161 research outputs found

    MODELING AND ANALYSIS OF WRINKLES ON AGING HUMAN FACES

    Get PDF
    The analysis and modeling of aging human faces has been extensively studied in the past decade. Most of this work is based on matching learning techniques focused on appearance of faces at different ages incorporating facial features such as face shape/geometry and patch-based texture features. However, we do not find much work done on the analysis of facial wrinkles in general and specific to a person. The goal of this dissertation is to analyse and model facial wrinkles for different applications. Facial wrinkles are challenging low-level image features to analyse. In general, skin texture has drastically varying appearance due to its characteristic physical properties. A skin patch looks very different when viewed or illuminated from different angles. This makes subtle skin features like facial wrinkles difficult to be detected in images acquired in uncontrolled imaging settings. In this dissertation, we examine the image properties of wrinkles i.e. intensity gradients and geometric properties and use them for several applications including low-level image processing for automatic detection/localization of wrinkles, soft biometrics and removal of wrinkles using digital inpainting. First, we present results of detection/localization of wrinkles in images using Marked Point Process (MPP). Wrinkles are modeled as sequences of line segments in a Bayesian framework which incorporates a prior probability model based on the likely geometric properties of wrinkles and a data likelihood term based on image intensity gradients. Wrinkles are localized by sampling the posterior probability using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm. We also present an evaluation algorithm to quantitatively evaluate the detection and false alarm rate of our algorithm and conduct experiments with images taken in uncontrolled settings. The MPP model, despite its promising localization results, requires a large number of iterations in the RJMCMC algorithm to reach global minimum resulting in considerable computation time. This motivated us to adopt a deterministic approach based on image morphology for fast localization of facial wrinkles. We propose image features based on Gabor filter banks to highlight subtle curvilinear discontinuities in skin texture caused by wrinkles. Then, image morphology is used to incorporate geometric constraints to localize curvilinear shapes of wrinkles at image sites of large Gabor filter responses. We conduct experiments on two sets of low and high resolution images to demonstrate faster and visually better localization results as compared to those obtained by MPP modeling. As a next application, we investigate the user-drawn and automatically detected wrinkles as a pattern for their discriminative power as a soft biometrics to recognize subjects from their wrinkle patterns only. A set of facial wrinkles from an image is treated as a curve pattern and used for subject recognition. Given the wrinkle patterns from a query and gallery images, several distance measures are calculated between the two patterns to quantify the similarity between them. This is done by finding the possible correspondences between curves from the two patterns using a simple bipartite graph matching algorithm. Then several metrics are used to calculate the similarity between the two wrinkle patterns. These metrics are based on Hausdorff distance and curve-to-curve correspondences. We conduct experiments on data sets of both hand drawn and automatically detected wrinkles. Finally, we apply digital inpainting to automatically remove wrinkles from facial images. Digital image inpainting refers to filling in the holes of arbitrary shapes in images so that they seem to be part of the original image. The inpainting methods target either the structure or the texture of an image or both. There are two limitations of existing inpainting methods for the removal of wrinkles. First, the differences in the attributes of structure and texture requires different inpainting methods. Facial wrinkles do not fall strictly under the category of structure or texture and can be considered as some where in between. Second, almost all of the image inpainting techniques are supervised i.e. the area/gap to be filled is provided by user interaction and the algorithms attempt to find the suitable image portion automatically. We present an unsupervised image inpainting method where facial regions with wrinkles are detected automatically using their characteristic intensity gradients and removed by painting the regions by the surrounding skin texture

    Deep Structured Layers for Instance-Level Optimization in 2D and 3D Vision

    Get PDF
    The approach we present in this thesis is that of integrating optimization problems as layers in deep neural networks. Optimization-based modeling provides an additional set of tools enabling the design of powerful neural networks for a wide battery of computer vision tasks. This thesis shows formulations and experiments for vision tasks ranging from image reconstruction to 3D reconstruction. We first propose an unrolled optimization method with implicit regularization properties for reconstructing images from noisy camera readings. The method resembles an unrolled majorization minimization framework with convolutional neural networks acting as regularizers. We report state-of-the-art performance in image reconstruction on both noisy and noise-free evaluation setups across many datasets. We further focus on the task of monocular 3D reconstruction of articulated objects using video self-supervision. The proposed method uses a structured layer for accurate object deformation that controls a 3D surface by displacing a small number of learnable handles. While relying on a small set of training data per category for self-supervision, the method obtains state-of-the-art reconstruction accuracy with diverse shapes and viewpoints for multiple articulated objects. We finally address the shortcomings of the previous method that revolve around regressing the camera pose using multiple hypotheses. We propose a method that recovers a 3D shape from a 2D image by relying solely on 3D-2D correspondences regressed from a convolutional neural network. These correspondences are used in conjunction with an optimization problem to estimate per sample the camera pose and deformation. We quantitatively show the effectiveness of the proposed method on self-supervised 3D reconstruction on multiple categories without the need for multiple hypotheses

