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Abstract: The renewable energy transition has introduced new electricity tariff structures. With the
increased penetration of photovoltaic and wind power systems, users are being charged more for their
peak demand. Consequently, peak shaving has gained attention in recent years. In this paper, we
investigated the potential of peak shaving through battery storage. The analyzed system comprises a
battery, a load and the grid but no renewable energy sources. The study is based on 40 load profiles of
low-voltage users, located in Belgium, for the period 1 January 2014, 00:00–31 December 2016, 23:45,
at 15 min resolution, with peak demand pricing. For each user, we studied the peak load reduction
achievable by batteries of varying energy capacities (kWh), ranging from 0.1 to 10 times the mean
power (kW). The results show that for 75% of the users, the peak reduction stays below 44% when the
battery capacity is 10 times the mean power. Furthermore, for 75% of the users the battery remains
idle for at least 80% of the time; consequently, the battery could possibly provide other services as
well if the peak occurrence is sufficiently predictable. From an economic perspective, peak shaving
looks interesting for capacity invoiced end users in Belgium, under the current battery capex and
electricity prices (without Time-of-Use (ToU) dependency).
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1. Introduction

Over the past decade, most countries all over the world have taken action towards reducing their
polluting emissions by investing in renewable energy sources. Among those sources, particularly,
photovoltaic (PV) solar panels and wind power systems have seen a significant growth [1]. However,
the increase of renewables goes hand in hand with technical challenges. The stochasticity of both PV
and wind power systems causes the maintenance of grid stability to become more difficult [2,3].

A major stakeholder impacted by the renewable energy transition is the distribution network
operator. While end users are becoming increasingly more independent from the grid, the revenue
constraint for the grid operator still remains [4]. Under the current tariff structure, which is primarily
based on the energy-volume component, a ‘death spiral’ phenomenon is imminent [4,5]. Nevertheless,
the grid infrastructure costs are mainly dependent on the power capacity of the system. Yet, PV users
have reportedly slightly lower peak power than non-PV users [6]. In other words, PV-users pay less
than non-PV users even though both of them use the grid almost to the same extent [6]. To counteract
such unfairness between different user groups and correctly attribute the costs to their origin, new
tariff structures are being introduced that increase the weight factor for the peak demand component.
This (peak demand pricing) will also apply for small user groups such as residential consumers who
have been so far excluded from peak power measurements [7,8].
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Given these increased peak power costs, peak demand reduction (‘peak shaving’) has gained
much attention in recent years. Peak shaving is not a new concept; industrial users with high peak
demand already have been using diesel and gas generators to reduce electricity costs for a long time.
Still, those conventional generation methods are expected to be replaced by ‘green’ technologies,
among which energy storage and in particular batteries are the primary candidate.

Battery storage systems have been deployed in the past to provide different types of services,
such as (i) increasing the self-sufficiency of PV/wind power installations [9–11], (ii) providing ancillary
services to the grid operator [12–14], (iii) peak shaving [15–17], (iv) back-up generators and UPS [18,19].
A common issue, arising particularly in (i), (ii) and (iii), is that due to the high cost of the storage
system, battery storage investments are not yet economically feasible. However, we note that in the
majority of those studies, the battery is deployed exclusively for one service. Therefore, to accelerate
the return of investment, many suggest as a possible solution ‘hybridizing’ multiple services into a
single application instead of providing each one separately [14,20,21]. Before studying how such a
hybrid strategy can be applied, we should first identify the technical constraints of the services under
consideration. In this paper, we focus specifically on peak shaving and present some insights that
reflect its potential for hybridization. In the next paragraph, we review previous research works on
peak shaving through battery storage.

