

    Get PDF

    Identifying skylines in cloud databases with incomplete data

    Get PDF
    Skyline queries is a rich area of research in the database community. Due to its great benefits, it has been integrated into many database applications including but not limited to personalized recommendation, multi-objective, decision support and decision-making systems. Many variations of skyline technique have been proposed in the literature addressing the issue of handling skyline queries in incomplete database. Nevertheless, these solutions are designed to fit with centralized incomplete database (single access). However, in many real-world database systems, this might not be the case, particularly for a database witha large amount of incomplete data distributed over various remote locations such as cloud databases. It is inadequate to directly apply skyline solutions designed for the centralized incomplete database to work on cloud due to the prohibitive cost. Thus, this paper introduces a new approach called Incomplete-data Cloud Skylines (ICS) aiming at processing skyline queries in cloud databases with incomplete data. This approach emphasizes on reducing the amount of data transfer and domination tests during skyline process. It incorporates sorting technique that assists in arranging the data items in a way where dominating data items will be placed at the top of the list helping in eliminate dominated data items. Besides, ICS also employs a filtering technique to prune the dominated data items before applying skyline technique. It comprises a technique named local skyline joiner that helps in reducing the amount of data transfer between datacenters when deriving the final skylines. It limit the amount of data items to be transferred to only those local skylines of each relation. A comprehensive experiment have been performed on both synthetic and real-life datasets, which demonstrate the effectiveness and versatility of our approach in comparison to the current existing approaches. We argue that our approach is practical and can be adopted in many contemporary cloud database systems with incomplete data to process skyline queries

    A Model-Driven Approach to Automate Data Visualization in Big Data Analytics

    Get PDF
    In big data analytics, advanced analytic techniques operate on big data sets aimed at complementing the role of traditional OLAP for decision making. To enable companies to take benefit of these techniques despite the lack of in-house technical skills, the H2020 TOREADOR Project adopts a model-driven architecture for streamlining analysis processes, from data preparation to their visualization. In this paper we propose a new approach named SkyViz focused on the visualization area, in particular on (i) how to specify the user's objectives and describe the dataset to be visualized, (ii) how to translate this specification into a platform-independent visualization type, and (iii) how to concretely implement this visualization type on the target execution platform. To support step (i) we define a visualization context based on seven prioritizable coordinates for assessing the user's objectives and conceptually describing the data to be visualized. To automate step (ii) we propose a skyline-based technique that translates a visualization context into a set of most-suitable visualization types. Finally, to automate step (iii) we propose a skyline-based technique that, with reference to a specific platform, finds the best bindings between the columns of the dataset and the graphical coordinates used by the visualization type chosen by the user. SkyViz can be transparently extended to include more visualization types on the one hand, more visualization coordinates on the other. The paper is completed by an evaluation of SkyViz based on a case study excerpted from the pilot applications of the TOREADOR Project

    Managing and Analyzing Big Traffic Data-An Uncertain Time Series Approach

    Get PDF

    Management of Big Annotations in Relational Database Management Systems

    Get PDF
    Annotations play a key role in understanding and describing the data, and annotation management has become an integral component in most emerging applications such as scientific databases. Scientists need to exchange not only data but also their thoughts, comments and annotations on the data as well. Annotations represent comments, Lineage of data, description and much more. Therefore, several annotation management techniques have been proposed to efficiently and abstractly handle the annotations. However, with the increasing scale of collaboration and the extensive use of annotations among users and scientists, the number and size of the annotations may far exceed the size of the original data itself. However, current annotation management techniques don’t address large scale annotation management. In this work, we propose three chapters to that tackle the Big annotations from three different perspectives (1) User-Centric Annotation Propagation, (2) Proactive Annotation Management and (3) InsightNotes Summary-Based Querying. We capture users\u27 preferences in profiles and personalizes the annotation propagation at query time by reporting the most relevant annotations (per tuple) for each user based on time plan. We provide three Time-Based plans, support static and dynamic profiles for each user. We support a proactive annotation management which suggests data tuples to be annotated in case new annotation has a reference to a data value and user doesn’t annotate the data precisely. Moreover, we provide an extension on the InsightNotes: Summary-Based Annotation Management in Relational Databases by adding query language that enable the user to query the annotation summaries and add predicates on the annotation summaries themselves. Our system is implemented inside PostgreSQL

    スカイライン問合わせを利用した大規模データベースの情報選別

    Get PDF
    Conventional SQL queries take exact input and produce complete result set. However, with massive increase in data volume in different applications, the large result sets returned by traditional SQL queries are not well suited for the users to take effective decisions. Therefore, there is an increasing interest in queries like top-k queries and skyline queries those produce a more concise result set. Top-k queries rely on the scores of the objects to evaluate the usefulness of the objects. In this type of queries, users require to define their own scoring function by combining their interests. Based on the user defined scoring function, the system sorts the objects by their scores and outputs the top-k objects in the ranking list as the result. However, defining a scoring function by the users is a major draw of the top-k queries as in the large data sets where there are many conflicting criteria exist, it is very difficult for the users to define the scoring functions by themselves.……広島大学(Hiroshima University)博士(工学)Engineeringdoctora

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring
    corecore