
https://helda.helsinki.fi

Egocentric Chunking in the Predictive Brain : A Cognitive Basis

of Expert Performance in High-Speed Sports

Lappi, Otto

2022-04-12

Lappi , O 2022 , ' Egocentric Chunking in the Predictive Brain : A Cognitive Basis of Expert

Performance in High-Speed Sports ' , Frontiers in Human Neuroscience , vol. 16 , 822887 . https://doi.org/10.3389/fnhum.2022.822887

http://hdl.handle.net/10138/343691

https://doi.org/10.3389/fnhum.2022.822887

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



HYPOTHESIS AND THEORY
published: 12 April 2022

doi: 10.3389/fnhum.2022.822887

Edited by:

David Putrino,
Icahn School of Medicine at Mount

Sinai, United States

Reviewed by:
Shlomi Haar,

Imperial College London,
United Kingdom

Diego Minciacchi,
University of Florence, Italy

*Correspondence:
Otto Lappi

otto.lappi@helsinki.fi

Specialty section:
This article was submitted to

Cognitive Neuroscience,
a section of the journal

Frontiers in Human Neuroscience

Received: 26 November 2021
Accepted: 16 March 2022
Published: 12 April 2022

Citation:
Lappi O (2022) Egocentric Chunking

in the Predictive Brain: A Cognitive
Basis of Expert Performance in

High-Speed Sports.
Front. Hum. Neurosci. 16:822887.
doi: 10.3389/fnhum.2022.822887

Egocentric Chunking in the Predictive
Brain: A Cognitive Basis of Expert
Performance in High-Speed Sports
Otto Lappi*

Cognitive Science/Traffic Research Unit (TRU)/TRUlab, University of Helsinki, Helsinki, Finland

What principles and mechanisms allow humans to encode complex 3D information, and
how can it be so fast, so accurately and so flexibly transformed into coordinated action?
How do these processes work when developed to the limit of human physiological
and cognitive capacity—as they are in high-speed sports, such as alpine skiing or
motor racing? High-speed sports present not only physical challenges, but present
some of the biggest perceptual-cognitive demands for the brain. The skill of these elite
athletes is in many ways an attractive model for studying human performance “in the
wild”, and its neurocognitive basis. This article presents a framework theory for how
these abilities may be realized in high-speed sports. It draws on a careful analysis of
the case of the motorsport athlete, as well as theoretical concepts from: (1) cognitive
neuroscience of wayfinding, steering, and driving; (2) cognitive psychology of expertise;
(3) cognitive modeling and machine learning; (4) human-in-the loop modellling in vehicle
system dynamics and human performance engineering; (5) experimental research (in
the laboratory and in the field) on human visual guidance. The distinctive contribution
is the way these are integrated, and the concept of chunking is used in a novel way
to analyze a high-speed sport. The mechanisms invoked are domain-general, and not
specific to motorsport or the use of a particular type of vehicle (or any vehicle for that
matter); the egocentric chunking hypothesis should therefore apply to any dynamic task
that requires similar core skills. It offers a framework for neuroscientists, psychologists,
engineers, and computer scientists working in the field of expert sports performance,
and may be useful in translating fundamental research into theory-based insight and
recommendations for improving real-world elite performance. Specific experimental
predictions and applicability of the hypotheses to other sports are discussed.

Keywords: perceptual-cognitive expertise, sports, predictive processing, allocentric cognitive maps, wayfinding,
race driving, egocentric perception, chunking

INTRODUCTION

Watching an elite athlete perform at the limits of human cognitive and physiological capacity
is deeply impressive. To return a 200 kph tennis serve or drive a 200 kph race car the
athlete must position themselves in space, and then summon up the correct motor programs
precisely at the right time. The apparent ease with which a world-class expert can do this belies
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the fact that such performance is based on very sophisticated
cognitive mechanisms honed by years of experience and practice.

High-speed sports present not only physical challenges but
some of the biggest perceptual-cognitive challenges for the brain.
The skill of these elite athletes is in many ways an attractive
model for studying human performance in complex, dynamic
real-world tasks, and their neurocognitive basis. One of the
ultimate challenges for neuroscience is to understand the origins
of such complex real-world skills.

What principles and mechanisms allow humans to encode
complex 3D information, and how can it be so fast, so
accurately and so flexibly transformed into coordinated action?
How do these processes work when developed to the limit of
human physiological and cognitive capacity? Such skills form a
core perceptual-cognitive expertise in many sports, that more
domain-specific techniques and processes then build up on.
Understanding them needs a confluence of many fields of
inquiry—and sometimes fragmented scientific literature.

This article presents a proposal on how these abilities may
be realized in high-speed sports, i.e., sports where the skill is
based on controlling complex high-speed (self-) motion through
a 3D environment. To this end, it brings together concepts and
findings from a broad range of disciplines (see also Figure 1):

(1) Cognitive neuroscience of wayfinding, steering, and driving
(neural circuits for wayfinding, visual guidance, and driving)

(2) Cognitive psychology of expertise (chunking)
(3) Cognitive modeling and machine learning (hierarchical

predictive processing)
(4) Vehicle system dynamics and human performance

engineering (hierarchical task analysis)
(5) Experimental research on human visual guidance, both in the

laboratory and in the field (waypoint identification)

Its distinctive contribution is the novel way core concepts
(chunking, waypoints, and reference points) get defined and
used to analyze high-speed sports performance. The resulting
egocentric chunking hypothesis is a specific proposal for how
research in (1–5) can be extended to high-speed sports, and yield
insight into human performance.

The hypothesis will be developed and illustrated within
the context of the race driving. There are several reasons for
this choice. First, the task analysis of a specific sport gives
the hypotheses a level of detail and ecological validity (at
least ecological face validity) that grounds the theory. Second,
developing and illustrating the ideas in a single concrete domain
ensures that the concepts will integrate and interlock in a way
that stating them in more abstract and general terms would
not. Third, using only a single domain (sport) to develop the
ideas has the advantage that the propositions can then be
corroborated or rejected, on the basis of observations from
other domains. This way the generality of the statements can
be genuinely stress-tested1. Finally, the case of the motorsport

1A scientific theory cannot be tested on the evidence that has been used to develop
it, so the use of a broad basis of observations from wide a range of sports to
‘‘support’’ the statements before the ideas are fully fixed would make all those
observations inadmissible as evidence.

driver athlete is in many ways an ideal model for studying
extreme human performance at the cognitive and physiological
limits.

Arguments in favor of using race driving as the sport
of choice are listed in Table 1. The reasoning here is that
the preponderance of cognitive over physical determinants of
performance in motorsport makes it a particularly good model
domain to study for those interested in cognitive performance-
differentiators in sports.

While racing drivers have to be physically conditioned to
a very high degree (less so eSports athletes, as these are
motorsports athletes who are not subjected to huge isometric
loads or heat stress), consistent performance differences are
not determined by physical conditioning (At the expert level
you rarely lose a race, let alone get consistently out-qualified
by 0.3 s—a 0.3% performance difference—because of being
less fit). Because a racing driver uses the forces generated
by a vehicle, performance is not limited by how hard, fast
or long the athlete can produce forces on the environment.
It is limited by differences in time-constrained judgment,
timing, and precision regarding when and how to apply
these forces. Here, sports, where performance is (to a large
extent) limited by such information-processing capacities,
are called high-speed sports, and the theory is meant to
describe some determinants of human performance in those
sports.

Also, the mature state of the art in measurement, modeling,
and simulation techniques offers advantages for quantitative
research, and the high level of development in AI techniques
for eSports and autonomous racing makes human-machine
comparisons timely, interesting and valid.

Yet, despite being a rich and potentially rigorous basis for
understanding many aspects of performance, the skill of the
racing driver has received surprisingly little consideration in the
academic research literature (Potkanowicz and Mendel, 2013;
Lappi, 2015; Ferguson, 2018). Certainly, this is the case if one
compares the modest volume of research on racing to the
thousands of articles on some other sports (such as football),
or other forms of expertise with some similar features (such as
music). Even compared to the research on everyday driving skills
the study of expert driving performance is scant. It is hoped that
this paper will inspire more work in this domain, and similar
domains of human performance.

The article is organized as follows: Section ‘‘Navigation
Guidance and Control: A Cognitive Hierarchy’’ lays out the
core concepts, and how they are to be combined, according
to the proposed hypothesis. Section ‘‘Neuroanatomical
Basis in Wayfinding Circuits’’ outlines how the hypotheses
align with the rapidly advancing research on the
wayfinding circuitry of the brain, and Section ‘‘Egocentric
Chunking as Predictive Processing’’ how it may be
interpreted within a predictive processing framework.
Theoretical implications and some open questions are
taken up in Section ‘‘Discussion’’, and novel experimental
designs to test specific predictions and the range of
applicability of the theory to other sports in Section
‘‘Conclusion’’.

