
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2014-04-24

Management of Big Annotations in Relational
Database Management Systems
Karim Ibrahim
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Ibrahim, Karim, "Management of Big Annotations in Relational Database Management Systems" (2014). Masters Theses (All Theses, All
Years). 272.
https://digitalcommons.wpi.edu/etd-theses/272

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/272?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

1

Management of Big Annotations in Relational Database

Management Systems

by Karim Ibrahim

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in Computer Science

by

May 2014

APPROVED:

 Professor Mohamed Eltabakh, Thesis Advisor

 Professor Elke A. Rundensteiner, Thesis Reader

Professor Craig Wills, Head of Department

2

Acknowledgements

 I would like to express my gratitude to my advisor professor Mohamed Eltabakh.

Thank for his continuous support for my research and thesis work. I really appreciate his

time, patient, guide, encouragement, and sharing his knowledge, which help me to

continuously grow and improve during my master study.

My thanks also go to my thesis reader professor Elke Rundensteiner, for her

valuable advises on my thesis work, which helps me to improve the quality of this thesis.

I thank all my DSRG members in WPI for all the feedbacks and discussions on my

work.

I want to thank my whole family: my parents and my brother for being there,

supporting and encouraging through the tough times. Thank for giving me tremendous

support in my life and study.

Last, I thank GOD for this opportunity, for his guide and for giving me the ability

and strength to finish this work.

3

Table of Content

Contents
Acknowledgements .. 2

Table of Content .. 3

List of Figures ... 5

Abstract ... 7

Chapter 1: Introduction .. 8

1.1 Motivation ... 8

1.2 State-of-art Limitations ... 9

1.3 Challenges & Proposed Solution ... 11

1.4 Contributions .. 12

Chapter 2: User-Centric Annotation Propagation... 14

2.1 User Profile.. 15

2.1.1 Static Profile ... 15

2.1.2 Dynamic Profile .. 15

2.2 Ranking Functions ... 17

2.2.1 Keyword scoring ... 18

2.2.2 Curator scoring ... 18

2.2.3 Time scoring ... 18

2.3 User-Centric Annotation Propagation: Explored Directions ... 19

2.3.1 Top K operators .. 19

2.3.1.2 Proportional Top K .. 19

2.3.2 Skyline filtering ... 20

2.3.2.1 Score Threshold ... 21

2.3.3 Annotation Clustering .. 21

2.4 User-Centric Annotation Propagation: Final Design ... 22

2.4.1 Propagate ‘ALL’: ... 23

2.4.2 Propagate ‘New’: ... 24

2.4.3 Propagate ‘Timeline’: ... 25

2.5.1 Clustering filtering: ... 27

2.5.2 Top K filtering: .. 29

4

Chapter 3: Proactive Annotation Management .. 31

3.1 Workflow of Proactive Annotation Management: ... 34

3.2 System Components ... 35

3.2.1 Parser & Text Analyzer: .. 35

3.2.2 Schema Analyzer: ... 36

3.2.3 Hint Recognition: ... 37

3.2.4 Construct Builder: .. 38

3.2.5 Data Search: ... 39

3.2.6 Link Builder: ... 40

3.3 Special cases: .. 41

3.4 Summary: .. 42

Chapter 4: Summary-Based Annotation Management: Advanced Querying ... 43

4.1 SUMMARY-BASED QUERY FUNCTIONS AND OPERATORS .. 45

4.1.1 Summary-Based Manipulation Functions .. 45

4.1.2 Summary-Based Relational Operators ... 48

4.1.2.1 Filter Operator (Fp(R)): ... 48

4.1.2.2 Selection Operator (Sp(R)): ... 49

4.1.2.3 Join Operator (Jp(R; S)): ... 50

4.1.2.4 Sort Operator O(f,direction(R)): .. 52

4.2 SUMMARY-BASED INDEX SCHEME ... 52

4.2.2 Summary-BTree Index Structure: ... 54

4.3 SUMMARY-AWARE QUERY-TIME OPTIMIZATIONS ... 58

4.3.1 Index Scan Based on Selectivity: .. 58

Chapter 5: Performance Evaluation .. 60

5.1 Experiment Setup and Methodology .. 60

5.2 User-Centric Annotation Propagation .. 60

5.3 Proactive Annotation Management ... 65

5.4 Summary-Based Annotation Management: Advanced Querying ... 68

Chapter 6: Related Work .. 70

6.1 User-centric Annotation related work: ... 70

6.2 Proactive Annotation Management related work: ... 74

6.3 Summary-based Annotation Management: Advanced Querying ... 75

Chapter 7: Conclusion ... 76

5

Chapter 8: References ... 77

List of Figures

Figure 1: Current annotation propagation limitation .. 9

Figure 2: Example of annotated table .. 10

Figure 3: Annotation magnitude compared to data ... 10

Figure 4: Annotation user-centric system Architecture .. 14

Figure 5: Dynamic keyword extraction ... 16

Figure 6:Skyline in User-centric annotation system .. 21

Figure 7:Clustering representation ... 27

Figure 8: motivation .. 31

Figure 9: Proactive Annotation Management Architecture .. 34

Figure 10:Parser & text analyzer example .. 35

Figure 11:Schema analyzer example .. 36

Figure 12:Hint recognition example ... 37

Figure 13: Construct Builder example .. 38

Figure 14: Data search & link builder example ... 39

Figure 15: Special cases.. 41

Figure 16: Proactive Annotation Management summary ... 42

Figure 17: InsightNotes Summary Structure ... 44

Figure 18: Summary Filter example .. 49

Figure 19: Summary Selection example ... 50

Figure 20: Summary Join example .. 51

Figure 21: Summary sort example .. 52

Figure 22: Summary B-tree .. 55

Figure 23: Summary optimization in Selectivity .. 59

Figure 24: User-Centric Annotation Propagation Experiment 1 .. 61

Figure 25: User-Centric Annotation Propagation Experiment 2 .. 61

Figure 26: User-Centric Annotation Propagation Experiment 3 .. 61

Figure 27: User-Centric Annotation Propagation Experiment 4 .. 62

file:///C:/Users/karim/Desktop/MS_Thesis_V2.docx%23_Toc385978092
file:///C:/Users/karim/Desktop/MS_Thesis_V2.docx%23_Toc385978094

6

Figure 28: User-Centric Annotation Propagation Experiment 5 .. 62

Figure 29: User-Centric Annotation Propagation Experiment 6 .. 63

Figure 30: User-Centric Annotation Propagation Experiment 7 .. 63

Figure 31: User-Centric Annotation Propagation Experiment 8 .. 64

Figure 32: User-Centric Annotation Propagation Experiment 9 .. 64

Figure 33: User-Centric Annotation Propagation Experiment 10 .. 65

Figure 34: Proactive Annotation Management Experiment 1 ... 65

Figure 35: Proactive Annotation Management Experiment 2 ... 66

Figure 36: Proactive Annotation Management Experiment 3 ... 66

Figure 37: Proactive Annotation Management Experiment 4 ... 67

Figure 38: Proactive Annotation Management Experiment 5 ... 67

Figure 39: Summary-Based Annotation Management Experiment 1 .. 68

Figure 40: Summary-Based Annotation Management Experiment 2 .. 69

7

Abstract

Annotations play a key role in understanding and describing the data, and

annotation management has become an integral component in most emerging

applications such as scientific databases. Scientists need to exchange not only data but

also their thoughts, comments and annotations on the data as well. Annotations represent

comments, Lineage of data, description and much more. Therefore, several annotation

management techniques have been proposed to efficiently and abstractly handle the

annotations. However, with the increasing scale of collaboration and the extensive use of

annotations among users and scientists, the number and size of the annotations may far

exceed the size of the original data itself. However, current annotation management

techniques don’t address large scale annotation management. In this work, we propose

three chapters to that tackle the Big annotations from three different perspectives (1)

User-Centric Annotation Propagation, (2) Proactive Annotation Management and (3)

InsightNotes Summary-Based Querying. We capture users' preferences in profiles and

personalizes the annotation propagation at query time by reporting the most relevant

annotations (per tuple) for each user based on time plan. We provide three Time-Based

plans, support static and dynamic profiles for each user. We support a proactive

annotation management which suggests data tuples to be annotated in case new

annotation has a reference to a data value and user doesn’t annotate the data precisely.

Moreover, we provide an extension on the InsightNotes: Summary-Based Annotation

Management in Relational Databases by adding query language that enable the user to

query the annotation summaries and add predicates on the annotation summaries

themselves. Our system is implemented inside PostgreSQL.

8

Chapter 1: Introduction

1.1 Motivation

Annotations are used by many users and scientists to describe, comment or

criticize the data values, and hence many applications use the annotation mechanism to

capture users input [8] as in incomplete databases, probabilistic databases and data

warehousing. In scientific databases applications, scientists from different fields such as

bioinformatics, chemistry and physics labs, rely nowadays on scientific database to

manage their data and experiments as it provides a set of features that traditional

relational database management systems don't offer as annotation management.

Scientific database [7] offers a way to maintain the data provenance that defines the how

data was generated [12]. Also, scientific database provides a way to annotate data by

attaching comments to the data [1][3][8][9]. Annotated databases are like a social media

where scientists can communicate over certain data, but it is hard to analyze the

annotations as of the free text unstructured nature. Scientists may annotate table, column,

tuple or a cell. Meanwhile, the annotation propagation [11] phase will show all the

annotations from different levels for each tuple. In the following example, Alice and Bob

are scientists who query table Gene with its annotation. The problem is Alice and Bob get

the same result set with same annotation. However, Alice and Bob have different

background and different interests so each of them spend a good amount of time in order

to find annotations that might be helpful. When users add annotation to set of data, usually

it is a small set of data that they focus on. On the other side, when users add like article

annotations that refer to different data, users might skip data to be annotated. Therefore,

proactive annotation management analyses the newly annotation and verify if annotation

can refer to other data. In the current annotation summary system InsightNotes, users

can not write queries based on the annotation summaries. So, we introduce new

language to enable the exploration and querying the data using summaries as predicates.

