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1 Introduction

The computer mouse was invented over 40 years ago [1, 2]. The roots of the com-
puter keyboard lie even further in the invention of the mechanical typewriter. De-
spite these facts the mouse and the keyboard have been the “de facto standard”
input methods of precise, organized data by human users to a computer since the
emergence of electric, digital devices. A certain sequence of keyboard strokes pro-
duces the desired sequence of characters in a word processor. To produce a rectangle
in an image manipulation program, tool selection and another sequence of mouse
movements and clicks is required. Both scenarios illustrate an established, simple
and unambiguous yet somewhat unnatural means for data input. That is, simple
and unambiguous for the device receiving the input; unnatural for the human user.
The reverse approach would be freehand writing and drawing which is more natural
for the human user but presents a complex and ambiguous analysis problem for the
device.

Using freehand sketches as an input to digital devices concerns three loosely in-
terrelated aspects: input hardware, algorithmic methods and computational power.
A sufficient level of sophistication is required of each three aspects. The kind of
hardware needed, that is graphics tablets or digitizers have been available as early
as 1950’s with the introduction of the “stylus translator” Stylator. Also the RAND
Tablet, introduced in 1964, led the way of computer input devices using freehand
drawing [3]. It was not until mid 1970’s and early 1980’s that the digitizers were
popularized along with the emergence of CAD (computer-aided design) systems [4].
However, the mouse and the keyboard have not been superseded by the digitizers
as input devices although the latter have their applications especially in the field of
computer graphics.

In the 21st century the development in touchscreen technology has led to a rapid
increase in devices utilizing a display that can detect the presence and location of
a touch within the display area. Tablet PCs and touchscreen cell phones are cur-
rently challenging the traditional human-computer interaction paradigm based on
a keyboard used to input discrete data and a mouse used for freehand interaction
such as drawing. Interactive whiteboards are becoming common in offices and edu-
cational facilities. However, the hardware capabilities are only partly utilized since
the touchscreen is often displaying a so called soft keyboard, which is used as tra-
ditional keyboard through the touchscreen interface. Additionally, the touchscreen
also functions merely as a replacement for mouse or other pointing device provid-
ing a more natural way of interaction. Thus the underlying, conceptual model of
data input is no different than using a traditional keyboard and a mouse. With the
utilization of proper algorithms the quality of data input can be improved.

The data input of interactive whiteboards and touchscreens is fundamentally a
sequence of points in a cartesian coordinate system. The sequence constitutes a
path that can represent, for example, handwriting (characters), geometric shapes
(rectangles, ellipses) or more complex symbols (components in electronic circuit
diagram). A dedicated piece of software, however, is needed to analyze the raw
sequence of points and to conclude whether the points represent some more organized
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input. The first and most obvious application is the analysis of handwriting. This
is partly due to the nature of early computers as mainly text processing devices as
opposed to graphics manipulation.

The birth of graphics tablets precipitated the active research on online hand-
writing recognition in the late 1950’s and through 1960’s [5]. The activity abated
in the 1970’s and increased again in the 1980’s. The renewed interest in the field
of algorithms in 1980’s and 1990’s was based on the rapid development on all three
fronts: more accurate tablets, more compact and powerful computers and more so-
phisticated algorithms. By the end of 20th century the contemporary state of the
art recognition systems had reached the maturity level needed for commercial uses
in, for example, hand-held computers and PDAs (personal digital assistant) [6]. In
the 21st century, the rapid spread and popularization of new devices has kept the
field topical.

Online graphics recognition has gained more research interest recently. The
increased interest in the field in 1990’s and in the beginning of the new millennium
coincides with the advances in computer technology. Graphical user interfaces and
the utilization of computers in image manipulation have seen daylight.

Liu states the importance of graphics as a means for expressing and commu-
nicating information [7]. Furthermore, he observes the limitations of conventional
ways of working with and inputting graphics. Most graphics input/editing systems
rely on a mouse and a keyboard and a multitude of toolbars, buttons and menus for
inputting shapes and executing editing operations.

Admittedly, the most natural and convenient way to input graphics is
to draw sketches on a tablet using a digital pen, just like drawing free-
hand graphics on a real sheet of paper using a pencil. However, the
sketchy graphic objects and freehand drawings drawn in this way are
usually not clear (or not neat/beautiful) in appearance, not compact in
representation and storage, and not easy for machines to understand and
process. [7, p. 291–292]

The user interface can be improved if the freehand sketches can be recognized and
converted into the regular shapes intended by the user. The improvement is even
more significant if the recognition can be done online. That is, while the user is
drawing and hence gets immediate feedback of his actions. Achieving a usable online
recognition system imposes obvious performance requirements on the algorithms and
the computational power available.

The development of digitizers and other hardware enabling touch-based inter-
faces has taken place simultaneously with the rise of computational power provided
by the integrated circuits (processors). The Moore’s law predicting the number of
transistors that can be placed on an integrated circuit has held for over 40 years [8].
The law proposed by Intel co-founder Gordon Moore in 1965 and slightly adjusted in
1975 describes the exponential growth in computing capacity that can be achieved
at a reasonable cost [9, 10]. This has extensive implications on the set of meth-
ods available for online graphics recognition. Algorithms that were computationally
too heavy five years ago are probably more than feasible using today’s technology.
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Computers have not only become more efficient but smaller as well. This enables a
variety of applications also on hand-held devices.

This thesis presents an approach for analysing the geometric features of a set
of points drawn by a human user. Futhermore, the features are utilized to deduce
whether the set of points represents a known geometrical shape. That is, a method
is described for converting hand-drawn sketches into triangles, rectangles, ellipses,
circles, et cetera.

First, the essential concepts of online and offline shape recognition are clarified.
Second, the problem of online sketch recognition is described together with applica-
tions for the recognition systems. Common methods and a set of overall approaches
to the problem in the literature are discussed. Third, the approach on which this
thesis builds up on is presented. Along the way the problem set and its details and
subtleties are discovered and explained. The following sections explain in detail the
various algorithms and heuristics used. Finally, an approach to sketch recognition
is presented and its performance evaluated.

This thesis aims to measure the accuracy, applicability and performance of a
sketch recognizer based on geometric feature extraction. Is the accuracy of the
recognition adequate to improve the easiness and quality of graphical data input? Is
the computational performance of the method good enough and the delays involved
small enough to achieve real time recognition and enjoyable user experience?
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2 Shape recognition: concepts and methods

The field of shape recognition is a wide research area with various subfields and
an overlap with such fields of research as pattern recognition, artificial intelligence
and computer vision. This section focuses on the clarifying the nature of certain
subfields of shape recognition. That is, the essential concepts and background of
optical character recognition (OCR) and graphics recognition are provided as well as
an overview of the application domain. Similarities and differences between specific
research problems and related methods are illustrated. The problem of online sketch
recognition is presented in more detail together with the essential research objectives
and past advances. A selection of sketch recognition systems in the literature are
visited and their approaches and methods briefly described.

2.1 Vector versus raster graphics

In the branch of computer graphics there are two fundamental ways of representing
image data [11]. Raster graphics employs the notion of pixel (short for picture
element) which is the smallest building block of an image. Pixels are tiny squares
that have a color associated with them. A raster image is composed of a series of
pixels grouped together to form a grid or a matrix (see figure 1a). Putting enough
pixels in the grid and thus making them blend together creates an illusion of a single,
continuous image. Hence, the amount of information in the image depends on the
amount of pixels, that is the resolution of the image.

Instead of pixels vector graphics uses mathematically described shapes to store

<circle cx="65"
            cy="165"
            r="45"/>

<line x1="5"
         y1="145"
         x2="140"
         y2="210"/>

(a) Vector image (above) uses mathematical expres-
sions to store the image information (end point coor-
dinates for the line, center point coordinates and ra-
dius for the circle). On the other hand, raster image
(below) uses a grid of pixels for storage and represen-
tation.

A

AA

(b) Scaling (magnifying) vector and
raster graphics. When a vector im-
age (above) is magnified the sharp-
ness and details are conserved. On
the contrary, a raster image (below)
pixelates and loses its precision.

Figure 1: The differences between vector and raster graphics.
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the image information. A vector image consists of objects that represent plots of
mathematical expressions together with rendering attributes such as color. The
objects are stored as separate elements which allows manipulating them without
affecting the others. Vector graphics often requires much less memory compared to
raster graphics as there is no need to store thousands or millions of pixel values.
Using the mathematical presentation of shapes also has the benefit of resolution
independence. Scaling the image does not degrade the sharpness of the image (see
figure 1b). Consequently it is often beneficial to use vector graphics. One of the
objectives of shape recognition is to vectorize input data for easier handling and
more efficient storage.

2.2 Online versus offline

When discussing character and shape recognition an essential distinction has to be
made between online (sometimes referred to as real time or dynamic) and offline
recognition [5, 12]. In online recognition the character or shape recognition process
is executed while the user is writing or drawing (or shortly after). Thus, online
recognition requires hardware that converts the strokes drawn by the user into ma-
chine interpretable signals. Electronic tablets or digitizers are used for the task.
On the contrary, offline recognition can be done at any point after the writing or
drawing is completed. The input is obtained by scanning the image containing the
user strokes or handwriting.

Writing — until modern times particularly handwriting — has been a key in-
gredient in the creation of the current level of culture and civilization [6]. Conse-
quently, the research on the field of offline character recognition methods is abun-
dant [6, 12, 13, 14, 15, 16]. This is due to several aspects. The development of
digital computers exposed a wide range of applications for optical character recog-
nition (OCR) systems [14]. The amount of manually handled paper such as bank
cheques, commercial forms, credit card imprints and mail was already enormous.
Other applications include aiding visually handicapped, signature verification and
automatic number plate reading. There is an abundance of literature in non-digital
form created before the computer era and digitization projects require automation
and OCR [17, 18, 19]. A major research area is the recognition of Chinese (as well
as Japanese) characters. Stallings points out that

To make available to Westerners the culture and technology of one-
quarter of the human race some form of automation must be intro-
duced. [20, p. 87]

Although the approaches in online and offline recognition methods are different
the problem set and their solutions overlap extensively [13]. Thus, it is extremely
useful to understand the basic approaches, methods and applications concerned
in offline recognition. Similarly, there is an inherent relation between character
and shape recognition [21]. For example, mathematical formula interpretation is
a recognition task that falls inevitably into both categories since it involves both
symbol recognition and two-dimensional structure interpretation [22]. Furthermore,
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(a) Raw (offline) image data

1
2

3

4

5

6 7

8

9 10

(b) Similar data as in (a) presented as point trajectory data.
Information on order and drawing direction of the strokes is
readily available.

Figure 2: Online vs. offline recognition.

understanding the challenges in offline recognition helps to grasp the benefits of
using online methodologies.

The fundamental difference between online and offline recognition is the nature of
the input data. Online recognition relies on the two-dimensional, ordered coordinate
points that are recorded together with temporal data (timestamps). In offline case
the input is a digital image usually obtained by scanning or by photographing analog
media (see figure 2) [6]. The digital image consists only of a matrix of pixels with
related color values. The image data as such is however far from usable. Several
imperfect and costly preprocessing steps have to be executed before the shape or
character recognition phase [13]. The purpose of these steps is to exclude irrelevant
information and include relevant information in the input image. That is, the user
strokes or printed symbols should be extracted and coffee stains, background texture
and noise from other sources discarded.

Thresholding is used to differentiate objects from the background of the im-
age. The output of this process is a binary (black-and-white) image that should
include drawn or printed characters or shapes as accurately as possible. An exhaus-
tive survey on different thresholding techniques and discussion on their performance
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(a) Digitized (scanned) raw input image (b) Thresholded black-and-white image
with noise (small black dots between and
inside the letters)

(c) Denoised image (d) Thinned image

Figure 3: Preprocessing steps of offline recognition.

evaluation is provided by Sezgin [23]. The digitalization process, originally impaired
image quality as well as storage and copying can introduce noise in the resulting
image data. In order to improve the recognition performance some sort of noise re-
duction (or denoising) must be used. In addition to offline symbol recognition image
denoising has various other applications and has been discussed extensively in the
literature [24, 25]. Finally the black-and-white image is used as the input for thin-
ning which is the process of reducing patterns to thin-line representations [26]. The
thin-line or “skeleton” representation aims to retain the topological and geometrical
properties of the object and makes it more suitable for feature extraction and thus
further analysis. The steps involved in preprocessing are depicted in figure 3.

The preprocessing steps described above are common for all offline recognition
problems whether regarding characters or graphics. The second step is segmentation
which is sometimes considered as belonging to preprocessing. In character recogni-
tion, both machine printed and handwritten, the text has to be split (segmented)
first into lines and then further into words and characters [6]. Naturally the task
is easier for machine printed documents since the variations in handwriting hinder
the segmentation. In some scenarios the segmentation problem can be solved by
providing a grid with each character written within a box. This approach is used
for example in certain forms and questionnaires that need to be analyzed automat-
ically. Online recognition have adopted the grid approach as well [27, 28]. In the
absence of the grid that guide the process, consistently spaced characters are easier
to segment than cursive script [5]. Finally, the features of the segmented character
are extracted and the character is assigned to one of the classes representing for
example the upper and lower case letters, the ten digits and special symbols.

In the online case much more refined information can be provided to the recog-
nition process. The input data is inherently ordered sequences of x-y-coordinate
pairs with the corresponding timestamps. The number and order of strokes, the
number and order of points within the strokes and the direction and speed of the
stroke at any point is available. The quality and amount of input data depends on
the sampling rate of the device in use. For example, the sampling rate of typical
graphics tablets lie between 50–200 points per second (pps) [29, 30, 31]. Using a
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computer mouse typically results in sampling rates between 10–100 pps depending
on the nature of the stroke. This is due to the fact that a point is recorded only
when the mouse is moved to a new location as opposed to using a constant sampling
rate. In practice, modern devices are capable of providing data of a sufficiently high
quality.

Besides hand-written and machine-printed character recognition there are nu-
merous applications for offline graphics recognition. Traditional application domains
for (offline) graphics recognition are proposed by Lladós et al. [21]. Automatic sym-
bol recognition can be applied to documents with notation of variable degree of
standardization such as logic circuit diagrams, engineering drawings, maps, musical
scores and architectural drawings.

Different diagrams are of interest also with regard to online recognition [32].
Various other man-machine interfaces also require online graphics recognition which
in that context is commonly referred to as online sketch recognition [33, 34, 35, 36,
37, 38, 39]. Hand-drawn sketches are used to input graphics but also control gestures
to the application. Hand-held devices with touchscreen interfaces can be controlled
using the gestures instead of using a set of buttons.