Frontiers in Human Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 822887

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Lappi Expert Performance in High-Speed Sports

FIGURE 1 | Overview of the concepts and hypotheses, and how they are logically organized. Also a road map to the way the article is structured. Cognitive task
analysis, based on computational driver modeling in vehicle system dynamics engineering (including racecar engineering). (1) Specifically: the McRuer et al. (1977)
navigation-guidance-control hierarchy that has also been used to understand higher-level cognitive involved in visual guidance in real-world driving (Lappi and Mole,
2018). (2) Interpretation of the hierarchical task analysis in light of domain expert knowledge elicitation, specifically the reference point concept (Lappi, 2018).
Waypoint identification and interception characterizing the driving task (Lappi, 2014; Lappi and Mole, 2018). Psychology of expertise. (3) Chunking recurring patterns
into long-term memory structures allow fast, automatic pattern recognition. Enables superior performance of experts despite strict capacity limitations of attention
and working memory (Glaser, 1985; Gobet et al., 2001). (4) Chunking combined with waypoint identification and consideration of different frames of reference (Lappi,
2016) into the egocentric chunking hypothesis. (5) Interpretation of this hierarchical task structure/cognitive organization in terms of a neural hierarchy in cognitive
neuroscience; wayfinding circuits in the brain involved in landmark-based navigation and representation of large-scale environments (Barry and Burgess, 2014;
Epstein and Vass, 2014; Spiers and Barry, 2015; Epstein et al., 2017) and driving (Lappi, 2015; Navarro et al., 2021). (6) Hierarchical predictive processing
(predictive brain) in cognitive modeling; the brain as an inference engine for stochastic estimation and control (Friston, 2009, 2010; Friston et al., 2012; Clark, 2013;
on predictive processing in driving, see also Engström et al., 2018; Kujala and Lappi, 2021).

NAVIGATION GUIDANCE AND CONTROL:
A COGNITIVE HIERARCHY

It is widely accepted that complex tasks generally (Lashley, 1951;
Cooper and Shallice, 2000; Botvinick, 2008), and wayfinding in
particular (Patai and Spiers, 2021), have a hierarchical (subgoal)
organization. This hierarchical organization is often thought
to be reflected in the hierarchical organization of the brain
(Koechlin et al., 2003; Fuster, 2004; Botvinick, 2007).

The hypotheses will be organized around a hierarchical
analysis of the driving task, as is the standard approach in
traffic psychology and engineering (cf. McRuer et al., 1977;
Donges, 1978; Michon, 1985). In applied traffic psychology
and ergonomics—the study of everyday driving in traffic—the
standard approach is Michon’s classification of Strategic, Tactical
and Operational levels (Michon, 1985; for a review analyzing
relevant neuroscientific research in this framework see Navarro
et al., 2018). In vehicle systems engineering—including racecar
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TABLE 1 | Twelve features of race driving that make it an excellent environment to study elite performance.

I. Performance differentiators point of view:

1. Performance in high-speed vehicle-based locomotion depends on the information processing capacities of the brain, not the physical limits of the body.
Differences in racing ability are not determined by the forces or power the athlete can generate, but skill in interpreting the situation, and dexterity in controlling
the vehicle.

2. Unambiguous performance metrics can be used to objectively evaluate expert performance, with very high precision and ecological validity (e.g., lap time,
various vehicle telemetry parameters). Here, well-developed domain-expert understanding can be leveraged to develop and quantitatively analyze and interpret
performance metrics from driver performance engineering cf. e.g., Segers (2014).

II. Measurement and modeling point of view:

3. Representative tasks can be developed to span the full spectrum of simplified set-ups that can be used in the laboratory of brain imaging scanners through
simulator set-ups of increasing fidelity, up to instrumenting real race cars for field data. This offers a unique chance to balance ecological validity and
experimental control.

4. The spectrum from novice (everyday driver) to elite can be probed with the same task: taking a car through a bend is a task that even a novice can perform,
yet it is meaningful and non-trivial for the expert (In many fields of expertise a task that meaningfully challenges an expert is impossible for a novice to perform).

5. Even expert skill in this domain can be distilled to very few degrees of freedom—all the knowledge and skill is basically expressed through the steering wheel,
the brake, and the throttle pedal (and gaze control).

6. Compared to the biomechanics of the human body, the kinematics and dynamics of ground vehicles are very well understood (thanks to vehicle systems
engineering).

7. The racetrack environment is a fixed 3D geometric layout and is generally quite stereotypical and sparse and therefore easy to model (compared to the fractal
geometry and clutter in most natural environments).

III. The theoretical analysis of its cognitive basis can leverage a large body of work on:

8. Human driver modeling in psychology (Senders et al., 1967; Godthelp, 1986; Land, 1992; Land and Lee, 1994; Lappi and Mole, 2018).
9. Mature computational driver-in-the-loop simulation techniques in vehicle system dynamics engineering (McRuer et al., 1977; for review see Sharp et al., 2000;

Macadam, 2003; Sharp and Peng, 2011; Keen and Cole, 2011, 2012; Johns and Cole, 2015; Nash et al., 2016).
10. Experimental psychology of the visual guidance of steering (Fajen and Warren, 2003; Salvucci and Gray, 2004; Wann and Wilkie, 2004; Warren, 2006; Wilkie

et al., 2008; Fajen, 2013; for review see Regan and Gray, 2000; Wann and Land, 2000; Lappi, 2014).
11. The neural basis of steering (Field et al., 2007; Billington et al., 2010, 2013; Huang et al., 2015 and driving Bernardi et al., 2014; for review see Lappi, 2015;

Navarro et al., 2018).
12. The neural basis of wayfinding in large-scale environments (Epstein and Vass, 2014; Barry and Burgess, 2014; Spiers and Barry, 2015; Epstein et al., 2017).

engineering—the hierarchy ofNavigation,Guidance, andControl
was proposed by McRuer and co-workers in the 1970s (McRuer
et al., 1977; Figure 2A). The two classifications are similar but
do not line up exactly2. Here the McRuer hierarchy is adopted
(For a review analyzing relevant neuroscientific research in this
framework see Lappi, 2015; for an analysis of race driving
skills in this framework see Lappi, 2018; for its relation with
neuroscientific research on visuomotor steering see Lappi and
Mole, 2018).

• Navigation refers to route selection from among possible
alternatives.

• Guidance refers to path definition based on visual preview
information.

• Control is sensorimotor transformations from feedback to
motor commands (feedback control), and the selection of
motor programs based on the desired path defined at the
guidance level (feedforward control).

The fundamental assumption the rest of the theory
builds on is that the levels trade in different kinds of
information—specifically in terms of:

• Spatial scale: Navigation dealing large-scale space including
unobservable features of the environment, control with
orientation to the immediate surroundings; guidance
intermediate between these.

2The final outcome, the egocentric chunking model, should not substantially
depend on the choice of task analysis framework; it can be regarded more as a
kind of heuristic scaffolding.

• Temporal resolution: Navigation dealing with stable,
time-invariant landmark features and 3D space layout,
control with the rapidly-shifting here-and-now; guidance
intermediate between these.

• Frames of reference: Allocentric for navigation, egocentric for
guidance, and sensor/effector level for control.

The terms ‘‘allocentric’’ and egocentric’’ are sometimes used
in different ways. Here the distinction is taken to mean the
following: an allocentric system stores information about the
3D environment in a form that is independent of observer
motion or current point of vantage. That is: when the observer
moves there is no need to update or modify any of the stored
information (Apart from observer position. In other words:
the allocentric spatial relationships between different locations
in the world do not change. Only when the environment
itself changes is there a need to re-map. Else only localization
is needed).

Cognitive Processes
Because they trade in different information and require
different operations, the levels can be assigned specific
cognitive processes, as studied in the experimental cognitive
psychology of expert performance (These, in turn, should
depend on increasingly well-understood neural circuitry, as
studied in the cognitive neuroscience of way finding, Section
‘‘Neuroanatomical Basis in Wayfinding Circuits’’, and be given
expression in terms of hierarchical predictive processing, Section
‘‘Egocentric Chunking as Predictive Processing’’).
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FIGURE 2 | (A) The McRuer hierarchy. Navigation: choosing the desired path among alternatives. Guidance: definition of the desired future path based on visual
preview. Control: steering and speed control by motor routines adapted to body/vehicle dynamics. Based on sensory feedback and feedforward control based on
the top-down path definition. (B) Core concepts. Reference points: visual landmark features that can be recognized and used in self-localization. Waypoints: fixed
objects or locations that are interception targets for self-motion. Frames of reference and transformations; different cognitive processes trade on information in
different coordinate systems (allocentric, egocentric). Chunking: grouping elements into patterns that can be recognized and used to guide action. Expertise is based
on having both more and bigger chunks stored in memory.

The cognitive processes responsible for navigation, guidance,
and control, in the present proposal, are listed in Table 2. The key
novelty of the present work will be in: (i) interpretation of these
processes (in the context of race driving) in terms of the core
concepts of reference points and waypoints, and (ii) specifying
how these processes (levels) are integrated vertically, by the core
concept of chunking (Figure 2B).

Navigational route selection from among alternatives
implies a representation wherein the different alternatives
can be specified. These kinds of stable, enduring allocentric
representations of large-scale environments are called cognitive
maps. They provide a stable context for visual guidance, storing
3D layout information. It will be also assumed that cognitive
maps store enough knowledge of the visual appearance of
landmarks to allow recognizing them for landmark-based
navigation3. For the racing driver, route alternatives could be the
choice of different racing lines one could take through a bend4.
This choice also depends on current goals and overall action
plan (e.g., whether one is trying to take it easy on the tires, or do
a qualifying lap). High-levelmotor planning (that is not involved
with the specifics of motor pattern coordination) also belongs to
the navigation level.

3From any of this it does not follow that the allocentric map would need to be a
Euclidean, metrically accurate 3D replica of the environment, however. See Section
‘‘Chunking in the Predictive Brain’’.
4Sometimes in the psychological literature simply ‘‘cutting a corner’’ —i.e., moving
to the inside edge of the bend which is a ubiquitous steering strategy also in
everyday driving (Spacek, 2005)—is called ‘‘taking a racing line’’. This however
does not correspond to the actual geometry of the racing line taken by expert racing
drivers (for an illustrative analysis of the racing line see Lopez, 1997).