9

 Figure 1: Current annotation propagation limitation

1.2 State-of-art Limitations

As Scientists use the annotation feature more and more[4], the amount of

annotations propagated with each tuple increases dramatically as shown in figure 2

(comparing the number of annotation to the data size). With such increase it becomes

harder for end-users to go over all reported annotations to find the most relevant ones to

the user's interest. In the current systems, this problem is not addressed and the end-

user gets all the annotations propagated with each tuple. Scientists find it an

overwhelming task to read all the annotations and extract useful information. For

example, users may be interested in reading annotations related to specific topic of

keywords, or may be interested to check new annotations from trusted curators [2]. On

the other hand, time of annotation creation can be of high importance to scientist as new

discoveries change their perspective for data. Also, scientists can be interested in

annotations that were recently created or within a certain time window. Therefore, there

is a need for more efficient propagation techniques that selects among the so many

available annotations, the most relevant ones that match each user's interest. In other

research, the annotation is used as Provenance or belief but the annotation is structured

and has well-defined domain so it can be easily analyzed. However, we consider the

unstructured free text annotations.

10

For proactive annotation, it was not addressed before to analyze the annotation and

search for hidden reference. There is a lot of work introduced concerning the keyword

search in the relational database management systems and we use some techniques to

detect annotation-data reference. InsightNotes, was an important work to summarize the

data and propagate the summaries in efficient way with data. The next step in this

research was to add the option of exploring the data through the summaries and still it

was not addressed.

 Figure 2: Example of annotated table

Figure 3: Annotation magnitude compared to data

11

1.3 Challenges & Proposed Solution

 Personalizing the output results has been addressed in different contexts because

of its effectiveness and its ability to offer user-centric processing. Examples of these

systems include Google search engine, Amazon commercial system[10], Netflex,

Context-aware databases [6], and many others. However, personalizing the annotation

propagation has not been addressed yet and it involves several new challenges over

existing systems that we address in this thesis. For example, Amazon and Netflex depend

on collaborative filtering techniques [5] that require matching profiles of many users in

order to provide recommendations. In our system (chapter 2) , the personalization

depends on ranking the annotations based on each user's profile independent of the other

users. In systems like Google, they capture users' previous operations, e.g., previous

keyword search, in order to customize future results. In our system, we capture and track

more complex operations such as the relational queries inserted by users to evolve their

profiles. Additionally, we address novel ways to efficiently identify and propagate the

annotations of interest, which is different from existing techniques. For proactive

annotation management (chapter 3), it basically searching the annotation content and

trying to discover matches to data values. The naïve way is to search every token in the

annotation and compare it with the data values in the tables. However, this would be time

consuming and inefficient. So, we try to find hints in the content of the annotation in order

to minimize the search operation and find a match to the data values. After a match is

found, users need to verify the annotation – data link if it should exist or it should be

broken. In the InsightNotes, users don’t know what kind of summaries attached to data,

so a new language is introduced to enable exploring of summaries (chapter 4). Then

summaries is stored and indexed in an efficient way so that users can add predicates on

the summaries and get the data that satisfy this kind of predicates.

12

1.4 Contributions

In chapter 2, we propose a system that captures users' preferences and profiles

over time, and personalizes the annotation propagation at query time by reporting the

most relevant annotations (per tuple) for each user. Thus different users with different

interests may issue the same query, receive the same data results, but with different set

(filtering) of annotations attached to the results. In our system, each user's profile consists

of two components: static features and dynamic features. The static features are entered

by the user and contain information such as list of annotation curators, time window and

list of keywords. The dynamic features are automatically captured and maintained by the

system including the users' previous queries. Using the user profiles, we propose Time-

Based filtering that helps user to find annotations that map to his/her preferences. The

Time-Based filtering consists of three categories: ALL, NEW and TIMELINE. ‘ALL’

propagates all annotations attached per tuple order by the ranking of the annotations in

descending fashion. ‘NEW’ propagates annotations that were added after the last

propagation query on the data tuple. The last category is TIMELINE where the all the

annotations are divided in four time segments relative to the last executed propagation

query. One of the segments is ‘NEW’ like previously explained. The other Three of time

segments are time intervals starting from date of the last query to number of days

specified by the user. We propose another two layers of filtering as the number of

annotations still can be overwhelming to the user, we introduce the clustering filter (based

on the content of annotations) and Top K filtering (based on the ranking of annotations)

In chapter 3, with Big annotations and large scale datasets, users may not

annotate all the data that should be annotated. For instance, user may add an article

related to certain Gene sequence, meanwhile a protein name was mentioned in the article

that user did not attached the article with. Therefore, proactive annotation management

provides an efficient way to detect such hidden links in newly inserted annotation and

build temporary annotation-data link until the link is verified by the user.

13

 In chapter 4, in InsightNotes, different types of summaries are built on top of the

raw annotation annotations. Users are not able to explore the summaries and add

predicated on the summaries, they can only propagate summaries with the data.

Therefore, we introduce an extension to InsightNotes to efficiently query the data based

on summaries and indexing the summaries for faster query response time.

The key contributions of this thesis can be summarized as follows:

1. Proposing system that enables personalizing the annotation propagation in

relational database systems. The main purpose of the system is to minimize the

number of annotation to be propagated with data and return the most relevant

annotations.

2. Providing different techniques to capture users’ profiles including both static and

dynamic features. The system is flexible that enable the users to introduce new

features to be evaluated for each annotation.

3. Introducing Time-Based filtering with option of Top K operator or clustering that

reflects user's preferences. Users get the data with the annotations in descendant

order by their scores which reflect most relevant annotations first for each time

filter. In order to return fewer annotations, clustering over the annotations content

or top K overall score can be used.

4. Introducing proactive annotation, which detects cross referencing in text

annotation to data values and enable users to verify if a new annotation should be

applied to refer data.

5. Extending the annotation summary, to include new language that enable the user

to query the data based on the summaries and efficiently querying the data based

on summaries predicates.

6. Implementing the proposed system inside the PostgreSQL database system.

14

Chapter 2: User-Centric Annotation Propagation

User-centric Annotation system consists of three main components: (1) Profile

Manager that manages and maintains users profiles (static and dynamic features), (2)

Extended query engine which integrates the filtering operations with the query plans , and

(3) PrefNotes language and interface layer for creating the profiles and for personalizing

the annotation propagation.

Figure 4: Annotation user-centric system Architecture

15

2.1 User Profile

The profile manager is responsible for creating and maintaining users' profiles and

storing them in the Profile Repository.

2.1.1 Static Profile

For the static profile, the system keeps track of three main dimensions: the curator

dimension, the time dimension, and the keyword dimensions. The curator dimension, user

may trust annotation's curator more than other for example scientists in the same lab

would prefer to know their colleagues' annotations first. Each user provides an ordered

list of curators and based on that order, the ranking of annotations is computed for that

dimension. For the time dimension, scientists may be interested in different time windows.

Users can easily specify an annotation's time window that reflects uses' preferences. For

the keyword dimension, users provide a list of keywords or topics of interest such as

"Gene" or "Protein" or gene sequence "ACAAGA".

2.1.2 Dynamic Profile

For the dynamic feature, User-centric Annotation system keeps a query log that is

used to store all the queries with predicates that was successfully executed by each user

in a given time. A stored procedure is executed to extract per user the frequent predicates

values used in the where clause and the frequency visited data rows (used in version 1

only). The database administrator defines a time threshold for the queries to be expired

and removed from the query logs. Also, each user defines a frequency threshold to define

the frequency of the predicates and the rows visited. In the user's profile, for each user

the dynamic keyword feature is updated with the frequent predicted values, also the

frequent visited rows dynamic feature is updated by the Object identifiers (OID) which is

unique for each row in the database. The database administrator has the option to

execute this stored procedure is the most relevant time according to their application

environment. Besides that, PrefNotes also extract keywords of interest from the

annotations written by the users (add annotation queries in the query log). We extract the

16

keywords that refer to a value of the annotated data. Matched words are added to the

annotation dynamic keyword feature for each user.

2.1.2.1 Keyword Extraction

User-centric Annotation system executes three different stages in order to extract

the dynamic features. First stage is storing the users' queries. For every processed query,

the system extract the table name from the from-clause as well as the predicates in the

where-clause. Then the output (table name, predicates) are stored in log table along with

the user id and timestamp. Each user can control the query to be analyzed in the log by

specifying the point of time away from the current date. Second stage is analyzing the

queries in the log. For the keyword extraction, the system focuses (constant) strings used

in the predicates of the queries. Tokenization of the strings takes place and a word

frequency count is performed. The system maintains a keyword frequency table that

represents the extracted keywords and their count per user. User-centric Annotation

system does an incremental update on this table every day to update the words

frequencies by deduction of words in the outdated queries and addition of words of new

queries. It is believed that users do not use the string predicates quite often so keyword

frequency table will not be huge and incremental update is efficient.

Figure 5: Dynamic keyword extraction

17

2.1.2.2 Visited Tuple Frequency

For the row frequency, the system creates a function per table (from-clause) that

list the predicates to be tested for each row. The system runs the created function against

each row in the table to test its frequency .The row frequency is measured as the number

of predicates that data row satisfies in the testing. An auxiliary table row frequency is

maintained to save the row OID and frequency per user. Incremental update will not be

efficient for this table as the number of row OIDs are typically huge so the table will be

big and hard to maintain. In the third stage, the system offers the user the option of

specifying the thresholds for both the keyword frequency and row frequency. If a keyword

frequency is defined by the user, User-centric Annotation system extracts the keywords

that satisfy the threshold and add list of dynamic keywords to the user’s profile. If the row

frequency is defined, the system deletes the OIDs that do not satisfy the threshold. The

row frequency table is used version 1 in the proportional Top K to measure the row weight.

For each user, the row weight is calculated as the row frequency divided by the maximum

row frequency. Finally, the system removes the outdated queries from the log table.

2.2 Ranking Functions

Each feature in User-centric Annotation system has an associated ranking function

that scores each annotation with respect to that function. The profile manager will manage

a pool of ranking functions that are registered inside the system. The ranking for each

feature is normalized so that the overall score is normalized as well. Each feature may

have a default ranking function, but users may override these defaults and have their own

functions. To get the most relevant annotation, an overall score that represent all different

dimensions is calculated to evaluate an annotation among its peer annotations per tuple.

The scoring function is pluggable component so user has the control to introduce new

dimensions other than the defined ones and to change an existing one as long as all the

functions give normalize score. According to the overall score the annotations with

dominating score are selected to be propagated with the tuple.

18

2.2.1 Keyword scoring

The keyword scoring function, the tokens in each annotation is compared to the

list of keywords given by the users or generated from the user's query history and if there

is a match the score increment by one and the end comparisons stage the score is

normalized by the number of tokens in this annotation. An aggregated score is calculated

from the scores of the given functions and normalized to give an overall score for each

annotation.