In [15], the authors present a sizing methodology for defining the optimal energy and power
capacity of battery storage systems used for peak shaving. An economic feasibility study was conducted
for two different technologies, lead acid and vanadium redox flow (VRF). A control strategy was
proposed, but it assumed that the load profile is perfectly predictable in advance. In [16], the researchers
applied peak shaving for residential end users. One of the main conclusions was that the utilization of
the lithium-ion battery stays very low, lower than 165 cycles per year. At such a low rate (here, the
cycle lifetime is 3000 cycles) the system could be used for more than 20 years unless it exceeded its
calendar lifetime. Finally, considering also its calendar lifetime, the battery would have to be replaced
approximately after 10–15 years. Furthermore, the researchers suggested adding grid support services
next to peak shaving in order to increase the utilization of the system. In [22], the researchers developed
a model in Matlab/Simulink where a VRF battery is used to simultaneously provide frequency
regulation and peak shaving. It was concluded that the battery storage system can successfully perform
both services. However, the experiment was conducted only for a limited time period (30–140 s),
thus, in essence, without affecting the battery state of charge (SoC) and as a consequence, it was
not possible to evaluate the reliability of the control system under unfavorable conditions. In [23],
a fuzzy control algorithm was developed for peak shaving in university buildings. The algorithm
was tested and compared to two different peak shaving techniques, namely the fixed-threshold and
adaptive-threshold controller. The results showed that the proposed algorithm was the best of all.
Although the researchers conducted several case studies (with 8 different load profiles), they did
not provide sufficient information about the load forecasting method. In [17], a control algorithm is
proposed for peak shaving in low-voltage distribution networks based on day ahead aggregated load
forecasts. The main novelty of that study is that the algorithm, considering also the inherent forecasting
errors, relies solely on historic data; hence there is no need to intervene in real-time and readapt the
dis-charging process of the battery. Results from a case study show that peak reduction is achieved
for 97% of the time and that for 55% of the time, the peak reduction is at least 10%. In [18,19,24,25],
peak shaving is addressed as a secondary application. Here, the primary service of the battery is to
provide uninterruptible power supply (UPS) in data centers. The researchers argue that because of
the significantly low probability of the peak occurrence (e.g., a Google data center exceeds 90% of its
power capacity only for 1% of the time), it is possible to achieve peak reduction without impacting
the reliability of the primary service. In [26], a battery sizing methodology and an optimal control
algorithm is proposed for peak shaving in industrial and commercial customers. One of the main
objectives was to determine an appropriate peak shaving threshold. Three case studies were carried
out, each one considering a different daily load profile. The results showed that adapting the peak
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shaving threshold in real-time leads to higher peak reduction than keeping a fixed threshold based
only on a historic data analysis. A drawback of the study might be that when calculating the battery
utilization, it is assumed that the battery is equally utilized every weekday of the year, thus omitting
possible idle periods on days with low power consumption. In [27], a peak shaving algorithm was
proposed for microgrid applications. In contrast to conventional approaches considering only the
load consumption, here, the peak threshold applies also for the PV generation. The battery capacity
is equally reserved for both positive (injection to the grid) and negative (absorption from the grid)
peaks by setting the SoC during normal operation at 50%. The algorithm was tested on a real-time
microgrid, implemented in the lab. The researchers used predefined data (load/PV profiles) to carry
out the experiment; however, they did suggest in future deploying predictive analytics to improve the
reliability of the system.

In this paragraph, we explain three major contribution pillars of the present research work.

i. Dataset: First, an important conclusion to note, resulting from our literature review is that all
previous studies refer to unique use cases. Moreover, in almost all previous studies, the data
was very limited (max 2–3 months); thus, the seasonal periodicity was not present. To the best
of our knowledge, the present study is the first to consider such large dataset: 40 load profiles,
each one with 3 full years of historic load power. Knowing the difficulties of finding qualitative
data, we decided to make this dataset publicly available (The dataset is available as attachment
to this manuscript. Or contact Vasileios.Papadopoulos@ugent.be) in order to stimulate further
research on this topic.

ii. Sizing methodology: Secondly, aside from the extended datasets, another thing that has been
missing from the existing literature on peak shaving, which has focused mainly on control
strategies, is a concrete methodology of sizing the battery capacity. In the present paper, we
demonstrate how to calculate the minimum battery capacity requirement by combining a power
flow model with the dichotomy optimization algorithm.

iii. Quantitative results: Thirdly, in our attempt to strengthen the validity of our conclusions, we
provide an overview of quantitative results from all 40 different use cases. We show both
energetic assessments and economic results. The third contribution pillar can be summarized
in answering the following:

• How much peak demand reduction can a user achieve for a given battery energy capacity
(kWh)?