Guidance requires landmark object recognition and visual
scene analysis to identify obstacles vs. clear space. The guidance
level also involves visuomotor coordination involved in active
gaze strategies, and the focus of attention across the (peripheral)
visual field (i.e., covert attention). The guidance level is based
on an egocentric representation of perceptual space; this is used
for identifying, grouping, and tracking multiple elements in
the visual field (Cavanagh and Alvarez, 2005) and remaining
oriented in terms of a broader spatial image that extends beyond
the current field of view (cf. Senders et al., 1967; Tatler and Land,
2011; Loomis et al., 2013). These processes deal with the use of
preview information that is crucial in high-speed control.

Control has to do with the timing of actions, and the
sensorimotor coordination of multiple effectors needed for
coherent, synergistic action (referred to here collectively asmotor
programs). Bottom-up it is based on multisensory feedback and
top-down on (visual) guidance, integrated by internal models
of body dynamics (Wolpert and Kawato, 1998; Wolpert and
Ghahramani, 2000; Wolpert et al., 2011).

Reference Points
What information is represented in the allocentric maps in
long-term memory? What parts of it are retrieved frommemory,
and how is it integrated into the egocentric visual field or spatial
image?

The analysis that follows builds on the interpretation of
perceptual-cognitive skills in race driving in Lappi (2018), which
was based on analyzing domain expert knowledge, elicited from
content analysis of technical training literature and fitted into
the McRuer hierarchy (cf. also the related analysis of expert
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knowledge through verbal protocol elicitation in London taxi
drivers in Griesbauer et al., 2021). It was found that one standard
way for racing drivers to describe the track is in terms of reference
points (Figure 3; see e.g., Code, 1983, 1986). Any fixed-in-place
object or pattern as long as it can be clearly seen while driving at
speed could be used as a landmark feature for a reference point.
This could be a curb, differences in track surface texture, a gap
in the painted edge line, a blotch of sand at the side of the track,
a tree or a marshal post, or a different color safety barrier where
the fence has been repaired, etc.

Identifying fixed reference points in the scene allows the
racing driver to orient themselves on a familiar racetrack,
and gives them the confidence they need. To ‘‘push’’ a race
or rally car of a motorcycle to the limits, really intimate
knowledge of the circuit committed to long-term memory is
necessary. It is not possible to drive a racetrack at full speed
based purely on the visual appearances of the bends—i.e., on
the basis of available optical information. Many corners are
blind (their exit cannot be seen while approaching them),
and many small geometrical details such as the inclinations
and camber of the asphalt and changes in grip levels

cannot be visually resolved at speed in enough precision (A
circuit racer will practice a track many times. A rally driver
prepares pace notes, that are read by the navigator as an
aid to memory. Neither takes the course ‘‘prima vista,’’ as it
were).
The key observations here are that:

1. reference points have a stable location fixed in the 3D scene
2. they are ‘‘known’’ locations learned by reconnaissance

(implying long-term memory), and
3. they can be reliably recognized based on visual features (they

function as landmarks).

In terms of cognitive processes, this suggests that reference-
point knowledge is stored in the driver’s cognitive map; this
means both the stable spatial relationships between different
reference points and their recognizable visual features. This is
allocentric localization information at the navigation level and
provides top-down route selection information.

On the other hand, the observed egocentric directions and
distances to reference points also yield a positional fix. The
driver remains oriented relative to the reference points. This

TABLE 2 | Left column: cognitive processes stated in the general, as described in the cognitive psychology and neuroscience of wayfinding and steering; Right column:
specific operations according to the egocentric chunking hypothesis.

NAVIGATION

Cognitive Maps

• Establishing long-term memory for the stable (time
invariant) and viewpoint independent (allocentric)
structure of the environment. Self-localization

• Encoding scene layout and landmark feature information for identifying reference
points and storing this information in long-term memory (“RP templates”).

• Choice of “the racing line” (desired future path in relation to track knowledge based
on reference points).

Motor planning

• Hierarchical goal structures, subgoaling, maintaining task
set.

Reference points for chunking (organizing egocentric representation of) space

GUIDANCE

Maintaining an egocentric spatial image

• Scene analysis based on visual preview.
• Maintaining a dynamic (time dependent) and viewpoint

dependent (egocentric) representation of the surrounding
space (spatial image not limited to the visual field).
Focusing attention on the spatial image.

• Distributing covert visual attention (to a peripheral visual
field) and overt attention (gaze) across time and space.

• Integrating localization information from memory with visual preview to chunk the
visual scene into meaningful ensembles of scene elements (RPs and WPs):
◦ Dynamic tracking of reference points in the visual periphery (‘widescreen’

attention), gaze anchoring visual strategies.
◦ Determining directions and distances of waypoints to intercept (sometimes, but

not always, by gaze fixation).

Waypoint identification for chunking (sequencing) actions

CONTROL

Multisensory integration

• Processing sensory feedback to estimate linear and
rotational motions and accelerations (e.g., speed,
g-forces).

• Timing actions for waypoint interception.
• Oculomotor control (e.g., fixating waypoints to recover egocentric direction and

distance and identify them as locomotor targets).
• “Feel” for changes in frictional and inertial forces and vertical loads. “Balance”

Motor programs

• Action timing, sequential control.
• Synergistic dependencies between effectors and sensors

in motor coordination, active sampling of sensory
feedback.

• Combination of contact forces (on the pedals and the wheel) to achieve control forces
for “smooth” anticipatory steering and speed control. Motor coordination adapted to
highly nonlinear body/vehicle dynamics.
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FIGURE 3 | A racing driver will drive a familiar track on the basis of visual references. Fixing locations in memory and recognizing them by landmark features allows
expert drivers to remain oriented, and drive at high speed even when available preview distance is limited. Where the references are will depend on the prior
experience and individual preference of the driver [Note that cognitive modeling in other domains have estimated that the number of items in memory that would be
needed to support expert performance would be on the order of tens or hundreds of thousands of stored relational patterns (chunks). As discussed in the main text,
10–100 reference points for 10–20 corners on a hundred racetracks would give the same order of magnitude].

means that in order to yield visual guidance (path definition
for control), reference point knowledge must in some way
connect to the array of visual features in visual preview
(Egocentric chunking is a proposal as to how this connection is
established).

Waypoints
Reference point information gets stored in cognitive maps.
Waypoint information is what connects it to procedural
knowledge (motor processes and visual guidance). Information
in cognitive maps needs to be retrieved to be of use in the online
flow of action. The proposal is that actions are sequenced and
timed for intercepting waypoints.

There are certain basic actions a racing driver performs
in a bend (Figure 4), such as braking, turning in, opening
the throttle, clipping the apex (cutting to the inside of the
bend), getting on full power, and then exiting. Where these
actions physically happen can be used to operationally determine
waypoint locations on the track (From an operational point
of view, waypoint locations are just locations where control
actions happen. The theoretical question of how waypoint
information is represented is precisely what the present theory
is about).

Now, a waypoint, so defined, need not be exactly at any visible
reference point. That is, a waypoint does not need to be a location
that is designated by some specific visual feature or object at that
specific spot. What is needed is that the reference points that
surround the waypoint support the driver in deciding, fast and
accurately, where to place the next waypoints.

But note that the known (remembered, mapped) locations
of the reference points would not determine the location of
the waypoint completely, top-down. The waypoint location also
depends on the visual preview of the scene (presumably to make
more precise estimates of egocentric distances and directions
unfolding over time), as well as the current dynamic state (e.g.,
incoming feedback of tire grip and balance of the car). These
sources of feedback can adjust the timing and amplitude of
actions—and thereby the waypoint locations—in a bottom-up
manner. Reference points have a fixed location in the scene,
and reference point information was assumed to be stored in
a time-invariant long-term memory representation—waypoints
are more dynamic and adjusted on-the-fly.

What Is the Difference Between a Reference Point
and a Waypoint?
The theory makes a sharp distinction between reference points
and waypoints5. The use of both reference points and waypoints
with different properties is a crucial posit of the theory and

5Lappi (2014) defines waypoints as ‘‘any point on the visible path, such as a
marking on the pavement, or, if the driver plans his FP [future path], a point
such as the turn point (where the driver will turn the wheel entering the bend) . . .

they need not in principle present any distinctive visual feature.’’ Lappi and Mole
(2018) consider waypoints objects or locations that are both visual targets (for
gaze), and locomotor targets (for steering), proposing that it is the ‘‘visual target
acquisition and tracking system’’ (the saccade and pursuit eye movement systems)
that translates environmental locations into a form of representation appropriate
for steering control, thereby making the visually targeted location a locomotor
waypoint: the ‘‘waypoint identification hypothesis’’. Note that the waypoint concept
is quite different from travel points, such as the tangent point (Land and Lee, 1994;
cf. also Land and Tatler, 2001; van Leeuwen et al., 2017; Lima et al., 2020), or ‘‘near
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FIGURE 4 | Waypoints. The basic cornering sequence can be partitioned into waypoint locations to sequence the racing line. These have a fixed location in the 3D
scene. They are the locations at which critical control actions are performed. Operationally, waypoints can, therefore, be identified in vehicle telemetry time series on
the basis of a small number of signals. What determines the placement of waypoints (for a given driver for a given bend), the mechanisms that generate the pattern
of waypoint locations is the main concern of this article.

these two concepts should not be conflated. Roughly, reference
points are something you see ‘‘out there.’’ They are fixed physical
landmarks and recognizing them tells you ‘‘where things are’’
(and where you are). Waypoints tell you where and when to
do things, relative to where you are now. They are not fixed by
physical objects that are always ‘‘out there,’’ but by ‘‘where you
want to go’’ right now.

While both reference points and waypoints are fixed locations
out in the 3D scene (reference points more so, waypoints
somewhat less so), their function and origins are quite different.
They depend on different types of information at different
temporal and spatial scales.