    Geometristen muotojen reaaliaikainen tunnistus

    Get PDF
    Kynä- ja kosketuskäyttöliittymät vaativat toimiakseen tehokasta ja tarkkaa hahmontunnistusta. Tässä työssä esitellään reaaliaikaisen hahmontunnistuksen käsitteistöä, yleisiä menetelmiä ja aikaisempaa tutkimusta. Lyhyesti käsitellään eri tutkimusryhmien esittämiä hahmontunnistusjärjestelmiä. Lisäksi esitellään geometrisiin piirteisiin perustuva hahmontunnistusjärjestelmä. Työ antaa yksityiskohtaiset kuvaukset piirtoviivan esiprosessointi- ja piirteenirrotusalgoritmeista sekä hahmoluokittelumenetelmästä. Lisäksi kuvaillaan hahmontunnistusheuristiikka kahdelle yksinkertaiselle muodolle (nuoli ja tähti). Joukko koehenkilöitä käytti työssä toteutettua graa_sta käyttöliittymää, minkä tuloksena saatiin realistiset tulokset järjestelmän laskennallisesta suorituskyvystä ja tarkkuudesta: toteutettu järjestelmä on laskennallisesti nopea mutta tunnistustarkkuus monitulkintainen. Lopuksi pohditaan valitun lähestymistavan ongelmia ja rajoitteita.Effective sketch recognition is the basis for pen and touch-based human-computer interfaces. In this thesis the concepts, common methods and earlier work in the research area of online symbol recognition are presented. A set of shape recognition approaches proposed in the past by various research teams are briefly introduced. An online shape recognizer using global geometric features is described. The preprocessing and feature extraction algorithms as well as the shape classification method are described in detail. Recognition heuristics for two simple shapes (arrow and star) are suggested. A graphical user interface was implemented and a group of subjects employed to obtain realistic results of the computational performance and recognition accuracy of the system: the implemented system performs fast but the results on the recognition accuracy were ambiguous. Finally, the problems and restrictions of the approach are discussed

    An object-based approach to retrieval of image and video content

    Get PDF
    Promising new directions have been opened up for content-based visual retrieval in recent years. Object-based retrieval which allows users to manipulate video objects as part of their searching and browsing interaction, is one of these. It is the purpose of this thesis to constitute itself as a part of a larger stream of research that investigates visual objects as a possible approach to advancing the use of semantics in content-based visual retrieval. The notion of using objects in video retrieval has been seen as desirable for some years, but only very recently has technology started to allow even very basic object-location functions on video. The main hurdles to greater use of objects in video retrieval are the overhead of object segmentation on large amounts of video and the issue of whether objects can actually be used efficiently for multimedia retrieval. Despite this, there are already some examples of work which supports retrieval based on video objects. This thesis investigates an object-based approach to content-based visual retrieval. The main research contributions of this work are a study of shot boundary detection on compressed domain video where a fast detection approach is proposed and evaluated, and a study on the use of objects in interactive image retrieval. An object-based retrieval framework is developed in order to investigate object-based retrieval on a corpus of natural image and video. This framework contains the entire processing chain required to analyse, index and interactively retrieve images and video via object-to-object matching. The experimental results indicate that object-based searching consistently outperforms image-based search using low-level features. This result goes some way towards validating the approach of allowing users to select objects as a basis for searching video archives when the information need dictates it as appropriate

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Face recognition by means of advanced contributions in machine learning

