2,583 research outputs found

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    동영상 속 사람 동작의 물리 기반 재구성 및 분석

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 컴퓨터공학부, 2021. 2. 이제희.In computer graphics, simulating and analyzing human movement have been interesting research topics started since the 1960s. Still, simulating realistic human movements in a 3D virtual world is a challenging task in computer graphics. In general, motion capture techniques have been used. Although the motion capture data guarantees realistic result and high-quality data, there is lots of equipment required to capture motion, and the process is complicated. Recently, 3D human pose estimation techniques from the 2D video are remarkably developed. Researchers in computer graphics and computer vision have attempted to reconstruct the various human motions from video data. However, existing methods can not robustly estimate dynamic actions and not work on videos filmed with a moving camera. In this thesis, we propose methods to reconstruct dynamic human motions from in-the-wild videos and to control the motions. First, we developed a framework to reconstruct motion from videos using prior physics knowledge. For dynamic motions such as backspin, the poses estimated by a state-of-the-art method are incomplete and include unreliable root trajectory or lack intermediate poses. We designed a reward function using poses and hints extracted from videos in the deep reinforcement learning controller and learned a policy to simultaneously reconstruct motion and control a virtual character. Second, we simulated figure skating movements in video. Skating sequences consist of fast and dynamic movements on ice, hindering the acquisition of motion data. Thus, we extracted 3D key poses from a video to then successfully replicate several figure skating movements using trajectory optimization and a deep reinforcement learning controller. Third, we devised an algorithm for gait analysis through video of patients with movement disorders. After acquiring the patients joint positions from 2D video processed by a deep learning network, the 3D absolute coordinates were estimated, and gait parameters such as gait velocity, cadence, and step length were calculated. Additionally, we analyzed the optimization criteria of human walking by using a 3D musculoskeletal humanoid model and physics-based simulation. For two criteria, namely, the minimization of muscle activation and joint torque, we compared simulation data with real human data for analysis. To demonstrate the effectiveness of the first two research topics, we verified the reconstruction of dynamic human motions from 2D videos using physics-based simulations. For the last two research topics, we evaluated our results with real human data.컴퓨터 그래픽스에서 인간의 움직임 시뮬레이션 및 분석은 1960 년대부터 다루어진 흥미로운 연구 주제이다. 몇 십년 동안 활발하게 연구되어 왔음에도 불구하고, 3차원 가상 공간 상에서 사실적인 인간의 움직임을 시뮬레이션하는 연구는 여전히 어렵고 도전적인 주제이다. 그동안 사람의 움직임 데이터를 얻기 위해서 모션 캡쳐 기술이 사용되어 왔다. 모션 캡처 데이터는 사실적인 결과와 고품질 데이터를 보장하지만 모션 캡쳐를 하기 위해서 필요한 장비들이 많고, 그 과정이 복잡하다. 최근에 2차원 영상으로부터 사람의 3차원 자세를 추정하는 연구들이 괄목할 만한 결과를 보여주고 있다. 이를 바탕으로 컴퓨터 그래픽스와 컴퓨터 비젼 분야의 연구자들은 비디오 데이터로부터 다양한 인간 동작을 재구성하려는 시도를 하고 있다. 그러나 기존의 방법들은 빠르고 다이나믹한 동작들은 안정적으로 추정하지 못하며 움직이는 카메라로 촬영한 비디오에 대해서는 작동하지 않는다. 본 논문에서는 비디오로부터 역동적인 인간 동작을 재구성하고 동작을 제어하는 방법을 제안한다. 먼저 사전 물리학 지식을 사용하여 비디오에서 모션을 재구성하는 프레임 워크를 제안한다. 공중제비와 같은 역동적인 동작들에 대해서 최신 연구 방법을 동원하여 추정된 자세들은 캐릭터의 궤적을 신뢰할 수 없거나 중간에 자세 추정에 실패하는 등 불완전하다. 우리는 심층강화학습 제어기에서 영상으로부터 추출한 포즈와 힌트를 활용하여 보상 함수를 설계하고 모션 재구성과 캐릭터 제어를 동시에 하는 정책을 학습하였다. 둘 째, 비디오에서 피겨 스케이팅 기술을 시뮬레이션한다. 피겨 스케이팅 기술들은 빙상에서 빠르고 역동적인 움직임으로 구성되어 있어 모션 데이터를 얻기가 까다롭다. 비디오에서 3차원 키 포즈를 추출하고 궤적 최적화 및 심층강화학습 제어기를 사용하여 여러 피겨 스케이팅 기술을 성공적으로 시연한다. 셋 째, 파킨슨 병이나 뇌성마비와 같은 질병으로 인하여 움직임 장애가 있는 환자의 보행을 분석하기 위한 알고리즘을 제안한다. 2차원 비디오로부터 딥러닝을 사용한 자세 추정기법을 사용하여 환자의 관절 위치를 얻어낸 다음, 3차원 절대 좌표를 얻어내어 이로부터 보폭, 보행 속도와 같은 보행 파라미터를 계산한다. 마지막으로, 근골격 인체 모델과 물리 시뮬레이션을 이용하여 인간 보행의 최적화 기준에 대해 탐구한다. 근육 활성도 최소화와 관절 돌림힘 최소화, 두 가지 기준에 대해 시뮬레이션한 후, 실제 사람 데이터와 비교하여 결과를 분석한다. 처음 두 개의 연구 주제의 효과를 입증하기 위해, 물리 시뮬레이션을 사용하여 이차원 비디오로부터 재구성한 여러 가지 역동적인 사람의 동작들을 재현한다. 나중 두 개의 연구 주제는 사람 데이터와의 비교 분석을 통하여 평가한다.1 Introduction 1 2 Background 9 2.1 Pose Estimation from 2D Video . . . . . . . . . . . . . . . . . . . . 9 2.2 Motion Reconstruction from Monocular Video . . . . . . . . . . . . 10 2.3 Physics-Based Character Simulation and Control . . . . . . . . . . . 12 2.4 Motion Reconstruction Leveraging Physics . . . . . . . . . . . . . . 13 2.5 Human Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Figure Skating Simulation . . . . . . . . . . . . . . . . . . . 16 2.6 Objective Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Optimization for Human Movement Simulation . . . . . . . . . . . . 17 2.7.1 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Human Dynamics from Monocular Video with Dynamic Camera Movements 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Pose and Contact Estimation . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Learning Human Dynamics . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.1 Policy Learning . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.3 Scene Estimator . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Video Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Comparison of Contact Estimators . . . . . . . . . . . . . . . 33 3.5.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Figure Skating Simulation from Video 42 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Skating Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Non-holonomic Constraints . . . . . . . . . . . . . . . . . . 46 4.3.2 Relaxation of Non-holonomic Constraints . . . . . . . . . . . 47 4.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Trajectory Optimization and Control . . . . . . . . . . . . . . . . . . 50 4.5.1 Trajectory Optimization . . . . . . . . . . . . . . . . . . . . 50 4.5.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 Gait Analysis Using Pose Estimation Algorithm with 2D-video of Patients 61 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.1 Patients and video recording . . . . . . . . . . . . . . . . . . 63 5.2.2 Standard protocol approvals, registrations, and patient consents 66 5.2.3 3D Pose estimation from 2D video . . . . . . . . . . . . . . . 66 5.2.4 Gait parameter estimation . . . . . . . . . . . . . . . . . . . 67 5.2.5 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.1 Validation of video-based analysis of the gait . . . . . . . . . 68 5.3.2 gait analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.1 Validation with the conventional sensor-based method . . . . 75 5.4.2 Analysis of gait and turning in TUG . . . . . . . . . . . . . . 75 5.4.3 Correlation with clinical parameters . . . . . . . . . . . . . . 76 5.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Control Optimization of Human Walking 80 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.1 Musculoskeletal model . . . . . . . . . . . . . . . . . . . . . 82 6.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.3 Control co-activation level . . . . . . . . . . . . . . . . . . . 83 6.2.4 Push-recovery experiment . . . . . . . . . . . . . . . . . . . 84 6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 Conclusion 90 7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91Docto