Chunking
The final piece of the puzzle, the final core concept
in the egocentric chunking hypothesis is the chunk.
Theories based on chunking have been the predominant
approach to expertise in cognitive science for the
past 40 years (Miller, 1956; Simon, 1974; Newell and
Rosenbloom, 1981; Gobet et al., 2001, 2016; Gilchrist,

and far points’’ in most psychological steering models (Salvucci and Gray, 2004),
which move with the observer and are never intercepted.

2015). However, they have not been widely applied to
sports performance or driving (applying them to race driving
achieves both).

According to chunking theories, there are general
psychological principles that apply in the organization of
expert knowledge, regardless of the domain. Namely, when an
expert in any field perceives, remembers, or creates a relation
between elements of a situation (such as a configuration of chess
pieces on a board being seen as a meaningful sub-pattern), a
chunk is created in a working memory, and information about
the pattern is stored into long-term memory.

With experience, fast and automatic pattern recognition
based on this long-term memory will allow rapid encoding
of complex situations with a large number of ‘‘small’’ scene
elements into a small number of ‘‘large’’ chunks. Humans
can only maintain attention on a few chunks at a time (3–4,
and this capacity limitation seems to be a part of cognitive
architecture, not substantially modifiable through training).
But through increasing the size of chunks, a large amount
of information can be rapidly encoded, even when working
memory and attention have strict capacity limitations in
terms of how many independent chunks that information can
come in.
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The basic hypothesis, then, rests on the following
assumptions:

(1) There is a large body of spatial knowledge (reference points
in allocentric cognitive maps)

(2) This supports fast pattern recognition of familiar scenes on
a familiar racetrack (localization, positional fix based on
preview).

(3) The number and size of chunks are a critical resource
for expert performance in this domain (and a possible
performance differentiator).

(4) Specifically, this happens by top-down control of motor
programs by assigning egocentric waypoints to intercept.

These yield the model outlined in Figures 5, 6; a conceptual
framework that shows how the ideas and concepts will interlock
in a specific way.

The egocentric chunking hypothesis states what sort of
information the different levels of the hierarchy trade in and what
kinds of processes operate on and pass that information between
levels.

Reference points form a chunk of procedurally meaningful
relational spatial information (depending on the current motor
plan and bottom-up landmark recognition cues). This memory
structure represents stable large-scale space well beyond the
current field of view and localizes oneself in it (based on
a positional fix from landmark distances and directions). It
provides top-down information on the appearance of likely
reference points and sends these predictions down to the
guidance level. This handling reference-point information is
chunking space in terms of allocentric and egocentric spatial
relations aligned relative to one another.

From this information, predictions are made at the guidance
level about the layout of the road ahead—including currently
unseen parts of the circuit—e.g., the exit of a blind-entry corner
(This top-down flow of information presumably also allows the
driver to ‘‘visualize’’ the racing line, e.g., during mental imagery
training). This top-down information is crucial in high-speed
sports, because of the limited extent of visual preview.

The visual preview of the scene layout is the second input
to the guidance level. The third input is bottom-up perceptual
feedback and efference copy of the current motor program.

These are all combined into an egocentric representation
(spatial image) that also contains waypoints to intercept. This
path definition is top-down input to the control level for timing
(cueing) the action at the waypoint. Each chunk of reference
point information has to be associated with waypoints to guide
locomotion. Waypoint information, however, emerges only as
the result of chunking all three inputs: top-down reference
points, visual preview, and bottom-up multisensory feedback
(proprioceptive as well as visual), and efference copy.

NEUROANATOMICAL BASIS IN
WAYFINDING CIRCUITS

Does the hierarchy of cognitive processes postulated above
have a specific neural basis? This section discusses the neural

organization of wayfinding circuits, and how the processes above
may map to the brain. This is intended as a very rough overall
mapping (Figure 7). The purpose is just to align the levels to
the architecture with different levels in the neural hierarchy,
from sensorimotor periphery to the higher-order brain areas, as
needed to derive some predictions (in Section ‘‘Discussion’’).

Reference points are stable spatial information stored in
long-term memory. This sort of information is coarse, large-
scale, and time invariant on a long time scale (an expert driver
will be familiar with a track even years or decades after racing
on it). This type of memory is dependent on the hippocampal
system. Thus, allocentric cognitive maps at the navigation level
would be supported by the hippocampus and related medial
temporal lobe structures. These have been studied in landmark-
based navigation tasks (Epstein et al., 2017).

Motor planning and ‘‘tactical’’ choice behavior is dependent
on the prefrontal cortex (Patai and Spiers, 2021), which is also
involved in the hierarchical subgoal organization of behavior
and memory (Koechlin et al., 2003; Badre, 2008; Badre and
D’Esposito, 2009).

Reference points and their arrangements in the scene
are recognized through landmark visual features and
geometric cues. Object recognition and visual analysis
(Kravitz et al., 2013) of the scene layout (parahippocampal
and occipital place areas; Epstein and Vass, 2014) are
therefore essential for processing visual preview. Preview
serves not only for bottom-up landmark (reference point)
recognition but also maintains a sense of the scene layout,
i.e., the egocentric but not purely visual representation
of perceptual called ‘‘spatial image’’ (Loomis et al., 2013),
‘‘visual buffer’’ (Land and Furneaux, 1997) or ‘‘expectancy’’
(Näätänen and Summala, 1976). The key assumption of
the present theory is that this representation is organized
into chunks, incorporating both reference points and
waypoints.

Somatotopic, retinotopic, and other sensorimotor
information arrive in different coordinate systems and
at different latencies. Integrating them requires complex
coordinate transformations (Crawford et al., 2011). The
posterior parietal cortex is thought to be involved in coordinate
transformations for translating between different sensory
and motor systems, to enable coordination of actions across
different effectors (eye, hand, and locomotion) and maintain
a coherent sense of space (Tatler and Land, 2011; Lappi,
2016).

Identifying, grouping, and tracking of elements in the
visual field (Nummenmaa et al., 2017), tracking visual motion
(V5/MT/MST: Born and Bradley, 2005), and visuomotor
coordination (dorsal visual stream: Kravitz et al., 2011) including
visual strategies for actively sampling the scene (gaze control
networks, Lappi, 2016) and covert spatial attention (posterior
parietal cortex and frontoparietal attention networks: Corbetta
and Shulman, 2002; Corbetta et al., 2008; Ptak, 2012; Scolari et al.,
2015) are also guidance level processes.

Control has to do with the timing of actions and the
sensorimotor coordination of multiple effectors. This involves
the pyramidal and extrapyramidal motor systems for manual and
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FIGURE 5 | Schematic illustration of egocentric chunking of reference points and waypoints. (i) Reference points in the 3D scene are fixed objects or locations,
recognized by landmark visual features. They function as landmarks for localization in the large-scale environment. RP information is stored into/recalled from spatial
long-term memory that encodes their allocentric arrangement (cognitive maps). (ii) Waypoint locations on the path. They are identified in visual preview as targets of
gaze or in peripheral vision. WP information is used to guide and sequence interceptive actions. (iii) RPs and WPs are chunked into relational patterns in the
egocentric visual field/spatial image. (iv) Waypoints are targets of interceptive visual guidance, and timing cues for control actions at the waypoint. RPs allow the
observer to localize themselves on the map; they are associated with WPs in the chunking process. Note that waypoints are not stored in allocentric memory, they
are represented in egocentric space (relative to the observer). Waypoint locations are fixed locations in 3D space, but there need not be any reference point exactly at
the waypoint; their location is based on the surrounding scene (reference points including but not limited to the current field of view), visual preview, and also current
motor plans and goals. They are more flexible and dynamic than reference points, being associated with, and adjusted on the basis of, bottom-up feedback (For
example, unlike reference points, the waypoint can be in different places on successive runs through the same bend as it is taken at a different speed, grip level,
etc.). An action happening at the waypoint allows operationalization of the concept, even if there is no stimulus object or visual feature at that spot. Note that for
illustration only a few RPs per chunk and only a few chunks are sketched out. In reality, the number of RPs per chunk is probably large—as is the number of chunks
in long-term memory for any given bend. The number of chunks active at any one time is strictly limited by the attentional/working memory resource limits whereas
the size of the chunks is not.

locomotor control, but also the lower, more reflex-like parts of
the oculomotor system (fixation, saccade, blink control6). An
important aspect of the control level is brain circuits relevant
for (endogenous) timing of routine motor sequences, at different
levels of complexity temporal scale (premotor cortex, basal
ganglia, cerebellar circuits: Buhusi and Meck, 2005; Freestone
and Church, 2016; Harrington and Jahanshahi, 2016; Raghavan
et al., 2016).

6On blink control in race drivers see Nishizono et al. (2021).

Chunking Circuits
The key to connecting the levels to one another is the concept of
chunking; chunking allocentric/egocentric space with reference
points (and motor plans) and chunking action sequences with
waypoints.