2.3 Problem description and objectives

Jin et al. [33] specifies the problem of online graphics recognitions as:

Given a sketchy stroke of a closed-shape, determine the shape that the
user intended to input. [33, p. 256]

More generally put, an ordered sequence of strokes (that are not necessarily closed)
consisting of ordered sequence of coordinate points is to be converted into a user-
intended shape such as a right-angled triangle with catheti perpendicular to the
coordinate axes. Perhaps the most essential point of the problem is the user inten-
tion which should be recognized while ignoring irrelevancies caused by restrictions
in hardware and human ability to draw perfect shapes especially when sketching
quickly. Liu [7] divides the recognition process into four steps which are clarified in
figure 4.

1. Stroke curve pre-processing

Input: a freehand stroke.

Output: a refined polyline.

Requirement: the redundancies and imperfections in the input are re-
moved to produce the polyline.

2. Shape classification

Input: the refined polyline.

Output: a basic shape class such as line, triangle, ellipse or free curve.

Requirement: the output shape conforms to the user intention.
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3. Shape fitting

Input: the shape class and the stroke (the original and refined polyline).

Output: the fitted shape.

Requirement: the fitted shape has the lowest average distance to the
input stroke.

4. Shape regularization

Input: the fitted shape and the original stroke.

Output: the regularized shape.

Requirement: the regularized shape is similar to the original freehand
stroke but also regularized (e.g. symmetrical polygon, perpendicular with
the coordinate axes).

The four-step process above is called primitive shape recognition. Various ap-
proaches in the literature are roughly in line with the steps proposed by Liu [7]
but often omit or combine some. Sometimes it is also ambiguous to categorize cer-
tain algorithms into specific steps. Liu [7] also includes two additional processes in
online graphics recognition. Composite graphic object recognition is the process of
combining two or more primitive shapes (obtained in the previous step) based on

(a) Freehand stroke (b) Preprocessing discards re-
dundant points, removes a
hooklet in the end of the
stroke and closes the shape.

(c) Shape classified (and fit-
ted) as a triangle

(d) Regularized triangle (a
right-angle triangle with
catheti collinear with the
coordinate axes)

Figure 4: The four steps of primitive shape recognition
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(a) Raw input strokes (b) Strokes recognized as primitive
shapes (two line segments and a rect-
angle)

(c) Primitive shapes combined into a
composite object according to their spa-
tial relationships

Ω

(d) The semantic of the composite ob-
ject interpreted using context informa-
tion (a resistor in an electronic circuit
diagram)

Figure 5: The subprocesses of online graphics recognition

their spatial relationships. Document recognition and understanding refers to the
understanding of the connections between the graphical elements as well as their
semantics. An example is shown in figure 5. This thesis is focused on the primitive
shape recognition process only.

Besides good recognition rate and computational performance a practical sketch
recognition system should possess attributes related to user experience [34]. The
usage must be as close as possible to that with traditional pen and paper. The
recognition should be independent of the style of drawing. That is, a rectangle
should be recognized whether it is drawn with a single stroke or four strokes. The
essentially same fact is stated by Alvarado and Davis [37]. One of the most difficult
problems in developing a sketch recognition system is handling the tradeoff between
recognition accuracy and drawing freedom of the user. Heavy constraints on the
drawing style makes the recognition easier. However, a need to sketch in a specific
way contradicts with the probably most important requirement. That is, the usage
was supposed to be as natural as with pen and paper.

2.4 Preprocessing

A freehand stroke drawn by human user is usually very cursive and inaccurate. Us-
ing an input method unnatural to drawing, such as computer mouse or finger on
touchscreen device, further emphasizes the imperfections. Circles are not regular
and lines intented to be straight might resemble arcs with considerable noise. Pre-
processing aims to remove the noise and minor inaccuracies to make the strokes more
similar to the user intention. This facilitates the further analysis and recognition of
the sketches.

Liu et al. have divided preprocessing into four steps: polygonal approximation,
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circlet

hooklet

Figure 6: Unintentional noises in the sketchy stroke: hooklet and circlet.

agglomerate points filtering, end point refinement and convex hull calculation [7, 40].
The first three are discussed here since the convex hull calculation is used specifically
for closed-shape recognition. The input hardware usually produces a lot more points
than are necessary to accurately define the shape of the stroke. Substantial amount
of points of a straight-line segment are redundant since the start and end point
approximate the line segment accurately enough. Usually these non-critical points
are of no use for the further recognition steps and can thus be discarded. This
process is referred to as polygonal (or polyline) approximation.

Using a digitizer and a pen might produce hooklet-like segments at the ends
of the stroke. Similarly, circlets may be introduced at the turning points of the
stroke. These artifacts are potentially harmful in the later steps of the analysis. A
hooklet might produce a false impression on to which direction the end of the stroke
is pointing, where as a circlet can generate an unintentional self-intersection in the
stroke (see figure 6). Agglomerate points filtering is used to remove these noises by
examining the point densities of the input polyline. Segments with a hooklet or a
circlet usually have much higher point densities than the average value of the whole
polyline [33].

Drawing a perfectly closed shape imposes a challenge to the user. Usually a
stroke intented to be for example a polygon is not properly closed or forms a cross
near its endpoints. End point refinement can be used to close a nearly-closed shape
properly to make the recognition easier.

2.5 Shape classification

In pattern recognition, classification is regarded as the problem of classifying an un-
known input pattern into a predefined class. In sketch recognition deciding whether
a user-drawn scribble represents a predefined shape (rectangle, circle, arrow) is called
shape classification. Since shape classification is the most essential part of shape
recognition, the terms are sometimes used interchangeably. Furthermore, in the con-
text of shape recognition, shape classification is often the main focus of the scholarly
articles [7]. The gamut of classification methods is abundant. This is due to the
amount of detail in the process and the possibility to combine parts from different
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approaches. However, some effort has been made to categorize the approaches.
In general, shape classification starts by extracting useful information from the

input data to facilitate the classification. Lladós et al. use the traditional catego-
rization of pattern recognition in the context of offline symbol recognition [21]. The
categorization is applicable also to online recognition. In statistical symbol recogni-
tion the extracted information is referred to as features. The input data are repre-
sented as an n-dimensional feature vector. The criterion for selecting the features
is to minimize the distance among the input patterns belonging to the same class
and maximizing the distance between the patterns belonging to different classes.
Once the features are extracted the classification can be done using either k-nearest
neighbors, decision tree or neural networks. In k-nearest neighbor the classification
is done by selecting the class the representatives of which are closest to the sample.
Decision tree consists of a tree of simple decision rules that use the features to select
the shape class. Training sets are used to train neural networks to reach optimal
parameters for classifying future unknown input. The challenge of the statistical
approach is to find relevant features that can handle noise and transformations of
the shape of the same class.

In structural symbol recognition the extracted information are the primitive build-
ing blocks of the input pattern. For example, a rectangle consists of four lines (ge-
ometric primitives) with certain constraints. The primitives and their relations are
further compared to the models for each class built using the primitives. Some ap-
proaches use the notion of formal grammars. The grammar is language that can be
used to accurately describe all accepted shapes and symbols. The input is tried to
parse and test whether it can be generated using the grammar. This approach is
suitable for analyzing technical drawings with clearly defined symbols such as circuit
diagrams. In online sketch recognition a formal, extensible grammar is developed
aiming to unify the future software [41]. Hidden Markov Models (HMM) are also re-
garded as a structural method by Lladós. In HMM approaches the input is modeled
as a sequence of states. Probabilities are related with the states and the classifying
is based on finding the state sequences with high probabilities.

2.6 Direction, curvature and speed

The information on the order of the points can be used to derive more refined
features of the stroke. These features can be further used to facilitate the shape
classification. Yu and Cai use direction and curvature (change in direction with
respect to path length) in their sketch recognition system [34]. Direction of the
stroke dn at point n is given by

dn = arctan(
yn+1 − yn
xn+1 − xn

)

and curvature cn by

cn =
|
∑n+k−1

i=n−k φ(di+1 − di)|
D(n− k, n+ k)
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where k is a small integer (empirically set to 4) defining the neighborhood size
around the n-th point and D(n− k, n + k) stands for the path length between the
(n − k)-th and (n + k)-th point of the stroke. The function φ converts the angle
parameter to fall from −π to π.

Figure 7 shows a typical input stroke alongside with its direction and curvature
graphs. Curvature can be used to detect so called feature points which in the case of
a polygon are simply the vertices. The data is usually smoothed before further anal-
ysis [35]. This is done also for the direction graph data in figure 7. The smoothing
is implemented by averaging a few consecutive values in the data. Using smoothing
deals with the noise caused by discrete coordinate values and the high sampling rate
of the hardware. Thus smoothing also applies to the curvature graph that is derived
using the direction values.

Another approach to differentiate between the correct feature points and noise
is described by Sezgin [42]. He scales the mean of the curvature values and uses it
as a threshold when searching for feature points.

The temporal data enables the utilization of the stroke speed information. Cal-
houn et al. use the speed profile of the stroke to identify segment points, that is
the points that divide the stroke into primitives [35]. The segmentation procedure
is further discussed in [43]. The observation is made that the pen speed is reduced
when making intentional discontinuities like the corners of a polygon (see figure 8).
However, as Yu points out the visual features of the stroke are inherently more
reliable concerning the analysis [34].

In online recognition the strokes are already separated in the input data thus
making the segmentation rather trivial [44, 45]. On the other hand it is proposed
that the online scheme may increase the complexity of the problem by representing
irrelevant details. For example the letter “E” consists of four strokes the order of
which can vary between writers. However, the same static image is still produced.
Consequently, researches have tried approaches where data is converted from of-
fline to online, online to offline and where both are used to achieve a “hybrid”
recognizer [44, 45, 46, 47]. In online case inherently more information is available
since the online data is easily converted into (offline) bitmap image. Thus, online
recognition systems perform slightly better than offline systems [48, 49].
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(a) Input stroke. The start and end point
of the stroke are indicated by the dot and
cross respectively.
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(b) In the direction graph the edges and vertices of the rect-
angle can be observed as horizontal “plains” and vertical
“cliffs” respectively.
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(c) Curvature graph contains inherently the same informa-
tion as the direction graph. Vertices of the rectangle corre-
spond to large (absolute) values of curvature.

Figure 7: The input stroke and corresponding direction and curvature graphs. The
temporal correlation between direction and curvature is clearly visible.



15

−100 0 100 300 500

0
10

0
30

0
50

0
70

0

x (pixels)

y 
(p

ix
el

s)

●

(a) Input stroke. The start and end point
of the stroke are indicated by the dot and
cross respectively.

0.0 0.5 1.0 1.5 2.0 2.5

0
40

0
80

0
14

00

time (s)

sp
ee

d 
(p

ix
el

s/
s)

(b) The speed graph exposes the vertices of the triangle as
local minima.

Figure 8: The input stroke and the corresponding speed graph.
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2.7 Shape fitting and regularization

Once the sketch is classified, a shape from the class is fitted to the sketch. This
is usually done by finding the parameters of the shape that minimize the average
distance between the sketch and fitted shape. While shape fitting and regularization
have gotten less focus than shape classification some approaches have been proposed.

Chen and Xie present fitting methods for lines, circles, circular arcs, ellipses and
elliptical arcs [50]. Line fitting uses standard least squares method. Parameters of
a circle (or a circular arc) can be deduced using three (non-collinear) points. Thus,
Chen and Xie use a weighted average of centres and radii obtained by choosing all
possible triplets of points in the sketch representing the circle. A more complex
technique using Liming multiplier is required for ellipse fitting. Methods for ellipse
and polygonal fitting are suggested also by Liu [40, 51]. Liu also discusses briefly a
set of shape regularization rules that are described in more detail in [33].

Shape regularization aims to correct the drawing imperfections of a human user.
Although a sketch might be correctly classified, for example as a rectangle, the edges
meant to be horizontal or vertical are usually slightly skewed. Regularization (or
beautification) rectifies such mistakes. This is called inner-shape regularization. Jin
et al. suggest rectification rules also for producing equilateral polygons, parallel
edges and special angles (multiples of 15◦) [33]. Inter-shape regularization com-
prises making modifications to the fitted shapes according to other shapes in near
proximity: their size, position and critical points.

Early work on shape regularization has been made by Pavlidis and Wyk [52].
They focus on imposing certain constraints on lines obtained by using edge extrac-
tion algorithms on digitized images. A clustering scheme is used to group the lines
and corrections are made to their slopes, collinearity and length.

The work of Revankar and Yegnanarayana is also based on offline recognition
that requires digitization and binarization of an image [53]. They construct threshold
measures for line connectivity, relative orientation, equality and parallelism. The
thresholds are used to create a set of rules for geometric shapes containing special
forms of polygons (e.g. equilateral triangle, square) to facilitate the beautification
task.

Igarashi et al. take an interactive approach where the recognizer constructs
multiple beautified candidate shapes for the user to choose from [54]. Their sys-
tem considers connecting stroke ends to a vertex or line segment, line parallelism,
perpendicularity, alignment, congruence, symmetry and interval equality.

Paulson and Hammond’s PaleoSketch system integrates beautification proce-
dures to their primitive recognition [38]. The authors note that the endpoints
of a stroke are significant when deducing the user’s intention and thus adopt an
“endpoint-significance theme”. For example, a stroke recognized as a line is not fit-
ted using the popular least squares method but by simply connecting the endpoints.
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2.8 Sketch recognition systems

This section presents briefly various sketch recognition systems that have been pro-
posed. The systems differ not only in their methods but their specificity, generaliz-
ability and constraints to the user. Some approaches are extremely domain-specific
while others try to provide more domain-independent, general recognition frame-
work.

Jin et al. propose “a novel and fast shape classification and regularization al-
gorithm for on-line sketchy graphics recognition” meant for pen-based user inter-
faces [33]. The steps of the approach conform strictly to the ones depicted in figure 4.
The preprocessing step consists of polygonal approximation, agglomerate points fil-
tering, end points refinement and convex hull calculation. The preprocessing yields
a convex polygon with n vertices. Attraction force model is used to combine ad-
jacent vertices under a certain threshold to decrease the number of vertices from
n to m. The shape is classified as a polygon or an ellipse using an intuitive, rule-
based approach. There are independent shape fitting procedures for polygons and
ellipses. For polygons, the least squares method is used to obtain the fitted edges
and vertices that are further adjusted using the original stroke. For ellipses, the
sampling points of the stroke are used to obtain the axes and the gravity centre of
the ellipse. Minimizing the difference to the input stroke yields the fitted ellipse.
Finally a set of regularization rules are applied to the fitted shape to obtain the
user-intended shape. A set of inter-shape regularization rules are also presented.
Shape classification precision of over 90% is reported.