• What is the battery utilization, how much time during the year and how many cycles?
Does peak shaving heavily impact the degradation of the battery? Can we hybridize peak
shaving with other services?

• Which performance metrics should we use and how can these be interpreted from an
economic perspective? What are the profitability margins of battery storage for Belgium?

The rest of the paper is structured as follows. In Section 2, the data of the study are presented
(Section 2.1). Then, we proceed with the methodology; the power flow model is explained (Section 2.2)
and the dichotomy method is proposed as an optimization algorithm (Section 2.3). Section 2 closes
with the definition of performance metrics (Section 2.4). Next, Section 3 shows the results of the
simulation (Section 3.1) and explains how to interpret those from an economic perspective (Section 3.2).
Finally, Section 4 summarizes the most important conclusions and makes suggestions for future
research objectives.
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2. Materials and Methods

2.1. Data

We received 40 load profiles from the Flemish distribution grid operator (Fluvius) Each profile
is the active power (in kW) of an enterprise for the 3-year period between 1 January 2014, 00:00 and
31 December 2016, 23:45. All enterprises are low-voltage users with peak demand pricing and a
connection capacity above 56 kVA and lower than 1 MVA. The data was logged through automatic
measurement reading (AMR) devices with a time resolution of 15 min. The mean power of the users
varied between 1.92 and 53.75 kW (Figure 1a). The peak-to-mean power ratio was between 1.5 and 40;
however, for 90% of the users, the ratio is lower than 10 (Figure 1b).
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2.2. Power Flow Model

Figure 2 shows the topology of our system. The battery is connected through a DC/AC inverter
behind the meter of the user. The grid serves as the only power supply since there are no renewable
energy sources. In general, for peak shaving, the energy storage system should have high energy
efficiency as well as high power capacity (C rate) [28]. For these reasons, we selected a Lithium-ion
battery to carry out our analysis (See Table 1).
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Table 1. LFP Cell Characteristics, according to [29].

Characteristics Specifications

Chemistry LiFePO4
Energy capacity 2.28 Ah (7.52 Wh)
Nominal voltage 3.3 V

Operating voltage 2.5 to 3.6 V
Operating temperature −30 ◦C to + 60 ◦C

Cell weight 70 g

The simulation model, built in Matlab/Simulink is shown in Figure 4. Here, it is worth noting
that a part of the present model used for peak shaving was based on the model described in [30].
Therefore, in this paper, we will only detail the new model components, which are blocks 1 and
5 (See Figure 4). For the remaining blocks 2, 3 and 4, we provide a generic description, but for
more information, the reader is referred to [30], in particular its Section 2.3. For the development
of the model, we relied heavily on a real test-setup—microgrid emulator (The microgrid emulator
makes part of the laboratory infrastructure of EELab/Lemcko, an expertise center of Ghent university,
specialized in Renewable Energy System applications. For more information, contact the first author
(Vasileios.Papadopoulos@UGent.be)) comprising of: (i) a low-voltage grid (250 kVA power source),
(ii) a 90 kVA DC/AC converter, (iii) a 20 kWh LiFePO4 battery, (iv) a 30-kW programmable load.
The behavior of each component and the interaction between them was studied analytically and
converted into simulation models using information from test measurements, scientific papers and
commercial datasheets.