The retrosplenial complex is thought to mediate between the
stable, allocentric long-term memory information of the large-
scale environment and the dynamic, egocentric information
of the scene layout—‘‘piecing together’’ snapshot views and
‘‘anchoring’’ the current scene to memory representations

Frontiers in Human Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 822887

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Lappi Expert Performance in High-Speed Sports

FIGURE 6 | Main picture. Egocentric chunking as cognitive processes operating on representations at different levels of the hierarchy, in different coordinate
systems, and at different spatial and temporal scales. Each level deals with different aspects of wayfinding and visual guidance (only). The core process is chunking
WP and RP information at the guidance level. Waypoints are identified top-down by their association with visually identified scene elements (reference points in the
cognitive map), but their precise egocentric positioning also depends on the preview of scene layout and bottom-up information (efference copy and integrated
multisensory perceptual feedback from the control level). they are fixed “on the fly”. RP, reference point information. WP waypoint information. See also Table 2.
Inset: Key nodes in the wayfinding networks (see Figure 7). HC+, hippocampal “cognitive map” system; PFC, prefrontal cortex; PPC, posterior parietal cortex; PMC,
premotor cortex; PMS, EMS, pyramidal and extrapyramidal motor systems; OPA, PPA, occipital and parahippocampal place areas; MST, middle superior temporal,
V5/MT; RSC, retrosplenial complex. The color-coding indicates the suggested mapping of the cognitive processes onto the network.
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FIGURE 7 | Wayfinding circuits, an approximate neural hierarchy that aligns with the information-processing hierarchy in Figure 6. PFC, prefrontal cortex; PMS +
EMS, pyramidal and extrapyramidal motor systems (incl. related sensory systems); PPC, posterior parietal cortex; V1+ visual areas (here incl. parahippocampal and
parietal place areas) S1+, somatosensory system; PHC, parahippocampal cortex; HC+, hippocampus and related medial temporal structures; RSC, retrosplenial
complex.

(Park and Chun, 2009; Vann et al., 2009; Epstein et al., 2017).
This is therefore a key structure for the chunking space by
reference points hypothesis. And indeed, it is larger in racing
drivers, and moreover gray matter in RSC correlates with racing
achievement (Bernardi et al., 2014).

The ventrolateral prefrontal cortex is implicated in chunking,
in a number of task domains (Jeon, 2014). This structure is
activated in racing drivers (but not control subjects) when
viewing in-car footage of a racecar lapping a circuit (Bernardi
et al., 2014).

EGOCENTRIC CHUNKING AS PREDICTIVE
PROCESSING

Predictive processing (a.k.a. predictive brain, or ‘‘Bayesian brain’’)
is a general theory of brain architecture that has resulted from a

confluence of advances in machine learning and AI (which are
producing concepts and methods that are increasingly useful for
complex and naturalistic domains) and cognitive science (where
these concepts are combined with experimental psychology and
neuroscience methods, and used in computational cognitive
modeling). It holds some promise for delivering unified theories
of cognition (Friston, 2009, 2010, 2018; Friston et al., 2012; Clark,
2013).

It has been proposed as a useful way to analyze both driving
behavior (Engström et al., 2018; Kujala and Lappi, 2021) and
sports performance (Harris et al., 2021). Racing, of course,
combines these.

Hierarchical Predictive Processing
According to the predictive processing view, the brain is a
‘‘predictive’’ inference engine (Figure 8). It generates perception,
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action and cognition by matching incoming sensory input with
top-down expectations (predictions) of said input (Note that
prediction here does not necessarily involve forecasting the
future—it means predicting aspects of feedback information from
the world that has not been observed yet, by a system at some
given level of the hierarchy—the system may be ‘‘predicting’’
information about past events that it gains with some delay).
The predictions are generated by a hierarchy of generative
internal models that embody assumptions about the statistical
regularities and causal relationships of the universe (including
the body and the brain). The models are updated based on
prediction error (difference of actual and predicted input). To
save bandwith, onlyprediction error is passed up the hierarchy
(predictive coding).

The internal models update in such a way as to better predict
future inputs—learning at all levels is driven by minimization
of prediction error. This unconscious inference process matches
incoming feedback against prior information stored in the
brain, maintaining and constantly updating internal state-
estimates (sometimes called belief state) of relevant state variables
(sometimes called the world state). Note that the term ‘‘belief’’
is used in a technical sense and should not be taken to
connote explicit, conscious knowledge. Also, the world state
is not the physical situation per se, but only whatever aspects
of the physical situation the brain actually registers and keeps
record of.7

Now, if these core processes involve developing and updating
generative internal models, then such models and information
embedded in them are available for model-based (predictive)
control. This is particularly useful in high-speed tasks, like race
driving, where feedback and motor delays are substantially large
relative to the rate of events and the response frequency of the
controlled system (McRuer et al., 1977; Macadam, 2003; Nash
et al., 2016). A race car has a high-frequency, nonlinear response
to the driver’s control inputs. At the highest speeds, responding
to the observed car behavior would mean that the driver is
constantly ‘‘behind’’ what the car is doing.

On the perceptual side, the lowest levels of the hierarchy
predict sensory feedback, such as visual information from the
retina (optic flow), haptic sensations from the skin (steering
wheel self-aligning torque), proprioceptive organs in the joints
and inner ear (g-forces, muscle tension, body and limb pose),
ears (engine and tire noise), and the dynamic state of the vehicle
(speed, oversteer/, understeer). On the motor side, the lowest
level8 predicts motor routines (shifting gears, moving gaze)
and the motor actions (arm and ankle movements, blinks, and

7Under a Bayesian interpretation, feedback (prediction error) is data is combined
with priors and likelihoods to update the prior belief state into a posterior belief
state. Bayesian inference process combines the old and new information in a
way that takes into account their uncertainties. When the internal models are
uncertain in the context and sensory information is precise, then the new sensory
information (prediction error) dominates the posterior belief state, but when the
prior information is strong and input is noisy or lacking, then prior information
dominates. The posterior belief state then becomes the new prior information and
the cycle continues.
8The higher levels on the motor side are action plans (decisions on the racing line,
such as how to turn into the corner and whether to take a wide line, or to clip the
apex).

saccades). The predicted motor actions themselves drive the
neuromuscular system (This is called active inference, where
the discrepancy between the predicted and the current motor
action—prediction error—is minimized not by updating the
motor representation but by the body actually performing the
motor action to match the prediction).

Chunking in the Predictive Brain
The core assumptions of the waypoint chunking hypothesis rely
on a hierarchy of representations from the short-lived, local,
and sensor/effector level (at the sensorimotor periphery) through
an intermediate egocentric representation to stable, global, and
allocentric cognitive maps (deep inside the brain, high in the
neural hierarchy). Interpreting them in a predictive processing
framework draws out a number of interesting implications, some
of them counterintuitive.

The key is the fact that at all levels the generative models
are attempting to predict their own inputs—not forecast discrete
physical events in detail. The lower-level information never gets
all re-represented at the higher levels. For example, situation-
specific details of a waypoint cannot be accurately recovered
from reference point information in memory. This has some
consequences that are worth pointing out, as these are important
characteristics of human expert performance:

(1) An economy of representation (rather than a single master
representation). There is no need for a Euclidean, ‘‘a
high-definition internal simulation’’ of Newtonian motion
in a cartesian coordinate system, for example. The higher
levels do not need to be able to model (predict, control)
the physical world as such—they only need to be able to
model (predict, control) the level below them. Thus, there
is no single ‘‘high-definition simulation for the mind’s eye’’,
where all the knowledge about the spatial world, self-motion,
and action would come together for a homunculus to view
in a ‘‘cartesian theatre’’ (Dennett, 1991). The higher levels
need not represent the whole world/body dynamics, but
only such aspects as are needed to issue (useful) predictions
to the lower level. That is: the higher action planning and
localization level representations can be left to deal with
stable (time-invariant, viewpoint invariant) properties and
frames of reference, while the lower levels can be left to deal
with the details of motor execution and timing.

For example, the navigation level needs to only be able
to tell the guidance level what the reference points look like,
and wherein the scene (roughly) they should be. Their exact
egocentric location is left to the guidance level to figure out,
on the basis of preview information that is only available
at the guidance level but not at the navigation level. If
there is a match, then the waypoint for the matching chunk
is identified and positioned in an egocentric space. This
information is passed down to the control level to achieve
interception. The sensory consequences of interception can
also be used as a timing cue for the next action in the
sequence. But the sensory consequences are only predicted
(fromwaypoint information and current feedback andmotor
efference) at the control level. They are not forecasts of events
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FIGURE 8 | Hierarchical predictive processing. The brain as an inference engine for estimating the state of the world (the estimate is sometimes called “belief
state”). For example: a racing driver’s brain may estimate how far a tire slip angle is from the slip angle that produces maximal lateral force. Physically this will depend
on the vertical load and rotation of the tire—but it does not follow that the brain’s relevant generative model must represent these component factors, to veridically
“simulate” the actual physics (And for each level it is sufficient if they can provide the adjacent layer “predictive” information that elicits no prediction error, there is no
“master belief state” where it all comes together). Prediction is hierarchical, with a sensory hierarchy (posterior parts of the brain) and motor hierarchy (anterior parts).
Prediction is based on generative models always with the same basic architecture: each of them (i) stores information about some aspects of the world (only) and
their dynamics as priors, (ii) receives feedback. Please note that the term “feedback” is used in different ways in different literatures. Here feedback flows in what is
anatomically called the feedforward direction, and also in control theory the guidance signals would be called feedforward control. In the predictive brain framework
feedback refers to the “new” information entering the system (at any level), which drives internal model update. For example in a Bayesian framework the feedback is
observational data (and the dynamic predictor is the likelihood, the context and the memory internal to the generative model are priors), (iii) and possibly receives
context information (predictions). On the basis of the internal model and context information, new feedback is predicted and compared to actual feedback; prediction
error is used to update the internal model. Prediction error (only) is passed forward, as feedback to the next layer (predictive coding). Note that in a Predictive
Processing architecture there is no architectural distinction between perceptual, motor, and cognitive representations. Both the sensory hierarchy and motor hierarchy
embody the same architecture all the way down. Perceptual feedback is prediction error; so are guidance and motor commands (prediction of motor program
activation, and proprioception/muscle activation, respectively; on the motor side the prediction error drives the motor system, which is called active inference). Note
also that on the sensory side prediction error is “bottom up” but on the motor side, it is “top-down”, i.e., in the direction towards the sensorimotor periphery.
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‘‘out there’’ in navigational space. If top-down information
guides the control level in ways that help achieve successful
interception and no prediction error signal is elicited (and the
sensory information is not relayed up to the guidance level).