Yu and Cai aim to use only low-level geometric features and no domain-specific
knowledge to achieve “a domain-independent system for sketch recognition” that
could be used as a foundation for higher-level applications [34]. Their approach
tries to parse a freehand sketch into primitive shapes and simple objects that can
be further used in domain-specific applications. The two-stage process first approx-
imates the stroke with one primitive shape or a combination of primitive shapes.
In a recursive algorithm the stroke is segmented using direction and curvature in-
formation. It is analyzed whether the segments can be represented by any of the
primitive shapes. Differentiation between primitives (line, arc, circle, helix) is done
based on geometrical features and stroke direction data. The post-process stage
analyzes connectivity between the strokes, cleans up redundant primitives and exe-
cutes basic (domain-independent) object recognition. Recognition rate for primitive
shapes and polylines was reported to be nearly 98% and for hybrid shapes between
70–90%.

Calhoun et al. provide recognition system that allows symbols to be composed
of multiple strokes [35]. The strokes are first divided into geometric primitives (lines
and arcs). The primitives are obtained by segmenting the strokes using speed and
smoothed curvature information. Shape classification takes a structural approach.
A semantic network composed of geometric primitives and their relationships is
used as a description for each shape. The set of shapes does not have to be defined
in advance. On the contrary, new shape models can be created by providing a
few examples for which a corresponding semantic network is created. Recognizing
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a shape is a matter of comparing the semantic network obtained from the input
srokes with the network obtained from the training examples. Informal recognition
rate of 95% (with certain manual corrections) is reported but formal recognition
accuracy statistics are not provided. The domain-independent recognition engine
is used in further work where information on the relationships of the symbols as
well as domain information are used [55]. The additional information is utilized to
interpret schematic sketches of physical devices.

Landay and Myers emphasize the importance of sketching in the early phases of
design and try to reduce the gap between an early, sketched design of a user inter-
face (UI) and a rough, working prototype of it [36]. They propose a system called
SILK (Sketching Interfaces Like Krazy) that enables designers to quickly sketch UIs
and convert them into working prototypes. SILK recognizes user sketches as UI
elements such as text fields and scrollbars. The recognized primitive components
must be drawn with a single stroke and they consist of rectangle, squiggly line (rep-
resenting text), straight line and ellipse. These primitives can be combined and
further recognized as UI components. In addition to the primitives, SILK recog-
nizes editing gestures such as delete and group or ungroup objects. The underlying
recognition engine of SILK is based on the work by Rubine [56]. His recognition
system, GRANDMA (Gesture Recognizers Automated in Novel Direct Manipula-
tion Architecture), is a single-stroke gesture recognition engine. The gestures are
interpreted using a statistical, trainable recognizer for which new gestures can be
constructed by providing a set of training samples. A set of geometric features
are extracted from the sketched gesture and a linear classifier is used to select the
correct gesture class. The single-stroke limitation was tackled in SILK by using a
specific timeframe or spatial connectivity of the sketches. Recognition rates of 89%
for the editing gestures, 93% for the primitives and 69% for the UI components were
reported.

SketchREAD (Sketch Recognition Engine for mAny Domains) developed by Al-
varado and Davis aims to address several drawbacks in earlier systems [37]. First,
the recognition engine separates geometric information about shapes from their se-
mantic interpretation. Hence, the engine can be used as the basis for recognition
systems on multiple domains. Second, the recognition process uses both bottom-up
and top-down approach. That is, low level interpretation is done first (bottom-up)
but the context information can be used to correct possible low-level interpretation
errors (top-down). Third, the approach imposes as few constraints as possible on
the drawing style and the set of recognized symbols. Furthermore, the engine uses
LADDER (A Language to Describe Drawing, Display, and Editing in Sketch Recog-
nition), a formal language by Hammond and Davis [41], which is used to describe
how sketched diagrams in a domain are drawn, displayed and edited. The usage
of hierarchical representation such as LADDER enables others to extend the set of
recognizable symbols and add domain-specific knowledge to the recognition system.
The performance evaluation with sketches of family trees and circuit diagrams shows
a substantial performance enhancement when compared to a baseline system that
uses only bottom-up technique.

Another, more recent work that integrates with LADDER was suggested by
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Paulson and Hammond [38]. Their PaleoSketch system is reported to utilize more
geometric primitives than previous systems while still achieving a high (primitive)
recognition rate (98.56%). The authors note the drawback of Rubine’s feature-based
classifier: it performs poorly on natural sketch data since the sketches are assumed
to be drawn in the same way as the sample sketches. PaleoSketch places very few
constraints on the drawing style, returns multiple interpretations (for the user to
choose from) and takes a hierarchical, and thus extensible, approach. Two new
features presented are reported to facilitate distinguishing polylines from curved
strokes, a problem which has been difficult for other systems. Normalized distance
between direction extremes (NDDE) is the proportion of the stroke between the
highest and lowest direction values. Direction change ratio (DCR) is the maximum
change in direction divided by the average change in direction. Polylines typically
have low NDDE and high DCR as opposed to curved strokes with high NDDE and
low DCR.

Sezgin and Davis base their work on a user study indicating that people are likely
to use consistent stroke ordering when drawing certain shapes [39]. They argue that
the otherwise exponential complexity of the recognition task can be reduced to
polynomial time since the approach is interactive and incremental. Furthermore,
the observation of stroke ordering allows them to use a technique based on the
Hidden Markov Model (HMM), where the probability of a sketch belonging to a
symbol class can be efficiently computed. Depending on the method used recognition
accuracies from 81% to 97% are reported. Also, a promising performance statistics
is reported compared to a simple, feature-based recognizer. However, it is noted
that the technique cannot properly handle objects drawn using a single stroke. The
method relies also extensively on the assumption made about the consistent drawing
style.

2.9 Global geometric feature extraction

A somewhat different approach from the ones above is suggested in a series of papers
by Fonseca and Jorge [57, 58, 59, 60]. They have valued simplicity of the method over
robustness with their sketch recognition system. Their shape classification strategy
is peculiar in that it uses only global geometric features of the input strokes together
with fuzzy logic. That is, the strokes are not tried to be segmented into smaller
and simpler subshapes which would then be recognized separately as geometric
primitives. One or more strokes are collected within a timeout period. The strokes
are considered to belong together and analyzed as a whole to obtain the recognized
shape. The benefit of using only global geometric features is the invariance with
rotation and scale of the shapes.

The recognition process is started by calculating the convex hull of the input
points (deriving from one or more strokes). Then one calculates the maximum-area
triangle and quadrilateral enclosed in the convex hull as well as the minimum-area
rectangle enclosing the convex hull. The areas and perimeters for the three special
polygons are calculated.

The essential idea of the classification is to combine the areas and perimeters of
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Figure 9: Freehand-drawn triangle, rectangle and circle (dashed lines) with their
respective convex hulls (solid lines) and maximum-area triangle (light gray) enclosed
in the convex hull. The ratio Rtr/ch = Atr/Ach (area of the enclosed triangle divided
by the area of the convex hull) is close to unity for triangles but substantially
smaller for rectangles and circles: triangle Rtr/ch = 0.95, rectangle Rtr/ch = 0.51,
circle Rtr/ch = 0.44.

the polygons to yield representative values for each shape. For example, the ratio
of the areas of the convex hull and the enclosed triangle is intuitively very close to
one for triangles but substantially less for other shapes such as rectangles or circles
(see figure 9). The distinction between different shapes is obtained by analyzing
the statistical distributions of a set of similar values for each shape class. More
specifically, the distributions are used to construct fuzzy sets for each feature. The
fuzzy sets give probabilities that given a set of strokes belongs to a certain shape
class. This approach is used to address the inherent ambiguity in the input sketches
(for example differentiating between circles and ellipses).

The manually constructed fuzzy sets are embedded in a decision tree that uses
them as criteria to prune away unlikely shape classes. If more than one shape is
possible for a given input the recognizer can return multiple suggestions for the
user to choose from. Apart from basic geometric shapes (triangle, rectangle, circle,
line, rhombus, ellipse) their system differentiates between solid and dashed lines and
recognizes certain gestures bound to actions such as “delete” or “select”.

The approach based on the geometric features alone is intuitive and easy to
understand. The drawback lies on the poor extensibility since only primitive shapes
are recognized. The lack of hierarchical structure prevents the recognition of highly
complex shapes.

Somewhat more complex shapes like crosses are recognized by adding simple
heuristics on top of the geometric features: “number of strokes is 2 AND both
strokes are lines AND strokes intersect”. However, the heuristics need to be manually
constructed. A trainable version of the recognizer uses Naive Bayes classifier together
with a feature vector of 24 geometric shapes [61]. Although the trainable recognizer
does not require manual construction of the fuzzy sets and the decision tree the
same primitive shapes are used.

The method described above has been named CALI (Calligraphic Interfaces).
Others have taken CALI as the basis of their work in related pattern and sketch
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recognition problems. Jota et al. describe a system for recognizing hand gestures
with the help of a video camera [62]. Images of human hand in different poses
are processed to first yield the silhouette and finally the contour of the hand. The
contour is then used as an input for CALI to distinguish between gestures like
point, click and scroll. Caetano et al. aim to create prototypes of user interfaces
by recognizing UI components drawn freehand [63]. They construct heuristics on
top of CALI to recognize sketched UI components like textfields, radio buttons and
menus.
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3 Preprocessing algorithms

Preprocessing the user-drawn sketches is the first part of the sketch recognition
process and thus extremely important. The quality of the preprocessing procedures
affects the performance of the system in every subsequent step of the system. This
section describes in detail a set of algorithms for preprocessing the freehand strokes.
An overview of the problem and an illustration of the input and output parameters
of the algorithm are presented. A thorough explanation of the inner workings of
each method is provided in the form of pseudocode implementation. Furthermore,
the computational complexity of the technique, as well as alternative approaches to
the problem, are discussed.

3.1 Douglas-Peucker

3.1.1 Overview

The Douglas-Peucker algorithm [64] is used to solve the curve simplification problem.
According to Heckbert the problem is to take

. . . a polygonized curve with n vertices (a chain of line segments or “poly-
line”) as input and produce an approximating polygonized curve with m
vertices as output. A closely related problem is to take a curve with n
vertices and approximate it within a specified error tolerance. [65, p. 4]

The problem has been studied by various researches and is of importance in the
fields of digital cartography, GIS (georaphic information system) applications and
CAD (computer-aided design) systems [66]. The heuristic approach called Douglas-
Peucker calculates an approximation for a polyline using an error tolerance given as a
parameter. The algorithm was developed independently by various researchers in the
beginning of 1970’s. In addition to Douglas and Peucker the algorithm was published
by Ramer and is hence occasionally called Douglas-Peucker-Ramer [64, 67].

3.1.2 Input & output

The input for the algorithm is a list of n points P = p1, . . . , pn representing a
polyline and an error tolerance ε. The output is a list of m points Q = p1, . . . , pn.
Usually m < n. However, depending on the nature of the input polyline and the
error tolerance, m might be equal to n if the input polyline cannot be approximated
without losing too much of its details. Due to the nature of the Douglas-Peucker
algorithm every point in Q is also a point in P . In general, polyline simplification
algorithms produce a point set that is not necessarily a subset of the input points.
For example a variation of algorithm presented by Rosensaft produces output points
that are obtained by averaging a pair of input points [68]. The input and output of
the algorithm is depicted in figure 10.
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Figure 10: Input: p1,p2,p3,p4,p5,p6,p7,p8 Output: p1,p6,p8

3.1.3 Algorithm overview

The Douglas-Peucker algorithm recursively splits the input polyline and handles the
parts separately. The algorithm starts by constructing a line segment between the
start and end point of the input (p1 and pn respectively). Then point pz, namely
the point between p1 and pn, furthest away from the line segment is searched by
iterating through the points. If pz is closer than ε (error measure) from the line
segment, all the points between the start and end point can be discarded. Finding
the furthest point from the line segment ensures that no point in between is further
than ε away from the approximation. If pz is further than ε it is included in the
approximation. Algorithm recursively handles the polylines p1, . . . , pz and pz, . . . , pn
(see figure 11 and algorithm 1).
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Figure 11: 11.1 The original polyline. 11.2 The point furthest away from the line
segment between the end points is included in the polyline approximation. 11.3
Algorithm recursively handles the left and right side: on the left side the two points
(in gray) are close enough to the approximating line segment and thus are discarded;
on the right side the point furthest away from the line segment between the end
points is selected. 11.4 The gray points are close enough to the approximating line
segment and thus are discarded. The resulting polyline approximation is marked
with red points and line segments.
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3.1.4 Computational complexity

The high — though not optimal — quality of Douglas-Peucker comes with the cost
of O(n2) upper bound. Consider the worst case when the approximated polyline is
identical to the input polyline and the middle points are added to the approximation
in their natural order (p2, p3, . . . , pn−1). First p1 and pn are the only points included
in the approximation. It takes n− 2 steps in the for-loop to find the furthest point
from the polyline (lines 8–13). Recursive handling of {p1, p2} takes constant time
and handling of {p2, . . . , pn} takes n − 3 iterations in the loop. In the subsequent,
recursive invocations the number of iterations in the loop are n− 4, n− 5, . . . , 2, 1.
The consequent series gives the quadratic computational cost of the algorithm.

(n− 2) + (n− 3) + · · ·+ 2 + 1 =
n2 − 3n+ 2

2

The best case of Ω(n) is achieved when all the points lie on the same line segment be-
tween the start and end point. Expected time cost is approximately Θ(n log n) [65].

3.1.5 Alternative approaches

A modified Douglas-Peucker algorithm has been proposed which has an upper bound
of O(n log n) [69]. However, the algorithm is not general since it requires the input
to be a simple polyline (polyline without self-intersections).

Approaches to the problem are always trade-offs between computational cost
and the quality of the approximating polyline. Kolesnikov provides classification
and thorough listing of different approaches [66]. Naive, optimal algorithms would
have exponential cost but with certain optimizations can be executed in quadratic
or cubic time. Optimum approaches are discussed and one with Θ(mn3) running
time (m denotes the number of output points) is proposed by Perez and Vidal [70].
Faster heuristic algorithms do not achieve optimality but often run in linear time.

Naive, yet not particularly elegant O(n) solution would be to include every kth
vertex in the output. Algorithms of better quality with decent running time are
proposed, among others, by Leu et al [71]. Their algorithm of Θ(n) running time is
based on iteratively examining the polyline and on each iteration simultaneously ap-
proximating arcs with chords with locally minimum deviation from the arcs. Boxer
et. al [72] modified the algorithm to improve the quality of the approximating poly-
line. The modified version of the algorithm has a running time of O(n+ r2) where r
is the number of removed vertices. Algorithms with linear running time are proposed
also in [73],[74],[75] and [76].

