1,074 research outputs found

    Grid-Connected Distributed Wind-Photovoltaic Energy Management: A Review

    Get PDF
    Energy management comprises of the planning, operation and control of both energy production and its demand. The wind energy availability is site-specific, time-dependent and nondispatchable. As the use of electricity is growing and conventional sources are depleting, the major renewable sources, like wind and photovoltaic (PV), have increased their share in the generation mix. The best possible resource utilization, having a track of load and renewable resource forecast, assures significant reduction of the net cost of the operation. Modular hybrid energy systems with some storage as back up near load center change the scenario of unidirectional power flow to bidirectional with the distributed generation. The performance of such systems can be enhanced by the accomplishment of advanced control schemes in a centralized system controller or distributed control. In grid-connected mode, these can support the grid to tackle power quality issues, which optimize the use of the renewable resource. The chapter aims to bring recent trends with changing requirements due to distributed generation (DG), summarizing the research works done in the last 10 years with some vision of future trends

    Optimal integration and management of solar generation and battery storage system in distribution systems under uncertain environment

    Get PDF
    The simultaneous placement of solar photovoltaics (SPVs) and battery energy storage systems (BESSs) in distribution systems is a highly complex combinatorial optimization problem. It not only involves siting and sizing but is also embedded with charging and discharging dispatches of BESSs under dynamically varying system states with intermittency of SPVs and operational constraints. This makes the simultaneous allocation a nested problem, where the operational part acts as a constraint for the planning part and adds complexity to the problem. This paper presents a bi-layer optimization strategy to optimally place SPVs and BESSs in the distribution system. A simple and effective operating BESS strategy model is developed to mitigate reverse power flow, enhance load deviation index and absorb variability of load and power generation which are essential features for the faithful exploitation of available renewable energy sources (RESs). In the proposed optimization strategy, the inner layer optimizes the energy management of BESSs for the sizing and siting as suggested by the outer layer. Since the inner layer optimizes each system state separately, the problem search space of GA is significantly reduced. The application results on a benchmark 33-bus test distribution system highlight the importance of the proposed method

    Peak shaving through battery storage for low-voltage enterprises with peak demand pricing

    Get PDF
    The renewable energy transition has introduced new electricity tariff structures. With the increased penetration of photovoltaic and wind power systems, users are being charged more for their peak demand. Consequently, peak shaving has gained attention in recent years. In this paper, we investigated the potential of peak shaving through battery storage. The analyzed system comprises a battery, a load and the grid but no renewable energy sources. The study is based on 40 load profiles of low-voltage users, located in Belgium, for the period 1 January 2014, 00:00-31 December 2016, 23:45, at 15 min resolution, with peak demand pricing. For each user, we studied the peak load reduction achievable by batteries of varying energy capacities (kWh), ranging from 0.1 to 10 times the mean power (kW). The results show that for 75% of the users, the peak reduction stays below 44% when the battery capacity is 10 times the mean power. Furthermore, for 75% of the users the battery remains idle for at least 80% of the time; consequently, the battery could possibly provide other services as well if the peak occurrence is sufficiently predictable. From an economic perspective, peak shaving looks interesting for capacity invoiced end users in Belgium, under the current battery capex and electricity prices (without Time-of-Use (ToU) dependency)

    Intelligent control of PV co-located storage for feeder capacity optimization

    Get PDF
    Battery energy storage is identified as a strong enabler and a core element of the next generation grid. However, at present the widespread deployment of storage is constrained by the concerns that surround the techno-economic viability. This thesis addresses this issue through optimal integration of storage to improve the efficiency of the electricity grid. A holistic approach to optimal integration includes the development of methodologies for optimal siting, sizing and dispatch coordination of storage

    Energy Storage Systems for Energy Management of Renewables in Distributed Generation Systems

    Get PDF
    Distributed generation (DG) systems are the key for implementation of micro/smart grids of today, and energy storages are becoming an integral part of such systems. Advancement in technology now ensures power storage and delivery from few seconds to days/months. But an effective management of the distributed energy resources and its storage systems is essential to ensure efficient operation and long service life. This chapter presents the issues faced in integrating renewables in DG and the growing necessity of energy storages. Types of energy storage systems (ESSs) and their applications have also been detailed. A brief literature study on energy management of ESSs in distributed microgrids has also been included. This is followed by a simple case study to illustrate the need and effect of management of ESSs in distributed systems

    Impact of operation strategies of large scale battery systems on distribution grid planning in Germany

    Get PDF
    Due to the increasing penetration of fluctuating distributed generation electrical grids require reinforcement, in order to secure a grid operation in accordance with given technical specifications. This grid reinforcement often leads to over-dimensioning of the distribution grids. Therefore, traditional and recent advances in distribution grid planning are analysed and possible alternative applications with large scale battery storage systems are reviewed. The review starts with an examination of possible revenue streams along the value chain of the German electricity market. The resulting operation strategies of the two most promising business cases are discussed in detail, and a project overview in which these strategies are applied is presented. Finally, the impact of the operation strategies are assessed with regard to distribution grid planning.Postprint (author's final draft

    Integration of Energy Storage into a Future Energy System with a High Penetration of Distributed Photovoltaic Generation

    Get PDF
    Energy storage units (ESU) are increasingly used in electrical distribution systems because they can perform many functions compared with traditional equipment. These include peak shaving, voltage regulation, frequency regulation, provision of spinning reserve, and aiding integration of renewable generation by mitigating the effects of intermittency. As is the case with other equipment on electric distribution systems, it is necessary to follow appropriate methodologies in order to ensure that ESU are installed in a cost-effective manner and their benefits are realized. However, the necessary methodologies for integration of ESU have not kept pace with developments in both ESU and distribution systems. This work develops methodologies to integrate ESU into distribution systems by selecting the necessary storage technologies, energy capacities, power ratings, converter topologies, control strategies, and design lifetimes of ESU. In doing so, the impact of new technologies and issues such as volt-VAR optimization (VVO), intermittency of photovoltaic (PV) inverters, and the smart PV inverter proposed by EPRI are considered. The salient contributions of this dissertation follow. A unified methodology is developed for storage technology selection, storage capacity selection, and scheduling of an ESU used for energy arbitrage. The methodology is applied to make technology recommendations and to reveal that there exists a cost-optimal design lifetime for such an ESU. A methodology is developed for capacity selection of an ESU providing both energy arbitrage and ancillary services under a stochastic pricing structure. The ESU designed is evaluated using ridge regression for price forecasting; Ridge regression applied to overcome numerical stability and overfitting issues associated with the large number of highly correlated predictors. Heuristics are developed to speed convergence of simulated annealing for placement of distributed ESU. Scaling and clustering methods are also applied to reduce computation time for placement of ESU (or any other shunt-connected device) on a distribution system. A probabilistic model for cloud-induced photovoltaic (PV) intermittency of a single PV installation is developed and applied to the design of ESU
    • …
    corecore