(2) Online adjustment of performance (rather than ‘‘metronomic’’
repetition). This view of the way the navigation and guidance
level work also has implications at the control level:
skilled motor routines are not simply a metronomically
rigid repetition of the exact muscle coordination patterns
(control level). This may be significant for understanding the
flexibility typical of human skill (Bernstein, 1967, 1996). The
‘‘feedforward’’ or top-down guidance of motor commands
does not flow from a motor program that would completely
specify the necessary movements as in the 1970s concept
of a motor program (Keele, 1968; Schmidt, 1975, 2003; cf.
precognitive control in McRuer et al., 1977), nor from an
action plan that would completely specify 3D behavior (as
if there were a cartesian, euclidean 3D replica of the world
inside the brain, cf. Peer et al., 2020).

The flexible placement of waypoints is an example of this.
Information flows not only top-down from reference point
memory but bottom-up too, so that the waypoint position
(desired future path) at the guidance level gets adjusted on
the basis of the current dynamic context. It is not determined
by the cognitive map for the bend (and the high-level motor
plan of how to take it).

(3) The richness of spatial representation (rather than a bottom
level of scene elements, given by rules). Because we are
looking at a dynamic task in time and space, the economy
of representation may not only be achieved through the
dimension of abstraction of information but by making the
information only available for use on a ‘‘just in time’’ basis.
Consider this: the number of chunks in long-termmemory is
large (or more accurately template information from which
chunks can be generated; Gobet et al., 2001). The capacity
of attention and working memory limits processing to a
few chunks at a time. But because the size of a chunk is
unlimited, experts can transcend the limitations by taking
in large amounts of information ‘‘at a glance’’. Now, there
are two ways to think about the size of a chunk. One can
think of bigger, richer, chunks either in terms of ‘‘adding
detail’’—i.e., more reference points and waypoints in the
current visual field (This would be like adding squares
and/or pieces to the chessboard). Bur there is another,
more interesting theoretical possibility: recursive chunking of
chunks themselves.

Referring back to Figure 5, this means that the elements in
the sub-chunks (blue) will have the same internal structure as
the chunks themselves, which has the same structure as the
main chunk (purple). In the process of developing athletic
expertise chunks for common environmental patterns can be
‘‘refined’’ to take ever subtler (spatial and temporal) detail.
The basic elements and relations are not immutable. They
do not ‘‘bottom out’’. This is like making the details of the
piece or a square relevant to how a chess piece can be used
(information that is of course totally abstracted away in chess
by making the explicit rules the ground level).

These characteristics may be important for understanding
human performance generally, and also how human
performance differs from machine performance (Section
‘‘Human vs. Machine Performance’’ and ‘‘The Human
Advantage’’ below).

DISCUSSION

A proposal has been made on how the wide array of sometimes
disparate approaches to (expert) driving performance may
be brought together, under a unifying hypothesis: egocentric
chunking based on reference points and waypoints. It is
founded on a hierarchical view of the driving task (McRuer
et al., 1977), and grounded in a careful task analysis based
on driver training concepts and ideas, extracted through
knowledge elicitation of the expert literature (origin of
the concept of reference points; Lappi, 2018), and on the
theory of waypoint identification based on experimental and
modeling work in the visual strategies and steering models,
both in psychology and engineering (Lappi and Mole, 2018).
Through the concept of chunking, these are integrated with
the psychology of expertise, and through the concept of
different coordinate systems and coordinate transformations
to visual neuroscience and the neuroscience of wayfinding.
(Re)interpreting chunking as predictive processing is proposed
as a fruitful way forward.

Next, some open questions, theoretical implications, and
empirical predictions from the theory are discussed, as well as
the question of generalizability to other sports.

Is This an “Overly Cognitive” View of
Sports?
The chunking concept gives a way to look at sports performance
from an unusual perspective. It gives a more ‘‘cognitive’’ view
of the skill than is perhaps typical in driving or sports research.
Conversely, extending the chunking concept to sports is a way
to look at chunking itself in a different light. But is this a too
‘‘cognitive’’ take of the expertise of the racing driver, borrowing
the chunking concept from research in chess as it does, too heavy
on ‘‘thinking’’ and too light on ‘‘raw skill’’?

While there is of course a tendency to view chess, and other
board games, as more ‘‘intellectual’’ tasks than driving and sports,
which are seen more as ‘‘physical skill’’, this sells short the
cognitive challenge the brain must tackle in real-world expert
performance (Walsh, 2014), and the complexity of information-
processing and perceptual-cognitive skill in sports is easily
underappreciated. On the other hand, the knowledge of experts
is always highly procedural (Glaser, 1985), and the knowledge
described here is knowing what to do, not necessarily knowing
what to say: implicit understanding of how to use the reference
points to solve the problem posed by the 3D scene layout and
vehicle dynamics—not how to think, reason or communicate
explicitly about the relevant information9.

9Communication skills are also needed at the expert level, to work with engineers,
but they are a distinct skill set from the core car-control and driving skills often
developed in childhood.
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Estimating the Number of Reference
Points
How many reference points must get chunked to become an
expert racing driver? It is a commonly held belief among domain
experts that a skilled racing driver will have committed to
memory a very large amount of information about reference
points, and that an expert racing driver when learning a new
track, will quickly pick up a very large number of useful reference
points for each part of the track (e.g., Code, 1983, 1986; Bentley,
1998, 2003). Having lots of reference points allows the driver to
choose their braking and turn-in points, and to place their car
accurately and with confidence.

The exact number is not known, as there are no established
methods of counting them (neither among domain experts nor in
basic science). But a reasonable order-of-magnitude guess could
be between ten and one hundred for each turn. The reasoning
behind this estimate is as follows. Let us say there are half a
dozen to 10 actions, or waypoint locations, for a bend and that
each is associated with anything between 5 and 10 memorized
reference points, which in some way aid in localization and
timing. A typical modern circuit will have 10–20 bends. A
professional driver may know hundreds of circuits. Therefore, if
we think of the ‘‘cognitive map’’ for each turn as encoded into
such an associative pattern of reference points, then this yields
an estimate on the order of 104–105 such patterns. Or: on the
order of tens of thousands of chunks. This is in fact similar in
magnitude to classical estimates in chess expertise.10

Chunking in Chess vs. Chunking in Sports
Early computational cognitive modeling of chess expertise
(Chase and Simon, 1973a,b; Gobet and Simon, 1998) led to
estimates on the number of chunks required to reach expert levels
of memory and performance. These are on the order as much
as tens of thousands of such stored relational patterns. The idea
is that the more sub-patterns (recognizable chunks) the player
has in long-term memory, the more likely it is that some novel
configurations on the board will match many stored patterns.
Working memory and attention have a capacity limitation of
only a few chunks at a time, but there is no limit to the size
of chunks—e.g., how many pieces can belong to a chunk. A
large number of big chunks in long-term memory allows rapid
encoding of a large number of scene elements (pieces) into a
small number of big chunks. This allows the expert to circumvent
the architectural limits of working memory by perceiving large
‘‘wholes’’ where the novice perceives separate ‘‘pieces’’.

The term ‘‘chunk’’ originates from delayed recall experiments,
where chess experts would grab a chunk of chess pieces, place
them on the board in the appropriate squares, then pause to look
at the board before grabbing another chunk of pieces, placing
them, pausing, then grabbing another chunk of pieces. The basis
of the chunking theory was the insight that the pieces were
not being selected randomly. The pieces belonging to the same

10100,000 chunks to reach master level, which, with some reasonable assumptions
about the learning rate, also yields the 10,000 h/10 year ‘‘rule’’ for the acquisition
of expertise (Ericsson et al., 1993; Ericsson, 2006) also consistent with biographical
material (Bloom, 1985). All these figures should be interpreted in terms of
suggestive order of magnitude only.

chunk form a single meaningful, interrelated sub-pattern on the
chessboard (Say, a castled white king surrounded by a rook and
a few pawns in a defensive array. Note that ‘‘defensive’’ here is
a higher-level concept that relates to ‘‘lines of play’’ that are not
directly specified by the rules of chess, or in terms of any single
piece or square coordinate).

This brings us to this more subtle question of what is being
chunked: in the real world, what are the ‘‘elements’’ to be
chunked, in the first place? What are the natural elements in a
real-world visual scene? What are the meaningful relations? How
should one define a ‘‘chunk’’ of a racetrack? Of an alpine piste?
Of a football field? The 3D scene of a racetrack does not come
neatly separated into ‘‘reference points’’ and ‘‘racing lines’’, the
way chess positions do. The elements are not ‘‘given’’ (and they
may never ‘‘bottom out’’, see below). Reference points are simply
whatever objects or locations the scene gets chunked into, and
remembered as meaningful relational patterns.

By emphasizing chunks based around stable allocentric
information is not implied that there should be a metrically
accurate replica of the spatial world inside the brain. A cognitive
map or a spatial image, into which physical waypoint locations
and reference points are mapped, is a metaphor. Indeed, in
understanding the ‘‘representation of the environment’’, the
more fundamental question is the converse: what physical
locations are reference points or waypoint locations? Mapping
the internal representation back onto the 3D scene.