The optimization problem of approximating contour of n vertices with a sub-
set of size m is an NP-hard problem [77]. Hence, various approaches to solve the
problem in reasonable amount of time have been presented. These include dynamic
programming, Newton’s method, iterative point elimination, sequential methods,
split-and-merge methods, dominant points or angle detection, k-means-based meth-
ods and evolutionary algorithms.



26

Algorithm 1 douglasPeucker(P, ε)

Input: points P = p1, . . . , pn (polyline), ε (error tolerance)
Output: approximation of input polyline

1: if n < 3 then
2: return P // Return the input points as such (end of recursion)
3: end if
4:

5: Construct line segment l between p1 and pn
6: // Find the point furthest away from the line segment
7: maxDistance = −1, pz = null
8: for i = 2 to n− 1 do
9: if distance(l, pi) > maxDistance then

10: maxDistance = distance(l, pi)
11: pz = pi
12: end if
13: end for
14:

15: if maxDistance ≤ ε then
16: return p1, pn // Discard all other points but start and end point
17: else
18: // Recursively handle the parts
19: left = douglasPeucker({p1, . . . , pz}, ε)
20: right = douglasPeucker({pz, . . . , pn}, ε)
21: Merge left and right into result and remove the duplicate pz
22: return result
23: end if
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3.2 End point refinement filter

3.2.1 Overview

Whether the user stroke is input with a mouse or a pen-based interface the start and
end of the stroke might contain hooklet-like segments. These distortions can be the
result of hardware noise or careless drawing by the user. Especially with pen-based
systems the touching of the tablet and lifting the pen-tip off the tablet can produce
hooklets [33, 78]. Although the hooklets present only a minor deviation from the
intended stroke they impose difficulties in the later steps of the preprocessing and
shape classification. A major implication of a hooklet in a stroke is that it might
change dramatically the direction to which the end of the stroke is pointing (see
figure 12). The direction is essential for example for algorithms that try to deduce
whether the stroke is intented to present a closed shape or not (see section 3.3).

3.2.2 Input & output

The input for the algorithm is a list of n points P = p1, . . . , pn representing a
polyline, bin size B and maximum number of points in a bin M . The output is a
list of m points Q = Astart, . . . , pj, pj+1, . . . , Aend. The stroke represented by points
P might have a hooklet in one or both ends. In the output Q any hooklet is removed.
If there are no hooklets in the stroke the input and output might be identical in
which case Astart = p1 and Aend = pn. However, if a hooklet is removed it holds
that m < n. Furthermore, the set of output points is not necessarily a subset of the
input points. The input and output of the algorithm is depicted in figure 13.

3.2.3 Algorithm overview

The algorithm works symmetrically for the start and end of the stroke. Hence,
only the start of the stroke is considered here. The hooklet or some other form of
unintended scribble is removed by averaging the k first points of the stroke. The
value of k is dynamically constrained by two criteria: size of the averaging bin and

Figure 12: A hooklet can dramatically distort the end direction of a stroke. The
arrows illustrate the intended (solid arrow) and distorted (dashed arrow) end direc-
tions.
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Figure 13: The input (left) and output (right) stroke of the end point refinement
filter.

maximum number of points in the bin (parameters B and M for the algorithm
respectively).

A square-shaped bin (with the side length of B) functions as a window that
contains the points that are to be averaged. The start of the stroke is examined
point at a time while adding each point to the bin. In case a point would not fit
inside the bin or the maximum number of points in the bin is reached, the average
is calculated for the points already in the bin. The x- and y-coordinates of the point
are rounded to the closest integers and the resulting point is denoted by Astart. In
the final step the points that were added to the bin are replaced by their average,
Astart. The execution of the algorithm is illustrated in figure 14 and algorithm 2.

3.2.4 Computational complexity

The computation time of the algorithm is dominated by the for-loop in lines 1–8
since other operations can be done in constant time. The operations within the for-
loop are executed at most M times. In some implementations M could be chosen to
be a certain percentage of the total number of points in the input polyline. In this
case the computational complexity would be O(n). However, usually M is chosen
to be fixed and hence the algorithm can be executed in constant time.

3.2.5 Alternative approaches

Jin et al. use a measure of point density in their agglomerate points filtering [33].
Their approach is computationally slightly more expensive (O(n2)) but removes also
circlet-like distortions around the turning points of the stroke.

Huang et al. propose a set of preprocessing techniques for online handwriting
recognition [79]. They describe a three-step process for eliminating hooks not only
in the ends of the stroke. First, the stroke is interpolated in order to make the stroke
points evenly distributed along the length of the stroke. Second, sharp points are
detected by analyzing the slopes of consecutive points in the stroke. Finally, the
hooks are detected by using certain changed-angle and length thresholds.

PaleoSketch developed by Paulson and Hammond analyzes the first and last 20%
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of the stroke before the recognition process [38]. Within the 20% of the stroke they
search for the highest curvature value. If the value is above a threshold, the stroke
is broken at that point and the tail is removed. The removal is not performed if the
stroke has a low number of points. This criterion is intuitively reasonable for any
end point refinement algorithm.

Algorithm 2 refineEndPoints(P, B, M)

Input: points Pn = p1, . . . , pn (polyline), averaging bin size B, maximum number
of points in the bin M

Output: polyline with hooklets and scribbles removed from the ends
1: for i = 1 to M do
2: if pi can be added to the bin without exceeding the bin size B then
3: Add pi to the bin
4: else
5: // Break out of the loop (to line 10)
6: break
7: end if
8: end for
9:

10: Astart = average(p1, p2, . . . , pk) // pk is the last point added to the bin
11: Astart = closestDiscretePoint(Astart)
12: Replace p1, p2, . . . , pk with A in the output
13:

14: Repeat the process to the end of the polyline (pn, pn−1, . . .) to obtain Aend

15: return polyline Q = Astart, pk+1, pk+2, . . . , Aend
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Figure 14: The execution of the end point refinement algorithm applied to the start
of the stroke (parameters B = 4,M = 10). 1. Start of the original stroke (arrow
indicating the drawing direction). 2 – 7. Points are added to the averaging bin until
its maximum size (B×B) or maximum number of points (M) is reached. 8. Points
in the bin are averaged. 9. The point with discrete (integer) coordinates, closest
to the average (Astart) is used to replace the averaged points. Consequently, the
hooklet in the original stroke is removed.
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3.3 Stroke closing filter

3.3.1 Overview

Closed shapes (polygons, circles, ellipses) are common in many sketching application
domains such as UML (unified modeling language). When drawing closed shapes
the user-drawn stroke is usually not precisely closed. Either the end of the stroke
does not reach the start, or the head and tail of the stroke form a cross. Since many
recognized shapes are closed (circle, polygons) refining these imperfections facilitate
the subsequent classification steps. Jin et al. have presented a simple preprocessing
method for solving the problem [33].

3.3.2 Input & output

The input for the algorithm is a list of n points P = p1, . . . , pn representing a polyline
(single stroke). The output is a list of m points Q. The stroke represented by points
P might be improperly closed. In the output Q the stroke is perfectly closed (the
start and end point of the stroke coincide). Due to the nature of the algorithm the
set of output points is not necessarily a subset of the input points. The input and
output of the algorithm is depicted in figure 15.

3.3.3 Algorithm overview

The algorithm is designed to handle two kinds of imperfections: an un-closed shape
(figure 15a) and a closed shape with a cross with redundant tails (figure 15b). In
the case of an unclosed shape the head and tail of the stroke are extended along
their end directions. If the extensions intersect the intersection point is used as the
start and end point of the stroke thus effectively closing the stroke (figure 16a). The
algorithm must also handle the case where one of the extensions intersects not with
the other intersection but with the tail of the original stroke (figure 16c). When
there is a cross formed by the head and tail of the stroke, the redundant tails are
removed similarly. The intersection point is retained but the rest of the head and
tail are spliced out (figure 16b). The algorithm presented in section 4.4 is used to
find the self-intersections in the stroke. The details of the stroke closing filter are
presented in algorithms 3, 4 and 5.

(a) (b)

Figure 15: Examples of input and output of stroke closing filter. The improperly
closed stroke ends are corrected in the output.
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For simplicity a set of experimentally configured constants are omitted from the
algorithm description. The extension length (EL) is used when extending the head
and tail of the stroke. Using too small a value might prevent the method from prop-
erly closing the stroke. However, too big a value could lead to unwanted behaviour
where a stroke intended to be un-closed is mistakenly closed. The maximum cut-
ted path length (MCPL) defines the maximum length than can be spliced out from
the stroke. The value must be adequately small as otherwise the algorithm might
mistakenly consider a self-intersection in a stroke as a closing point. The maximum
distance from endpoint (MDE) is checked in the case of a cross. An intersection is
not considered as a closing point if it is further away than MDE from either the
start or end point of the stroke.

3.3.4 Computational complexity

The computational complexity of calculating the intersections in line 1 in algorithm 3
is O(n log n + k log n) where k is the number of intersections in polyline P (see
section 4.4.4). The computationally most complex part of the algorithm 4 is the
removal of redundant points in line 7. Other computations can be done in constant
time. Thus, the running time of the subprocedure is O(n) since the removal of points
is ultimately bound by the number of points in the polyline. Algorithm 5 also has to
iterate over the intersection points in line 1. The running time of O(n) applies both
to lines 4–6 and to line 9. Thus, the running time of the subprocedure is O(n+k). By
combining the results we can see that the running time of the algorithm is dominated
by the calculation of intersections. Hence, the overall computational complexity of
the algorithm is the one of intersection calculations, O(n log n+ k log n).

In practise the algorithm is computationally relatively cheap. First, usually the
number of intersections is very small and thus the time requirement for calculating
the intersections is close to O(n log n). Second, usually the number of points to
remove from the polyline is only a fraction of n due to the various constraints
discussed above.

3.3.5 Alternative approaches

The technique presented above is very intuitive since it closely resembles the steps
that a human would take manually to solve the problem. There is very little liter-
ature discussing the problem. A naively simple approach would be merely to check
the distance of the first and last point in the polyline. If the distance is under certain
threshold the points are connected with a line segment. However, this would work
only for an un-closed shape and would not consider the human intention aspect
embedded in the end directions of the head and tail of the polyline. Furthermore,
in the case of a cross, the preprocessed polyline might be even messier than the
original.
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IEL

(a) Closing of the stroke by
extending the ends (dashed
lines). EL extension length, I
resulting intersection point.

x

y

(b) Closing of the stroke by re-
moving the ends (gray lines).
The distances x and y must
be below the thresholds MCPL
and MDE .

I
x

(c) Closing of the stroke when
the end extension intersects
with the stroke tail. The
length of the cut-out part (x)
must be below MCPL.

I
x y

(d) The self-intersection is re-
tained because x and y are
larger than the thresholds.

I

(e) The stroke ends are near
the self-intersection point I:
x < MDE and y < MDE .
However, the cutted path
length z would be larger than
the threshold MCPL. Thus,
the algorithm continues by
searching for the intended clos-
ing point by extending the ends
of the stroke (dashed lines).

Figure 16: Various scenarios faced by the stroke closing algorithm.
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Algorithm 3 closeStroke(P)

Input: points Pn = p1, . . . , pn (polyline)
Output: polyline properly closed (if necessary)

1: L = intersections(P ) // Calculate list of self-intersections in P .
2: if L = ∅ then
3: return handleNoIntersections(P)
4: else
5: return handleIntersections(P ,L)
6: end if

Algorithm 4 handleNoIntersections(P)

Input: points Pn = p1, . . . , pn (polyline)
Output: polyline properly closed (if necessary)

1: Construct line segments headext and tailext extending the head and tail of P
2: if headext and tailext intersect in point I then
3: // See figure 16a
4: Add I as the first and last point in P
5: else if Either headext or tailext intersect with a line segment in P in point I

and I satisfies MCPL and MDE constraints then
6: // See figure 16c
7: Remove points in P that come after I
8: Add I as the first and last point in P
9: end if

10: return P

Algorithm 5 handleIntersections(P, L)

Input: points Pn = p1, . . . , pn (polyline), list of intersections L = I1, . . . , Ik
Output: polyline properly closed (if necessary)

1: Find the intersection I closest to p1 and pn
2: if I satisfies MCPL and MDE constraints then
3: // See figure 16b
4: Remove points in P that come after I
5: Add I as the first and last point in P
6: return P
7: else
8: // See figure 16e
9: return handleNoIntersections(P)

10: end if
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4 Feature extraction algorithms

Although the raw points of the user-drawn sketch define the input accurately and
completely, they are as such of little use to the shape recognition process. To
differentiate between the shape classes one must select a set of representative features
and extract those features from raw data. This section lists a collection of algorithms
for computing certain geometric features of the input sketch. As with preprocessing
algorithms the subsections discuss each algorithm in detail and provide an overview
of the problem and proposed approach, the input and output of the algorithm, as well
as a pseudocode implementation. The computational complexity of the algorithm
and alternative approaches in the literature are also discussed.

4.1 Convex hull

4.1.1 Overview

A subset S of the plane is called convex if and only if for any pair of points a, b ∈ S
the line segment ab is completely contained in S [80, 81]. The convex hull CH (S)
of a set S is the smallest convex set that contains S. A special case concerns only
a finite set of points P where the convex hull CH (P ) can be defined as the unique
convex polygon whose vertices are points in P and that contains all points in P .
See figure 17.

4.1.2 Input & output

The convex hull algorithm is supposed to solve the problem of finding the convex hull
CH (P ) for a finite set of points P . Thus, the input is n points in P = p1, p2, . . . , pn
in arbitrary order. The output is a subset of P : the vertices of the unique, convex
polygon that is the convex hull. To specify the output more accurately we require
that the output points are listed in clockwise order starting with the leftmost point.
See figure 18.

a

b

ab

(a) convex

ab

a

b

(b) non-convex (c) convex polygon

Figure 17: Convex and non-convex planar sets and convex hull (polygon) for a finite
set of points.
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Figure 18: Input: p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11 Output: p3,p6,p5,p9,p4,p10,p8,p7

a b

(a)

upper hull

lower hull

p1

pn

(b)

Figure 19: Convex hull definitions

4.1.3 Algorithm overview

The idea of the algorithm relies on the observation that if ~ab is an edge of the
convex hull all the points in P lie to the right of a line that coincides with the
edge (illustrated in figure 19a). First, the input points are sorted by ascending x-
coordinate (ascending y-coordinate if x-coordinates are the same) giving a sequence
p1, . . . , pn. Thus, the convex hull can be divided into upper hull and lower hull that
both have p1 and pn as their first and last points (figure 19b). Determining the
convex hull is done by constructing the upper and lower hull separately.