2.2.2 Curator scoring

For curator ranking function, we have two lists static list and dynamic list. The static

list is the order list of scientist's curator preferences which is provided previously. The

dynamic list of curators is an order list generated based on the curator frequencies used

in scientist's query history. The system assigns a uniform weight for each curator=(n-i)/n

such that the n is the number of curator in the list and i is the position of the curator in

the list. For each annotation a curator weight is assign to it.

2.2.3 Time scoring

The time ranking function, given the users’ static time window preference and

users generated dynamic time preference, for each tuple the time of the annotation

creation is compared and if the annotation with creation date closer to the end date in the

window gets higher score. Here is the formula for computing the time score: 1-(E-T)/(E-

S) where E is the end date , S is the start date and T is the creation date of the tested

annotation.

19

2.3 User-Centric Annotation Propagation: Explored

Directions

2.3.1 Top K operators

In this section, we present the Top K ranking operators in PrefNotes. We propose

two variants of the Top K operators that differ in their costs and accuracy. Fixed Top K

and Proportional Top K. In figure 1, the execution engine gets the answer set from the

data repository and propagates the annotations from the annotations repository and then

evaluates each annotation based on the profile retrieved from the profile repository.

Table Gene with annotation Fixed top K=2 Proportional top K=2

2.3.1.1 Fixed Top K

Fixed Top K operator in figure 2b returns exactly K annotations for each tuple

based on the ranking of annotation. Meanwhile, Fixed Top K operator doesn't take into

account the popularity of the tuple so tuples with more annotations are treated equally as

tuples with fewer annotations. However, Fixed Top K operator is good as it is non-blocking

operator, as for each tuple it calculates annotations scores and selects the Top K.

2.3.1.2 Proportional Top K

The Proportional Top K operator in figure 2c overcomes this shortcoming by

assigning proportional K for each tuple according to their popularity. The proportional

20

equation is :K=(number of annotation per tuple/ number of all annotations) . The

Proportional Top K is semantically better as it takes into consideration the popularity of

the tuple, however it is an expensive operator because of its blocking nature. The

Proportional Top K is a blocking operator because all the annotations of the answer set

should be retrieved and calculate for each tuple the ratio of number of annotation over all

these annotations (if we have the total number of annotations of the answer set it will be

non-blocking). the equation of the K is

K = (# of Annotations Per Tuple * Expected # of Annotations) / Total # of Annotations In Answer Set

For the Top K the following query is used to get the results in the commands:

Select * From gene Propagate Annotation {Top K };

2.3.2 Skyline filtering

Skyline is used in different applications to extract the dominating points in graph.

One of the famous problems is the hotel problem where customer compares the distance

and price dimensions of different hotels. In our system for every tuple, we build skyline

model to filter the annotations attached to that tuple. In the annotations evaluations, the

first step is to build the graph with points formulated by the three dimensions scores

(keyword, curator and time) calculated by the ranking functions. After scattering the

annotations scores in the graph skyline, the system selects the annotations with highest

overall score that dominate the other annotations with less overall score. The skyline

output annotations represent the most relevant annotations (highest score) to user with

different dimension scores. We assume that users don't have certain preference a

dimension over another dimension.

21

2.3.2.1 Score Threshold

However, a small tweak can enable the user to define the importance of a

dimension by adding weights to dimension scores in the overall score equation. The

skyline will not be efficient if none of the user's preferences are met over the annotations,

which leads to propagating all non-relevant annotations. Therefore, users have the option

to dene a threshold on the overall score so that no low overall score annotations are

propagated with data tuples. This option helps the user to focus more on what they are

searching for.

2.3.3 Annotation Clustering

In the previous techniques, the system compares the annotations of based on the

three dimensions defined before. While the skyline and Top K filter the annotations, yet

the annotations can be similar and having the same overall score. Our system offers the

option of diversity of annotations with is based on the content of the annotations. The

system enables the user to focus on the difference of annotations based on the similarities

of the annotations text. To measure the similarity between two annotations, the system

uses cosine similarity function that checks the common words over the overall words. The

output of the cosine functions is number range from zero to one, zero represents totally

different texts and one represents exactly the same text. The system constructs

connectivity based clusters using the cosine similarity as the distance between

annotations. A threshold is defined by the system administrator to specify the minimum

Figure 6: Skyline in User-centric annotation system

22

distance to construct a cluster. There are two cases are handled when new annotation is

introduced to the cluster model:

1) The annotation's distance to any of the annotations in a cluster exceed the

threshold, therefore the new annotation belong to this cluster and add to the cluster

for further comparisons else compare to the rest of the clusters

2) The annotation's distance to all of the annotations in the given clusters do not

exceed the threshold, then a new cluster is created with the new annotations. The

clustering technique help the user show various annotations content over the data

so that it reflect different information attached to the data.

2.4 User-Centric Annotation Propagation: Final Design

The previous version has a lot of technical concepts that scientists – our targeted

users –find so hard to understand and how to use these features. Also, Skyline filter can

eliminate annotations that might have an importance to the user though the annotations

have low ranking. Therefore, we propose another version of User-centric Annotation that

can represent and personalize the propagation of the annotations, yet ease to understand

and use as well it sorts the annotation based on their ranks.

Phase I:

The main idea is to represent the annotations of more importance first. Therefore,

annotations per tuple are ordered in descending order based on the overall ranking score.

Though, User-centric Annotation uses ordering of annotation, yet the order operator used

is not blocking like the regular operator used in Postgresql. The ordering takes place only

on the data tuple level. Blocking operators like ‘order by ‘or ‘group by’ are operators that

will not return any tuple until all the returning data is fetched and processed.

23

User-centric Annotation provides three features to organize the annotations to the user in

a convenient way.

1. ‘ALL’ which returns the all the annotations per tuple ordered by the overall score.

2. ‘New’ which returns all the annotations that were added after last propagate query

executed by the user.

3. ‘Timeline’ which arrange the annotation to four segments of time (‘New’, ’Recent’,

’Old’ and ‘Archive’).

2.4.1 Propagate ‘ALL’:

In this type of propagation, each annotation is evaluated against the user

preference and an overall score is assigned to the annotation based on the ranking

functions illustrated before. Due to the indices build on top the OID and the annotation id

that join the annotation table with the data tables, it is granted that the annotations are

propagated per tuple first and not interleave with other data tuples. After all the

annotations per tuple are evaluated and before propagated to the user, the annotations

are sorted in descending order based on their scores.

Annotation table

Annotation ID Date Curator Annotation

A1 01/02/2014 Scientist_1 A b c d

A2 01/02/2014 Scientist_2 A b c d f

A3 11/11/2013 Scientist_2 A b c

A4 01/01/2013 Scientist_1 f

24

Gene table

OID ID Name

19666 AARS Alanyl-tRNA synthetase

19667 ABCC9 ATP-binding cassette, sub-family C

(member 9)

19668 ABHD5 Abhydrolase domain containing 5

19669 ACADVL Acyl-Coenzyme A dehydrogenase,

very long chain

19670 ACTA1 Alpha actin, skeletal muscle

Propagate ‘ALL’

OID ID Name

19666 AARS Alanyl-tRNA synthetase

19667 ABCC9 ATP-binding cassette, sub-family C

(member 9)

19668 ABHD5 Abhydrolase domain containing 5

19669 ACADVL Acyl-Coenzyme A dehydrogenase,

very long chain

19670 ACTA1 Alpha actin, skeletal muscle

2.4.2 Propagate ‘New’:

Scientists basically use annotation to communicate and collaborate over the data

and their experiments. Hence, time is of great importance as scientists want to explore

the new findings. User-centric Annotation offers the option to users to propagate the

annotation that was recently added (creation date) after last propagate query executed

by the user. Therefore, an auxiliary table annotation_propagation_log is used to keep

track of the annotated tuples that were viewed by the users and the time of the query

execution.

A1

A2

A3

A4

A2

A4

A4

A4

A2

A3

A2

A1

Score

0.8

0.7

0.3
0.9

0.9

0.7

25

Tuple_OID User Date

19666 Scientist_1 01/01/2014

19666 Scientist_2 01/02/2014

19667 Scientist_3 01/02/2014

19669 Scientist_3 01/02/2014

… … …

When Scientist_1 propagate gene table , ‘A3’ annotation will be eliminated from the

returned annotation as the creation date is before the last propagation query date,

therefore the annotation is not ‘New’ any more.

 Propagate ‘New ‘for Scientist_1

OID ID Name

19666 AARS Alanyl-tRNA synthetase

… … …

2.4.3 Propagate ‘Timeline’:

As it was mentioned before, time is of a great importance to scientists to explore

new findings and new annotations added by other scientists. The ‘timeline’ propagation

is another type of propagation that helps the user to find what he wants by organizing the

in four different segments. A configuration variable of number of days is defined by the

database administrator to set the interval between each time segment. Also, the

annotations in the same segments are ordered by the overall score.

 The ‘timeline’ divides the annotations propagation in four ordered segments:

1. ‘Segment_1’: the annotations those haven’t seen by the user from the last

propagation query

2. ‘Segment_2’: the annotations those are recently by the user from the last

propagation date minus the variable number of days till the last propagation date.

Same tuples different users

Different tuples same user

A2

A1

Score

0.7

0.3

26

3. ‘Segment_3’: the annotations those are old relative to the last propagation which

is from the last propagation date minus twice the variable number of days till the

last propagation date minus the variable number of days.

4. ‘Segment_4’: the annotation those are older than last propagation date minus

twice the variable number of days.