In chess or other board games, the pieces constitute the basic
elements to be chunked: what a piece is, and how it can be
operated on is ‘‘given’’ and immutable, within the rules of the
game. But in physical environments (sports) this is not the case:
the 3D scene does not come automatically parsed into what
‘‘objects’’ or ‘‘locations’’ are relevant for actions. The athlete
has to figure this out, from experience. And likewise, scientific
theories to understand the expert athlete’s cognitive processes
must figure is out as well. Indeed, if we could understand which
elements are selected for ‘‘chunking’’ in a real-world scene,
and what kinds of relations among them are stored, we could
be one step closer to understanding why human athletes so
comprehensively outperform robots (e.g., human racing drivers
vs. autonomous racing cars).

Human vs. Machine Performance and “the
Human Advantage”
The human ability to master different physical tasks and
conditions is beyond any existing, or immediately foreseeable,
computational techniques. Although algorithms can be
developed to perform at a ‘‘superhuman’’ level in computer-
simulated environments (including specific motorsport eSports
sub-tasks) and made to work in predictable real-world
environments (including a race track), these systems are
today still very much engineered for the specific application
(And supported by teams of humans). In terms of the flexible use
of physical means afforded by the environment and the body,
humans outperform AI and robotics; expert athletes vastly so.

This ‘‘human advantage’’ over machines in dynamic
real-world situations suggests that the brain may have ways
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for organizing perception, action, and memory that are different
from current AI. This is of interest to the cognitive and neural
sciences. One example is how expert human racing drivers can
drive faster and more reliably than autonomous racing cars, and
adapt to different tracks, vehicles, and conditions in ways that
algorithms cannot.

This advantage stands in contrast to the way machines by
far outperform humans in tasks like chess and go (provided
there is a human being on-hand to physically move the
pieces for them, that is. . .), and even computer games with
complex dynamics. It is all the more remarkable in high-speed
sports, considering sensory and motor delays imposed by strict
physiological limitations on the human nervous system (on the
order of hundreds of milliseconds).

While board games have been a very useful test environment
to develop theories of expert performance, sports is arguably
the more generalizable and interesting field—at least in terms of
understanding the ‘‘human advantage’’. Why? Consider the fact
that the best chess algorithms have far surpassed the ability of the
best human players. . .as long as ‘‘the game situation’’ remains
restricted within the domain defined by the rules of chess. In a
game such as chess, the rules directly and completely define the
basic elements: the board structure, the allowed placement of
pieces into coordinates, and the moves that are feasible explicitly
specified and can be enumerated from a limited set of rules.What
is being chunked is ‘‘given’’. But in racing or any other sport or
real-world skill, this is not the case.

All the ‘‘real rules’’ in sports are unwritten. For example, the
written technical and sporting rules of a championship obviously
are not about what the driver is allowed to use as reference points.
Which stable objects or locations could or should be used as
reference points is up to the racer’s brain to decide, based on
some internal rules of what would make a good reference point.

Also, consider this: in a physical task there is in principle
no level where the scene elements ‘‘bottom out’’. In chess, once
a piece is established as a pawn, the physical characteristics
or its sub-parts need not be considered: they do not make a
difference for ‘‘how it can be moved’’. And once its coordinate is
established in terms of the square it occupies, its exact positioning
does not matter for the ‘‘lines of play’’ that can be generated.
For physical performance, there is no such base level where
the scene and task dynamics would ‘‘bottom out’’. Potentially,
minute differences 3D scene layout or in body dynamic state
could make a difference to technique—how the body or the
vehicle can be moved, what lines one can take through the
environment. The elite athlete could be making use of these.
Not only are the rules unwritten—even the ‘‘real game board’’ is
undefined!

It is the size (or depth) of chunks, not the number of
chunks one can recognize at any one time, that separates
the expert, according to classical chunking theory. The elite
athlete could be committing to memory more and more
objects, locations, and movement patterns they afford, in
ever finer and finer detail. The detail that can make a
difference in the performance. What this means is that the
size of a chunk in terms of interrelated items can grow
without bound, in the course of becoming an elite athlete,

as deeper, more detailed understanding of the spatial world,
including the body, and more subtle fine-tuning of action is
developed.

Empirical Predictions
This section outlines experimental paradigms to test the
assumptions. Note that while the concepts were developed and
illustrated within the example of race driving, most of the
research questions and paradigms sketched could be developed
for similar sports, or using experts from other domains, provided
the task demands are similar.

Expert Knowledge Elicitation
Some of the ideas are based on a task analysis based on domain
expert knowledge elicitation from driver training literature
(Lappi, 2018). This is particularly so when it comes to reference
points. More direct experimental work on visual strategies and
especially direct tests for expert track memory are needed to
extend and validate some of the assumptions.

Similar chunking (of reference points) in delayed recall as
was classically found with chess pieces could be investigated
(elements belonging to the same chunk should be retrieved
together temporally, with pauses between chunks). Knowledge
elicitation interview protocols may be developed for this, on
the basis of track maps (Racing drivers should be familiar with
using these as memory recall aids, as they are used in technical
debriefings with engineers). Verbal commentary of video replays
may also be useful. Drivers should be asked to annotate a track
map/comment on a video, and the order and timing of retrieved
content in the protocol analyzed to determine chunks. Also,
higher-order semantic associations could be coded (logical or
causal dependencies of actions at different parts of the track).

One caveat—which applies to all domain expert knowledge
elicitation and protocol analysis—is that this method may be
limited by what information the experts are able to access
explicitly. Reference points (and waypoints especially) may be
quite implicit, and the expert may not be able to describe in detail,
in words, all the reference points they are using (Here chess is
different as the pieces establish as ‘‘base level’’ of discrete physical
features one can always readily point to—and they are the same
for everybody). Clever ways to set up structured interviews and
protocol analysis procedures to shed a light on what the items in
the chunks are would be desirable, and theoretically interesting.

Performance, Physiology and Brain Function
Given the limits of explicit knowledge and verbal reports, more
direct ways to probe reference point memory and waypoint-
directed action (and the predictive processing of unseen
reference points) should be developed on the basis of behavioral,
physiological, and neuroimaging measures.

Visual orientation to waypoints (timing of saccades, fixation
locations) can be obtained through eye tracking. Because
waypoints are operationally defined in terms of where control
actions occur, this information can be gleaned directly from
simulator telemetry data or from race car and GPS localization
data in the field. In other sports, foot placement (e.g., long jump,
cf. Lee et al., 2009), grips in rock climbing, or gaze landing points
could be used as operational criteria for waypoint actions and
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locations; in the abstract sense, a waypoint specifies when and
where the control surfaces of the body/vehicle ‘‘make contact’’
with the environment.

The distribution of waypoints in space and time, and how this
relates to variation in performance within and between drivers
should be investigated. An interesting question is the role of
variability in waypoint locations, and how this variability relates
to performance. Waypoint locations need not be exactly the
same spot every time. They will not be fixed in the scene at
the long time scales reference points are. The ‘‘perfect line’’ is
not the same trajectory (navigation level) each time. The exact
positioning of waypoint locations will depend on the action
plan (top-down) and the current dynamic state (feedback, motor
program, bottom-up) as well. Part of expert skill probably lies in
how their locationmay be subtly adjusted lap-by-lap, on the basis
of sensing the dynamic state of the vehicle/body.

The current hypothesis predicts that reference point
localization accuracy should be monotonically related to
performance (increasing), but the relationship with waypoint
location variance and performance relationship might be
nonmonotonic (concave): increasing skill reduces ‘‘human
error’’ variability, but still higher levels of expertise may be
reflected in non-metronomic, ‘‘flexible’’ variability.

With eye tracking one may also probe how, where and
when reference points are read into memory. Whether
and how waypoints may be designated by gaze (i.e., the
‘‘waypoint identification hypothesis’’ could be studied).
The information that can be gleaned is limited, however,
by the fact that multiple reference points and waypoints
chunked simultaneously necessarily involves peripheral
vision (Wolfe et al., 2017; cf. Vater et al., 2020) and covert
attention. Phenomenologically, racing drivers describe this
use of peripheral vision as maintaining the focus of attention
‘‘expanded’’ (Bentley, 1998, p.105). This ‘‘widescreen’’ visual
awareness is one of the most distinctive features about how
racing drivers describe their use of vision and merits further
investigation.

One possible paradigm would be to allow familiarization
of a track and then to manipulate the availability (or the
visual features or locations) of reference points. For example,
in a simulator, the 3D layout of a familiar track can be
reconstructed, but the textures and patterns that serve as
landmark features can be modified. Effects on performance
can then be analyzed (performance engineering can be used
to determine meaningful performance measures). If driving
performance was based simply on road geometry sampled at
the point of gaze, then changes in peripheral detail should not
matter. If the driver were sensitive only to the available sensory
visual input (retinal image), changes to landmark texture or
other features should not matter. But if the driver is mentally
associating the road preview to the entire scene layout inmemory
and in peripheral vision, then they should. Besides effects on
performance, learning, memory recall, and physical measures
of prediction error should be studied. The latter include pupil
dilation, saccades to the ‘‘surprising’’ reference points, skin
conductance responses, or even EEG measures such as error-
related negativity.

Covert attention could also be studied by establishing suitable
EEG indices. The use of physiological measures should probably
begin withmore simplified, but still representative, tasks (moving
to high-fidelity simulators and field experiments once the
task and signals are understood, and robust analysis pipelines
established). One such task would be encoding an array of
visual features or locations, and then dynamically shifting covert
attention among them (‘‘widescreen’’ visualization). EEG could
be used to probe the neural basis of this guidance-level sense of
space.