The computation of the upper hull can be thought of as walking around the
boundary of the convex hull from p1 to pn. We observe that when moving to the
next point we are always making a right turn. Otherwise the previous point would
not be a part of the upper hull. The algorithm incrementally adds points to and
updates the upper hull. The updating step checks whether the last three points
make a right turn, in which case a new point is added. However, if the last three
points make a left turn, the second last point has to be removed from the upper hull
and the check repeated. Finally the rightmost input point is added to the upper
hull. The lower hull is computed similarly but this time proceeding from pn to p1.
The upper and lower hull are combined and since p1 and pn are included in both
lists, the duplicates are removed. See algorithm 6 and figure 20 for the details.
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4.1.4 Computational complexity

The sorting of points in line 1 can be done in O(n log n) time (for example with
heapsort [81]). The for-loop is executed n − 2 times. Within the loop, in line 5, a
point is deleted from Lupper . For each point this can happen once at most. Thus, the
number of executions of line 5 is bounded by n and the for-loop takes O(n) time.
The computation of the lower hull also takes O(n) time. Therefore the overall time
requirement for the algorithm is determined by the time requirement of the initial
sorting of the points O(n log n).

4.1.5 Alternative approaches

Computing the convex hull for a set of points is a classic topic in computational ge-
ometry and is discussed extensively in the literature. The algorithm above is based
on an algorithm presented by Graham, commonly known as Graham’s scan [81, 82].
The approach above, sorting the points on x-coordinate and computing upper and
lower hull separately, is a modification presented by Andrew [83]. The computa-
tional complexity of the algorithm presented above is in fact also the lower bound
(Ω(n log n)) for all algorithms [84]. However, algorithms of improved upper bound
performance have been introduced by many authors. The method presented by
Jarvis, known as Jarvis’s march, compares the polar angles of the points to incre-
mentally achieve the solution [81, 85]. The algorithm achieves an output-sensitive
computational complexity of O(hn) where n is the number of input points and h
is the number of vertices in the resulting convex hull. Eddy achieves the same
worst-case performance with divide-and-conquer type of approach [86]. Finally,
Kirkpatrick and Seidel have presented an O(n log h) algorithm to the problem [87].
The method is based on dividing the set of points with a vertical line to the right
and left part and handling the parts recursively.

Algorithm 6 convexHull(P )

Input: points P
Output: convex hull CH (P ) as a list of polygon vertices in clockwise order

1: Sort the points by ascending x- and y-coordinate resulting in P = p1, . . . , pn
2: Initialize list Lupper = (p1, p2)
3: for i = 3 . . . n do
4: while Lupper contains more than two points and the last three points in Lupper

do not make a right turn do
5: Delete the middle one of the last three points from Lupper

6: end while
7: end for
8:

9: Repeat for lower hull resulting in list Llower

10: Remove the first and last point from Llower

11: Append Llower to Lupper → L
12: return L
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1 2

3 4

Figure 20: The execution of the convex hull algorithm. In 1, 2 and 3 the last three
points do not form a right-turn. Hence, the middle point is removed from the list.
In 4 a right-turn is formed and the algorithm moves to the next candidate point.
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4.2 Minimum-area enclosing rectangle

4.2.1 Overview

Minimum-area enclosing rectangle for a set of points P is the smallest, unique rect-
angle that contains all the points in the set. The difficulty of the problem lies in
the fact that in a general case, the sides of the resulting rectangle are not parallel
with the coordinate axes. The problem can be simplified by requiring that the set
of points P forms a convex polygon. For an arbitrary set of points this can be
achieved by computing its convex hull using the algorithm described in section 4.1.
In addition to theoretical interest the solution to the problem has applications in
certain packing and layout problems, as well as in determining a suitable package
size in goods transport [88, 89].

4.2.2 Input & output

The input for the algorithm is a convex polygon represented as a list of points
P = p1, p2, . . . , pn sorted in clockwise order. The output is a rectangle of minimum
area enclosing the input points. The rectangle is represented as a list of points
R = r1, r2, r3, r4 sorted in clockwise order. See figure 21.

4.2.3 Algorithm overview

The algorithm to solve the problem is based on the theorem 4.1 proved by Freeman
and Shapira.

Theorem 4.1 The rectangle of minimum area enclosing a convex polygon has a
side collinear with one of the edges of the polygon. [88, p. 411]

By using the theorem 4.1 a naive approach would be to iterate over each edge of
the polygon, constructing the corresponding rectangle and computing its area. This

p1

p2

p5
r1

p4

r2 r3=p3

r4

Figure 21: Input: polygon p1,p2,p3,p4,p5 Output: rectangle r1,r2,r3,r4
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(a) Some lines of support for a polygon

p1

p2
p3

p4
p5

(b) p3 and p5 are an anti-podal pair. For
example p1 and p4 are not since they do
not admit parallel lines of support.

Figure 22: Lines of support and anti-podal pairs.

is in fact the approach adopted in [88] and results in running time of O(n2). It
is obvious that the lower bound for the problem is Ω(n) since the algorithm needs
to examine each point at least once. Based on the theorem 4.1 Toussaint achieved
also the same upper bound in [90]. Toussaint’s algorithm utilizes the method of
rotating calipers that was first presented by Shamos in [91]. Pirzadeh gathers the
results above and presents Toussaint’s algorithm for computing the minimum-area
enclosing rectangle in [92].

The idea of rotating calipers is based on lines of support and anti-podal pairs
(see figure 22).

Definition 4.1 A line L is a line of support for a convex polygon P if it intersects
P and the interior of P lies on one side of L. [92, p. 10]

If L intersects P at a vertex v (or an edge e), v (or e) is said to admit L.

Definition 4.2 Given a convex polygon P , a pair of vertices p, q ∈ P is called an
anti-podal pair if p and q admit parallel lines of support. [92, p. 10]

Shamos used two parallel lines of support to iterate over all the anti-podal pairs
of a convex polygon in order to calculate the diameter of the polygon (the distance
between the vertices that are farthest apart). The iteration is done by “rotating”
the lines of support (see figure 23) around the polygon. Hence the term “rotating
calipers”. Toussaint added another pair of parallel lines of support to efficiently
iterate over all the edges of the convex polygon given as an input. See algorithm 7
and figure 24 for details.
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Algorithm 7 minimumAreaEnclosingRectangle(P)

Input: points P (convex polygon with n vertices)
Output: minimum-area enclosing rectangle ER(P )

1: Find vertices with minimum and maximum x and y-coordinates (pxmin, pxmax,
pymin and pymax)

2: Initialize two sets of calipers (parallel lines of support) coinciding pxmin, pxmax,
pymin and pymax and parallel to the coordinate axes. The calipers form a rectangle
enclosing P and angles θi, θj, θk and θl (see figure 24.1).

3: while calipers have been rotated in total less than π/2 (90◦) do
4: θ = min(θi, θj, θk, θl)
5: Rotate calipers by θ, thus making the rectangle coincide with another edge of

the polygon
6: Compute A, the area of the rectangle
7: if A < the current minimum (area of the rectangles seen so far) then
8: Store A as the current minimum
9: end if

10: Compute θi, θj, θk and θl
11: end while
12: return the rectangle that had the smallest area
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23.1 23.2 23.3 23.4

Figure 23: The idea of rotating calipers : edges of the polygon are iterated by rotating
parallel lines of support around a polygon.

4.2.4 Computational complexity

The operations in lines 1, 2 and 4–10 can be executed in constant time. The while
loop is executed n times. This is evident since every rotation of the calipers results
in one new edge of the convex polygon to coincide with one of the calipers. Once
the calipers have rotated an angle of over π/2, all edges of the polygon have been
examined. Hence, the computational complexity of the algorithm is O(n) where n
is the number of vertices of the input polygon.

4.2.5 Alternative approaches

Essentially the same algorithm inspired by the work of Shamos was described also
by Arnon and Gieselmann [93]. The problem can be generalized into three dimen-
sions, the solution for which resembles the principles of rotating calipers in 2D [94].
Perhaps surprisingly the problem of the minimum-perimeter enclosing rectangle is
not equivalent with the minimum-area case. The two problems can be solved in a
similar manner but in rare cases the solutions do not coincide [95].



43

ϴi

ϴj ϴl

ϴk

p
min

x

p
max

y p
max

x

p
min

y

=

24.1

ϴi

ϴj

ϴl

ϴk

24.2

ϴi

ϴj

ϴl

ϴk

24.3

Figure 24: Computing the minimum-area enclosing rectangle for a convex polygon
using rotating calipers. The algorithm starts with the rotating calipers parallel to
the coordinate axes. In figure 24.1 θj = min(θi, θj, θk, θl) and thus the calipers are
rotated by θj. In figure 24.2 the minimum angle is θl.
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4.3 Maximum-area enclosed triangle

4.3.1 Overview

The maximum-area enclosed triangle for a convex polygon is the largest triangle, the
vertices of which lie inside the polygon. The triangle is not unique in a general case
because of symmetry. This is obvious for example in the case of regular polygons
with more than three vertices (see figure 25a). The problem falls into the category of
finding inscribing or circumscribing polygons that maximize a certain measurement
such as area or perimeter.

4.3.2 Input & output

The input for the algorithm is a convex polygon represented as a list of vertices
P = p1, p2, . . . , pn where n ≥ 3 sorted in clockwise order. The output is a triangle of
maximum area that is fully contained by the polygon. The triangle is represented
as a list of three points T = A,B,C sorted in clockwise order. See figure 25b.

4.3.3 Algorithm overview

The algorithm described here was presented by Dobkin and Snyder [96]. They try
to solve a family of geometric optimization problems that are of form:

If P is an n sided convex polygon, what is the largest kgon having
specified properties which may be embedded in P . [96, p. 9]

The algorithm is based on the theorem 4.2 that the authors prove by induction.

Theorem 4.2 Given an n-gon Pn = p1, . . . , pn, and an integer k > 1, there is an
area maximizing inscribed k-gon, Pk = p′1, . . . , p

′
k such that {p′1, . . . , p′k} j {p1, . . . , pn}.

[96, p. 10]

(a) In some cases there
are many triangles with the
same maximum area.

p
1

A=p
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(b) Input: polygon p1,p2,p3,p4,p5,
p6,p7 Output: triangle A, B, C

Figure 25
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That is, the vertices of the maximum area triangle are also vertices of the convex
polygon which implies that there is an algorithm that can solve the problem in finite
time.

Iterating through all combinations of three vertices would naturally yield the
solution but the computational complexity of the approach would be cubic. However,
Dobkin and Snyder present a proof that the problem can be solved faster by using
three points which define an inscribed triangle and are moved along the vertices
of the polygon. In brief, the algorithm starts by setting the three points to three
consecutive vertices of the polygon. The first point is moved along the vertices
of the polygon as long as the area of the triangle does not decrease. Next the
procedure is repeated to the second point moving it as long as the area does not
decrease. Finally, the third point is moved to the next vertex of the polygon and the
algorithm continues moving the first and second point. The vertices of the polygon
are iterated in this manner and the maximum-area triangle is kept in memory. The
method is described in more detail in algorithm 8 and illustrated in figure 26.
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Figure 26: First steps in computing the maximum-area enclosed triangle for a convex
polygon.
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4.3.4 Computational complexity

In algorithm 8, function area denotes the calculation of the area of a triangle. The
calculation can be done in constant time. The computational complexity of the
algorithm can be determined by considering how many times area is executed. The
reasoning is based on the following observations: area is executed at most six times
before some of the vertices (pa, pb, pc) advances in line 7, 10 or 19. Point pa visits
exactly n vertices. The lines 6, 9 and 20–21 ensure that pa, pb and pc maintain
their order. Consequently, neither pb nor pc can overtake pa and therefore they visit
fewer than 2n vertices. This reasoning yields the total number of executions of area:
2n(6 + 6) + 6n = 30n. The average execution is likely to require fewer executions
but the worst case scenario gives the linear upper bound O(n).

4.3.5 Alternative approaches

The upper bound of the algorithm is clearly also the lower bound since an optimal
algorithm has to go through all the vertices of the polygon in order to find the
maximum-area triangle. In addition to the triangle algorithm Dobkin and Snyder
provide a k-gon version of their procedure. Both algorithms rely on the fact that the
input polygon is convex. Boyce et al. continue by finding maximum perimeter and
area convex k-gons with vertices k of the given n points [97]. Specially, it is noted
that the n points are totally arbitrary. The authors prove that the vertices of the
k-gon are points on the convex hull of the set of n points and provide an algorithm
with O(kn log n+ n log2 n) running time and linear memory requirement.
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Algorithm 8 maximumAreaEnclosedTriangle(P)

Input: points Pn = p0, . . . , pn−1, n ≥ 3 (convex polygon)
Output: vertices A,B,C of the maximum-area enclosed triangle

1: // All additions are performed modulo n
2: A = p0, B = p1, C = p2
3: a = 0, b = 1, c = 2
4: repeat
5: while true do
6: while area(pa, pb, pc+1) ≥ area(pa, pb, pc) do
7: c = c+ 1
8: end while
9: if area(pa, pb+1, pc) ≥ area(pa, pb, pc) then

10: b = b+ 1
11: else
12: // Break out of the loop (to line 16)
13: break
14: end if
15: end while
16: if area(pa, pb, pc) > area(A,B,C) then
17: A = pa, B = pb, C = pc
18: end if
19: a = a+ 1
20: b = (a == b) ? b+ 1 : b
21: c = (b == c) ? c+ 1 : c
22: until a = 0 // We have iterated through all vertices of the polygon
23: return A,B,C
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4.4 Intersections

4.4.1 Overview

Few sketch recognition approaches employ the detection of intersection points of the
strokes. This is due to the fact that a vast majority of the recognized shapes contain
no intersections at all (excluding the closing point of closed shapes). Furthermore,
the shapes that do, can usually be recognized by other means and thus the inter-
section information is of no value. However, in certain heuristics the information
on self-intersections of a stroke can prove useful. The heuristics might be used to
facilitate the recognition of not only visual shapes but control gestures that do not
necessarily resemble any visual objects.

The algorithm presented is based originally on the work by Shamos and Hoey [98].
They developed so called sweep line algorithm (or plane sweep algorithm) the idea
of which is based on a conceptual sweep line that is swept over a surface. The
sweep line is stopped at certain points for calculations and condition evaluations.
The benefit of using the sweep line is the reduction in the number of calculations
required to produce the output. The technique has many applications in computa-
tional geometry where the computational complexity can be dramatically reduced
compared to naive algorithms.

Building upon the work of Shamos and Hoey the sweep line algorithm was ex-
tended by Bentley and Ottmann [99]. Their algorithm calculates the intersection
points of a set of line segments and cleverly avoids exhaustive checking for inter-
section between each segment. The geometrical basis of the algorithm is highly
intuitive and the technique is described below together with a series of illustrating
figures.

