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Answering Skyline Queries over Incomplete
Data with Crowdsourcing

Xiaoye Miao, Yunjun Gao, Member, IEEE, Su Guo, Lu Chen, Jianwei Yin, Qing Li, Senior Member, IEEE

Abstract—Due to the pervasiveness of incomplete data, incomplete data queries are vital in a large number of real-life scenarios.
Current models and approaches for incomplete data queries mainly rely on the machine power. In this paper, we study the problem of
skyline queries over incomplete data with crowdsourcing. We propose a novel query framework, termed as BayesCrowd, which takes
into account the data correlation using Bayesian network. We leverage the typical c-table model on incomplete data to represent
objects. Considering budget and latency constraints, we present a suite of effective task selection strategies. Moreover, we introduce a
marginal utility function to measure the benefit of crowdsourcing one task. In particular, the probability computation of each object
being an answer object is at least as hard as #SAT problem. To this end, we propose an adaptive DPLL (i.e., Davis-Putnam-Logemann-
Loveland) algorithm to speed up the computation. Extensive experiments using both real and synthetic data sets confirm the
superiority of BayesCrowd to the state-of-the-art method, in terms of execution time, monetary cost, and latency minimization.

Index Terms—Query Processing, Skyline Query, Incomplete Data, Crowdsourcing

F

1 INTRODUCTION

The skyline query finds the objects that are not dominated
by any other object, where an object o dominates another
object o′ iff o is not worse than o′ in all attributes, and is
better than o′ in at least one attribute. This query has a
large application base in many real-life scenarios such as
decision making, profiled based recommendation, location-
based services [1], [2], [3], [4]. Take a dataset in movie recom-
mendation system as an example. Each movie is represented
by a vector containing ratings from audiences. For instance,
for the three movies m1 = (3, 2, 1), m2 = (4, 2, 3), and m3 = (2,
3, 2), each of them has ratings from three audiences where
the higher the rating, the better. It is said, m1 is dominated
by m2, as m2 has equal/higher ratings to/than m1 on three
attributes. Thus, m2 and m3 are the skyline points.

In real-life applications, it is impossible for all audi-
ences to watch/score a certain movie. Hence, some movie
ratings are usually missing. As depicted in Table 1, there
are five movies (i.e., objects) {o1, o2, o3, o4, o5} with ratings
from five audiences (w.r.t. attributes) {a1, a2, a3, a4, a5}. The
movie/object o2’s value on the attribute a2 is missing, and
thus, it is denoted by the variable V ar(o2, a2). Obviously,
the real answer objects of this skyline query cannot be
obtained due to the data incompleteness.

Incomplete data are ubiquitous in a wide spectrum of
real-life applications, owing to a variety of reasons such as
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TABLE 1
A Sample Dataset

ID Name Film Ratings from Audiences
a1 a2 a3 a4 a5

o1 Schindler’s List (1993) 5 2 3 4 1
o2 Se7en (1995) 6 Var(o2, a2) 2 2 2
o3 The Godfather (1972) 1 1 Var(o3, a3) 5 3
o4 The Lion King (1994) 4 3 1 2 1
o5 Star Wars (1977) 5 Var(o5, a2) Var(o5, a3) Var(o5, a4) 1

instable sensor networks, data integration, data loss, privacy
preservation, etc. For example, users tend to skip certain
fields when they fill out on-line forms; participants choose
to ignore some sensitive questions on surveys; publicly
viewable satellite map services contain missing map data
in many mobile applications; and in privacy-preserving
applications, the data is incomplete deliberately in order to
preserve the sensitivity of some attribute values. As a result,
incomplete data queries have been extensively explored in
the past decade, including skyline queries [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], top-k queries [15], [16], similarity
queries [17], [18], [19], and so forth. However, most of
existing models and approaches for incomplete data queries
only rely on the machine power.

As well known, the machine has limitations in some
cases where the human is powerful [20]. Collective in-
telligence has become a hot topic, with the development
of Web 3.0 and the emerging of artificial intelligence
(AI) techniques. As a consequence, many crowdsourcing
platforms [21] emerge, such as Amazon mechanical turk
(AMT)1, FigureEight2, and Upwork3, each of which acts
as an intermediate between requesters and workers. On
crowdsourcing platforms, a requester posts a series of tasks,
and workers answer those tasks and get paid. Compared

1. AMT is available at https://www.mturk.com/mturk/.
2. FigureEight is available at https://www.figure-eight.com/.
3. Upwork is available at https://www.upwork.com.
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with conventional trade markets, the crowdsourcing plat-
form offers a more free employment contract where workers
can come and go as their wills freely. Towards this, in
this work, we resort to crowdsourcing techniques to handle
skyline queries over incomplete data.

The skyline problem with crowdsourcing relies on the
definition of dominance relationship over complete data. It
means that, the techniques and algorithms of skyline queries
over incomplete data [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14] cannot be directly applied to our studied problem,
since they mainly depend on the dominance relationship
definition over incomplete data (as defined in [5]). In addi-
tion, the existing crowd skyline algorithms [22], [23] have
the following shortcomings. The returned results may be in-
accurate in [22], due to the unary questions to assess missing
values of objects. In contrast, CrowdSky [23], as the state-of-
the-art method, divides attributes into observed attributes
and crowd ones, and all the values in crowd attributes are
assumed missing. It is opposite of real scenarios where the
values are usually missing over arbitrary attributes [24].

In this paper, we systematically study the problem of
skyline queries over incomplete data with crowdsourcing. There
are three key research challenges to solve the problem.
(i) How do we capture the data correlation? (ii) How do
we represent query result objects? (iii) What could we
do to prioritize the crowd tasks? As long as these ques-
tions are answered satisfactorily, our proposed framework
BayesCrowd will work well. To begin with, we train the
Bayesian network over data attributes to capture the data
correlation. Second, in BayesCrowd, we leverage a typical
incomplete database representation system, i.e., c-table [25],
which assigns a condition of becoming a query answer to
every object. Hence, the object is not a query answer object
if its condition is not satisfied. Finally, we consider budget
and latency constraints, and develop a suite of effective task
selection strategies. In brief, our key contributions in this
paper are summarized as follows.

• We present a novel crowd skyline query framework
BayesCrowd, which incorporates two main phases,
i.e., the modeling phase and the crowdsourcing phase.

• In the modeling phase, we generate the condition
of each object being a query answer object for c-
table construction. In the crowdsourcing phase, we
develop three task selection strategies in iteration
policy under budget and latency constraints. The
marginal utility function is introduced to quantify the
benefit of crowdsourcing one task.

• As a key step of measuring the utility, the proba-
bility computation is at least as hard as the model
counting problem (i.e., #SAT problem). We pro-
pose an adaptive DPLL (abbrev. of Davis-Putnam-
Logemann-Loveland) (ADPLL for short) method to
accelerate the computation.

• Extensive experimental evaluation using both real
and synthetic data sets demonstrates that, our pro-
posed framework BayesCrowd is superior to the
state-of-the-art method in terms of both efficiency
and accuracy, under a variety of parameter settings.

The rest of the paper is organized as follows. We describe
some preliminaries in Section 2. We present the framework
BayesCrowd in Section 3. Section 4 and Section 5 detail

TABLE 2
Symbols and Description

Notation Description
O a set of objects
oi an object in O
Q a query over O
R a query result set over O
C the c-table of a query
ϕ(o) the condition of an object o in the c-table
Var(oi, aj) the variable representing the attribute aj of an

object oi
Pr(ϕ(o)) the probability of the object o being a query answer

the c-table construction and the probability computation,
respectively. Section 6 elaborates the crowd task selection
strategies. The experimental results and our findings are
reported in Section 7. The related work is reviewed in Sec-
tion 8. Finally, we conclude our work with some directions
for future work in Section 9.