To begin with, the model has three variables: (i) the time resolution of the load profile, (ii) the
battery capacity (kWh) and (iii) its C rate. Furthermore, it receives two data inputs: (i) the load
profile and (ii) a power threshold. The load profile is simply a time series of the active power in kW
at 15 min resolution. The power threshold is a constant specifying the ‘desired’ maximum power.
This value must be lower than the peak power but also higher than the mean power. Given the
time step (resolution) and the 3-year period, in total, there are 105,216 simulation steps (1096 days
× 96 quarters/day). At each step, the model reads the load power of that moment and the current
State-of-Charge (SoC). Then, it undergoes three sequential processes (1, 2 and 3) to calculate the battery
power Pbat (inverter’s DC side), the inverter power Pinv (inverter’s AC side) and the power of the grid
Pgrid. Next, after updating the State-of-Charge (SoC) of the battery, it proceeds to the next simulation
step and hence, the simulation progresses. Figure 3 shows the DC/AC conversion efficiency of the
inverter in charging mode. Additionally, all the equations that were used to calculate the inverter
power Pinv and battery power Pbat in charging and discharging mode.

Pbat = f(x)·Pinv (1)

Pbat

Pnom
= f(x)·

Pinv

Pnom
(2)

Pbat

Pnom
= f(x)·x = g(x) (3)

Pinv

Pnom
= g−1(

Pbat

Pnom
) (4)

Pbat =
Pinv

f(x)
(5)

Pbat

Pnom
=

Pinv

Pnom
·

1
f(x)

(6)

Pbat

Pnom
=

x
f(x)

= h(x) (7)
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Pinv

Pnom
= h−1(

Pbat

Pnom
) (8)
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With respect to the sequential processes, process 1 performs the power conversion from AC to
DC compensating for the efficiency losses (AC to DC). Process 2 applies two saturation constraints to
the battery power: one for the given C rate and one for the given time resolution. Finally, process 3
performs the reverse conversion from DC to AC considering the inverse (DC to AC) efficiency losses.
In the following paragraph, we describe with more detail those processes.

Process 1—AC/DC power conversion (Figure 4, block 1): Initially, we set the inverter power equal
to the difference PThreshold − Pload. In case of a power surplus (positive difference), the inverter is in
charging mode to restore the battery’s energy capacity, otherwise, in case of a power deficit (negative
difference), the inverter is in discharging mode to shave the peak. After setting the inverter power,
next, we calculated the battery power compensating for the efficiency losses. In charging mode, the
battery power is always lower than the inverter power (See Equation (1)) and vice versa in discharging
mode the battery power is always higher than the inverter power (See Equation (5)).

Process 2—Power saturation constraints (Figure 4, block 2, 3, 4): Here, we impose two constraints
to the battery power. First (block 2), the battery power can never exceed its power capacity as specified
by its C rate limit and the SoC level. For this battery technology, the recommended C rate is 1. How
we calculate exactly the power from the C rate limit, has been explained in [30], Section 2.3. (As an
approximation, we can state that the power capacity is equal to the battery’s nominal voltage times
the C rate, times its energy capacity in Ah: Pbat max = Unom·Crate·CAh.) Second (block 3), we must
take into account also the time resolution of our data (15 min). This constraint comes into effect when
the SoC level is very close either to its upper or lower limit (90% and 10% respectively) (10–90% is
the recommended by the manufacturer SoC range to maximize the lifetime of the battery). Since our
simulation is executed in discrete steps of 15 min, we need to consider how much energy is left inside
the battery and saturate its power accordingly (see [30], Section 2.3). Afterwards, at the output of the
second constraint, the battery power was finally defined and hence the SoC can be updated (block 4).
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Process 3—DC/AC power conversion (Figure 4, block 5): Knowing the final value of the battery
power, it is then possible to calculate the final value of the inverter power. At this point, the DC/AC
efficiency function f(x) needs to be inverted. In charging mode, we make use of Equation (4) (function
g−1) and in discharging mode Equation (8) (function h−1). As a result, we finally know both the load
power Pload and the inverter power Pinv. Therefore, we can also calculate the power of the grid Pgrid