However, some degenerative cases of the input, as well as implementation details,
are omitted for clarity. The algorithm is described in detail in [80] including proofs
for correctness and running time as well as some implementation pitfalls. The outline
of the approach is presented below.

4.4.2 Input & output

The input for the algorithm is a set of n line segments S = s1, . . . , sn, each defined
by two points. In the context of hand-drawn strokes, the lines are obtained by
splitting each polyline into its parts. The output is a set of m intersection points
P = p1, . . . , pm between the lines. The line segments are considered to include the
start and end point. Thus two lines with end points coinciding are considered to
intersect (even if they are collinear).

However, in the case of lines obtained from a single polyline it is noted that
all consecutive lines intersect. These intersections can simply be removed from the
output. The input and output of the algorithm is depicted in figure 27.
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(a) Input: line segments. Out-
put: intersection points between
the line segments.

(b) Input: each line segment
of each polyline. Polylines are
numbered for clarity (xS and
xE denote the start and end
of stroke x respectively). Note
that the output includes self-
intersections (polylines 1 and 2),
a self-intersection which closes the
polyline (polyline 4) and an in-
tersection at which the lines only
“touch” each other (intersection
between polylines 2 and 3).

Figure 27: Input and output of the algorithm.

4.4.3 Algorithm overview

The algorithm is based on a horizontal sweep line l that is thought of as starting
the sweep above all line segments. Gradually l is moved downwards in discrete
steps. Each step moves the sweep line to a position where it coincides with an event
point. At each event point calculations are made to find possible intersections and
to update the status of the sweep line.

The status of the sweep line is defined as the ordered sequence of segments inter-
secting the sweep line (see figure 28). The order of the line segments is resolved by
their intersection points with the sweep line. The line segments with the intersection
points on the left come first in the ordering. When the sweep line is moving down-
wards line segments are added to the status, removed from the status and their order
is changed. The rationale behind maintaining the status is to reduce the number of
intersection checks. The data structure used to hold the status is denoted by τ .

In addition to the sweep line status the algorithm needs to maintain an event
queue Q. The event queue contains the event points ordered by descending y-
coordinate. If two points have the same y-coordinate, the one with smaller x-
coordinate comes first. Figure 29a illustrates the event queue ordering. There
are three types of event points: upper point of a line segment, lower point of a
line segment and an intersection point. Upper and lower point of a line segment is
distinguished based on the same criteria as with the ordering of Q (see figure 29b).
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Figure 28: The status of the sweep line (dashed): s2, s1, s4, s5, s6.
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(a) Ordering of points in the
event queue. Points with big-
ger y-coordinate and smaller x-
coordinate come first. If points
lie on the same horizontal line
the ones with smaller x-coordinate
come first. Horizontal lines (gray)
added for clarity.
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(b) Distinction of upper (up) and
lower (lo) points of line segments.
In the case of horizontal lines the
left and right end points are de-
noted upper and lower points re-
spectively.

Figure 29

The sweep line iterates through the event points and at each point the type of
the point determines the actions to take. At an upper point a new line segment is
intersecting with the sweep line (figure 30a). The line segment must be added to the
status of the sweep line while maintaining the order constraint of the status. Next at
most two intersection checks are made since the new segment might intersect with
the ones already in the status. The lines to check are the one to the left and the
one to the right of the new line segment. If any intersections are found (below the
sweep line) they are added to the event queue. The new line might have intersection
points with other lines in the status as well, but these are detected in later steps of
the algorithm.
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At an intersection point, two line segments (the ones that are intersecting) in the
status switch their order (figure 30b). This means that each of them gets at most
one new neighbor — “At most” since the segment can end up being the leftmost or
rightmost segment in the status. Again, the two lines are checked for intersections
with their new neighbors and any intersection points found are added to the event
queue.

Facing an end point of a line segment means that the line segment is removed
from the sweep line status (figure 30c). Thus, the left and right neighbor (if there
are any) of the segment now become adjacent and are checked for an intersection.
Once again, the possible intersection point is added to the event queue.

Advancing in this manner has two implications. First, at each point only the
neighboring line segments are checked for intersections which is a tremendous gain
in the running time of the algorithm. Second, the correctness of the algorithm is
guaranteed by the invariant: all intersection points above the sweep line have been
found. The invariant is based on the fact that a pair of intersecting line segments
are adjacent in the sweep line status at some point of the execution of the algorithm.
Since at some point they are adjacent they are ensured to be checked for intersection.

4.4.4 Computational complexity

The naive approach to the problem would be to check every line segment against
each other for intersections. The implementation of the algorithm is very simple and
it works for small input size n. However, with larger input the O(n2) running time
is highly unfavorable. The problem of the algorithm is that in most cases each line
segment is far away from the majority of other line segments. Intuitively it would be
more efficient to check for intersections only between the line segments that lie close
to each other. The sweep line and its status data structure is designed to tackle this
deficiency in the brute force algorithm.

In the original work of Shamos and Hoey an O(n log n) algorithm is presented
for determining whether n planar line segments intersect [98]. They also prove
that the problem of finding all k intersections has the lower bound Ω(n log n + k).
The finding of such algorithm is left as an open problem. Bentley and Ottmann
address the problem indirectly by providing the algorithm presented above. It has
the running time of O(n log n + k log n). The algorithm is clearly output-sensitive
since it has to iterate over each intersection point.

Certain constraints on the data structures used in the algorithm must be set in
order to achieve the O(n log n+k log n) running time [80]. The event queue Q must
support operations for fetching the next event point, inserting a new one and testing
whether a point is already present in Q. The event queue can be implemented as a
balanced binary search tree which takes O(logm) time for fetch, insert and lookup
operations (m is the number of points in the queue) [81]. A variation of a balanced
binary search tree can also be used as the data structure of the sweep line status τ .
Consequently, neighbor search and update operations take O(log n) time. An O(n)
storage requirement can be achieved by storing in Q only the intersection points
among adjacent segments. This can be achieved by modifying the algorithm to



52

sl

sk

sm

(a) At an upper point (of line segment sl) the
line segment is added to the status of the sweep
line and is checked for intersections with its
neighbors in the status (sk and sm) and pos-
sible intersection points are added to the event
queue.

sk sl sm
sn

so

(b) At an intersection point the intersection is
recorded. Intersecting line segments (sl and sm)
switch their order in the status of the sweep line.
Thus, they have to be checked for intersections
with their new neighbors (sl is checked against
sn and sm is checked against sk). Possible in-
tersection points are added to the event queue.

sk
sl sm

(c) At a lower point, the line segment (sm)
is removed from the status of the sweep line.
This requires the checking of new neighbors (sk
and sl) for intersections. A possible intersection
point is added to the event queue.

Figure 30: The three types of event points and the corresponding action taken by
the algorithm when sweeping over them.
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delete an intersection point when the intersecting lines stop being adjacent and
re-adding it when the lines become adjacent again.

4.4.5 Alternative approaches

The question whether the lower bound of Ω(n log n+k) can be achieved was left open
in Bentley and Ottmann’s algorithm [100]. The question was answered by Chazelle
and Edelsbrunner who presented an optimal algorithm for solving the problem [101].
Their approach is also based on the sweep line technique but employs additional ideas
and requires a rather complex proof for the running time. The storage requirement
of the algorithm is O(n+ k).

Thus, the question remained whether an algorithm exists that runs in optimal
time and also has the optimal storage requirement of O(n). A few years later
Balaban introduced an algorithm with the same time complexity but with the op-
timal O(n) space requirement [102]. In addition to the deterministic algorithms
above, techniques using randomized approaches were presented by Clarkson and
Shor in [103] and by Mulmuley in [104]. Their algorithms achieve the optimal O(n)
spare requirement and the expected running time of O(n log n+ k).
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Algorithm 9 intersections(S)

Input: INPUT a set of line segments S = s1, . . . , sn
Output: OUPUT intersection points between segments in S
1: Initialize an empty event queue Q and sweep line status τ
2: Insert both end points of each segment into Q
3: while Q 6= ∅ do
4: pop (get and remove) the next event point P in Q
5: handleEventPoint(P)
6: end while
7: return all intersection points found when executing handleEventPoint

Algorithm 10 handleEventPoint(P)

Input: INPUT event point P
Output: OUPUT (No output. The function stores possible intersection points.)
1: // U(P ): set of segments whose upper point is P
2: // C(P ): set of segments that have P in their interior
3: // L(P ): set of segments whose lower point is P
4: Find U(P ), C(P ) and L(P )
5:
6: if U(P ) ∪ C(P ) ∪ L(P ) contains more than one segment then
7: Add P to the set of intersections points
8: end if
9: Delete the segments in L(P ) ∪ C(P ) from τ

10: Insert the segments in U(P ) ∪ C(P ) into τ
11: // Deleting and re-inserting the segments in C(P ) ensures their correct order
12:
13: if U(P ) ∪ C(P ) = ∅ then
14: Get sl and sr (left and right neighbor of P ) from τ
15: if sl and sr intersect below the sweep line then
16: Insert the intersection point into Q
17: end if
18: else
19: // Let slm and srm be the leftmost and righmost neighbors of U(P ) ∪ C(P ) in τ
20: // Let sl be the left neighbor of slm
21: // Let sr be the right neighbor of srm
22: if slm and sl intersect below the sweep line then
23: Insert the intersection point into Q
24: end if
25: if srm and sr intersect below the sweep line then
26: Insert the intersection point into Q
27: end if
28: end if
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4.5 Compound features

The geometric properties of the input strokes described above are used to obtain
a set of representative features to be used in shape classification. First, the area
and perimeter are calculated for the convex hull, enclosing rectangle and enclosed
triangle. The values are not usable as such since they are dependent on the size of
the drawn shape. Certain combinations of the values are of more use.

For example, if we denote the perimeter and area of the convex hull with Pch

and Ach respectively the thinness ratio P 2
ch/Ach is especially useful in distinguishing

circles from other shapes [59]. Since a circle covers the maximum area with a
constant perimeter, its thinness is the smallest (4π ≈ 12.57) of all planar figures
(see figure 31). The other compound features utilized in the recognition process are
presented in the next section.
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Figure 31: Thinness ratio for three shapes. The thinness of circles is the smallest.
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5 Sketch recognition using geometric features and

heuristics

Various approaches to sketch recognition have been presented in the past 15 years.
They differ mostly in their level of domain specificity, extensibility and hierarchical-
ity of recognition. The majority of the articles focus heavily on the shape classifica-
tion. Some also include techniques for preprocessing, shape fitting and regulariza-
tion.

This section describes an approach to sketch recognition inspired by previous
work. The focus of this thesis is on the first two steps of shape recognition, namely
curve preprocessing and shape classification. Shape fitting is implemented with
simple rules to complete the system. Shape regularization is beyond the scope of
the thesis.

The previous section gave a detailed analysis of the algorithms used for pre-
processing and shape classification. This section covers the integration of those
algorithms into a working sketch recognition system. Furthermore, the shape clas-
sification method is presented. Also, the nature of the user interface and essential
usability matters are briefly discussed.

5.1 Approach step-by-step

The system is used by drawing a set of strokes with a mouse or a digitizing tablet.
A timeout value is used to decide which strokes belong to the same shape. That
is, after the last stroke has ended and no new strokes have been started within
a given time, the strokes drawn so far are collected and recognized as a whole.
The next stroke starts a new shape. This timeout-based approach is used in [59].
Additionally, one could define a threshold value for the distance between strokes. If
a stroke (within the timeout value) is far away from the previous ones, the previous
strokes are input to the recognition system and the new stroke is considered to start
a new shape. Alvarado and Davis point out that the requirement of completing
a shape with consecutive strokes imposes a restriction on the drawing style of the
user [37]. While strictly true, the restriction is quite minimal in this context since
a vast majority of simple shapes are drawn in this manner in any case. The input
is thus an ordered collection of strokes that contain the list of input points together
with their timestamps captured by the input device. XML can be used to present
an example of the input data (see listing 1).

Listing 1: Example input for the recognizer
<Strokes expectedshape=”Rectangle ”>

<Stroke> <−− Fi r s t s t r o k e −−>
<Point x=”830” y=”783” time=”1377360941”/> < !−− Fi r s t po in t −−>
<Point x=”826” y=”780” time=”1377361029”/> < !−− Second po in t −−>
. . .
<Point x=”781” y=”739” time=”1377361090”/> < !−− Last po in t −−>

</ Stroke>
<Stroke> < !−− Second s t ro k e −−>

. . .
</ Stroke>

</ Strokes>
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The raw input points are first preprocessed in four steps as described in fig-
ure 32. The preprocessing is performed similarly for each stroke. For example,
the preprocessing closes only shapes that consist of a single stroke. Thus, the ben-
efit of preprocessing is merely to clean each individual stroke rather than search
for interstroke relations. In the majority of cases the polyline approximation step
also dramatically reduces the number of points that need to be processed by other
algorithms.

In figure 32 one can see the co-operative nature of the end refinement algorithm
and stroke closing algorithm. Without the end refinement step the stroke closing
would not work, since in the polyline approximation the ends of the stroke are
pointing away from each other. Thus the method of extending the ends of the
strokes described in section 3.3 would fail.

The course of feature extraction, shape classification and shape fitting is depicted
in figure 33. First the convex hull is calculated for the preprocessed input points.
Next the minimum-area enclosing rectangle and the maximum-area enclosed triangle
are calculated for the convex hull. The properties of the three polygons together
with other values, such as the total number and length of strokes, are used to obtain
likelihood for each shape. The shape with the highest likelihood is selected and a
fitted shape is created to replace the original user sketch.

5.2 Shape decision process

To identify the drawn shape, a classification method similar to the one employed by
Fonseca et al. is used [60]. First, a set of 50 training samples are drawn for each
shape. Second, the obtained training material is used to construct a boxplot for each
feature. A boxplot graph is used to depict numerical data graphically to indicate
certain statistical features of the data (see figure 34a for explanation) [105, 106].
Third, the boxplot figure is used to obtain a set of so called fuzzy sets for each
shape-feature pair. Finally, certain manual corrections are made to the fuzzy sets.
The corrections account for information that cannot be embedded in the training
samples. For example, the length of a line can be infinitely large and thus the
information cannot be present in the training data.
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(a) Original input polyline (b) Polyline approximation (filtered for
redundant and duplicate points)

(c) Stroke ends refined (d) Stroke ends closed

Figure 32: The preprocessing steps of the recognition system. First Douglas-Peucker
algorithm is used to filter out redundant points. Duplicate points (consecutive points
with the same coordinates) are removed as well in (a)–(b). Stroke ends are refined
with the averaging based method in (b)–(c). Finally, stroke ends are closed properly
in (c)–(d).
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(a) Convex hull calculation (b) Feature polygon calculation
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Figure 33: The feature extraction, shape classification and shape fitting steps. First,
the convex hull of the input is calculated in (a). Second, enclosed triangle and
enclosing rectangle are calculated in (b). A set of feature values are calculated
which are then used to calculate likelihood (probability) for each shape (c). Fitted
rectangle in (d).
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5.2.1 Fuzzy sets

Fuzziness is a concept of vagueness concerning the description of the semantic mean-
ing of events and statements [107]. Fuzzy sets are a way of handling the vagueness
(uncertainty) in grouping items in the data. In a deterministic context an item
either belongs to a set or not: “the scribble drawn by the user is a rectangle”. In
fuzzy set theory the relation is more vague: “the scribble is a rectangle with 60%
probability”. In the field of sketch recognition fuzzy sets can be used to handle the
inherent uncertainty in the data.