Example

Gene:

OID ID Name

19669 AARS Alanyl-tRNA synthetase

… … …

‘Timeline’ Propagation:

OID ID Name

19669 AARS Alanyl-tRNA

… … …

2.5 Filtering options:

For the last three types of propagation, scientists still can find the numbers of

annotations are overwhelming. Therefore, User-centric Annotation offers two types of

filters that return fewer annotations:

 Clustering filtering

 Top K filtering

A7

A8

A9

A10

A11

Creation Date

01/05/2014

12/01/2013

11/01/2013

01/01/2012

01/05/2014

Anno Content

A7

A11

A8

A9

A10

Score

0.7

0.3

0.2

0.6

0.9

Type

Segment_1

Segment_1

Segment_2

Segment_3

Segment_4

27

2.5.1 Clustering filtering:
As in the version 1 of User-centric Annotation, annotations are compered to detect

the similarity between them. It is a way to show diverse annotation to the user and

eliminated redundancy. The system uses the cosine similarity that compares annotations

content to get the ratio of the common words to the total number of words and gives a

normalized value that represents the closeness. A threshold is configured to set if two

annotations are similar if the value of the similarity function is greater than the threshold

(the default is 0.7). The main difference between this version of clustering and the

previous one is choosing the representative of the cluster. User-centric Annotation groups

the annotations with similar content as shown in the figure below and select a

representative:

- In version 1, the representative is selected randomly

- In version 2, the representative is selected with the highest overall score

 Figure 7:Clustering representation

For each propagation type the clustering filtering can be applied:

Gene:

OID ID Name

19669 AARS Alanyl-tRNA

Anno content

A B C D

A B C D F

F C D

A C E G

A D E G

Creation Date

01/05/2014

12/01/2013

12/05/2013

Score

0.8

0.9

0.6

0.7

0.2

28

Propagate ‘All’:

The annotation that are similar (A B C D, A B C D F) with value 0.89 while the (A

C E G, A D E G) is 0.75. The total number of words can make a difference for example if

we remove the G from the last two annotations the similarity value of (A C E, A D E) is

0.66 which is less than the threshold and the two annotation will be considered different.

Also, (F C D, A B C D F) is 0.77.

OID ID Name

19669 AARS Alanyl-tRNA

Propagate ‘New’:

The propagate ‘New’ filters the annotation to get the new annotation which user

’scientist_1’ whose last propagate query was in ‘01/01/2014’ will be (A B C D, A D E G)

and their similarity is 0.5. Since, the similarity value less than the threshold both of the

annotation will be propagated as following:

OID ID Name

19669 AARS Alanyl-tRNA

Propagate ‘Timeline’:

In propagate ‘Timeline’, the annotations are ordered and organized by the four

segments of time that represent different intervals. The clustering works on each segment

separately form the other segments. In the previous example, the annotations (F C D, A

B C D F) are in the same segment and the similarity value is 0.77.

Anno content

A B C D

A D E G

Creation Date

01/05/2014

01/05/2014

Score

0.8

0.2

Anno content

A B C D F

A C E G

F

Creation Date

12/01/2013

01/01/2012

Score

0.9

0.7

0.6

29

OID ID Name

19669 AARS Alanyl-tRNA

2.5.2 Top K filtering:

User-centric Annotation offers Top K filtering to the users in order to minimize the

propagated annotations returned. In version 1 in User-centric Annotation, two types of top

K were introduced fixed top K and proportional top K. The problem with the proportional

top K is that is technically complex and hard to understand how to use by the scientists

(our targeted users). Therefore, fixed top K was only introduced in version 2 of User-

centric Annotation that return only K annotation

Example:

Gene:

OID ID Name

19669 AARS Alanyl-tRNA

Propagate ‘ALL’:

Given K=2, the system will propagate two annotations the top scores.

OID ID Name

19669 AARS Alanyl-tRNA

Anno content

A B C D

A D E G

F C D

A C E G

Type

Segment_1

Segment_1

Segment_2

Segment_4

Score

0.8

0.2

0.7

0.9

Anno content

A1

A2

A3

A5

Creation Date

01/05/2014

12/01/2013

12/05/2013

Score

0.8

0.9

0.6

0.7

0.2

Anno content

A2

A1

Creation Date

12/01/2013

01/05/2014

Score

0.9

0.8

30

Propagate ‘New’:

If ’scientist_1’ whose last propagate query was in ‘01/01/2014’ choose K=1 to propagate

‘new’ , just one annotation with the top score will be propagated.

OID ID Name

19669 AARS Alanyl-tRNA

Propagate ‘Timeline’:

If ’scientist_1’ whose last propagate query was in ‘01/01/2014’ choose K=3 to propagate

‘Timeline’, just three annotations with the top score will be propagated starting from

annotations of type ‘New’.

OID ID Name

19669 AARS Alanyl-tRNA

Anno Content

A1

Creation Date

01/05/2014

Score

0.8

Anno Content

A1

A5

A2

Type

Segment_1

Segment_1

Segment_2

Score

0.8

0.2

0.9

31

Chapter 3: Proactive Annotation Management

In this chapter, we introduce proactive annotation management which is a plugin

to the scientific database management system. The goal of proactive annotation

management is to detect any hidden links in the annotation that may refer to data value,

which if found the annotation should attached to this data value. In most of the cases,

scientists add annotation that are large in size like scientific article which usually contains

many references to the data. Scientists might skip to annotate all the referred data,

therefore proactive annotation management is necessary to automate any missing

referencing.

 Figure 8: motivation

 A naïve way of implementing the proactive annotation management is to search

each word in the annotation and trying to find a match in the domains of the whole

database schema. Though all the possible hidden references will be discovered, but with

big annotations and huge data this approach is time consuming and inefficient.

 The first step in the proactive annotation, the database administrator highlights

which column in the data schema to search for a match. In most of the cases, when

scientists refer to an object they use their scientific identifier or scientific name. Therefore,

we assumed that the column to be searched in the proactive annotation management is

a singled valued columns. Highlighting columns and tables is not critical step instead the

system can search whole schema, but for optimized performance and practical scenarios

it is better to select some columns and tables. Indices are built automatically in top of the

32

highlighted columns in order to speed up the searching process to find a match in the

annotation.

 The next step is to parse and analysis the annotation. We depend on postgresql

text search function “to_tsvector” that transform text to tsvector. tsvector value is a sorted

list of distinct lexemes, which are words that have been normalized to make different

variants of the same word look alike. Sorting and duplicate-elimination are done

automatically, and stop words as (the, a) are eliminated as well. To_tsvector defines the

positions of output token in the original text. Tsvector is special kind of vector that it can’t

be searchable. Therefore, we transform the vector to array of objects that contain the

word and list of positions.

 We try to minimize the number of search words as much as we can. So, we create

two lists concerning the data schema. The first list is the columns that was mentioned by

the database administrator to be searched, the other list is the columns that are not

indicated to be searched. For each table name highlighted to explore, we get the columns

name and divide them to the list to be ignored and the list to be searched.

The next phase is to search for hints in the annotation. Based on research papers

about keyword search in relational database, users tend to specify the type of object they

are searching for. For instance, according to users’ behavior queries like ’Department CS’

are used to make it clear that CS is of object department which is equivalent to either a

table name or a column name. Therefore, we used the same concept to search for hints

in the annotations. The system tries to find if the words that was listed by the database

administrator as table names and columns are found in the content. If any of them is found

they are marked as hints.

After the hints are highlighted, the system gets the position(s) of each hint marked

from the previous step. Then, the context of each hint is extracted from the annotation

using these positions. The number of words surround the hints define the context, we

show at the experiments section how that affect the performance typically we extract three

words after and before the hint words.

33

Afterwards, the system analyzes the context. If the context contains any of the

schema from the list to be ignored, then the system will not consider this context to be

searched. Otherwise, if the hint is a table name then the context words are searched in

all the column names that are related to that table name and in the list of schema to be

searched. If the hint is a column name then the context words are searched only in that

specific column. If match found, then the link is established between the new added

annotation and the tuple that contain the referred data. The link is added to the join table

between the annotation and the data with a flag that indicate that the link is system

generated.

The final stage is to verify the links that was detected by the system from the hints

found in the annotations. The user who added the annotation has the right to view the

created links. Then, the user decide to confirm the link which change the system

generated flag to false or to reject the link so the system removes this record form the join

table that connects the annotation with data.

34

3.1 Workflow of Proactive Annotation Management:

Figure 9: Proactive Annotation Management Architecture

35

3.2 System Components
3.2.1 Parser & Text Analyzer:

Searching words is not a straight forward task, as words take different forms as

plural for nouns and present continuous form for verbs. We need to transform the words

to their lexeme (unit of lexical meaning that exists regardless of the number of inflectional

endings it may have or the number of words it may contain). In order to get the lexeme of

any word, a dictionary is looked up to search for the basic word and its possible mutations.

PostgreSql offers the option to analyze the text, convert each word to its original lexeme,

remove the stop words (words which are filtered out prior to processing of natural

language data) and recognize the position of each word in the text. ‘To_Tsvector’ is a

function that takes text as input and transform to vector of words lexemes and their

positions.

 Figure 10: Parser & Text Analyzer Example

36

3.2.2 Schema Analyzer:

The schema analyzer is responsible for creating to list to be used in the context

analyzer. The schema analyzes the tables and columns that are highlighted by the

database administrator before (blue table). Then, for each table the system get its schema

(orange tables) and classify each column either to be searched or to be ignored. If the

column name is highlighted by the database admin then it is to be searched otherwise to

be ignored. Here is the query to get a table column names:

SELECT pg_catalog.textin(attname)
FROM pg_attribute
WHERE attrelid =’Gene’::regclass AND attnum > 0 ;

Figure 11: Schema Analyzer Example

37

3.2.3 Hint Recognition:

In the hint searching, the system checks if any of the table or column names where

mentioned in the annotation so they can act as hints. Tsvector index the words so it can

support fast querying of words by using operator ‘@@’ and to_tsquery. tsquery is not just

raw text, any more than a tsvector is. A tsquery contains search terms, which must be

already-normalized lexemes, and may combine multiple terms using AND, OR, and NOT

operators. For example, query ‘SELECT to_tsvector('fat cats ate fat rats') @@

to_tsquery('fat & rat');’ would return true. So, we use the same query to search for each

tuple specified by the database administrator that contain a table and column name. If

any of them was found, then we get their position(s). In order to build the context, we build

list of words that are three positions away before or after the hints.

Figure 12: Hint Recognition Example

38

3.2.4 Construct Builder:

In this stage, the system has list of hints and their context, list of to be searched

and list of to be ignored. Basically, if the hint is a table name then we start look in the

context to keyword in the list of to be searched and list of to be ignored. If any context

words belong to the first case (to be searched list), that means we have double hints. So,

we will discard one of them in order to prevent double searching and typically we discard

the table name hint. If any context words belong to the second case (to be ignored), then

that means the other words in context mostly refer to data in column that the database

administrator doesn’t want to search. In that case, this hint and its context are discarded

from the searching step.

Figure 13: Construct Builder Example

39

3.2.5 Data Search:

Last step is to search the context words in the columns that were highlighted by the

database administrator before. If the table name is used as hint then all the columns that

are in the ‘to be searched’ list. If a column name is the hint (and belong to different tables)

and no table name is mentioned in the context then context words are searched in every

table.