2 PRELIMINARIES

In this section, we introduce the skyline query and a typical
representation model, i.e., c-table, for incomplete data. We
formalize our studied problem. Table 2 summarizes the
symbols used frequently in the rest of this paper.
Definition 1. (Dominance relationship). Given two objects

o1 and o2 from a dataset O, o1 dominates o2 (denoted as
o1 ≺ o2) if and only if both of the following conditions
hold: (i) o1 is not worse than o2 in any attribute, i.e., for
each attribute i, o1.[i] ≥ o2.[i]; and (ii) o1 is better than
o2 in at least one attribute, i.e., ∃j, o1.[j] > o2.[j].

For sake of clarity, o1.[i] denotes o1’s value in the at-
tribute i, and we assume that, the larger the value, the better.
Our solution likewise does work for the case of preferring
smaller values. In this paper, we follow the definition above
(which is generally employed on complete data), and assume
that, there is no prior knowledge on the missing values. It
indicates that, every missing value has non-zero probability
of getting any value within the corresponding attribute
domain, that is, there is no constraint on the possible
values of missing values. Note that, our studied skyline
problem considers both the observed dimensions and the
missing information on incomplete data, which is reasonable
and straightforward in practice. It is different from that
designated for incomplete data, as defined in [5], which tests
the comparable (observed) dimension(s) of each object pair,
and ignores the missing information.
Definition 2. (Skyline query). Given a dataset O, a skyline

query retrieves the objects, included in R, which are not
dominated by any other object in the dataset. Formally,
R = {oi | @oj ∈ O, oj ≺ oi}.

The traditional skyline query was firstly introduced into
the database community by Borzsony et al. [1]. Note that,
the typical indices (such as R-tree family) and algorithms for
skyline queries on complete data [2] are inapplicable due to
the data incompleteness in the studied problem.
Definition 3. (C-table). A conditional database (c-table for

short), denoted as C, is a group of object-condition pairs
⟨o ∈ O, ϕ(o)⟩, in which ϕ(o) is a propositional formula
(called the object o’s condition).
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Fig. 1. The architecture of BayesCrowd

TABLE 3
The C-Table over the Sample Dataset

Object Condition
o1 (Var(o5, a2) < 2) ∨ (Var(o5, a3) < 3) ∨ (Var(o5, a4) < 4)
o2 true
o3 true
o4 (Var(o2, a2) < 3) ∧ [(Var(o5, a2) < 3) ∨ (Var(o5, a3) < 1)

∨ (Var(o5, a4) < 2)]
o5 [(Var(o5, a2) > 2) ∨ (Var(o5, a3) > 3) ∨ (Var(o5, a4) >

4)] ∧ [(Var(o5, a2) > Var(o2, a2)) ∨ (Var(o5, a3) > 2) ∨
(Var(o5, a4) > 2)]

The c-table model was firstly proposed by the founda-
tional research work [25] in 1980s. In this paper, we utilize
it to represent objects over incomplete dataset. Actually, the
object’s condition is a boolean combination of inequalities
involving missing values (i.e., variables) and constants.

Example 1. For the skyline query on the sample dataset, the
corresponding c-table is shown in Table 3. The conditions
of o2 and o3 are true. It means that o2 and o3 are defi-
nitely the result objects of the skyline query. In addition,
the condition of o1, i.e., ϕ(o1), is (V ar(o5, a2) < 2) ∨
(V ar(o5, a3) < 3) ∨ (V ar(o5, a4) < 4). It indicates that,
if ϕ(o1) is satisfied, then o1 is a skyline result object.
In other words, the probability of ϕ(o1) (being satisfied)
is equivalent to the possibility of the object o1 being a
skyline result object.

A crowd task in this paper is a triple choice (i.e.,
larger/smaller than, or equal to) to ask the relation of two
operands in the inequality of a condition. It means that, each
task corresponds to an inequality in the condition, we also
call it an expression. For instance, for an expression “Var(o5,
a2) < 2” in the c-table, the corresponding task is to ask
“Is the variable Var(o5, a2) larger than, or smaller than, or
equal to 2?” We will detail how to get the c-table (i.e., those
conditions) in Section 4 later.

Definition 4. (Our problem). Given an incomplete dataset O
and a skyline query Q, the goal of our studied problem
is to strategically select tasks T based on the c-table for
crowdsourcing, so as to optimize crowd query accuracy
with budget B and latency constraint L.

In addition, it is noteworthy that, uncertain/probabilistic
data is a bit different from incomplete data. Uncertain data
models the missing values on top of some probability den-
sity distributions. However, incomplete data does have zero
prior knowledge on the missing values. As a result, most
of skyline techniques/algorithms over uncertain data [26],
[27], [28] cannot be applied to our studied problem.

Algorithm 1: BayesCrowd Framework
Input: an incomplete data set O, a query Q
Output: the query result set R
/* The modeling phase */

1: C ←− Get-CTable(O, Q)
/* The crowdsourcing phase */

2: select crowd tasks T
3: post tasks T on the crowdsourcing platform
4: collect answers from crowd workers
5: derive the query result set R
6: return R

3 BAYESCROWD FRAMEWORK

In this section, we provide an overview of BayesCrowd, as
depicted in Figure 1.

BayesCrowd mainly consists of two phases, i.e., the
modeling phase and the crowdsourcing phase. In the modeling
phase, the condition of each object being a query answer is
generated using the c-table model, which makes preparation
for the next phase. When entering the crowdsourcing phase,
BayesCrowd takes into account users’ requirements (e.g.,
budget constraints and latency control), and selects tasks for
crowdsourcing, which involves a critical component, i.e., the
probability computation. Then, the chosen tasks are posted
to the crowdsourcing platform. The answers will be later
returned by crowd workers. Finally, BayesCrowd outputs
the query result set via updating the c-table.

Algorithm 1 shows the general procedure of BayesCrowd.
It receives an incomplete dataset O (with learned probability
distributions) and a query Q, and outputs the query result
set R. First, in the modeling phase, BayesCrowd constructs
the c-table, denoted as C, for the query Q via using the
function Get-CTable, which will be explained in Section 4
(line 1). Then, in the second phase, BayesCrowd selects
the awaiting crowd tasks, which needs multiple probability
computation. Those chosen tasks are posted on crowdsourc-
ing markets (lines 2-3). Note that, a suite of task selection
strategies will be detailed in Section 6 later. Thereafter, it
receives task answers from crowd workers, and infers the
query result set R (lines 4-5). Finally, BayesCrowd returns
R, and terminates (line 6).

Prior to the modeling phase, there is a preprocessing
step. In that step, BayesCrowd trains the Bayesian network
over the dataset to capture the data correlation. Then, using
the trained Bayesian network, it learns the probability dis-
tributions of missing values leveraging Bayes rules. In the
implementation, the Bayesian network is trained using the
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framework Banjo4 for structure learning and the framework
Infer.Net5 for estimating network structure parameters. It
is worth noting that, Bayesian network is more suitable
to discrete values. For continuous values, we partition the
whole domain into a series of value ranges (using some
space partitioning techniques), and treat each range as a
discrete value to process in BayesCrowd. Also, one can
alternatively employ autoencoder architectures [29] to cap-
ture complex distributions. In addition, theoretically, the
cleaner the dataset, the more accurate the learned probabil-
ity distributions with Bayesian network. Hence, one could
first clean the dataset (e.g., using some existing cleaning
tools [30]) before training the Bayesian network, which is
very common in practice. The problem of cleaning data is
beyond the scope of this paper. Without loss of generality, it
is assumed that the input dataset to BayesCrowd is clean.

4 C-TABLE CONSTRUCTION

In this section, we explain how to obtain the c-table effi-
ciently. Note that, when objects are represented under the
c-table model with conditions, the probability of an object
o’s condition, denoted as ϕ(o), being satisfied indicates the
possibility of the object o being a query result object.