(Pgrid = Pload + Pinv) and proceed to the next simulation step.
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2.3. Dichotomy Method

As already mentioned in Section 2.2, the Simulink model receives both the battery capacity (as
variable) and a peak threshold (as data input). To find out whether or not that threshold will be met, all
we have to do is run the simulation and check the maximum load power Max(Pload). On the one hand,
if the threshold is too low, the system will be unreliable (Max(Pload) > PThreshold) due to insufficient
battery capacity, whereas, on the other hand, if the threshold is too high (Max(Pload) ≤ PThreshold) the
system will be reliable but the battery is overdimensioned. Consequently, for each load profile and
a given battery capacity, there is only one threshold that minimizes the load power (See Figure 5).
To find the solution for our optimization problem we deployed the ‘dichotomy method’. In the next
paragraph, follows a short description of the algorithm.
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Dichotomy method (Figure 5):

1. Initialize the lower and upper threshold limit at a = Pmean and b = Pmax, respectively.
2. Enter dichotomy loop: Calculate the midpoint at c = (a + b)/2 and set the peak threshold equal to

that value.
3. Run the Simulink model.
4. Check the maximum load power. If the load power exceeds the threshold update the lower limit

at a = c. Otherwise, update the upper limit at b = c and store that value as the current solution.
5. Check convergence criterion. If the distance between the current and previous midpoint is lower

than a constant, exit the loop, otherwise, go to step 2 and recalculate the new midpoint.

2.4. Definition of Performance Metrics

Before continuing with the presentation of the simulation results, first, we need to give the
definitions of our performance metrics, based on which we evaluated the peak shaving potential of
the users. In our approach, we would rather associate the word ‘potential’ explicitly to energetic
assessments. The extent to which these can be translated into economic terms (e.g., revenues, expenses,
ROIs) depends certainly on the tariff structure under consideration as well as the cost for the battery
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storage system. Although, as shown in Section 3, we do provide some insights specifically for Belgium,
preferably, each reader ought to make his own reflections.

Peak reduction (%): It is the percentual difference between the initial peak power and the final peak
power after peak shaving:

Apeak red =
Pmax i − Pmax f

Pmax i
·100 (9)

where Apeak red is the peak reduction, Pmax i is the initial peak power, Pmax f is the final peak power
after peak shaving.

Peak reduction-to-capacity: It is the difference between the initial peak power and the final peak
power after peak shaving divided by the battery capacity. This metric can serve us as a rough estimation
of the profitability of the installation if we can express the revenue and costs linearly proportional to
the peak reduction and battery capacity respectively.

Rpeak red−to−cap =
Pmax i − Pmax f

Cbat
(10)

where Rpeak red−to−cap is the ratio peak reduction-to-capacity, Pmax i is the initial peak power, Pmax f is
the final peak power after peak shaving, Cbat is the battery capacity.

SoC active time (%): It is the average percentage of time per year that the battery is deployed
for peak shaving. This metric can be very useful, especially when our intention is to combine peak
shaving with other services (e.g., increasing the self-sufficiency of PV, ancillary services, Time-of-Use
(ToU) prices).

SoCact time =
1096·96∑
i = 1

i· 100
1096×96

i =

{
1, |Pbat|> 0

0, Pbat = 0

(11)

where SoCact time is the SoC active time, Pbat is the battery power, i is the quarter index of the
simulation, 1096 × 96 is the total number of quarters within the 3 years period (1st January 2014–31st
December 2016).

Battery utilization (cycles/year): It is the average total energy discharged by the battery within a
year divided by the battery capacity. This metric can be used to assess how fast the battery reaches
the end of its lifetime. Particularly for peak shaving applications, it is desirable that the battery be
utilized as low as possible since our cost savings are exclusively dependent on the power component
(cost in function of kW). Conversely, when the aim is to increase the self-sufficiency of the installation
(PV or wind), the battery utilization should be as high as possible, since our cost savings are mainly
dependent on the energy component (cost in function of kWh).