    Implementing the Five-A Model of technical refinement: Key roles of the sport psychologist

    Get PDF
    There is increasing evidence for the significant contribution provided by sport psychologists within applied coaching environments. However, this rarely considers their skills/knowledge being applied when refining athletes’ already learned and well-established motor skills. Therefore, this paper focuses on how a sport psychologist might assist a coach and athlete to implement long-term permanent and pressure proof refinements. It highlights key contributions at each stage of the Five-A Model—designed to deliver these important outcomes—providing both psychomotor and psychosocial input to the support delivery. By employing these recommendations, sport psychologists can make multiple positive contributions to completion of this challenging task

    Child development and the aims of road safety education

    Get PDF
    Pedestrian accidents are one of the most prominent causes of premature injury, handicap and death in the modern world. In children, the problem is so severe that pedestrian accidents are widely regarded as the most serious of all health risks facing children in developed countries. Not surprisingly, educational measures have long been advocated as a means of teaching children how to cope with traffic and substantial resources have been devoted to their development and provision. Unfortunately, there seems to be a widespread view at the present time that education has not achieved as much as had been hoped and that there may even be quite strict limits to what can be achieved through education. This would, of course, shift the emphasis away from education altogether towards engineering or urban planning measures aimed at creating an intrinsically safer environment in which the need for education might be reduced or even eliminated. However, whilst engineering measures undoubtedly have a major role to play in the effort to reduce accidents, this outlook is both overly optimistic about the benefits of engineering and overly pessimistic about the limitations of education. At the same time, a fresh analysis is clearly required both of the aims and methods of contemporary road safety education. The present report is designed to provide such an analysis and to establish a framework within which further debate and research can take place

    From Knowing to Doing: Learning Diverse Motor Skills through Instruction Learning