The figure 34b illustrates a fuzzy set obtained from the boxplot. The fuzzy sets
attaches a probability to the value of the feature. The probability is called degree
of membership. Several fuzzy sets are used to define each shape. Some features are
used to identify the correct shape, while others can be used to filter out mismatches.

5.2.2 Recognized shapes

The recognition system implemented can distinguish between eight shapes: arrow,
circle, diamond (or rhombus), ellipse, line, rectangle, star and triangle. Arrow
and star are recognized by using simple heuristics that are described later. The
classification of rest of the shapes rely solely on the geometric features. The ninth
shape, scribble, is used as the “unknown shape” when the system cannot recognize
the strokes as any other shape. The recognized shapes are depicted in figure 35.

The line is recognized by using the thinness ratio which is defined as P 2
ch/Ach

where Pch and Ach denote the perimeter and area of the convex hull respectively.
The convex hull of a line is “thin” in the sense that it is little in area but big in
perimeter. Thus, the thinness ratio for line is significantly greater than for any other
shape (see figure 36).

The thinness ratio can also be used to distinguish circles. Since a circle covers the
maximum area with a constant perimeter, its thinness is the smallest (4π ≈ 12.57)
of all planar figures. Figure 37 illustrates the distinctive values for circles.

The recognition of triangles can be achieved by using the convex hull and the
maximum-area triangle enclosed within it. The area of the triangle is usually only
slightly smaller than the area of the convex hull. Thus, one uses the ratio Atr/Ach,
where Atr and Ach denote the areas of the triangle and convex hull respectively. The
ratio is near unity for triangles and smaller for other shapes (see figure 38).

The rectangle is recognized similarly to the triangle. One utilizes the fact that
the convex hull and minimum-area rectangle enclosing it are almost identical for
rectangles. Thus, the ratio Pch/Pre is used, where Pch and Pre denote the perimeters
of the convex hull and enclosing rectangle respectively. The ratio is near unity for
rectangles and smaller for other shapes, excluding lines (see figure 39).

Distinguishing the diamond and the ellipse from each other and the rectangle
imposes another challenge. The distinction can be achieved by employing two new
features: A2

ch/(AtrAre) and Atr/Are. Symbols Ach, Atr and Aer denote the areas of
the convex hull, enclosed triangle and enclosing rectangle respectively. The values
of both features for the three shapes are illustrated in figures 40 and 41. Diamond
can be distinguished by using the first ratio and rectangle by using the second ratio.
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(a) The bottom and top of the box represent Q1 = 25th and Q3 = 75th percentile respectively.
The vertical band inside the box is the median (50th percentile). Interquartile range is defined
to be the difference between the third and first quartiles: IQR = Q3 − Q1 . In this thesis the
whiskers are set to the lowest data point within 1.5 × IQR and the highest data point within
1.5× IQR. Data point that does not fit within the whiskers is shown as an outlier. The boxplot
was produced using the following data: (10.8, 11.0, 11.1, 11.9, 12.2, 12.2, 12.3, 12.4, 12.5, 12.6,
12.9, 13.0, 13.6, 14.2, 14.3, 14.6, 14.7, 15.1, 15.5, 15.5, 16.1, 18.6).
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Figure 35: The shapes recognized by the system together with the scribble that
produced them. Arrow, circle, diamond, ellipse, line, rectangle, star and triangle.
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Figure 36: The line is easily distinguished from other shapes by its thinness ratio.
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Figure 37: Thinness ratio can be used to recognize circles.
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Figure 38: The ratio of areas of the maximum-area enclosed triangle and convex
hull is near unity for triangles.
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Figure 39: The perimeters of the convex hull and minimum-area rectangle enclosing
it are roughly the same.
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Figure 40: The diamond has slightly smaller values than ellipse and rectangle for
A2

ch/(AtrAre).
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Figure 41: The area of the enclosed triangle is roughly half of the enclosing rectangle
for rectangles and smaller for diamonds and ellipses.
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Furthermore, to distinguish ellipses from circles one calculates the bounding box
(smallest rectangle with sides collinear with the coordinate axes) for the input and
compares the ratio of its width and height. Ellipses that have the width-height ratio
near unity are recognized as circles (see figure 42).

For all closed, convex shapes one utilizes the ratio of total stroke length (sum
of all stroke lengths) and perimeter of the convex hull, ls/Pch. The ratio can be
used to filter out unclosed and concave scribbles since the ratio is near unity for
closed, convex shapes (see figure 43). The recognized shapes and properties used to
distinguish them are gathered in table 1.

w

h h

w

w
h ≈ 1.02 w

h ≈ 1.33

Figure 42: Circle (left) and ellipse. Bounding box of a set of points is the smallest
rectangle that contains the points and has sides collinear with the coordinate axes.
The bounding box dimensions can be used when distinguishing circles from ellipses.
Width-height ratio near unity implies a circle.

Circle Diamond Ellipse Rectangle Triangle
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Figure 43: The length of strokes for closed convex shapes is roughly equal to the
perimeter of their convex hull. ls and Pch denote the length of all strokes (sum of
lengths) and perimeter of the convex hull respectively.
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Table 1: Features used to recognize each shape. Abbreviations: ls total length
of strokes, P perimeter, A area, ch convex hull, tr enclosed triangle, re enclosing
rectangle, w, h width and height of the bounding box.
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Circle × × ×
Diamond × × ×
Ellipse × × × ×
Line ×
Rectangle × × × ×
Triangle × ×

5.3 Recognizing arrow and star

To detect more complex shapes such as arrows and stars the system has to use simple
heuristics to aid recognition. The heuristic rules utilize the lower level geometric
features. An arrow can be drawn with two strokes. The first stroke constitutes the
shaft and the second stroke the head. Furthermore, the shaft is usually drawn from
tail to head. This pattern can be utilized in the heuristics as is done by Fonseca and
Jorge [59]. A modification of their heuristics for recognizing arrows is clarified in
figure 44 and algorithm 11. Particularly, the restriction that the convex hull of the
second stroke should contain the last point of the first stroke, is omitted in Fonseca
and Jorge’s method.

The star is also recognized by using a certain convention of drawing. Star can be
drawn with one stroke consisting of five line segments. Figure 45 illustrates this style
of drawing and clarifies the heuristics employed. The recognition is based on the
observation that the stroke forms five self-intersections in the middle of the shape.
The number of self-intersections is used as the basis for recognition. However, there
are often other self-intersections as well. They are usually located in the spikes of the
star and imply that the mere counting of the intersections would produce suboptimal
results. Consequently, the algorithm only counts the intersections that lie closer to
the center of the shape. In practice this is achieved by calculating the centre of
gravity point of the stroke and generating a scaled convex hull for the input. A
higher recognition rate can be achieved by considering only the intersection points
that lie inside the scaled convex hull.
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< 80%
S2

S1

S2

S1

Figure 44: Heuristics for recognizing arrows. First, an arrow should consist of
two strokes. The length of the second one (head) should be smaller than certain
proportion of the length of the first one (shaft). Finally, the convex hull (gray) of
the second stroke should contain the last point of the first stroke (indicated by the
black square).

Algorithm 11 isArrow(S)

Input: INPUT a list of n strokes S = s1, . . . , sn
Output: OUPUT boolean indicating whether the strokes constitute an arrow

1: if n = 2 and
length(S2)/length(S1) < 80% and
convex hull of S2 contains the last point of S1 then

2: return true
3: else
4: return false
5: end if
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Figure 45: Step-by-step drawing convention for a star (above) and heuristics for
recognizing it. The algorithm first calculates the convex hull (dashed line) and
intersection points (dots) for the original stroke (solid line). For each intersection
point, it is checked whether it is contained in the shrunk convex hull (gray area).
If there are five intersections inside the shrunk convex hull, the stroke is recognized
as a star. The scaling of the convex hull excludes “false” intersection points (red
squares). The one on the left is the self-closing point of the stroke. The other results
from a circlet in the spike of the star.

Algorithm 12 isStar(S)

Input: INPUT a list of n strokes S = s1, . . . , sn
Output: OUPUT boolean indicating whether the strokes constitute a star

1: if n 6= 1 then
2: return false
3: end if
4: Calculate the self-intersection points of the stroke.
5: Calculate the convex hull for the stroke points.
6: Generate a scaled (shrunk) convex hull CH scaled.
7: if CH scaled contains exactly 5 intersection points then
8: return true
9: else

10: return false
11: end if
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5.4 Problems of the approach

Some of the major problems of the presented approach have been reported in earlier
studies. Using only global geometric properties makes it hard to distinguish am-
biguous shapes such as kgons with k ≥ 5 [33, 40, 51]. Furthermore, the approach is
inherently an ad hoc one. Extending the recognition system is cumbersome. The ge-
ometric primitives (circles, ellipses et cetera) can be drawn with as many strokes as
possible but each shape has to be drawn with consecutive values within the timeout
value [35, 34]. In addition to these drawing style restrictions the system is incapable
of identifying the constituent parts of the recognized shapes.

The recognition rates of the system are good for part of the primitive shapes
drawn in a certain manner. However, this comes with the cost of a few fundamental
deficiencies. First, the approach is ad hoc, tailored for a specific purpose with a
pre-defined shape set and lacks hierarchical nature. Second, it follows that extend-
ing the system with new shapes and functionality cannot be done in a consistent
manner. This, in turn, leads to even more ad hoc solutions. Third, the approach is
inherently unpredictable considering the possibility of false positives. Some scribble,
not intended to be recognized as any shape, might have the same geometric features
as one of the shapes in the pre-defined shape set (see figure 46). In some cases the
problem can be solved easily by introducing new features that filter out the false
positives. For example, the figure 46 depicts a situation that can be handled by
introducing hollowness [58]. Hollowness counts the proportion of points near the
centre of the scribble. For hollow shapes, such as polygons and ellipses, hollowness
is zero.

The lack of hierarchy in handling the shapes prevents the approach from being
applicable in recognizing more complex shapes. For example, the diagram notations
for a database (network diagram) or a transistor (circuit diagram) are impractical to
recognize using geometric features alone, even though the parts of the shapes could
be easily recognized (see figure 47). For working recognition one needs information
on individual parts of the shape as well as their interrelational constraints. LADDER
(A Language to Describe Drawing, Display, and Editing in Sketch Recognition) could
be used for the purpose [41].

The previous section presented two extensions to the geometric feature-based
recognition. The arrow and the star are recognized using heuristics that analyzes
the number of strokes as well as relations (spatial and intersections) between the
strokes. The heuristics uses lower level features provided by the base recognition
system. However, introducing the new shapes requires domain insight and manual
programming. This is far more laborious than for example the method presented by
Calhoun et al., where new symbols can be added by merely providing a few examples
of the new shape [35].

Finally, the restrictions on the drawing style degrade the usability of the system.
Recognizing an arrow and a star relies strictly on a specific manner of drawing. The
geometric primitives can be drawn more freely but nevertheless with consecutive
strokes.



70

Figure 46: Two shapes recognized as rectangles. The original strokes are shown as
black dotted lines. Convex hull and maximum-area triangle within it are shown in
gray solid and dashed lines respectively. Although the strokes on the right does not
represent a rectangle it is recognized as one since its properties are virtually the
same as with the shape on the left: total length of strokes, convex hull and the ratio
of areas of the enclosed triangle and convex hull.

Figure 47: Diagram notation for database (left) and transistor (right). The primitive
parts of the database are ellipse, two lines and an arc. The primitive parts of the
transistor are four lines, a triangle and a circle. Especially in the case of the transistor
hierarchical recognition methods are required.
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6 Test setting and results

The development and verification of the algorithms in the system required the im-
plementation of a simple drawing application. The application was further utilized
in analyzing the recognition accuracy and computational performance of the ap-
proach. This section briefly describes the implemented software and the test setting
used for the performance analysis. Results on the recognition rates as well as the
computation times for individual steps of the recognition are reported based on the
real input data gathered from a group of subjects.

6.1 Test framework

A computer program with a graphical user interface was implemented in order to
test the recognition accuracy of the approach in practice. The program was written
in Java programming language and it includes a drawing area, control buttons and
a settings panel. The GUI is shown in figure 48. To facilitate the development of
the algorithms and heuristics, the settings panel contains a variety of configuration
options. The intermediate phases of the recognition (various preprocessing filters,
feature polygon and intersection calculations) can be presented on the drawing area
together with the original strokes as well as the final recognition result.

Figure 48: Main panel with recognized shapes (triangle, ellipse and crossing lines)
and scribbles together with diagnostic artifacts (enclosing rectangle, enclosed trian-
gle, intersections). Control buttons on the bottom: (C)lear drawing area, (L)oad
scribble from file, (P)rint SVG source, (F)ull screen toggle. Settings panel (on the
right) with various configuration options for helping development and analysis tasks.
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The sketches were produced using a standard computer mouse. Using a digitizer
tablet or a touch-based device is just a matter of plugging in a device that can be
used to control the mouse pointer. Furthermore, functionality was implemented to
save scribbles into files and to later load them for analysis. The files contained the
raw points recorded by the program to enable the precise repetition of the recog-
nizition process. Scribbles saved into files could also be batch processed to analyze
the performance of the system with different configurations. For documentation
purposes the shapes visible on the drawing area could be saved into file in vector
format (SVG, scalable vector graphics).

6.2 Test setting overview

A group of 10 subjects was gathered to obtain realistic and varied enough test data
for the analysis. The subjects were aged between 20–32 and hence accustomed
to using a computer mouse. However, the subjects were in no way particularly
experienced in drawing with a computer mouse. The subjects were told that they
are going to test a sketch recognition system that can recognize and rectify certain
shapes. First the subjects were allowed to briefly play around with the system to
get comfortable with the system and drawing with a computer mouse. After the
“warming-up session” the subjects were asked to draw 15 of each geometric shape
(circle, diamond, ellipse, line, rectangle, triangle). The number of shapes actually
drawn varied between 15− 20 for each subject.