    Get PDF
    Face recognition (FR) has been extensively studied, due to both scientific fundamental challenges and current and potential applications where human identification is needed. FR systems have the benefits of their non intrusiveness, low cost of equipments and no useragreement requirements when doing acquisition, among the most important ones. Nevertheless, despite the progress made in last years and the different solutions proposed, FR performance is not yet satisfactory when more demanding conditions are required (different viewpoints, blocked effects, illumination changes, strong lighting states, etc). Particularly, the effect of such non-controlled lighting conditions on face images leads to one of the strongest distortions in facial appearance. This dissertation addresses the problem of FR when dealing with less constrained illumination situations. In order to approach the problem, a new multi-session and multi-spectral face database has been acquired in visible, Near-infrared (NIR) and Thermal infrared (TIR) spectra, under different lighting conditions. A theoretical analysis using information theory to demonstrate the complementarities between different spectral bands have been firstly carried out. The optimal exploitation of the information provided by the set of multispectral images has been subsequently addressed by using multimodal matching score fusion techniques that efficiently synthesize complementary meaningful information among different spectra. Due to peculiarities in thermal images, a specific face segmentation algorithm has been required and developed. In the final proposed system, the Discrete Cosine Transform as dimensionality reduction tool and a fractional distance for matching were used, so that the cost in processing time and memory was significantly reduced. Prior to this classification task, a selection of the relevant frequency bands is proposed in order to optimize the overall system, based on identifying and maximizing independence relations by means of discriminability criteria. The system has been extensively evaluated on the multispectral face database specifically performed for our purpose. On this regard, a new visualization procedure has been suggested in order to combine different bands for establishing valid comparisons and giving statistical information about the significance of the results. This experimental framework has more easily enabled the improvement of robustness against training and testing illumination mismatch. Additionally, focusing problem in thermal spectrum has been also addressed, firstly, for the more general case of the thermal images (or thermograms), and then for the case of facialthermograms from both theoretical and practical point of view. In order to analyze the quality of such facial thermograms degraded by blurring, an appropriate algorithm has been successfully developed. Experimental results strongly support the proposed multispectral facial image fusion, achieving very high performance in several conditions. These results represent a new advance in providing a robust matching across changes in illumination, further inspiring highly accurate FR approaches in practical scenarios.El reconeixement facial (FR) ha estat àmpliament estudiat, degut tant als reptes fonamentals científics que suposa com a les aplicacions actuals i futures on requereix la identificació de les persones. Els sistemes de reconeixement facial tenen els avantatges de ser no intrusius,presentar un baix cost dels equips d’adquisició i no la no necessitat d’autorització per part de l’individu a l’hora de realitzar l'adquisició, entre les més importants. De totes maneres i malgrat els avenços aconseguits en els darrers anys i les diferents solucions proposades, el rendiment del FR encara no resulta satisfactori quan es requereixen condicions més exigents (diferents punts de vista, efectes de bloqueig, canvis en la il·luminació, condicions de llum extremes, etc.). Concretament, l'efecte d'aquestes variacions no controlades en les condicions d'il·luminació sobre les imatges facials condueix a una de les distorsions més accentuades sobre l'aparença facial. Aquesta tesi aborda el problema del FR en condicions d'il·luminació menys restringides. Per tal d'abordar el problema, hem adquirit una nova base de dades de cara multisessió i multiespectral en l'espectre infraroig visible, infraroig proper (NIR) i tèrmic (TIR), sota diferents condicions d'il·luminació. En primer lloc s'ha dut a terme una anàlisi teòrica utilitzant la teoria de la informació per demostrar la complementarietat entre les diferents bandes espectrals objecte d’estudi. L'òptim aprofitament de la informació proporcionada pel conjunt d'imatges multiespectrals s'ha abordat posteriorment mitjançant l'ús de tècniques de fusió de puntuació multimodals, capaces de sintetitzar de manera eficient el conjunt d’informació significativa complementària entre els diferents espectres. A causa de les característiques particulars de les imatges tèrmiques, s’ha requerit del desenvolupament d’un algorisme específic per la segmentació de les mateixes. En el sistema proposat final, s’ha utilitzat com a eina de reducció de la dimensionalitat de les imatges, la Transformada del Cosinus Discreta i una distància fraccional per realitzar les tasques de classificació de manera que el cost en temps de processament i de memòria es va reduir de forma significa. Prèviament a aquesta tasca de classificació, es proposa una selecció de les bandes de freqüències més rellevants, basat en la identificació i la maximització de les relacions d'independència per mitjà de criteris discriminabilitat, per tal d'optimitzar el conjunt del sistema. El sistema ha estat àmpliament avaluat sobre la base de dades de cara multiespectral, desenvolupada pel nostre propòsit. En aquest sentit s'ha suggerit l’ús d’un nou procediment de visualització per combinar diferents bandes per poder establir comparacions vàlides i donar informació estadística sobre el significat dels resultats. Aquest marc experimental ha permès més fàcilment la millora de la robustesa quan les condicions d’il·luminació eren diferents entre els processos d’entrament i test. De forma complementària, s’ha tractat la problemàtica de l’enfocament de les imatges en l'espectre tèrmic, en primer lloc, pel cas general de les imatges tèrmiques (o termogrames) i posteriorment pel cas concret dels termogrames facials, des dels punt de vista tant teòric com pràctic. En aquest sentit i per tal d'analitzar la qualitat d’aquests termogrames facials degradats per efectes de desenfocament, s'ha desenvolupat un últim algorisme. Els resultats experimentals recolzen fermament que la fusió d'imatges facials multiespectrals proposada assoleix un rendiment molt alt en diverses condicions d’il·luminació. Aquests resultats representen un nou avenç en l’aportació de solucions robustes quan es contemplen canvis en la il·luminació, i esperen poder inspirar a futures implementacions de sistemes de reconeixement facial precisos en escenaris no controlats.Postprint (published version

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Pertanika Journal of Science & Technology

    Get PDF
    corecore