4.1 Deriving the Dominator Set

First, let us make an analysis. For the skyline query, an object
o is a query answer if it is not dominated by any other object
in the dataset. In other words, the condition of o being an
answer object is to have at least one better attribute value
for o than the objects that probably dominate o.

For an object o ∈ O, let D(o) be the set of all the objects
that are likely to dominate o on the incomplete dataset. For
simplicity, we call it the dominator set of o throughout this
paper. Then, the condition of o, i.e., ϕ(o), consists of |D(o)|
conjuncts, and each of the conjuncts encompasses at most d
disjuncts, where d is the number of data attributes. Without
loss of generality, in the paper, the disjunct is usually called
the expression or task, which is an inequality between a
variable and a constant or between two variables. Formally,
if the dominator set D(o) is {o1, o2, · · · }, the condition of o,
i.e., ϕ(o), can be formulated as [o1 ⊀ o]∧[o2 ⊀ o]∧· · · . In par-
ticular, the conjunct o1 ⊀ o is denoted as the disjunction of at
most d expressions, e.g., [o.[1] > o1.[1]]∨· · ·∨[o.[d] > o1.[d]].
Here, it is assumed the larger the attribute value, the better.
Accordingly, the condition in this paper is represented by
the conjunctive normal form (CNF).

Naturally, there appears another question along with the
analysis: i.e., how do we derive D(o) efficiently? Upon the
dominator set D(o) is obtained, the condition of o can be
easily derived in CNF form. Thus, we define the dominator
set D(o) in Definition 5 in order to further decompose the
mission of the dominator set derivation.

Definition 5. (The dominator set). Given a skyline query
over an incomplete dataset O. For each object o ∈ O, the
dominator set D(o) (consisting of all objects that possibly
dominate o) can be derived by Eq. 1, where d is the

4. Banjo is available at https://users.cs.duke.edu/ amink/software/banjo/.
5. Infer.Net is available at http://infernet.azurewebsites.net/.

TABLE 4
The Dominator Sets for Objects on the Sample Dataset

Object o1 o2 o3 o4 o5
D {o5} ∅ ∅ {o2, o5} {o1, o2}

number of data attributes and Oi represents the set of
objects whose i-th dimensional values are missing.

D(o) =
d∩

i=1

Di(o) (1)

Di(o) =

{
{p ∈ O − {o} | o.[i] ≤ p.[i]} ∪Oi if o.[i] is observed
O − {o} otherwise

(2)

The set Di(o) is composed of objects whose i-th attribute
values are missing or not worse than that of o, if o has an
observed value in attribute i. Otherwise, if o misses its value
in the attribute i, Di(o) is set as the super set (O−{o}). Thus,
the intersection set of Di(o)s (i = 1, · · · , d) contains objects
that are missing or not worse than o in every attribute,
which definitely includes all objects that have possibilities
to dominate o, i.e., forming the dominator set D(o). For ease
of understanding, Table 4 lists the dominator set for every
object over our sample dataset (depicted in Table 1).

4.2 Getting the C-Table

On top of the derived dominator set D(o), Algorithm 2 gives
the procedure of constructing c-table for a skyline query. It
takes as inputs an incomplete dataset O, a query Q, and a
pruning threshold α, and outputs the c-table, denoted as C.

To begin with, it initializes C as an empty set (line 1).
Then, for each object o ∈ O, it derives its dominator set
D(o) based on Definition 5 (line 3). If there is no object
in D(o), it indicates that the object o is certainly a skyline
object. Hence, in this case, the condition ϕ(o) is assigned
as the value of true (lines 4-5). On the contrary, if there
are a large fraction of objects in the dominator set D(o),
signifying a lot of objects are possible to dominate o. As a
result, we use a threshold α to identify the case that o is
very likely to be dominated. If |D(o)| > α · |O|, we deem
o is not a skyline object, and set ϕ(o) as the value of false
(lines 6-7). In addition, if there exists an object o′ ∈ D(o)
dominating o according to Definition 1 (where both o and
o′ have no missing attribute value), then o is not a skyline
object. Thus, the condition ϕ(o) is set as the value of false
(lines 8-9). Otherwise, we generate the condition ϕ(o) in the
form of [o1 ⊀ o] ∧ [o2 ⊀ o] ∧ · · · , with each conjunct oi ⊀ o
as [o.[1] > oi.[1]] ∨ · · · ∨ [o.[d] > oi.[d]], where oi ∈ D(o) for
i = 1, 2, · · · (line 11). Whatever the condition ϕ(o) is, it is
added to the c-table C (line 12). Finally, the algorithm stops
after returning the c-table C (line 13).

We would like to highlight that, the usage of parameter α
is necessary to prune the case that o is more likely to be dom-
inated. When D(o) is large, (i.e., o is probably dominated by
too many objects), the probability of o being a query answer
object will be low, even near to zero. Moreover, a large
D(o) results in a complex condition ϕ(o) (that contains too
many conjuncts), which hinders significantly the probability
computation of ϕ(o). In this case, even though getting
the probability of the complex condition, it brings limited
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Algorithm 2: Get-CTable
Input: an incomplete dataset O, a query Q, a pruning

threshold α
Output: the c-table C

1: C ←− ∅
2: foreach object o ∈ O do
3: derive its dominator set D(o) using Eq. 1
4: if |D(o)| = 0 then
5: ϕ(o)←− true // o is a skyline object

6: else if |D(o)| > α · |O| then
7: ϕ(o)←− false // o is deemed not to be a

skyline object

8: else if ∃o′ ∈ D(o) dominates o then
9: ϕ(o)←− false // o is not a skyline

object

10: else
11: generate the condition ϕ(o) of o

12: C ←− C + {⟨o, ϕ(o)⟩}
13: return C

improvement on query accuracy. In other words, what we
gain cannot compensate for what we pain. Hence, it is
unnecessary to spend much cost in deriving the probability
of those complex conditions.

Furthermore, the smaller the threshold value of α, the
more the objects pruned and the more efficient the algo-
rithm. Informally, in the ideal situation, the parameter value
of α should approach, from a very small number closely to
zero, the ratio of the number of non-answers to the data set
cardinality. For the case of the large dominator set and/or high
missing rate, it fits a large α value. Otherwise, it is prone to
filter out more objects that are probably true answers, and
thereby results in a lower query accuracy. As observed from
our experimental evaluation, a relatively smaller value of α
(e.g., 0.01) suffices to support the crowd query. A big value
of α degrades remarkably query efficiency, yet very slightly
improving query accuracy.