    Full text link
    Recent years have witnessed many successful trials in the robot learning field. For contact-rich robotic tasks, it is challenging to learn coordinated motor skills by reinforcement learning. Imitation learning solves this problem by using a mimic reward to encourage the robot to track a given reference trajectory. However, imitation learning is not so efficient and may constrain the learned motion. In this paper, we propose instruction learning, which is inspired by the human learning process and is highly efficient, flexible, and versatile for robot motion learning. Instead of using a reference signal in the reward, instruction learning applies a reference signal directly as a feedforward action, and it is combined with a feedback action learned by reinforcement learning to control the robot. Besides, we propose the action bounding technique and remove the mimic reward, which is shown to be crucial for efficient and flexible learning. We compare the performance of instruction learning with imitation learning, indicating that instruction learning can greatly speed up the training process and guarantee learning the desired motion correctly. The effectiveness of instruction learning is validated through a bunch of motion learning examples for a biped robot and a quadruped robot, where skills can be learned typically within several million steps. Besides, we also conduct sim-to-real transfer and online learning experiments on a real quadruped robot. Instruction learning has shown great merits and potential, making it a promising alternative for imitation learning

    Recreation, tourism and nature in a changing world : proceedings of the fifth international conference on monitoring and management of visitor flows in recreational and protected areas : Wageningen, the Netherlands, May 30-June 3, 2010

    Get PDF
    Proceedings of the fifth international conference on monitoring and management of visitor flows in recreational and protected areas : Wageningen, the Netherlands, May 30-June 3, 201

    Leisure and recreation in New Zealand: A research register (1974-1991)

    Get PDF
    In March 1990 the Department of Parks, Recreation and Tourism at Lincoln University was commissioned and funded, in part, by the Hillary Commission for Recreation and Sport (now Sport, Fitness and Leisure) to compile a comprehensive register of research into leisure and recreation in New Zealand. The financial support of the Hillary Commission and Lincoln University must be recognised.A register of research on leisure and recreation is important to researchers, practitioners and students as well as to the generral public. The value of such a register is enhanced when it is assembled in concise format for easy reference and when it is an extension of similar projects from previous years. This register builds usefully on, and complements the earlier bibliographies of Jorgensen (1974), Neave (1977) and Middleton (1981), all of which are referenced in the present publication. The major aim of this project is to make available to researchers, and others interested in research, a listing of much of the research which has been conducted on this topic since 1974. The volume will assist researchers to locate reports or papers of interest and for their work. It provides a reasonably comprehensive picture of recreation research activity in New Zealand. Leisure and recreation research in New Zealand has been undertaken by a wide range of individuals and organisations, with much of this research not being readily accessible. Access to this infonnation was gained by researchers and practitioners drawing our attention to people and organisations involved in relevant research which otherwise might have been neglected. In addition the papers and reports held by libraries, unpublished material and research in progress is included in this volume. It is envisaged that the register, and in particular the researcher/practitioner listing, will have the useful outcome of putting researchers in touch with each other. Experience suggests that direct discourse between researchers is often as valuable as reading formal research reports. Leisure and recreation has been defined in the broadest terms. embracing recreational tourism and travel, sport and physical education, arts and cultural activities, outdoor recreation, home-based leisure, non-formal learning, and including those activities and experiences not always recognised as recreational, such as drinking, gambling and vandalism. Similarly, the settings and situations are many and varied, including leisure centres, sports fields, libraries, urban sub-divisions, rivers, ski-fields, national parks, beaches, hotels, restaurants, botanical gardens, zoos and shopping centres to name but a few. The disciplinary focus includes research relating to the social, natural and medical sciences, as well as the practical application of these. The nature of research has been interpreted widely, and includes not only empirical research, but also work which is conceptual and has a policy focus

    Egocentric Chunking in the Predictive Brain : A Cognitive Basis of Expert Performance in High-Speed Sports

    Get PDF
    Publisher Copyright: Copyright © 2022 Lappi. First publication by Frontiers Media.What principles and mechanisms allow humans to encode complex 3D information, and how can it be so fast, so accurately and so flexibly transformed into coordinated action? How do these processes work when developed to the limit of human physiological and cognitive capacity—as they are in high-speed sports, such as alpine skiing or motor racing? High-speed sports present not only physical challenges, but present some of the biggest perceptual-cognitive demands for the brain. The skill of these elite athletes is in many ways an attractive model for studying human performance “in the wild”, and its neurocognitive basis. This article presents a framework theory for how these abilities may be realized in high-speed sports. It draws on a careful analysis of the case of the motorsport athlete, as well as theoretical concepts from: (1) cognitive neuroscience of wayfinding, steering, and driving; (2) cognitive psychology of expertise; (3) cognitive modeling and machine learning; (4) human-in-the loop modellling in vehicle system dynamics and human performance engineering; (5) experimental research (in the laboratory and in the field) on human visual guidance. The distinctive contribution is the way these are integrated, and the concept of chunking is used in a novel way to analyze a high-speed sport. The mechanisms invoked are domain-general, and not specific to motorsport or the use of a particular type of vehicle (or any vehicle for that matter); the egocentric chunking hypothesis should therefore apply to any dynamic task that requires similar core skills. It offers a framework for neuroscientists, psychologists, engineers, and computer scientists working in the field of expert sports performance, and may be useful in translating fundamental research into theory-based insight and recommendations for improving real-world elite performance. Specific experimental predictions and applicability of the hypotheses to other sports are discussed.Peer reviewe
    corecore