Figure 14: Data Search & Link Builder Example

40

3.2.6 Link Builder:

 For each match found in the data search, new link is established to connect

between the data and the annotation. In the first mode ‘Attach Verify’, the new link is

added to the many-to-many table that join the data and the annotations with a flag that

it’s a system generated link. In the second mode ‘Verify Attach’, the link is save in

temporary table till the user verify it and then transform to join the annotation and the data.

Eventually, the user show the generated links and verify each data-annotation

connection. If the user confirms a connection, the link’s system generated flag is changed

to false else if the user rejects the link then the link is deleted from the data-annotation

join table or the temporary table.

41

3.3 Special cases:
Given the following tables:

Tb_1(C_1,C_2), Tb_2(C_1,C_3), Tb_3(C_1,C_4), C_2(C_5,C_6)

And columns to be searched Tb_1(C_2),Tb_2(C_1),C_2(C_6),Tb_3(C_1)

Figure 15: Special cases

42

3.4 Summary:

Figure 16: Proactive Annotation Management summary

The process is divided into three major phases:

Phase 1: Annotation and schema analysis

Phase 2: Hints and context extraction

Phase 3: Data-annotation search and link construction

43

Chapter 4: Summary-Based Annotation

Management: Advanced Querying

The increasing scale and complexity of these annotations makes it very

challenging for end-users and scientists to extract the hidden. In our previous work [], they

initiated an effort for addressing these challenges in novel ways by proposing the

“InsightNotes” system, which is a summary-based annotation management engine in

relational databases. InsightNotes is based on creating concise and meaningful

representations of the raw annotations, called annotation summaries. We addressed

several unique challenges that arise from creating, maintaining, propagating, and

zooming-in over these annotation summaries at query time, e.g., how to incrementally

maintain the annotation summaries when new annotations are added, and how to extend

the query engine and relational operators to manipulate the summaries in a pipelined

fashion and propagate them along with the queries’ answer.

We take one step further towards building an end-to-end and full-fledged

summary-based annotation management engine by addressing the following challenge:

Summary-Based Query Processing: That is, how to query the data records, e.g.,

selection, join, or ordering, based on their attached summaries. The annotation

summaries have well-defined structures and properties that need to be seamlessly

integrated into the query engine to enable full querying capabilities beyond just the

propagation feature supported in [19].

To address these challenges and to enable seamless summary-based query

processing, we introduce new query operators that operate on the annotations summaries

attached to each tuple instead of its data attributes. For example, referring to Figure 17,

among the many summaries attached to the data tuple, we may want to report only the

summaries of type classifier, select the data tuples having more than two refuting

annotations, i.e., referencing RefuteApprove, (A Summary-Based Selection operator), or

ordering the output tuples according to the number of provenance annotations attached

44

to each tuple, i.e., referencing TextSummary2, (A Summary-Based Sort operator). To

achieve efficient execution of these summary-based operators, we propose new indexing

structures on top of the annotation summaries and integrate them within the query

optimizer and execution engine. The key contributions in our system are:

Introducing new summary-based query operators that operate on the annotations

summaries attached to each tuple instead of its data attributes, e.g., summary-based

filter, selection, join, and ordering. The new operators enable querying and manipulating

the annotation summaries as first-class citizens at query time beyond just propagating

them along with queries’ answers.

Proposing new indexing structures over the annotation summaries for efficient

query execution. Although the annotation summaries and the base data are stored in

separate tables, the indexing scheme will allow direct access from the summaries to their

corresponding data tuples without the need for expensive join operations. We extend the

query optimizer and execution engine to integrate these indexes into their cost model and

execution plans, respectively.

Figure 17: InsightNotes Summary Structure

45

4.1 SUMMARY-BASED QUERY FUNCTIONS AND

OPERATORS

The summary objects attached to each data tuple carry useful mined information

from the raw annotations that is organized in a structured format, i.e., the Rep array within

each summary object. Therefore, it is very beneficial to end-users and applications to

enable full-fledged query processing over these summary objects, e.g., filtering and

reporting only specific summary types, applying predicates and selection/join based on

the attached summaries, and ordering data tuples based on values within the summary

objects. However, without a system’s support, querying and manipulating the summary

objects—beyond propagation—will not be feasible. First, because there are no interfaces

or functions provided to end users to manipulate the annotation summaries. And second,

because there are no system-level optimizations or summary-specific operators that

operate on the annotation summaries as first-class citizens in the database. In this

section, we overcome these limitations by introducing new summary-based manipulation

functions and relational operators.

4.1.1 Summary-Based Manipulation Functions
A data tuple in the query pipeline has the following schema:

r =< a1; a2;..; an; {s1; s2;..; sk}>

where a1; a2; ..; an are the data values of r, and s1; s2; ..; sk are the summary objects

attached to r. The following set of manipulation functions are defined to operate on the

summary set as well as the objects within the set.

4.1.1.1 Summary Set Functions:
We introduce a special variable (attribute) “$” for each data tuple that represents

the set of summary objects attached to this tuple, i.e., r.$ represents the set of summary

objects attached to r. Then, several interface functions are defined over the $ variable,

which include:

46

 Int $.getSize(): Returns the number of summary objects within the set. For example,

referring to relation R in Figure 17 r1:$:getSize() returns value two.

SummaryObj $.getSummaryObject(String instanceName): This function takes a

summary instance name and returns the summary object of that instance. For example,

r1:$:getSummaryObject(`RefuteApprove’) returns the classifier summary object with that

instance name.

SummaryObj $.getSummaryObject (Int i): This function takes a position within the

summary set and returns the summary object at that position. Since the objects in the set

do not follow a pre-defined order, this function is more useful when used within UDFs

that, for example, take the summary set as input and loops over its summary objects to

perform a certain functionality.

4.1.1.2 Classifier Type Functions:

For a summary object O of type Classifier, the following functions are defined:

Int O.getSize(): Returns the number of class labels within this object. For example, the

RefuteApprove and ProvenanceQuestion classifier objects attached to r1 in Figure have

four and three class labels, respectively.

String O.getLabelName(Int i): Returns the class label at position i, i.e.,

Rep[i].classLabel. The order among the class labels is pre-defined based on the order

specified by users while creating the classifier summary instance in the system.

 Int O.getLabelValue([Int i | String label): This function takes either an index i or a class

label label and returns the corresponding value, i.e., Rep[i].annotationCnt (for input i), or

Rep[j].annotationCnt, where Rep[j].classLabel = label (for input label).

4.1.1.3 Snippet Type Functions:

For a summary object O of type Snippet, the following functions are defined:

Int O.getSize(): Returns the number of snippets within this object. For example, the

number of snippets in the TextSummary object attached to tuple r1 in Figure 17 is two.

47

String O.getSnippet(Int i): Returns the snippet value at position i. The order among the

snippets is arbitrary and does not follow a pre-defined order.

Boolean O.contain(String kw1 [, String kw2, ...]): Returns True if all of the given

keywords kw1; kw2; .. are contained within any one of O’s snippets or the raw

annotations. The system expands the search to the raw annotations to avoid producing

false negative results.

 Boolean O.fullSearch(String kw1 [, String kw2, ...]): Returns True if all of the given

keywords kw1; kw2; .. are contained within the union of O’s snippets or the raw

annotations. In this function, the keywords may span multiple annotations that are

summarized by the summary object O.

4.1.1.4 Cluster Type Functions:

For a summary object O of type Cluster, the following functions are defined:

Int O.getSize(): Returns the number of clusters within this object.

String O.getRepresentative(Int i): Returns the representative annotation of cluster i.

The order among the clusters is arbitrary and does not follow a pre-defined order.

String O.getCount(Int i): Returns the count of annotations in cluster i.

Moreover, each summary object O has additional functions O.getSummaryType()

and O.getSummaryName(). The former function returns the type of the summary object

as either “Classifier”, “Snippet”, or “Cluster”, while the latter returns the summary instance

name of that object. Internally in InsightNotes system—which uses PostgreSQL as its

underlying DBMS— the summary objects are defined as composite data types on top of

which the manipulation functions presented above are defined. Users’ can create UDFs

that leverage these basic interfaces to perform other complex functionalities.

48

4.1.2 Summary-Based Relational Operators

We introduce several summary-based operators that operate on the summary

objects attached to each tuple instead of its data values. These operators include:

4.1.2.1 Filter Operator (Fp(R)):

The filter operator takes a set of summary-based predicates (conditions) p, and

applies p over each summary object attached to r ∊ R. The operator returns r along with

only the summary objects satisfying p. The is, for each tuple r with schema r =< a1; a2; ..;

an; {s1; s2; ..; sk} >, the operator output will be:

 Fp(r) = { r` =< a1; a2; ..; an; {si; ..} > | p(si) = True }

For example, the predicate “getSummaryName() =‘RefuteApprove’ ” returns with each

tuple only the summary object having instance name RefuteApprove. In contrast, the

predicate “getSummaryType() = ‘Snippet’ & getSize() >= 2” returns with each tuple any

summary object of type Snippet that contains two or more snippet values. Notice that the

predicates p leverage the built-in functions developed on the summary objects.

49

Figure 18: Summary Filter example

4.1.2.2 Selection Operator (Sp(R)):

The summary-based selection operator takes a set of summary-based predicates

(conditions) p, and returns only the data tuples r ∊ R having summary objects satisfying

p. Otherwise, r is dropped. The algebraic expression of the operator is as follows:

Sp(R) = {r ∊ R ; r =< a1; a2; ..; an; {s1; s2; :::; sk} > | p(r:$) = True}

The summary-based predicates may range from black-box UDFs that take r:$ as a

parameter and returns a Boolean value. Or they can be explicit predicates that the system

can reason about and optimize. For example, the predicate

“r.$.getSummaryObject(‘ProvenanceQuestion’).getLabelValue(‘Provenance’) = 0”

returns only the data tuples in R that have no provenance records attached to them

(according to the ProvenanceQuestion classifier summary object). While the predicate

“r.$.getSummaryObject(‘TextSummary’).fullSearch (‘Wikipedia’, ‘hormone’)” returns only

the data tuples in R whose annotations have the specified keywords. These explicit

predicates can be efficiently executed using the summary based indexing schemes and

query optimizations.