Example 2. For the skyline query over the sample dataset,
we have shown the c-table and the dominator sets in
Table 3 and Table 4, respectively. Now, we are going
to explain how to build the c-table (i.e., getting those
conditions) based on the dominator sets. First, for the
object o1 (from the sample dataset depicted in Table 1),
we could get D(o1) (being {o5}, as shown in Table 4).
It means that only the object o5 has the possibility to
dominate o1, according to the dominance relationship
definition on complete data (as stated in Definition 1).
In other words, if o1 defeats o5 in at least one attribute,
then o5 would not dominate o1, and thus, o1 would be
a skyline object. Thus, the condition of o1, i.e., ϕ(o1),
is written as (V ar(o5, a2) < 2) ∨ (V ar(o5, a3) < 3)
∨ (V ar(o5, a4) < 4), as depicted in Table 3. Then, for
the object o2, we set the condition of o2, i.e., ϕ(o2), as
true, due to the empty D(o2) set. It indicates that there
is no object dominating o2. According to Definition 2,
the object o2 is a skyline object. Similarly, we can derive
that, the condition ϕ(o3) gets the value of true. As shown
in Table 3, the condition ϕ(o4) is (V ar(o2, a2) < 3) ∧
[(V ar(o5, a2)< 3) ∨ (V ar(o5, a3)< 1) ∨ (V ar(o5, a4)<

Algorithm 3: Adaptive DPLL Search (ADPLL)
Input: a condition ϕ, the probability prob
Output: the probability of the condition Pr(ϕ)

1: Pr(ϕ)←− 0
2: if the conjuncts in ϕ are independent ∥ ϕ = true or false

then
3: compute the probability of ϕ, i.e., Pr(ϕ)
4: return prob·Pr(ϕ)
5: select a variable v that appears the most times in ϕ
6: foreach assignment va of v do
7: ϕ′ ←− ϕ(v = va)
8: Pr(ϕ)←− Pr(ϕ)+ ADPLL(ϕ′, prob·p(va))
9: return Pr(ϕ)

2)]. The condition ϕ(o5) is [(V ar(o5, a2)> 2) ∨ (V ar(o5,
a3)> 3) ∨ (V ar(o5, a4)> 4)] ∧ [(V ar(o5, a2)> V ar(o2,
a2)) ∨ (V ar(o5, a3) > 2) ∨ (V ar(o5, a4) > 2)].

Let |O| be the dataset cardinality, |D| be the average
number of objects in dominator sets, and d be the number
of attributes in the dataset. The complexity of getting domi-
nator sets is O(d · |O|2). In addition, as every condition has
|D| conjuncts with each conjunct having at most d disjuncts
(i.e., expressions), it needs O(d·|D|·|O|) to generate the con-
ditions. Thus, the overall complexity of c-table construction
is O(d · |O|2).

5 PROBABILITY COMPUTATION

In this section, we present an efficient algorithm, called
ADPLL, for probability computation.

An intuitive solution (called Naive) to compute Pr(ϕ(o))
is to evaluate all the variable value combinations (i.e., as-
signments) of the variables (w.r.t., missing values) in ϕ(o),
and to aggregate the probabilities of those assignments with
the value of true for getting Pr(ϕ(o)). One can easily find
that it is a #SAT problem if the variables can only get
the values of 0 or 1 randomly. The #SAT problem is also
known as the (weighted) model counting problem [31],
which is a #P-complete problem. In BayesCrowd, the con-
tinuous or infinite attribute values have been conducted
the discretization at the preprocessing step. Hence, in our
probability computation problem, the variables can get a
group of discrete values under certain distributions (not just
the values of 0 or 1). It indicates that the problem is at least
as hard as the #SAT problem.

To this end, we resort to the solvers of the #SAT problem,
in order to address our problem efficiently. DPLL (abbrevia-
tion of Davis-Putnam-Logemann-Loveland) search [32], [33]
is a popular and efficient solver for the #SAT problem, which
is able to derive the accurate probability of the formula for
the case of the variables only randomly being the values of
0 or 1. As a result, we propose an adaptive DPLL (ADPLL
for short) algorithm for probability computation. ADPLL
recursively selects the most frequent variable in a condition
ϕ, and breaks the conjunct correlation in the condition as
quickly as possible. The probability of the independent
conjuncts can be directly calculated, and thereby boosting
computation efficiency.

Algorithm 3 shows the pseudo-code of ADPLL algo-
rithm. For a condition ϕ of an object with an initial prob-
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ability prob, ADPLL algorithm is responsible for obtaining
the probability of the condition, i.e., Pr(ϕ). Note that, the
parameter prob is initialized as one when ADPLL algorithm
is invoked for the first time. Specifically, ADPLL initializes
the probability Pr(ϕ) to zero (line 1). If ϕ is true (or false),
ADPLL returns Pr(ϕ) as 1 (or 0). If the conjuncts in ϕ are
independent (i.e., each conjunct in ϕ has different variables),
ADPLL directly computes and returns Pr(ϕ) via leveraging
the special conjunctive rule and the general disjunctive rule
(lines 2-4). To be more specific, the special conjunctive rule
claims that, for two conjuncts p and q, if they are indepen-
dent, the probability Pr(p ∧ q) = Pr(p) · Pr(q). In addition,
the general disjunctive rule is, for any two disjuncts p and
q, the probability Pr(p ∨ q) = 1 − Pr(¬p ∧ ¬q), which is
employed to derive the probability of each conjunct in the
condition. When conjuncts in the condition ϕ are correlated,
ADPLL selects a variable v if it occurs the most times in ϕ.
A random selection breaks the tie if the occurrence times of
variables are identical (line 5).

In the sequel, for each possible value va of the variable
v, ADPLL first gets a new condition ϕ′ by substituting va
for the variable v in ϕ (line 7). Then, it updates Pr(ϕ)
by adding the probability value returned by ADPLL(ϕ′,
prob · p(va)) (line 8). Here, p(va) denotes the probability of
getting the value va for v under the learned data distribution
in the preprocessing step. At that time, ADPLL is recursively
invoked, by taking as inputs the new updated ϕ′ and the
updated probability prob · p(va). It is worth noting that,
when the probability Pr(ϕ) can be calculated directly (i.e.,
ϕ = true or false, or conjuncts in ϕ are independent), ADPLL
returns Pr(ϕ) at line 4 of Algorithm 3. Then, it traces back to
the previous layers of ADPLL recall (if exists), and continues
processing the “foreach” loop of Algorithm 3.

Example 3. Take the condition of o5, i.e., ϕ(o5) shown in
Table 3, as an example. For simplicity, assume that the
probability distribution of each attribute is as follows.
The probability of attribute a2 getting the value i, i.e.,
p(a2 = i), is 0.1 for i = 0, 1, · · · , 9. Similarly, the
probability p(a3 = i) is equal to 0.125 for i = 0, 1, · · · , 7.
The probability p(a4 = i) equals 0.1 for i = 0, 1, 5, is
0.2 for i = 2, 3, and is 0.3 for i = 4. The parameter
of prob in ADPLL is initialized to one. First of all, since
each of the three variables V ar(o5, a2), V ar(o5, a3), and
V ar(o5, a4) occurs twice in ϕ(o5) (as depicted in Table 3),
ADPLL randomly picks one of them, e.g., the variable
V ar(o5, a4). Then, ADPLL assigns one possible value to
it, e.g., V ar(o5, a4) = 0. Note that, according to the prob-
ability distribution of the attribute a4, the probability of
getting the value 0, i.e., p(V ar(o5, a4) = 0), is 0.1. As a
result, when the value of 0 substitutes for V ar(o5, a4) in
the condition ϕ(o5), ϕ′(o5) becomes [(V ar(o5, a2) > 2)
∨ (V ar(o5, a3) > 3)] ∧ [(V ar(o5, a2) > Var(o2, a2))
∨ (V ar(o5, a3) > 2)]. Taking the condition ϕ′(o5) and
prob · p(V ar(o5, a4) = 0) (being 0.1) as inputs, another
ADPLL search is invoked.

In the second layer of ADPLL search, assume that
V ar(o5, a3) is selected and assigned the value of 0.
Based on the supposed probability distribution of a3,
the probability p(V ar(o5, a3) = 0) equals 0.125. At that
time, ϕ′′(o5) becomes (V ar(o5, a2) > 2) ∧ (V ar(o5,

a2) > Var(o2, a2)), after the value of 0 substitutes for
V ar(o5, a3) in the condition ϕ′. Another new ADPLL
search is recalled with parameters ϕ′′(o5) and the prob-
ability (0.1 × 0.125). When entering the third layer of
ADPLL search, assume that V ar(o5, a2) is chosen and
assigned the value of 0, where p(V ar(o5, a2) = 0) is
equal to 0.1. Afterwards ϕ′′′(o5) turns false. One new
ADPLL search is recalled with parameters ϕ′′′(o5) and
the probability (0.1×0.125×0.1). During the forth layer
of ADPLL search, it gets Pr(ϕ′′′(o5)) as 0. Then, it goes
back to previous layers of ADPLL search step by step. It
finally returns the probability Pr(ϕ(o5)) as 0.823.