To the extent that the simplified tasks indeed probe the same
cognitive processes as the domain of expertise, experts should
show marked superiority to control subjects on those tasks
(only). This kind of between-subjects comparison can be used
as partial ecological validation of task representativeness.
Physiological differences between subjects, especially if
correlated with task performance, would shed further light
on the neural basis of such differences (e.g., EEG spectral
analyses: alpha desynchronization associated with covert
attention, theta synchronization with encoding and shifting task
set, Etc.).

fMRI would be suitable as well. Here in particular the
interpretation of the results could draw on the rapidly advancing
literature on the neural basis of visual scene analysis, wayfinding,
and cognitive maps. The use of ever more dynamic scenes (like
driving scenes) allows scientists to probe the role of time and the
difference between viewing static snapshot pictures of a scene and
moving through a scene (time representation, active sampling
which are essential features of real-world scene analysis).

Particularly illuminating could be the work on a parallel form
of navigational skill in expert drivers: London cabbies (Spiers
and Maguire, 2006, 2007; Griesbauer et al., 2021). While vehicle
dynamics, performance measures, and environment scale/3D
complexity are different in these two domains of expertise, the
design of the human memory system is the same, and therefore
many of the computational problems and strategies may be
the same.

Using knowledge of a large-scale allocentric space that
extends beyond the field of view implicates the hippocampus
and the retrosplenial cortex, and landmark recognition and
visual scene analysis relies on temporal and parietal place areas
(Barry and Burgess, 2014; Epstein and Vass, 2014; Spiers and
Barry, 2015; Nau et al., 2018; Peer et al., 2020). The need to
translate between points of vantage needs the kinds of multiple
coordinate transformations associated with the posterior parietal
cortex (Crawford et al., 2011; Lappi, 2016). Sustained attention
(executive control, monitoring, task maintenance, and task
switching) also implicates the premotor and (dorsolateral)
prefrontal cortex, i.e., attention and salience networks, especially
the dorsal attention network (Corbetta et al., 2008; Menon and
Uddin, 2010; Menon, 2010; Scolari et al., 2015).

In terms of novice-expert individual differences, the waypoint
chunking model would predict that for novices and for most
‘‘merely experienced’’ everyday drivers, the driving task could
be more a case of following a visually designated path—but
for racing experts ‘‘the racing line’’ would instead be based on
memory encoding/recall (reference points) and more complex
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sub-goaling (waypoints). This would imply the involvement
of brain networks beyond the ‘‘driving network’’ identified in
meta-analysis of driving-task fMRI research (Navarro et al.,
2018, and largely coinciding with the list of brain areas above).
Where in the brain might these extra networks be? Here the
sub-goaling the desired path into waypoints as a chunking
process would suggest the (lateral, including ventrolateral)
prefrontal cortex (The potential confound from using verbal code
e.g., to self-monitor should be addressed here, though).

Encoding a scene into cognitive maps, and the
retrieval of large-scale spatial structure and route/goal
information are probably associated with circuits in
the parahippocampal/hippocampal systems and the
retrosplenial/posterior parietal cortex (possibly orchestrated
by the prefrontal cortex). The retroplenial complex in particular
should be the key hub that mediates the ‘‘chunking’’ that
translates between the stable, fixed, allocentric, and dynamic,
egocentric representations of reference points (Epstein, 2008;
Vann et al., 2009). Indeed, it has been shown to be activated
when racing drivers (but not control subjects) view in-car
footage, and its size correlates to real-world racing performance
(Bernardi et al., 2014).

The level of track familiarity and driver skill should modulate
brain circuit activations, according to their roles in encoding
new chunks into long term memory vs. retrieval of long-term
memory information. Whether or not ‘‘binding’’ spatial/action
chunks relies on the same networks as the binding of object
features into chunks—studied in most working memory and
visual search experiments—deserves due consideration. Another
type of binding process that may be more relevant (in case the
mechanisms are different) is the ‘‘grouping’’ targets in multiple-
object tracking tasks (Yantis, 1992; Cavanagh and Alvarez, 2005;
Scholl, 2009; for brain imaging on such tasks see Nummenmaa
et al., 2017).

Generalizability to Expertise in Other
Sports
Developing the ideas on the case of the motorsport athlete has
allowed a fairly clear and empirically grounded task analysis.
However, none of the core concepts, assumptions, or the
principles derived depend on the specifics of motorsport, such
as on using a vehicle for locomotion, using steering wheels
and pedals to control the vehicle, the use of engines to
produce motility, the use of tires to generate control forces
on the ground, asphalted tracks that loop in on themselves,
etc.

They should be applicable to any task (sport) with similar task
demands. The core aspects of the task are:

(1) Visual guidance and control of one’s trajectory (path of the
vehicle or one’s body) with respect to a stable environment.

(2) Performance advantage that comes from ‘‘fixing’’ in one’s
mind a clear picture of the 3D scene layout. . .

(3) . . .at both the navigational level (allocentric, stable
cognitive map) and the guidance level (egocentric, dynamic
widescreen awareness of the visual field), requiring complex
coordinate transformations.

These skills, according to the theory, are major performance
determinants in high-speed sports. That is, sports where
perceptual-cognitive judgment, rather than physical capabilities
of the body, limit performance, with travel speed as the
relevant metric. Downhill skiing, mountain biking, drone
racing etc. are clear examples, and would provide domains
to study the hypotheses (Indeed, because of the economy of
representation one would predict the higher levels need not
even ‘‘know’’ what the mode of locomotion is; only the control
level ‘‘knows’’ about steering wheels, pedals etc. This makes
those higher levels potentially more flexible and transferable
across domains).

To what extent the chunking hypothesis in its present
form applies to, say, whitewater kayaking or surfing,
where the scene layout itself is constantly fluctuating, is
less obvious. Presumably, this type of environment affords
fewer reference points, and performance is more dependent
on the control-guidance level interactions (Whether and
how waypoints might still be ‘‘fixed’’ with gaze is an
interesting question).

Sports lacking the high-speed element such as rock climbing
appear to fulfill all three core aspects above, however. So,
achieving speed may not be an essential property, as other
performance metrics might be used. The concept of a waypoint is
quite general, and can be operationalized, e.g., by the placement
and type of grip in climbing; the concept of a reference point and
chunk likewise transcend domains.

In many sports relative motion between the observer and
relevant scene elements is not caused (only) by observer
motion, but by the movement of the objects themselves in
the 3D scenes. Examples would be skeet shooting, football, or
ice hockey. How one ‘‘reads’’ the scene in these situations
may require additional assumptions, as there are relevant
scene elements that are not reference points fixed in a 3D
frame—i.e., their motion is more ‘‘random’’ (or: the correlations
in apparent motion are different from the optic flow generated
by self-motion).

Also, many games introduce additional rules, such as
designating players as opponents and teammates, so the correct
way to ‘‘read’’ and interact with the situation is based on an
additional layer of scene semantics, rather than the scene layout
and the physics of the situation. Many games also bring in an
adversarial component (Which of course is also present in racing
against opponents—the present theory only considers the more
restricted core skill of driving).

CONCLUSION

We are perhaps nearing the goal of tackling the neurocognitive
basis of elite sports performance, ‘‘the brain’s biggest challenge’’
(Walsh, 2014). Neuroscience is poised to move forward from
simple, sedentary laboratory tasks to more dynamic domains of
expert performance. Machine learning develops concepts and
methods that are able to take on increasingly complex dynamic
tasks, achieving even superhuman performance. The challenge is
to bring all this together, towards an understanding of human
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cognitive processes (which have a basis in the hardware of the
brain and may be different from AI).

Here the domain of expert driving offers many desirable
features, both in terms of methodological opportunities and the
chance to build on a solid basis of existing concepts and theory.
The aim of this article was to show how apparently disparate
and often unconnected lines of inquiry can be unified by the
integrative concept of chunking. In cognitive science and the
psychology of expert performance this concept has for decades
been the standard way to understand the cognitive basis of expert
performance in domains such as chess but it has not been fully
deployed to understanding sports, real-world skills, and expert
performance in physical locomotion. It opens a way to bring
elite sports performance into contact with the theory of chunking
(traditionally used to analyze sedentary tasks like chess).

Another contribution is to show how the concepts of
predictive processing can be used to (re)interpret the concept of
chunking for skilled dynamic task performance. This may open
up new and interesting ways to understand the nature and roles
of different types of ‘‘cognitive representations’’ in sports, and
potentially even the differences between human and machine
information processing in complex dynamic tasks.

For the cognitive psychologist working in the field of expert
performance, the egocentric chunking hypothesis offers a novel
view of chunking in dynamic tasks. For the computational
modeler in cognitive science and engineering, it may pave
the way for more psychologically and neurologically plausible
computational models for simulating human performance.
Of interest to the development of future AI may be how
humans are able to outperform AI in locomotor tasks requiring
flexibility in the face of complexity—despite severe limitations
in processing speed and attentional capacity. Especially when
embedded into a predictive processing framework. For the
neuroscientist, the theory suggests road map for translating
basic concepts and theories (wayfinding circuits, predictive
brain) into more complex dynamic tasks, representative of
expert performance ‘‘in the wild’’. For the practitioner, it
may offer a way to translate their domain understanding

to terms and definitions commensurate with cognitive
psychology, computational cognitive modeling, and modern
neuroscience.

The field of expert performance is ripe for developing theories
and models of the perceptual-cognitive expertise of high-speed
athletes, such as racing drivers. It is hoped that this article
will stimulate researchers and practitioners in different fields
to see connections between disciplines and that neuroscientists,
psychologists, engineers, and computer scientists working on
different aspects of the problem of human performance will find
the theory useful, and then go on to develop more accurate,
multidisciplinary theories and methodologies. . .and then put
them to the test in the laboratory, in simulators, and out there
‘‘in the wild.’’
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