50

Figure 19: Summary Selection example

4.1.2.3 Join Operator (Jp(R; S)):

The summary-based join operator joins two input tuples r ∊ R and s ∊ S iff the

summary-based predicates p evaluate to True over r:$ and s:$. The algebraic expression

of the operator is as follows:

Jp(R; S) = {< r; s >; where r ∊ R & s ∊ S | p(r:$; s:$) = True}

For example, if a dataset have two versions V1 (after Revision1) and V2 (after revision

2), then to report the data tuples whose number of disapproving annotations has changed

between the two revisions, we may use an expression that combines both the data and

summary-based joins as follow:

51

As will be discuss, based on the available indexes and statistics, the query optimizer may

decide to join based on the data values (R ⋈ S), and then uses a summary-based selection

operator (S). Alternatively, it may join based on summaries (R ⋈ S), and then uses a

standard selection operator (ρ).

Figure 20: Summary Join example

‘‘v1.ID = v2.ID &

v1.$.getSummaryObject(‘RefuteApprove’).getLabelValue(‘refute’) <>

v2.$.getSummaryObject(‘RefuteApprove’).getLabelValue (‘refute’)’’

Data-based join

Summary-based join

52

4.1.2.4 Sort Operator O(f,direction(R)):

The summary-based sort operator orders the tuples in R according to the summary

based function f(r.$). Function f must return values of a data type with full ordering, e.g.,

number, string, and Boolean types. For example tuples can be ordered by the number of

summary objects attached to them, e.g., “r.$.getSize()”, or by the number of approving

annotation, e.g., “r.$.getSummaryObject(‘RefuteApprove’). getLabelValue(‘approve’)”.

Figure 21: Summary sort example

4.2 SUMMARY-BASED INDEX SCHEME

To enable efficient execution of the summary-based relational operators, we

propose a summary-based indexing scheme over the annotation summary objects. To

create a summary-based index, we extended the mechanism that enables the database

53

admins to link summary instances with users’ relations to also define whether or not that

instance is indexable. This mechanism uses the Alter Table command as follows:

Alter Table <tableName>

[Add [Indexable] | Drop] <InstanceName>;

When adding a summary instance SI over table R, the optional clause Indexable will be

used to inform the system to build an index on SI’s summary objects created over R’s

tuples. In that case, predicates over these summary objects can be efficiently handled.

Otherwise, no indexes will be created. For example, the following command: “Alter Table

R Add Indexable RefuteApprove” indicates that summary instance RefuteApprove is

linked to relation R, and the DB admin specifies indexing the resulted summary objects.

In our work, we focus on indexing the summary objects of type Classifier only. Whereas,

for the Cluster type, users usually do not know what’s inside each cluster, and thus it is

less likely to have predicates on these summary objects. Developing an efficient indexing

scheme for the summary objects is a challenging task because the traditional indexing

structures, e.g., B-Tree and GiST, will not be effective for two reasons: First, unlike

primitive attributes, e.g., number, string, or date, summary objects have complex

structures. For example, for a Classifier-type object, its Rep array consists of an array of

pairs consisting of (String classLabel, Integer AnnotationCnt) . Therefore, predicates in

the form of “classLabel<op> constant”, where op is any of the comparison operators, e.g.,

= or <, would suggest breaking the summary objects into their primitive components to

be easier for indexing. However, by doing so, we will significantly penalize the

propagation operation—which is a core operation in the system— since it will require

joining many primitive components (instead of a single summary object) with their data

tuples, and then re-building the summary objects each time. Second, the annotation

summaries are typically stored in system tables separate from the users’ tables. And thus,

expensive join operations will be needed to retrieve the data tuples satisfying some

predicates on their summary objects. To overcome these two limitations, we propose a

variant of the B-Tree for indexing the Classifier summary objects. This variant will retain

the same storage scheme used for optimizing the propagation of summary objects at

54

query time, eliminate the need for expensive join operations when predicates are applied

over summary objects, and encounter minimal storage overhead.

4.2.1 Summary-BTree Index

The Summary-BTree index is a variant of the B-Tree index structure for indexing

the Classifier-type summary objects (Refer to Figure 22). The target predicates for

optimizations are in the form of: “classLabel <op> constant”, where op is any of the

comparison operators in {=, <, >, ≤, ≥}.

4.2.2 Summary-BTree Index Structure:

The structure of the index is depicted in Figure 22. Given the annotated user’s

relation R with three summary instances linked to it, i.e., the Classifier instances

“RefuteApprove” and “ProvenanceQuestion”. The first step in the figure is the default step

in the InsightNotes system [19], where the summary objects attached to each data tuple

are stored in a representation optimized for efficient propagation at query time. That is,

the summary objects are stored in their complex structures that will propagate to end-

users along with queries’ answers. For each indexable Classifier summary instance, a

Summary- BTree index will be created on the corresponding column. Referring to our

example, assume that the RefuteApprove summary instance is defined as indexable over

relation R, then the system will automatically create a Summary-BTree index over column

RefuteApprove in the summary storage table. Building the index will involve three steps

as illustrated in the figure, which are: Itemization, Indexing, and Back Referencing,

described as follows:

55

Figure 22: Summary B-tree

Itemization:

To index a Classifier summary object, the Rep array within the object will be

itemized by converting the array elements (String classLabel, Integer AnnotationCnt) to

a sequence of text values in the form of “classLable:AnnotationCnt” as illustrated in Figure

22 Step 2. The AnnotationCnt field when converted into string, it will have 3-digit format

to preserve the order among the integer values even after the conversion to string values.

We assume that no class label will have more than 999 annotations. For example, the

RefuteApprove summary object attached to tuple r1 will be itemized to the sequence of

values depicted in Figure 22 Step 2.

Indexing:

Each of the text values generated from the Itemization step will be inserted into the

Summary-BTree index. The index will follow the same structure and operations of the

56

standard B-Tree index. For example, the indexed values will all appear in the leaf nodes

of the index tree sorted alphabetically. The only exception will be in the pointers that these

values will point to, which are called back references described next.

Back Referencing:

 A key trick in the Summary-BTree index is that the leaf nodes will point back to

the annotated data tuples in the user’s relation instead of pointing back to the Summary

Storage Table. Recall that apart from the user’s relations, all other summary tables and

related indexes are totally transparent from (and not directly query-able by) the end-users.

This gives us the opportunity to optimize these structures for their targeted operations.

Referring to Figure 22, the indexed values “approve:005” and “approve:008” will point

back to their data tuples R:r2 and R:r1, respectively. These back pointers will be created

and maintained under the different operations as described in sequel.

Summary-BTree Index Operations:

The index structure needs to be maintained under two basic operations: (1) Adding

a new annotation on relation R, which will either insert a new tuple in the Summary

Storage table (if that is the first annotation on the data tuple), or update an existing tuple

in the Summary Storage table. And (2) Deleting a data tuple from relation R, which should

delete all summary objects associated with that tuple. No other operations will affect the

index4. To enable the back referencing mechanism, we developed a function inside the

database engine (on the “Relation” structure) that takes the unique identifier of a tuple

(OID) and returns its storage location on disk. We then, created an external SQL interface,

called diskTupleLoc(), for seamless invocation of this function using the standard SQL

Select statement, e.g., the query “Select diskTupleLoc(OID) From R Where OID = r1;”

would return the disk location of tuple r1 in a text representation.

57

 Adding Annotation-Insertion:

Adding a new annotation on an un-annotated tuple in R will result in inserting a

new tuple in the Summary Storage table. Then, to insert the indexed values in the

Summary-BTree, the system will itemize the Rep array in the summary object, retrieve

the disk location of the data tuple (using diskTupleLoc() function), and associate this

location as an auxiliary information to the indexed values (keys). The Summary-BTree

index will then insert these keys by following the standard B-Tree processing with the

exception of using the auxiliary information as the data pointers instead of pointing to the

tuples in the Summary Storage table.

Adding Annotation-Update:

Adding a new annotation on an already-annotated tuple in R will result in updating

the corresponding summary objects in the Summary Storage table. For example, if a new

annotation is added disapproving the content of tuple R.r1, then in the RefuteApprove

summary object, the first entry will be (refute, 3) instead of (refute, 2) . To update the

index, the system will first trigger a deletion and then re- insertion only for the modified

class label not to all labels within the object. For example, “refute:002” will be deleted and

“refute:003” will be inserted, and both keys will be augmented with r1’s disk location for

correct index modification.

Deleting Tuple:

The deletion operation follows the same mechanisms as described above. If, for

example, tuple R:r1 is deleted, then the corresponding entry in Summary Storage table

will be deleted. This will trigger a sequence of deletions to the Summary-BTree index

corresponding to the itemized keys generated from the deleted object.

58

4.3 SUMMARY-AWARE QUERY-TIME OPTIMIZATIONS

Based on the summary-based indexes, we extended the query optimizer to create

efficient query plans that make use of these indexes and their inherent properties, i.e.,

ordering properties. The following scenario will highlight these optimizations.

4.3.1 Index Scan Based on Selectivity:

In Figure 23, we demonstrate a query that selects the data tuples from a user’s

relation R satisfying two summary-based selection predicates on the RefuteApprove and

ProvenanceQuestion classifier summary instances. Assuming that both instances have

corresponding indexes, then the query optimizer has two possible query plans to select

from as illustrated in Figure 23. Notice that the index scan operator is not modified in any

way, i.e., it operates as any standard index scan operator that takes a key (or key range)

and returns the corresponding tuples. We only set the output schema corresponding to

the tuples produced from these operators to R’s schema. In Plan 1, the Summary-BTree

index on the ProvenanceQuestion summary instance is used (using key

"Provenance:000"), and then to satisfy the second predicate, a summary-based selection

operator is added to the query plan. In contrast, in Plan 2 the index on the RefuteApprove

summary instance (using a key range between "refute:001" and "refute:999"), and then

add summary-based selection operator for the other predicate. The construction of the

index key is part of the comparison operators, e.g., = or ≥ in our query, defined on the

summary objects. In order to decide which plan is cheaper, the system needs to estimate

the selectivity of each predicate. To enable such decision, we maintain a set of histograms

for each indexed summary instance, i.e., for a summary instance with k class labels, the

system maintains k histograms; one for each label. For each bucket in a histogram, the

total number of annotations falling in that bucket is maintained, and we assume uniform

distribution within each bucket. Therefore, in query Q1 in Figure 23, the two buckets

corresponding to labels refute and Provenance will be checked to estimate their

selectivity. And then, the most selective one will be used for the index scan operator.

59

Figure 23: Summary optimization in Selectivity

60

Chapter 5: Performance Evaluation

5.1 Experiment Setup and Methodology

We run our experiments on virtual machine that has two CPUs and a gigabyte of

memory. Hard drive a 10 gigabytes, two gigabytes of which are dedicated to swap space.