Let d be the number of attributes, |D| be the average
number of objects in the dominator sets, and N is the
average number of the possible values that one variable
could get. As mentioned earlier, the problem of probability
computation is at least as hard as #SAT problem. The Naive
method is of complexity O(Nd·|D|) for computing the prob-
ability of each condition. Instead, ADPLL in the recursive
style makes the expression correlation weaker and weaker,
and it is guaranteed to obtain the accurate probability based
on the aforementioned two rules. Although ADPLL will
degrade to Naive at the worst case, ADPLL is empirically
confirmed to be much faster than Naive. It means that, the
worst case occurs at a very small probability in ADPLL.

We have also generalized the approximate weighted
ApproxCount algorithm [34] for the probability computa-
tion problem. It turns out that the approximate solution
performs worse than ADPLL in terms of both efficiency
and accuracy. Toward this, we conclude two major reasons
as follows. (i) Due to the ability of weakening expression
correlation in the condition, the probability of the condi-
tion is easily calculated by ADPLL. (ii) In the approximate
solution, in order to sample an assignment that makes the
condition get the value of true, the multiple-value variables
(in probability computation) lead to much more overhead.

6 CROWD TASK SELECTION

In this section, we introduce three task selection strategies,
and discuss the complexity of BayesCrowd.

6.1 Budget Constraint and Latency Concern
Paying crowd workers to complete all tasks is prohibitively
expensive. Thus, in many real-life scenarios, it is most likely
to spend an amount of money not larger than the budget
constraint (denoted by B) on the crowdsourcing work.
For a group of similar tasks (with comparable difficulties),
crowdsourcing each of those tasks is assumed to spend a
fixed amount of money. Hence, in this paper, the budget
B refers to the number of tasks that a requester could
afford. In contrast, when it comes to the case of variable task
difficulties, one could accumulate the respective crowd cost
of the task one by one for budget concern, which impacts
the proposed solution negligibly.

On the other hand, the latency is also a key factor that
the requester usually concerns. For example, the requester
would like to finish the task within limited time units. In
this paper, we borrow the idea from [35], [36] that, the
latency is measured by the number of iterations in the crowd
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query. The tasks posted in one iteration are thought to be
completed almost at the same time. Therefore, adjusting the
number of tasks in one iteration could control the latency of
the crowd query if the total number of crowd tasks is fixed.

As a result, we choose to post crowd tasks in batches.
This batch/iteration policy provides an opportunity to take
into account the new-round returned task answers for the
following task selection timely in BayesCrowd. In addition,
since the conflicted tasks may lead to unreasonable results,
the crowd tasks in one iteration must avoid conflictions. In
our implementation, we handle conflictions by identifying
the variables in chosen tasks (i.e., expressions), and make
sure that any pair of chosen tasks in one iteration does not
share the same variable.

6.2 Task Selection Strategies
Under the iteration policy, we select crowd tasks in each
iteration through two steps, including (i) choosing top-k
objects with high possibilities to be query answers, and (ii)
choosing an expression among the condition from each of
chosen top-k objects in previous step. Here, the parameter k
is decided by the number of awaiting crowd tasks per round
under budget and latency constraints. In what follows, we
details the two steps.

Specifically, among each iteration, at the first step, we
employ Shannon entropy as a metric to quantify the uncer-
tainty of objects being the query result objects. Specifically,
the entropy of an object in terms of its confidence Pr(ϕ(o))
(denoted as po for short) is defined by Eq. 3.

H(o) = −(po · log2 po + (1− po) · log2(1− po)) (3)

Intuitively, if the probability Pr(ϕ(o)) is skewed towards
0 or 1, we expect to predict whether the object o is a query
result object with reasonable accuracy. On the other hand, if
Pr(ϕ(o)) is a fair coin flip, we have no reliable information
about whether o is a query result object. Thus, we choose
the top-k objects with the highest entropy values.

In the second step, we introduce several effective strate-
gies to select expressions, i.e., crowd tasks.

Frequency based strategy (FBS). For each of the top-
k objects o chosen in the first step, we sort expressions in
the condition ϕ(o) in the non-ascending order of expression
appearance times in conditions of the chosen top-k objects
(i.e., the expression frequency). Then, we select the most
frequent expression as the crowd task w.r.t. o.

Let d be the number of attributes, and |D| be the average
number of objects in dominator sets. Since there are at most
d · |D| expressions in one condition, it takes O(k · d · |D|)
time for frequency derivation. If n denotes the number of
different expressions in those k · d · |D| expressions, the
complexity of ranking those expressions is O(n log2 n). As a
result, FBS is of the complexity O(k · d · |D|+ n log2 n) per
iteration.

Utility based strategy (UBS). We introduce a marginal
utility function to measure the benefit of crowdsourcing
one task. It is defined as the information gain based on the
entropy function, as stated in Definition 6.
Definition 6. (The marginal utility function). Given an

incomplete dataset O and a query Q. For a condition
ϕ(o) of the object o ∈ O, the (expected) marginal utility

Algorithm 4: Hybrid Heuristic Strategy (HHS)
Input: an incomplete dataset O, a query Q, a budget B, a

latency constraint L, a parameter m
Output: the query result set R

1: R←− ∅; µ←− ⌈B
L
⌉

2: while B ̸= 0 and there exists an expression in conditions
do

3: T ←− Ot ←− ∅
4: foreach object o ∈ O do
5: po ←− ADPLL(ϕ(o), 1) // Algorithm 3
6: H(o)←− −po · log2 po − (1− po) · log2(1− po)

// Eq. 3

7: add min(B,µ) objects o with highest H(o) into Ot

8: B ←− max(B − µ, 0)
9: foreach object o ∈ Ot do

10: g ←− c←− 0
11: sort expressions in ϕ(o) in the order of frequencies
12: foreach expression e ∈ ϕ(o) do
13: E[H(o|e)]←− Pr(e) ·H(o|e =

true) + (1− Pr(e)) ·H(o|e = false) // Eq. 5
14: G(o, e)←− H(o)− E[H(o|e)] // Eq. 4
15: if G(o, e) > g then
16: g ←− G(o, e); e⋆ ←− e
17: c←− 0

18: else
19: c←− c+ 1
20: if c = m then
21: break

22: T ←− T + {e⋆}
23: post tasks in the set T on the crowdsourcing market
24: get task answers from crowd workers
25: update conditions in c-table C using new answers
26: infer the query answer set R
27: return R

function, denoted as G(o, e), of selecting an expression e
(i.e., task) from ϕ(o) to crowdsource is defined in Eq. 4.

G(o, e) = H(o)− E[H(o|e)] (4)

E[H(o|e)] = Pr(e)·H(o|e = true)+(1−Pr(e))·H(o|e = false)
(5)

Here, Pr(e) represents the probability of the expression
e being satisfied, and H(o|e = true/false) denotes the
entropy of the object o after the expression e in the
condition ϕ(o) gets the value of true/false.

Indeed, G(o, e) measures the expected quality improve-
ment for the object o when crowdsourcing the expression
e in the condition ϕ(o). When an expression is determined,
the corresponding condition can be simplified.

Hence, different from FBS, for each of the chosen top-k
objects o, UBS selects the expression in ϕ(o) with the highest
marginal utility at the second step. It is not hard to predict
that, UBS is very likely to obtain higher query accuracy
under the help of the marginal utility function, while it
is less efficient due to multiple probability computation
(resulting from the marginal utility derivation). Let N be
the number of values that one variable can have. UBS needs
O(k · d · |D| ·Nd·|D|) time per iteration at the worst case to
select k crowd tasks.