The subjects were adviced to draw the shapes as they would draw them when
using a pencil and paper, i.e., with no specific instructions on the style of drawing.
The subjects were asked to draw the sketches “without too much accuracy as they
would be merely sketching something rather than producing a final picture”. There
was no feedback given by the recognition system during the test setting. Only the
user-drawn strokes were visible on the drawing area. These measures were taken to
prevent the subjects from adjusting to a certain drawing style, speed or accuracy
merely to improve the recognition.

Next the recognition performance of arrow and star was investigated. First the
subjects were asked to “draw 5 arrows and 5 stars” with no other instructions to
find out the variation among the subjects on how they would normally draw the
shapes. This was done to find out the validity of the assumptions on the drawing
style utilized in the recognition heuristics for arrows and stars. It was concluded
that the subjects had a variety of different styles for drawing arrows and stars. Some
subjects draw the shapes exactly as required by the recognition heuristics. However,
majority employed one or several styles not recognizable by the heuristics. Hence,
the “correct” drawing style needed to be explained to the subjects thus adding more
restrictions for the approach.

Thereafter the assumed drawing style was explained to the subjects but the
underlying recognition intricacies were not revealed since the users should not be
concerned about the technical details to achieve adequate recognition rates. Then
the users were asked to draw 15 arrows of varying length and 15 stars of varying
size.
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Table 2: Confusion matrix of the recognition results. The drawn (expected) shape is
shown in the left and the recognized shape on the top. The percentage of correctly
recognized shapes can be seen on the diagonal. The rightmost column (Scribble)
represents the proportion of shapes that was not recognized as any shape.
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Arrow 74% 26%
Circle 71% 28% 1%
Diamond 45% 17% 22% 1% 15%
Ellipse 6% 10% 81% 1% 2%
Line 100%
Rectangle 2% 89% 9%
Star 66% 34%
Triangle 1% 94% 5%

6.3 Recognition accuracy

Table 2 gathers the results of the recognition accuracy of the system. The overall
recognition rate is 78% with a total number of 1316 input shapes. The overall
recognition rate is satisfactory. However, the variation is considerable between the
recognition rates for different shapes.

The line is the easiest shape to recognize since its thinness ratio is especially
distinctive. Thus, quite expectedly the recognition rate is perfect. However, the
majority of the lines drawn by the subjects were relatively long which eased the
recognition. Noise with shorter lines is likely to introduce recognition errors.

Triangle was also almost perfectly recognized. The good results stem from the
fact that no other shape is easily mixed with triangle. The failures resulted from
“too round” triangles that resulted in too small minimum-area enclosed triangles in
relation to the convex hull (see figure 49a).

The results on recognizing the rectangle are also good. The majority of cases
where the sketch was not recognized at all were due to the rectangle being drawn
slightly skewed (the opposite sides are not of equal length)(see figure 49b). A small
proportion of roundish rectangles were also mistakenly recognized as ellipses.

Distinguishing between a circle and an ellipse was expectedly difficult. The
recognition rates are satisfactory but recognizing circles suffered particularly from
mixing the two shapes. Problems in recognizing ellipses varied more. Much less
ellipses were recognized as circles than vice versa. However, ellipses not drawn
round enough were often recognized falsely as diamonds. The ratio A2

ch/(AtrAre)
was closer to typical values of diamonds (see figure 40).

On the one hand, differentiating circles from ellipses can be seen as choosing
certain threshold value for width-height ratio, since drawing a perfect circle will
always be impossible for human users. On the other hand, one might need to
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deduce the user intention using other than geometric information (possibly pen
speed, context). Utilizing only the geometric features will not suffice since roughly
half of the shapes intended to be circles would most likely be interpreted as ellipses
also by a human (see figure 49c).

The recognition rate of diamonds was the worse of all shapes. Diamonds were
often recognized as ellipses, rectangles or not at all. Recognition as rectangle re-
sulted often from the fact that the input sketch resembled a square very closely (see
figure 49d). The shapes intended to be diamonds were actually merely squares that
were rotated 45◦. The shapes misrecognized as ellipses resembled quadrilaterals that
had angles that deviated only slightly from right angles. Shapes not recognized at
all usually did not resemble diamonds as their sides were not of equal length.

Of the shapes that used additional heuristics for the recognition process, arrows
were recognized better than stars. Of the misrecognized shapes, some were drawn
in a way that left the last point of the first stroke outside the convex hull of the
second stroke (see figure 44). By scaling the convex hull one can slightly improve the
recognition rate but this also makes false positives more likely. For other arrows the
restriction, that confined the length of the second stroke to be a proportion of the
first one at maximum, was violated. The violation occurred especially for arrows
with short shafts that resulted in relatively long strokes for the arrow heads (see
figure 50a). To improve the recognition one could take into account the absolute
length of the arrow shaft: for very short arrows the length of the arrow head stroke
can easily be larger than the length of the shaft stroke.

The heuristics for recognizing stars lacked robustness. Almost all of the failed
shapes had 6 intersections inside the scaled convex hull (see figure 45). The addi-
tional intersection was either the closing intersection of the stroke or one resulting
from a circlet in one of the spikes of the star (see figure 50b). Changing the scaling
factor of the convex hull cannot be used to improve the recognition rate since mak-
ing the convex hull smaller also excludes some of the “correct” intersection points.
Possibly a better approach would be to analyze each intersection point. One notes
that the intersecting line segments are relatively far away from each other, if a dis-
tance along the stroke path is used (the smaller of the two distances can be used).
The distance is much smaller in the case of intersections resulting from closing the
stroke or a circlet in a spike of the star.

The test setting measured only the sensitivity of the system. In normal use
the input is likely to contain scribbles that are not intended to represent any of
the shapes recognized by the system. In those cases, the number of possible false
positives affects the usability of the system. Consequently, the approach should be
tested in real life usage scenarios to assess its specificity.

Using a similar approach Fonseca and Jorge achieved a considerably higher recog-
nition rate (95.8%) [59]. Their system had a larger set of predefined shapes (exclud-
ing star) and a more versatile set of geometric features. There were similarities
in the results: Line, rectangle, triangle and circle were the easiest for their system
to recognize. Furthermore, diamonds were the most difficult and were also often
recognized as rectangles.

Besides the more thorough use of geometric features two differences might explain
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(a) Triangles not recognized. (b) Rectangles not recognized.

(c) (Intended) circles recognized as el-
lipses on the left and (intended) el-
lipses incorrectly recognized (as cir-
cles or other shapes) on the right.

(d) (Intended) diamonds recognized
as rectangles.

Figure 49

the gap in recognition accuracies between the two systems. First, the subjects of
Fonseca and Jorge’s experiment used a digitizing tablet instead of a computer mouse.
Hence, they were provided with a more natural equipment for drawing. Additionally,
two of the nine subjects were experienced in using the equipment. Second, the
subjects of my experiment were specifically asked not to draw too carefully to imitate
a normal sketching scenario.

6.4 Computational performance

The tests were executed on PC (AMD AthlonTM 64 Processor 3000+, 1GB of mem-
ory). The used hardware represented a relatively fast PC in 2005. In today’s
standards it is clearly outdated.

The computational performance of the system was analyzed by recording the
times between the start and end of different steps in the recognition process. This
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(a) Arrows not recognized. (b) Stars not recognized. Red
squares indicate the stroke intersec-
tion points.

Figure 50

introduces some variation resulting from other computational load on the test sys-
tem but illustrates best the performance in practice. The recognition process was
divided into preprocessing, feature calculation and shape classification. Preprocess-
ing was further divided into polyline approximation (Douglas-Peucker filter), stroke
ends refinement and stroke end closing (division depicted in figure 32). Feature
calculation was further divided into individual feature calculations: convex hull,
minimum-area enclosing rectangle, maximum-area enclosed triangle, intersections,
bounding box, centroid (center of gravity), center (of bounds).

Figures 51 and 52 summarize the performance results. One set of figures exclude
the outliers to better illustrate the most common values and relative differences
between the measures. The time taken to execute the whole recognition process
is of most importance to the user. The median execution time of below 10ms is
more than adequate for good user experience. In usability engineering, a system
response time below 100ms is considered an instant response [108, 109]. Hence also
the maximum time taken for recognition (less than 20ms) can be considered very
good. The results indicate that the algorithms used in the system have a well-
defined behaviour also in the worst case. Performance of this level also enables the
use of extensive feedback to the user. The recognition process or parts of it can be
executed while the user is drawing in order to guide the user.

Of the three steps (preprocessing, features calculation, shape classification) pre-
processing depends most on the number of input points. More specifically it is the
Douglas-Peucker algorithm that has to handle all the input points whereas the sub-
sequent steps have considerably less points to analyze. The average reduction of
points in Douglas-Peucker algorithm was 66%. Figure 51c illustrates how the more
complex algorithms (Douglas-Peucker O(n2) and stroke closure O(n log n+k log n))
are also more expensive in practice. As can be seen in figure 52 the execution times
are very small for calculating different features as well as shape probabilities.
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(a) Execution times for different steps of the
recognition process.

●

●

●●
●●●
●●
●

●

●

●

●●
●
●●
●
●●

●

●
●●●●

●

●
●
●
●

●
●
●●
●●

●

●

●●●

●

●

●●

●●●
●

●●

●
●●●●●
●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●●●●●

●
●
●

●●●

●

●●
●●●
●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●
●

●

●
●●●●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●●

●

●
●
●●
●●

●

●
●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●●●
●●
●

●●
●
●

●

●●

●

●

●
●
●●

●●●

●

●
●
●●
●
●
●
●
●

●

●●●
●●

●

●

●

●

●●●●
●●●●●●
●
●

●

●●

●

●●●●
●●
●

●●●
●●
●
●●●
●●●●

●

●●●●●

W
ho

le
 R

ec
og

ni
tio

n

P
re

pr
oc

es
si

ng

F
ea

tu
re

s 
C

al
cu

la
tio

n

S
ha

pe
 C

la
ss

ifi
ca

tio
n

0

5

10

15

ex
ec

ut
io

n 
tim

e 
(m

s)

(b) Execution times for different steps of the
recognition process including outliers.
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(c) Execution times for the preprocessing steps.
Stroke closure is the most time consuming step
since it has to calculate the intersections of the
input stroke(s).
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(d) Execution times for the preprocessing steps
including outliers.

Figure 51
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(a) Execution times for the feature calculations.

●●

●

●●●●
●
●●●

●

●

●
●

●●
●
●●●●●

●●
●●●●

●●

●●●

●●

●●●●●
●
●

●

●●●●●●●●●●
●

●●●●●

●

●●●●●●●●●

●
● ●●●

●●
●

●

●

●●●

●

●●
●

●●●
●●

●

●●●●

●

●
●

●

●

●

●●
●●●●

●

●●

●

●

●

●

●●●

●

●

●
●●

●

●
●●●

●

●●●

●

●
●
●

●

● ●●●

●●

●●

●

●●

●

●●

●

●
●●
●●
●

●●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●
●●●
●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●
●
●●●●●●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

C
on

ve
x 

H
ul

l

E
nc

lo
si

ng
 R

ec
ta

ng
le

E
nc

lo
se

d 
Tr

ia
ng

le

In
te

rs
ec

tio
ns

B
ou

nd
in

g 
B

ox

C
en

tr
oi

d

C
en

te
r

0

2

4

6

8

ex
ec

ut
io

n 
tim

e 
(m

s)

(b) Execution times for the feature calculations
including outliers.
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(c) Execution times for shape probability calcu-
lations.
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(d) Execution times for shape probability cal-
culations including outliers.
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7 Conclusions

This thesis presented in detail a set of geometry algorithms for preprocessing and
analyzing polylines drawn with a computer mouse. The algorithms were used to
obtain a representative set of features for hand-drawn scribbles. The features were
further utilized to classify the scribbles into predefined shape classes to facilitate
more convenient graphics input. A graphical user interface was constructed around
the algorithms to enable realistic testing of the implemented sketch recognition
software. A group of subjects was gathered to obtain a sufficient amount of variable
scribble data in order to test the real life accuracy and performance of the approach.

The test results on the recognition accuracy were ambiguous. The overall recogni-
tion rate was 78% but the performance varied considerably between different shapes
and subjects. The simple geometric approach was fairly accurate in recognizing
ellipses, lines, rectangles and triangles. Circles and especially diamonds were more
difficult to recognize.

The thesis also presented method for recognizing arrows and stars. The method
used simple rules that utilize the geometric features of the input strokes. The recog-
nition accuracy for the two shapes was adequate, at most. Improvement of the
accuracy would require more robust heuristics to handle the different drawing styles
and the imperfections in the user-drawn strokes.

The most severe restriction of the approach is its poor extensibility. Some level of
hierarchicality would have to be introduced to make the system applicable to more
complex domains. The current implementation requires a lot of manual work and
high level of expertise when adding new shapes. For easier extensibility some sort
of description language would have to be used to encode additional shapes as well
as the spatial relations between the shapes. Furthermore, utilizing the restrictions
of different application domains requires embedding semantic information into the
higher levels of the recognition process.

The applications for online sketch recognition include simple, gesture based user
interfaces and more complex graphics inputting and editing software for domains
such as electronic circuit design. The restrictions of the presented approach as
such make it cumbersome to apply to the more complicated tasks. However, the
presented system is highly applicable to simple gesture or shape recognition. They
do not require recognition of highly sophisticated symbols but control gestures that
are drawn quickly and typically with a single stroke. Extending the set of geometric
features calculated for the input would be likely to provide a robust framework for
recognizing an adequate number of gestures (or shapes) for applications such as web
browsers.

The applicability of the approach to gesture recognition is supported also by
the performance results. One of the goals of the thesis was to assess the real life
performance of the algorithms used. The recognition process was very fast with all
inputs, even without the newest and most powerful hardware. That is, choosing
theoretically efficient algorithms also resulted in very good computational perfor-
mance in practice. The overall performance enables the approach to be used also
in hand-held devices with a touchscreen interface and without a more convenient
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input method.
Further investigation could be done to assess whether using machine learning

methods improves the recognition accuracy. The naive Bayes classifier, neural net-
works or k-nearest neighbors are possible alternatives to the fuzzy sets used. In
addition, a comparison could be made between different input equipment and the
effect of practice. The difference in recognition accuracy is left unknown between
using a computer mouse, a digitizing tablet and a touchscreen device (with a finger
as the pointing device).

Also, unveiling the usability implications of the system requires further work.
The mere technical evaluation of recognition accuracy does not give an insight to the
question, whether the recognition system achieves its ultimate goal. That is, whether
the sketch recognition actually makes the user interface more convenient to use
compared to the traditional approach. Assessing the usability aspects would require
improvements to the user interface as well as a different and, particularly, a more
realistic test setting, interviewing the subjects and monitoring their behaviour.
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