The Virtual machine is only as quick as the hardware it runs on though.

Synthetic Data We also implemented a data generator to create dataset containing

11,100,000 objects produced by a data generator. This dataset is composed of three

tables with sizes of 10, 1, 0.1 millions respectively.

We use real dataset for summaries of annotations. The annotation size is the raw

size and varies from 9 millions to 450,000. For the summaries, each type is around 12%

of the raw annotations.

5.2 User-Centric Annotation Propagation

We measure the response time for each propagation type, with different filtering.

We vary the number of tuples and number of annotations attached to each tuple. Default

represents the propagation of all annotations attached to the tuples plus the rank of the

annotation without sorting as shown in Figures 24, 25, 26.

61

Figure 24: User-Centric Annotation Propagation Experiment 1

Figure 25: User-Centric Annotation Propagation Experiment 2

Figure 26: User-Centric Annotation Propagation Experiment 3

400

450

500

550

600

Default All New Timeline

R
es

p
o

n
se

 t
im

e
(m

s)

Propagation time

Annotations/Tuple =10 ,Tuples=200

No-filter Cluster top k=3

0

500

1000

1500

2000

Default All New Timeline

R
es

p
o

n
se

 t
im

e
(m

s)

Propagation type

Annotations/Tuple=10 ,Tuples=1000

No-filter Cluster top k=3

0

5000

10000

15000

20000

Default All New Timeline

R
es

p
o

n
se

 T
im

e
(m

s)

Propagation Type

Annotations/Tuple=10 ,Tuples=10,000

No-filter Cluster top k=3

62

However, if the number of tuples increases the response time increases as well.

Basically, each tuple is blocked until all the annotations attached to the tuple has arrived

and processed. After the processing and sorting of the annotations according their ranks,

then the tuples start to be propagated as shown in Figures 27, 28, 29.

Figure 27: User-Centric Annotation Propagation Experiment 4

Figure 28: User-Centric Annotation Propagation Experiment 5

0

200

400

600

800

1000

1200

Default All New Timeline

R
es

p
o

n
se

 t
im

e
(m

s)

Propagation type

Annotations/Tuple=20 ,Tuples=200

No-filter Cluster top k=3

0

1000

2000

3000

4000

Default All New Timeline

R
es

p
o

n
e

ti
m

e
(m

s)

Propagation Type

Annotations/Tuple=20 ,Tuples=1000

No-filter Cluster top k=3

63

Figure 29: User-Centric Annotation Propagation Experiment 6

In Figures 30, 31, 32, as the number of annotations increases, the response time

increases. The reason for that, the number of annotation to be sorted per tuple increases

hence, it takes more time for each tuple and my summing processing time for each tuple

the overall response time increases. We can see from the experiments that the clustering

filtering cost much more than the Top K filtering, as in order to build cluster you need to

compare pair annotations until you join an existing cluster or build a new one. Top K

filtering is almost the same as no filter and that’s because all the sorting and processing

of annotations is done first and the last step is to choose the Top K of the sorted list of

annotations.

Figure 30: User-Centric Annotation Propagation Experiment 7

0

10000

20000

30000

40000

50000

Default All New Timeline

R
es

p
o

n
se

 T
im

e
(m

s)

Propagation Type

Annotations/Tuple=20 ,Tuples=10,000

No-filter Cluster top k=3

0

500

1000

1500

2000

2500

Default All New Timeline

R
es

p
o

n
se

 T
im

e(
m

s)

Propagation Type

Annotations/Tuple=40 ,Tuples=200

No-filter Cluster top k=3

64

Figure 31: User-Centric Annotation Propagation Experiment 8

Figure 32: User-Centric Annotation Propagation Experiment 9

In Figure 33, the last experiment is to show that varying the K in the Top K filtering

has minimum impact on the response time. The reason is that Top K is done after ranking

and sorting all annotations per tuple and K define how many annotations to be shown in

the propagation phase. Therefore, increasing the K has very slight increase in the

response time.

0

1000

2000

3000

4000

5000

Default All New Timeline

R
es

p
o

n
e

Ti
m

e(
m

s)

Propagation Type

Annotations/Tuple=40 ,Tuples=1,000

No-filter Cluster top k=3

0

20000

40000

60000

80000

100000

Default All New Timeline

Annotations/Tuple=40 ,Tuples=10,000

No-filter Cluster top k=3

65

Figure 33: User-Centric Annotation Propagation Experiment 10

5.3 Proactive Annotation Management

In proactive annotation, we conducted a lot experiments varying the number of

matches (Fan-outs) , the size of context around each hint , the overhead of each

component in the workflow and last we compared the difference be using index (guided

search) and no index (unguided search). The table sizes we used Table_1 =0.1 M,

Table_2 =1M and Table_3 =10M as shown in Figure 34.

Figure 34: Proactive Annotation Management Experiment 1

0

1000

2000

3000

4000

K=3 K=5 K=10

R
es

p
o

n
se

 T
im

e
(m

s)

Top K

Annotations/Tuple=20 ,Tuples=1,000

All New Timeline

0

100

200

300

400

500

3 5 10

R
es

o
n

se
 T

im
e

(m
s)

Fanout

Context=3

Table_1 Table_2 Table_3

66

In Figure 35, we measure the effect of the context size around the hints that were

highlighted. We can see from the experiment that as the size of the context decreases

the number of constructs decreases, therefore the response time decreases.

Figure 35: Proactive Annotation Management Experiment 2

The following experiment in Figure 36 shows the overhead of each component in

proactive workflow. The data search is the most expensive component that’s why we try

to filter and eliminate unnecessary searches like stop words (parser) and to be ignored

schema (schema analyzer).

Figure 36: Proactive Annotation Management Experiment 3

In Figure 37, we conducted an experiment on five different annotations and

measure the relationship between the number of constructs and the size of context. We

observe that ratio of increase of the size is not the same as the ratio of increase of the

0

50

100

150

1 2 3

R
es

p
o

n
se

 T
im

e
(m

s)

Context size

Fanout=3

Tb1 Tb2 Tb3

0 10 20 30 40 50

Parser

Schema anlayzer

context constructor

context analyzer

data search

data link

total

Response time (ms)

Fanout=3, Context =3 Domain size=100,000

67

number of constructs basically because of the stop words. As the context size increases

the chance of having stop words increases.

Figure 37: Proactive Annotation Management Experiment 4

The last experiment we conducted in Figure 38, is to measure the response time

if DBA define a columns to be searched (guided) and if DBA don’t define any column

therefore search the whole table (unguided). If a column is highlighted by the DBA an

index is created over this specific column and that improve the performance significantly.

Figure 38: Proactive Annotation Management Experiment 5

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

Constructs Vs Context size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Guided Unguided

Guided Vs. Unguided

68

5.4 Summary-Based Annotation Management: Advanced

Querying

In this chapter, we conducted two experiments to show the effect of using index to

the response time and how efficient it is. We used real data of annotations from

http://www.dbrc.org.uk/ and vary the size of annotations from 450,000 to 9 million

annotations. The size of summaries is approximately 12% of the annotation size. Our test

query is a select query that select 1% of the data tuples which is almost 400 tuples. The

query is (select * from Table_1 Where "ClassBird1.Disease = 0"). In this query we

propagate the annotation summaries with the data. So, after the selection using an index,

there is a join between the selected tuples and the summary table to get its summaries.

From the experiments, we can see that using index and varying the size of annotations

the response time in the hundreds milliseconds while without using index response time

in ten thousands milliseconds as shown in Figure 39.

Figure 39: Summary-Based Annotation Management Experiment 1

In Figure 40, the second experiment showing the importance of back referencing

in the B-tree index. The query is summary-based selection (select * from table Where

“ClassBird1.Disease = 0”). The query selectivity is 1% , we return 1% of the data records

almost 400 tuples. In this query, we do not propagate the annotation summaries with the

data. No index is the same like previous experiment since it performs the expensive join

between the data and summaries, and then applies a summary-based selection. Index

1

10

100

1000

10000

100000

1000000

450K 1.125M 2.25M 4.5M 9M

R
es

p
o

n
se

 T
im

e
(m

s)

Annotation Size

Index Vs. No Index

No Index Index

http://www.dbrc.org.uk/

69

with No back pointers are pointers point back to summary table. In this case, we still need

a join between summaries returned from the index and data tuples. Index with the back

pointers which returns the data tuples directly. Therefore, no join operation is needed.

Figure 40: Summary-Based Annotation Management Experiment 2

1

10

100

1000

10000

100000

1000000

450K 1.125M 2.25M 4.5M 9M

Index Back Pointers

No Index Index No Back Pointers Index with Back Pointers

70

Chapter 6: Related Work

6.1 User-centric Annotation related work:

 Combining Dependent Annotations for Relational Algebra [13]

In their work, they assume that annotations have some structure in order to

determine how to propagate them. In previous work, different kinds of annotations forms

are treated in isolation of the other forms. Their goal is to combine different forms of

annotations that depend on each other. They provide a method for combining different

forms and provide a normal form which is useful in deciding whether two or more

combined annotations are equivalent.

Annotation are relative [2]

In this paper they describe a hierarchical model of annotation where annotation is

treated as 1st class citizen as user can explore the annotations. They assume that

annotation can be applied to two or more data values with some shared structure. Given

the annotation schema, they provide a mechanism to query the annotation hierarchy.

They consider according to the query and the schema, a level is defined and everything

below that level is treated as data and everything above that level is annotation which is

propagated with the query according to certain rules.

Propagation of multi-granularity annotations [1]

In this work, they refer to the model for implicitly associating annotations

(provenance) – the annotations are associated with data with arbitrary granularity – as

“multi-granularity annotation” model. In the previous work no provenance management

on multi-granularity annotation is reported. They define set of rules that show how to

71

propagate the annotation with each algebra operator and define the scopes of the

annotations associated. They also show that during data derivation how to preserve the

annotation association with data without losing significant information.

Google new personalization: Scalable online collaborative filtering [5]

In this paper, they describe collaborative filtering for personalizing google news for

users. They use three main techniques in order generate the personalized

recommendation which are: collaborative filtering using MinHash clustering, Probabilistic

Latent Semantic Indexing (PLSI), and co-visitation counts. They describe the algorithm

used and system setup where is general and can be applied in different application as

their method is content agnostic and consequently domain independent.