The hybrid heuristic strategy (HHS). HHS combines the
advantages of FBS and UBS. Like FBS, for the condition
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ϕ(o) of each chosen object o in the first step, HHS visits
the expressions in the order of their frequencies. Like UBS,
HHS calculates the expected marginal utility of selecting an
expression. What’s more attractive is that, we introduce a
parameter m for HHS to enable a heuristic, which helps to
control the computation cost. Specifically, as long as HHS
does not get a larger utility score when evaluating con-
secutive m expressions from a condition ϕ(o), the current
expression with the biggest score is directly selected as the
crowd task w.r.t. o, and HHS stops evaluating the remaining
expressions in ϕ(o).

Algorithm 4 depicts the pseudo-code of the crowdsourc-
ing phase of BayesCrowd using HHS. It takes as inputs an
incomplete dataset O, a query Q, a budget B, a latency
constraint L, and the parameter m of HHS. The set of
query answers, denoted by R, is returned. HHS first empties
the result set R, and estimates the number of tasks per
batch/iteration, denoted as µ, via computing ⌈B

L ⌉ (line 1).
Then, it starts to choose crowd tasks iteratively (lines 2-
26). Specifically, it invokes the function ADPLL to select
min(B,µ) objects with highest entropies. The selected ob-
jects are collected into the set Ot. Meanwhile, the budget
B is updated (lines 3-8). Thereafter, for each object o ∈ Ot,
HHS visits the expression e from ϕ(o) in the non-ascending
order of expression frequencies (lines 9-22). The temporal
variable c is used to facilitate the condition verification of
enabling the heuristic. HHS attempts to get the expression e⋆

from ϕ(o) that has the largest expected utility improvement,
denoted by g. As a heuristic, if the consecutive m expres-
sions have no larger expected utility improvement than g,
HHS directly adds the current expression e⋆ to the set T ,
which is employed to collect the awaiting crowd tasks in
this iteration (lines 15-22).

In the sequel, tasks in T are posted on the crowdsourc-
ing market. When the answers are returned from crowd
workers, the algorithm updates conditions of c-table C using
new obtained answers (lines 23-25). Upon the update, some
conditions will turn true or false, some shall be simplified
or remain the same. It also infers the result set R (line 26).
This process proceeds until the budget B is used up or there
is no expression in conditions. Finally, it returns the query
result set R and terminates (line 27).

Example 4. To illustrate the task selection using HHS, we
take the skyline query on the sample dataset as an
example. For simplicity, it is assumed that the budget B
is 6 and the latency constraint L is 3, indicating that two
tasks should be posted to crowd workers per iteration.
The parameter of m is set as 2.

First, regarding the condition of each object shown
in Table 3, HHS computes the entropy of each ob-
ject. The conditions of o2 and o3 have gotten the true
value (i.e., the entropy is zero). Currently, the result set
R is {o2, o3}. The entropy of o1, i.e., H(o1), is 0.72.
The entropy H(o4) is 0.62, and the entropy H(o5) is
0.67. Hence, HHS picks objects o1 and o5 (with highest
entropies) to form the set Ot. Then, for each of the
two objects, HHS is going to select one task from its
condition. Specifically, for the object o1, there are three
expressions (denoted by e1, e2, and e3) in the condition
ϕ(o1), namely, e1 is Var(o5, a2) < 2, e2 is Var(o5, a3) < 3,

TABLE 5
The Updated C-Table

Object Condition
o1 true
o2 true
o3 true
o4 (Var(o2, a2) < 3) ∧ [(Var(o5, a2) < 3) ∨ (Var(o5, a4) < 2)]
o5 Var(o5, a2) > 2

and e3 is Var(o5, a4) < 4. Obviously, for each of e1, e2,
and e3, its frequency is one. Thus, a random ranking is
used to break the tie, e.g., e1, e2, and e3 in order.

In the following, the marginal utility of each expres-
sion is derived, i.e., G(o1, e1) is 0.072, G(o1, e2) is 0.157,
and G(o1, e3) is 0.322. Hence, the expression e3 is chosen
to crowdsource. Obviously, there is no opportunity for
the heuristic in HHS (with the parameter of m) to exhibit
its power. In the similar way, for the condition ϕ(o5),
the expression Var(o5, a3) > 3 is selected. In the sequel,
the two tasks are posted on the crowdsourcing market.
Assume that the returned answers are Var(o5, a4) < 4
and Var(o5, a3) = 3. Using those answers, HHS updates
the initial c-table (shown in Table 3) as a new c-table
(depicted in Table 5). The result set R is updated as
{o1, o2, o3}. Thereafter, HHS enters the second iteration,
and sets Ot as {o5, o4} due to H(o4) being 0.63 and
H(o5) being 0.88. Similarly, it chooses the expressions
Var(o5, a2) > 2 and Var(o2, a2) < 3 from conditions of
o5 and o4, respectively. Assume that it is confirmed by
crowd workers that, Var(o5, a2) > 2 and Var(o2, a2) > 3.
Finally, ϕ(o4) becomes false, and ϕ(o5) turns true.

7 EXPERIMENTAL EVALUATION

In this section, we present a comprehensive experimental
evaluation. In what follows, we first describe experimental
settings, and then, we report experimental results and our
findings. All algorithms were implemented in Java lan-
guage, and all experiments were conducted on an Intel Core
i7 Duo 3.60GHz PC with 28GB RAM, running Microsoft
Windows 7 Professional Edition.

In our experiments, we utilize two datasets including
NBA and Synthetic. NBA6 is a real dataset containing 10,000
records of player competition information from 1979 to
2004. We use eleven attributes including total points, total
rebounds, etc. In addition, for scalability evaluation, we
generate the Synthetic dataset with 100,000 records and
nine attributes. It shares the same Bayesian network with
the typical Adult7 dataset from UCI Machine Learning
Repository. As mentioned previously, the frameworks Banjo
and Infer.Net are employed to train Bayesian networks.
Following the previous studies on incomplete data [5], [6],
we delete attribute values randomly to simulate incomplete
datasets, unless otherwise indicated.

We verify the performance of the following algorithms
in our experiments. (i) Get-CTable algorithm (i.e., Algo-
rithm 2) for c-table construction. (ii) Baseline algorithm,
which derives the dominator sets through simple pairwise
comparisons between objects for c-table construction. (iii)

6. http://www.nba.com.
7. https://archive.ics.uci.edu/ml/datasets/adult.
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Fig. 2. Evaluation on c-table construction
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Fig. 4. Performance comparison with CrowdSky

ADPLL algorithm (i.e., Algorithm 3) for probability com-
putation. (iv) Naive method, which computes the proba-
bility in a brute-force way, as described in Section 5. (v)
BayesCrowd-FBS, which adopts BayesCrowd framework,
and selects tasks using FBS. (vi) BayesCrowd-UBS, which
adopts BayesCrowd framework, and selects tasks via UBS.
(vii) BayesCrowd-HHS, which adopts BayesCrowd frame-
work, and selects tasks using HHS (i.e., Algorithm 4). (viii)
CrowdSky [23], which is the state-of-the-art crowd skyline
method that utilizes the dominating set to prune some tasks,
and employs a partitioning approach and skyline layers
to support parallelization. It is noteworthy that, since the
dominance relationship on complete data is utilized in our
work, existing skyline algorithms on incomplete data cannot
directly support skyline computation with crowdsourcing.