Ubat =
Edis tot

Cbat·3
(12)

where Ubat is the battery utilization, Edis tot is the total discharged energy within the 3 years period,
Cbat is the battery capacity.

Consumption increase (%): It is the percentage of energy consumption increase due to efficiency
losses of the battery storage system. In addition to the initial capital expenditures for the battery, the
additional energy consumption should be taken into account as operating cost.

Aincr =
Eload f − Eload i

Eload i
·100 (13)

where Aincr is the consumption increase, Eload f and Eload i is the total energy consumed within the
3-year period after and before peak shaving, respectively.
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3. Results

As mentioned in Section 2, the power flow model receives three variables: battery capacity, C rate,
and time step. For each load profile in our dataset, we carried out multiple simulations by varying
only the battery capacity, whereas both the time step and the C rate were set at constant values. The
peak threshold was calculated using the dichotomy method after defining the battery capacity.

The time step was set at 15 min which is the time resolution of the dataset. The C rate was set
at 1 C; higher values are not recommended for the chosen battery technology because this would
negatively impact its lifetime. Furthermore, based on our experience, for most applications, 1 C is
sufficiently high to meet a given peak threshold. In general, the extent to which we can reduce the
peak power depends on the battery’s energy capacity rather than its power capacity. Nevertheless,
we do suggest for future research to investigate the impact of the C rate as well, but in this study, it
will not be addressed. Regarding the battery capacity, since we deal with several users, in order to
maintain a common reference of comparison between the users, we normalized the battery capacity
by dividing it by the mean power of the user. Finally, the ratio battery capacity-to-mean power was
varied within 0.1–10.

3.1. Energetic Assessments

The simulation results are presented in Figures 6 and 7. Knowing that our dataset consists of
40 users, it would be ineffective to illustrate 40 individual plots into the same figure. Instead, we
selected five quantile elements at which the cumulative probability becomes 5%, 25%, 50%, 75% and
95%. This gives us a better view of the statistical distribution of each performance metric.
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From both Figure 6a,b, it can be concluded that the peak reduction increase decreases with the
battery capacity (second derivative of the function in Figure 6b is negative) or in other words: as the
battery capacity increases, peak shaving becomes more difficult. For a battery capacity 2 times the
mean power (e.g., a user with 30 kW mean power installs a 60 kWh battery) seventy percent of the users
between Q5 and Q75 achieve peak reduction in the range 0.26–1.5 times their mean power (Figure 6a).
The same group of users achieves peak reduction up to 6–27% of their peak power (Figure 6b). For a
battery capacity of 10 times the mean power (e.g., a user with 30 kW mean power installs a 300 kWh
battery) the peak reduction for that group (Q5–Q75) varies within 0.4–2.8 times their mean power
(Figure 6a) and 20–44% of their peak power (Figure 6b).

Regarding the SoC active time (Figure 7a), it increases with the battery capacity. The reason is that
as the battery capacity increases, the peak threshold is reduced and consequently, the battery is used
more frequently. An important conclusion to note is that, for most users, the SoC active time remains
very low, even for large battery capacities. Seventy percent of the users between Q5 and Q75 with
a battery capacity 10 times the mean power deploy their battery in the range of 0–20%, or in other
words the battery stays idle for at least 80% of the time during the year. This fact in itself opens up new
research opportunities.

If peak shaving does occur rarely, then we could possibly hybridize our energy management
system including other services as well (e.g., ancillary services, increasing the self-sufficiency of
renewable energy installations). Figure 7b provide another indication that the battery is underutilized,
here, however in terms of lifetime expectancy. Over the entire battery capacity dimension, for
ninety-five percent of the users (Q0–Q95), the battery does not deliver more than 80 cycles per
year. This number is considerably lower compared to the cycle lifetime of nowadays’ state-of-the-art
Lithium-ion technologies (above 5000 cycles) [28]. At such low utilization rates, the battery can endure
several years of use (more than a decade). Finally, it will be due to another reason why the battery was
decommissioned such as a maintenance issue or simply because the battery has reached the end of its
calendar lifetime. (The capacity fade effect of Lithium-ion batteries is both time-dependent (calendar
lifetime) and cycle-number dependent (cycle lifetime). Regardless of its utilization, after a certain time
period the battery loses a part of its initial capacity. Usually, the End of Life (EoL) of a battery is defined
when its initial capacity is reduced by 20%, in many critical applications (e.g., EVs) this is the time
when the battery needs to be either decommissioned or repurposed for another application.)