YMALDB: A Result-Driven Recommendation System for Databases [6]

In this paper, they present to users additional information that may be of interest

to them called YMAL “You May Also Like”. They try to find correlation among different

attributes in various relations. They compute the correlation using the most interesting set

of attribute values used FaSets. The interestingness of a faSet is based on its frequency

both in the query result and in the database

Believe It or Not: Adding Belief Annotations to Databases [14]

A model is implemented to for the relational database to capture the users’

believes and save it as annotations. Believes can be added to data or other belief

statements. They introduce new semantics based on multi-agent epistemic logic and new

query language to propagate believes with the data. They use structured annotation to

represent a belief in the database and transform the belief queries to traditional sql

queries.

They define belief database as” A belief database contains base information in the

form of ground tuples, annotated with belief statements. It represents a set of different

72

belief worlds, each one for one type of belief annotation, i.e. the beliefs of a particular

user on ground tuples, or on another user's beliefs.” They use canonical Kripke structure

to encode a belief. They use this structure to describe a relational representation of belief

databases, and give an algorithm for translating queries over the belief database into

standard relational queries. Believes can be overlapping or conflicting, which is taken

into consideration in the propagation process.

They also introduce belief conjunctive queries that serves as interface to a belief

database. Basically by using the hierarchical structure of believes (annotations), users

can figure out the agreements or disagreements with other users.

MONDRIAN: Annotating and querying databases through colors and block [9]

The main focus is this paper to enable the users to query and propagate

annotations with the data. They introduce a model that associate annotations to set of

values of data and efficiently query their information. Annotations are represented colors

and the set of values are as blocks which are marked by a color or multiple colors. They

introduce new query language that they prove to be complete as users can use all

possible queries over the annotated data.

They prove that their mechanism is more efficient than the previous work. In the

previous work in order to annotate data, they alter the table with new annotation column

to correspond to data column. For instance, table Gene has column gene_name, a new

column annot_gene_name is altered to the table to hold the annotations.

Another part of the paper, they emphasis that annotations should be treated as

first class citizen and annotations shouldn’t be hidden from the user as in the previous

work. They claim “annotations are of equal or even greater importance than values”. They

succeeded in expressing queries include predicate as data that are annotated or not.

Supporting Annotations on Relations [8]

They present a new efficient storage technique that enable to user to attach

annotations in different granularities like column, row, or cell. They advantage of using

73

their storage mechanism that it saves up to 70 % of the execution time compared to

storing annotation for cell level. They also, introduced different types of annotations as

annotations that applied to newly inserted data or modified data. They extend the

standard SQL to enable add, archive, query, and propagate annotations along with the

data.

A compact representation of annotations is implemented that reduce the storage

overhead and I/O cost of queries. They also introduced three types of annotations:

snapshot, view, and join annotations. Snapshot annotations is applied to an instance of

data, view annotations annotate newly inserted data if they satisfy certain conditions, join

annotations are attached to data from different relations. There are other querying and

storage challenges they addressed in the paper.

An annotation management system for relational databases [4]

They present an extension to SQL that enable the users to propagate the

annotation using three different schemes. First, the default scheme propagate

annotations with respect to where the data are copied from. Second, the default-all

scheme propagate annotations with respect to where the data are copied from all

equivalent formulations of a query. Third, the custom scheme enable the user to have the

control over the propagation of the annotation over the data. A storage scheme for

annotations is introduced that contains algorithms that translate predefined query

language to standard SQL queries and propagate the relevant annotations according to

one of the three defined schemes.

DBNotes: A Post-It System for Relational Databases based on Provenance [3]

They refer the annotations in the relational data as a note that hold information

about the provenance or the linage of data. Every value in the table is marked with a note

that shows the provenance. They use special query language to propagate and query the

annotations in different ways. They enable the users to view a high-level explanation of

the provenance of a value that may be the result of query transformation steps. Also, they

74

provide a detailed explanation at each transformation step to explain why a value has

allocated from a source to a target database.

6.2 Proactive Annotation Management related work:

Keyword Search over Relational Databases: A Metadata Approach [16]

They introduce a novel techniques to transform keyword queries to standard SQL

based on Hungarian algorithm. They identify a meaningful SQL queries that satisfy the

intended keyword query semantics. They have three main contributions, first they defined

that one of the major problem in keyword searching over the relational databases is the

lack of access to the database instance. Second, in order measure the likelihood of the

semantics of a keyword and the database structure as table, attribute or value, they

introduce the notion of weights. Weights are divided into intrinsic (isolation of keywords)

and contextual (semantics with respect to neighbor keywords). Third, they extend the

Hungarian algorithm to perform the necessary computations for contextual weights that

leads to different interpretations of the keyword query then transform to different SQL

queries based on the ranking of each interpretation.

Keyword Search in Databases: The Power of RDBMS [17]

In their work, in order to answer a keyword query they use standard SQL to

compute all the interconnected tuples that satisfies the given query. They prove that

current commercial database management systems can perform keyword search

efficiently and without any additional indexing to be build or maintained by the users by

tuple reduction. The first step in tuple reduction is to exclude the tuples that don’t

participate in any results. Then using join operator more tuples are excluded.

75

6.3 Summary-based Annotation Management: Advanced

Querying

InsightNotes: Summary-Based Annotation Management in Relational Databases

[19]

In this paper, they provide a mechanism to summarize annotation and manage the

propagation of summaries with data. In previous annotation management techniques,

they fall short in providing advanced processing over the annotations beyond just

propagating them to end-users. To address this limitation, they propose the InsightNotes

system, a summary-based annotation management engine in relational databases.

InsightNotes integrates data mining and summarization techniques into the annotation

management in novel ways with the objective of creating and reporting concise

representations (summaries) of the raw annotations. They propose an extended

summary-aware query processing engine for efficient manipulation and propagation of

the annotation summaries in the query pipeline. They also introduce several optimizations

for the creation, maintenance, and zoom-in processing over the annotations summaries.

In the below figure it shows the hierarchy of annotation summaries attached to a data

tuple.

76

Chapter 7: Conclusion

 Annotations management is important topic and it is widely used in many

applications. Our focus in this thesis about annotation management in scientific

databases in relational database management system. With the massive collaboration

between scientists using the annotation, annotations become Big with large scale and

that imposes new challenges. We tackle the Big annotation problem from three different

angles. First, we enable the users to build profiles of their interests and based on their

profile, the system personalize the propagation of the annotations. The users have the

option to view the annotation in a friendly way that ease the searching process for them.

Second, we Big annotations added by the users like scientific article, we don’t expect that

the user is going to annotate every data mentioned in the article. Meanwhile, annotations

are trustworthy and all the data related to the annotation should be annotated. Therefore,

we introduce proactive annotation management to fill in this gap which search for hints in

the annotation and search for possible hidden links in the annotation and data. Third,

InsightNote system provide summaries for annotations to be propagated instead of the

raw annotations. However, users can not access the summaries and add predicates on

summaries. We extended InsightNotes to treat the summaries as 1st class citizen and

enable the user to search the data based on summaries by adding predicates to

summaries. We introduced special type of B-tree index on classifiers instances that

improved the performance significantly

77

Chapter 8: References

[1] Ryo Aoto, Toshiyuki Shimizu, and Masatoshi Yoshikawa. Propagation of multi-

granularity annotations. 22nd international conference on Database and expert systems

applications, September 2011.

[2] Peter Buneman, Egor V. Kostylev, and Stijn Vansummeren. Annotations are relative.

EDBT, 2013.

[3] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. Dbnotes: a post-it system for relational

databases based on provenance. SIGMOD, May 2005.

[4] W. Tan D. Bhagwat, L. Chiticariu and G. Vijayvargiya. An annotation management

system for relational. VLDB Journal, 2005.

[5] Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news

personalization:Scalable online collaborative ltering. WWW Track: Industrial Practice

and Experience, pages 271-280,2007.

[6] Marina Drosou and Evaggelia Pitoura. Ymaldb: A result-driven recommendation

system for databases. EDBT/ICDT, March 2013.

[7] M. Eltabakh, M. Ouzzani, W. Aref, A. Elmagarmid, Y. Laura-Silva, M. Arshad, D.

Salt, and I. Baxter. Managing biological data using bdbms. ICDE, 2008.

[8] Mohamed Y. Eltabakh, Walid G. Aref, Ahmed K. Elmagarmid, Mourad Ouzzani, and

Yasin N. Silva.Supporting annotations on relations. EDBT, pages 379-390, 2009.

[9] Floris Geerts, Anastasios Kementsietsidis, and Diego Milano. Mondrian: Annotating

and querying databases through colors and blocks. 22nd International Conference on

Data Engineerin (ICDE),March 2006.

[10] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations item-

to-item collaborative ltering. The IEEE Computer Society, pages 76-80, February 2003.

[11] W. C. Tan. Containment of relational queries with annotation propagation. DBPL,

2003.

[12] Maria Theodoridou, Yannis Tzitzikas, Martin Doerr, Yannis Marketakis, and

Valantis Melessanakis. Modeling and querying provenance by extending cidoc crm.

Distributed and Parallel Databases, 27(2):169-210, April 2010.

[13] Egor V. Kostylev, Peter Buneman. Combining dependent annotations for relational

algebra. ICDT Proceedings of the 15th International Conference on Database Theory,

pages 196-207, ICDT 2012

78

[14] Wolfgang Gatterbauer, Magdalena Balazinska, Nodira Khoussainova, Dan Suciu.

Believe it or not: adding belief annotations to databases. Proceedings of the VLDB

Endowment. Volume 2 Issue 1, VLDB August 2009

[15] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado, and

Yannis Velegrakis. 2011. Keyword search over relational databases: a metadata

approach. In Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data SIGMOD 2011.

[16] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2009. Keyword search in databases: the

power of RDBMS. In Proceedings of the 2009 ACM SIGMOD International Conference

on Management of data SIGMOD 2009.

[17] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das DBXplorer: A System for

Keyword-Based Search over Relational Databases. In Proceedings of the 18th

International Conference on Data Engineering ICDE 2002.

[18] Vagelis Hristidis and Yannis Papakonstantinou. 2002. Discover: keyword search in

relational databases. In Proceedings of the 28th international conference on Very Large

Data Bases VLDB 2002.

[19] Dongqing Xiao, Mohamed Y. Eltabakh. InsightNotes: Summary-Based

Management in Relational databases. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of data SIGMOD 2014.

	Worcester Polytechnic Institute
	Digital WPI
	2014-04-24

	Management of Big Annotations in Relational Database Management Systems
	Karim Ibrahim
	Repository Citation

	tmp.1530275769.pdf.CC4yt