We study the effect of various factors on algorithm per-
formance, including the dataset missing rate, the threshold
value of α, the amount of budget (i.e., the number of afford-
able tasks), the parameter m, the latency (i.e., the number
of task selection rounds), and the dataset cardinality. In
particular, the missing rate of the data set is defined as the
ratio of the total number of missing attribute values to the
overall number of (both observed and missing) attributes,
which is set as 0.1 by default. The missing rate of each object
is roughly equal to the missing rate of the dataset, as the
missing information is injected into the dataset randomly
over objects and attributes in the experiments. In addition,
due to the large difference between the two dateset scales,
we set α, the budget, m, and the latency to 0.003, 50, 15, and
5 on NBA dataset, respectively. On Synthetic dataset, we set
them as 0.01, 1000, 50, and 10, respectively. For each set of
experiments, we change one of the factors, and set the rest
as default values.

In the evaluation, we employ F1 score to measure the
query accuracy. Specifically, the query result derived based
on the corresponding complete data is regarded as the
ground truth in the experiments. The returned objects with
either true conditions or larger than 0.5 probability being
query answers form the query result set. In addition, for
each set of experiments, we use the majority voting strategy

to get task answers, and each task is assigned to three
workers. In order to exactly and fairly study the impact of
a specific factor on the algorithm performance, the worker
accuracy is set to 1.0 by default. Otherwise, it might disturb
the other factors’ evaluation more or less. Of course, we also
add an extra set of experiments to explore the impact of
worker accuracy on the algorithm performance. In practice,
we could select the workers whose accuracies being above
one certain value to answer tasks, for controlling the final
query answer accuracy (e.g., this kind of worker recruitment
is supported by AMT).

7.1 Efficiency of C-Table Construction
The first set of experiments evaluates the efficiency of Get-
CTable algorithm, compared with Baseline method. Note
that, the typical indices and skyline techniques on complete
data are inapplicable due to the data incompleteness.

The experimental results when varying the missing rate
on both datasets are depicted in Figure 2. One can observe
that, Get-CTable algorithm is obviously faster than Baseline
in each case. With the increase of the missing rate, the time
cost gradually climbs up. This is because, the dominator
set becomes larger with the growth of the missing rate,
which incurs more processing cost. Besides, in contrast to
the pairwise comparisons in Baseline, Get-CTable algorithm
first sorts the values on each dimension, and then derives
the dominator set through fast bitwise operations, which
makes Get-CTable perform much better.

7.2 Efficiency of Probability Computation
In this set of experiments, we investigate the performance
of ADPLL algorithm for probability computation, compared
with Naive method. We report the total time of probability
computation for conditions in the initial c-table.

The experimental results are plotted in Figure 3. We can
observe that, ADPLL constantly performs faster than Naive
under various missing rates in all cases. This is because,
compared with Naive, ADPLL recursively selects the most
frequent variable in a condition, and attempts to break
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Fig. 5. BayesCrowd cost vs. budget
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Fig. 6. BayesCrowd cost vs. missing rate

the expression correlation in the condition as quickly as
possible, and therefore speeds up computation. Moreover,
the efficiency is slowing down with the growth of missing
rate. The reason behind is that, there are in average, more
expressions and variables in one condition for a higher miss-
ing rate. It results in an exponential increase of overhead,
which is consistent with the complexity analysis in Section 5.

7.3 Comparison Study

In this set of experiments, we conduct a complete per-
formance comparison between BayesCrowd and the state-
of-the-art method CrowdSky [23]. In order to ensure the
comparable settings with CrowdSky, we temporally adjust
NBA dataset by missing all values in two attributes and
keeping complete on the other attributes. In addition, since
CrowdSky does not support budget constraint, we set a
relatively large budget for BayesCrowd (i.e., without budget
constraint), and mainly compare the monetary cost (i.e., the
number of posted tasks) and the latency (i.e., the number of
task selection rounds) of them, where the number of tasks
per round is set to 20 for each of them.

When changing the cardinality of NBA dataset, the ex-
perimental results are shown in Figure 4. First, regarding
the execution time (of algorithms, which excludes the time
of workers answering tasks), BayesCrowd (using FBS, UBS,
and HHS) is up to two orders of magnitude faster than
CrowdSky. Moreover, with the growth of the data scale, the
time cost of BayesCrowd grows much slower than that of
CrowdSky. It confirms the good scalability of BayesCrowd.
This is because, using the Bayesian network and the c-
table model, BayesCrowd is able to infer some preference
information (i.e., better/worse than, or equal to) in tasks,
using returned answers per iteration. In contrast, CrowdSky
derives skyline objects by collecting all the missing prefer-
ences in crowd attributes without any inference, incurring
more overhead especially for larger datasets. In addition, the
reason on the increasing trend of the cost is that, with the

growth of dataset cardinality, there are more missing values
and objects in the dataset, which leads to more overhead on
deriving dominator sets and selecting tasks.

Figure 4(b) and Figure 4(c) report the total number
of posted tasks and the number of task selection rounds
incurred by algorithms, respectively. One can observe that,
CrowdSky needs at least one order of magnitude more tasks
and rounds than BayesCrowd to achieve the query result. In
contrast, BayesCrowd (using FBS, UBS, and HHS) requires
remarkably less tasks and rounds. It also justifies the conclu-
sion that CrowdSky needs more time to answer the query.
On the other hand, considering from another angle, we can
find that, compared with CrowdSky, BayesCrowd spends
much less monetary cost (w.r.t. #tasks) and execution time in
processing the query, and has an obviously shorter latency
(w.r.t. #rounds).

7.4 Results on BayesCrowd
Effect of budget. Figure 5 shows the corresponding exper-
imental results when varying the amount of budget. It is
obvious that, the accuracy climbs up gradually with larger
budget, while the efficiency drops. The reason is straightfor-
ward, since it incurs more time to choose more affordable
tasks (w.r.t. larger budget). Meanwhile, when getting more
task answers, the query result will become more accurate. In
terms of the execution time, BayesCrowd-FBS is the fastest
one, followed by BayesCrowd-HHS. BayesCrowd-UBS is
the slowest. It is consistent with the complexity analysis in
Section 6.2. In terms of the accuracy, BayesCrowd-UBS is the
best, while BayesCrowd-FBS is the worst. This is because,
BayesCrowd-UBS exactly chooses the best tasks using the
marginal utility function per round at the most amount of
computation cost. In contrast, BayesCrowd-HHS balances
the pros and cons of BayesCrowd-UBS and BayesCrowd-
FBS, and thus, it is able to obtain quite good accuracy at
less time cost than BayesCrowd-UBS.

Effect of missing rate. With varying the missing rate
from 0.05 to 0.2, Figure 6 plots the corresponding experi-
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Fig. 7. BayesCrowd cost vs. m
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Fig. 8. BayesCrowd cost vs. α
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Fig. 9. BayesCrowd cost vs. worker accuracy
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mental results on two datasets. One can observe that, the
time cost increases with the growth of missing rate, and the
accuracy is decreasing. The reason behind it is that, there
are more expressions (w.r.t. tasks) appearing in the c-table
for a higher missing rate, which incurs more overhead. On
the other hand, since the budget is fixed, the returned result
set contains more uncertainty for the higher missing rate,
resulting in lower accuracy. In addition, BayesCrowd-UBS
obtains the highest accuracy with the most time consump-
tion. BayesCrowd-HHS has much better accuracy yet more
time expenditure than BayesCrowd-FBS in all cases.

Effect of parameter m. Compared with BayesCrowd-
FBS/UBS, Figure 7 shows the corresponding experimen-
tal results when varying m. It is observed that, for
BayesCrowd-HHS, its accuracy gets higher (even near to
BayesCrowd-UBS) with the growth of m, while its time
cost increases. The reason behind it is that, with the in-

crease of m, BayesCrowd-HHS executes more and more
marginal utility computation for selecting each crowd task,
and hence, it is more likely for BayesCrowd-HHS to select
the most beneficial crowd task, whereas it incurs more over-
head simultaneously. In fact, as long as m is large enough,
BayesCrowd-HHS is able to get the same performance as
BayesCrowd-UBS in both efficiency and accuracy.

Effect of parameter α. When the threshold value α
changes from 0.001 to 0.01, we report the corresponding ex-
perimental results on both datasets in Figure 8. We observe
that, with the growth of the threshold value α, it needs more
time to perform BayesCrowd, while the achieved query
accuracy gets higher. This is because, for a larger α, the
condition of regarding an object being a non-skyline point
becomes stricter. In other words, it gets harder to directly
prune the object and set its condition as false. As a result,
there are more complex conditions (with more expressions)
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in the c-table, which leads to more overhead for probability
computation, but contributes to higher accuracy. Besides, we
find that, taking the relatively less time than BayesCrowd-
UBS, BayesCrowd-HHS gets pretty good accuracy.

Effect of worker accuracy. Figure 9 depicts the CPU time
and the query accuracy when worker accuracy varies from
0.7 to 1.0. Note that, if worker accuracy is 0.8, it means that
workers return a correct answer with the confidence 0.8.
It is observed that, the time cost is not very sensitive to
worker accuracy, while the query accuracy gets higher with
the increase of worker accuracy. The reason behind it is easy
to analyse. The worker accuracy is only positively related
to the query accuracy, and it does not affect the algorithm
execution time. It is worth noting that, on the Synthetic
dataset, BayesCrowd-UBS and BayesCrowd-HHS increase
about 10 percent on F1 accuracy with the worker accuracy
varying from 0.7 to 1, and the accuracy of BayesCrowd-FBS
in Fig. 9(d) actually increases around 3 percent. In contrast,
the F1 scores on NBA dataset grow more than 20 percent in
average for the three strategies. The increasing accuracy vol-
umes on the two datasets are quite different, which mainly
attributes to the intrinsic properties of the datasets and
the corresponding task difficulties from the two datasets.
In addition, similar as previous performance, BayesCrowd-
HHS gets near-highest accuracy using less than half time of
BayesCrowd-UBS.

Effect of latency. We change the latency (i.e., the number
of rounds), and report the experimental results on Synthetic
in Figure 10. One can find that, the time cost and the
accuracy is not very sensitive to latency. This is because,
the fixed budget indicates the fixed number of affordable
tasks, and hence, the accuracy looks stable, as well as the
time cost. Note that, the results on NBA are omitted due to
the similar performance trends and the space constraint. We
can observe that, BayesCrowd is capable of controlling the
latency to satisfy the requester’s demand.

Effect of data cardinality. We vary the cardinality of
Synthetic, and present the corresponding experimental re-
sults in Figure 11. One can observe that, the time cost goes
up with the ascending cardinality. This is because, for more
data objects, it needs more time for deriving each dominator
set, as well as probability computation for task selection.
Thus, it incurs some overhead. Meanwhile, we find that
the time cost partly relies on the size of skyline objects. As
confirmed, the skyline object size slightly decreases when
the cardinality becomes 125K, and thereby alleviating the
growth of time cost. In addition, the accuracy decreases
gradually with the increase of data cardinality. The reason
behind is that, the candidate object set becomes larger, but
the budget is fixed. It leads to the descending accuracy.

7.5 Live Experiments on AMT

Last but not the least, we conduct a practicality study for
BayesCrowd on the live crowdsourcing market AMT. Based
on NBA dataset with the default parameter settings, the
accuracy of BayesCrowd with each of the three task selection
strategies is depicted in Table 6. As observed, every strategy
has relatively high accuracy, which is comparable to the
previous experimental results reported in this section. In
addition, it has partly demonstrated that, BayesCrowd is

TABLE 6
Live Experiments using NBA dataset on AMT

BayesCrowd-FBS BayesCrowd-UBS BayesCrowd-HHS
F1 score 0.956 0.979 0.978

practical in real crowdsourcing marketplaces for skyline
queries over incomplete data. Moreover, BayesCrowd has
excellent performance especially for high-accuracy workers.

In summary, ADPLL algorithm benefits probability com-
putation significantly. It makes BayesCrowd practical and
efficient. The three task selection strategies FBS, UBS, and
HHS have respective features. FBS is the fastest one, and
UBS is of the highest accuracy. HHS is the most flexible task
selection strategy, i.e., it allows requesters to tune the value
of parameter m for balancing the accuracy and algorithm
execution time to get satisfying performance. Furthermore,
compared with the state-of-the-art method CrowdSky [23],
BayesCrowd is demonstrated to perform several orders of
magnitude better, no matter in terms of wasted money,
algorithm execution time, or latency minimization (with a
comparable accuracy).

8 RELATED WORK

Query optimization via crowdsourcing. With the emerg-
ing of more and more crowdsourced databases such as
CrowdDB [20], Deco [37], and Qurk [38], crowd queries
have been extensively explored, e.g., select [39], [40], [41],
join [42], [43], [44], [45], sort [42], group-by [46], maxi-
mum [47], [48], [49], and top-k query [50], [46], [51], [52],
[53], [54]. Also, there are several survey works, e.g., [55],
[56], and optimization techniques with crowdsourcing in-
cluding CDAS [57], CrowdOP [36], CBD [58], task allocation
[59], [60], knowledge base integration [61], etc. However,
all the techniques above do not support the crowd skyline
query with incomplete data. In addition, the work [62]
combines Bayesian network and crowdsourcing to impute
missing values, which is different from our goal of optimiz-
ing the query quality with crowdsourcing.

By contrast, the closest related work to ours is the
crowd skyline query [23], [22]. As analyzed in Section 1,
the work [22] is based on unary questions to impute missing
values of objects, resulting in the inaccurate result. While
in [23], they partition attributes into the observed attributes
and the crowd ones, and assume that all values in crowd
attributes are missing. Nevertheless, in real-life scenarios,
it is easy to realize that, the values are usually missing
over attributes randomly. Besides, both studies assume that
data attributes are independent. It is worth noting that, our
work studied in this paper allows attribute values missing
randomly, and takes into account the data correlation.

Querying incomplete data. The study of incomplete
data arises at the beginning of research due to its per-
vasiveness [63]. On the theoretical side, the foundational
research from the 1980s, first by Imielinski and Lipski [25]
and then by Abiteboul, Kanellakis, and Grahne [64] provide
models of incompleteness appropriate for handling queries
in different relational languages. In addition, some index
structures have been presented, e.g., BR-tree, MOSAIC,
bitmap, and VA file [65], [66], for organizing incomplete
data. Also, several spatial queries over incomplete data have
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been investigated, such as skyline queries [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], ranking/top-k queries [15], [16],
similarity queries [17], [18], [19], etc. Nevertheless, none of
the aforementioned work adopts crowdsourcing techniques
to process incomplete data. In addition, it is noteworthy
that, the dominance relationship analysis (throughout the
paper) is based on the traditional dominance relationship
definition on complete data, instead of incomplete data. Hence,
the techniques for skyline computation over incomplete
data cannot be applied to our studied problem.

9 CONCLUSIONS

In this paper, we propose a novel crowd skyline query
framework BayesCrowd. It takes into account the data cor-
relation, and consists of two major phases, i.e., the mod-
eling phase and the crowdsourcing maker phase. In the
modeling phase, the query results are represented with
the c-table model. We present an effective approach for c-
table construction. Since probability computation in terms
of conditions in the c-table is at least as hard as #SAT
problem, we develop an ADPLL algorithm to accelerate
computation. For the crowdsourcing phase, we put forward
a suite of effective task selection strategies, which consider
budget and latency constraints. We also introduce a marginal
utility function to measure the benefit of crowdsourcing
a task. Extensive experiments on both real and synthetic
datasets demonstrate the superiority of BayesCrowd. In the
future, we intend to further explore the quality optimization
problem on answering incomplete data queries.
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