The consumption increase is shown in Figure 7c. It is worth noting once more that the battery
technology in the present study exhibits a very high energy efficiency. Undoubtedly, if other technologies
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were used (e.g., lead acid, flow batteries), the consumption increase would be higher. As can be seen
from the figure, obviously, the higher the battery capacity, the higher the absolute energy losses. One
reason why this happens is due to the increase of the battery utilization (see Figure 7b) and another
reason is because both the battery and the dc/ac converter become bigger in size. Consider, for instance,
a user with 30 kW mean power and a battery capacity of 300 kWh (capacity-to-mean power is 10). Only
the converter losses to (dis)charge the battery at 1 C are approximately 15 kW (at 95% dc/ac efficiency).
If the battery capacity was 30 kWh (capacity-to-mean power is 1), those losses would be significantly
lower (1.5 kW).

3.2. Economic Evaluations

Let us now consider a case study of how to interpret those results from an economic perspective.
Table 2 lists the parameters used for our economic analysis:

• The electricity price is an average for Belgium energy invoices in the considered capacity connection
range. The electricity price lies in the range of 0.2–0.25 €/kWh [31]. Here, it must be noted that our
analysis is exclusively applicable for end users with fixed electricity prices during the year; there
is no Time-of-Use (ToU) dependency (e.g., day/night tariff, dynamic pricing schemes). (In case of
ToU dependency, the control strategy of the battery is different. Peak demand pricing coexists
with ToU pricing and therefore, we need to solve the economic optimization problem first.)

• Regarding the peak shaving compensation, for the DSO in Belgium, peak demand is defined as
the highest 15 min load power measured by the user’s AMR meter over the last 12 months. The
compensation ranges approximately within 87.6–131 €/kW per year depending on the geographical
location. By dividing by the total number of hours per year (8760 h), this equals 0.01–0.015 €/kW/h.
(These values have been defined using a cost simulation tool from the distribution grid operator.
The values apply exclusively to those users connected to the low-voltage grid with peak demand
pricing.)

• With respect to the battery storage system, we consider capital expenditures at 500 €/kWh (per
kWh of energy capacity). The consumption increase can be approximated as linear function of
the battery capacity (See Figure 7c) at 0.4%/capacity-to-mean power. The battery cycle lifetime
is estimated at 5000 cycles (at 80% EoL) considering normal operating conditions: (i) Ambient
temperature 25 ◦C, (ii) SoC within 10–90%, (iii) (dis)charge current at 1C. Given that our battery
utilization is very low (80 cycles/year worst case), we will consider only calendar aging at 2%
capacity loss per year. (To calculate the battery’s cycle lifetime and calendar aging, under those
conditions (25 ◦C, 10–90% SoC, 1C) we received information from the manufacturer. For those
interested in analytic methods to calculate the battery cycle lifetime and calendar aging, we refer
to noteworthy research works [32,33].) The payback period of our investment is 10 years and we
do not consider any option to resell the battery; after this period the battery is recycled.

Table 2. Peak Shaving—Parameters for Economic Feasibility.

Parameters Values

Payback period 10 Years
Peak shaving compensation 0.01–0.015 €/kW/h

Battery capex 500 €/kWh
Consumption increase rate 0.4%/capacity-to-mean power

Electricity price 0.20–0.25 €/kWh
Battery capacity fade 2% per year

In order for the system to be profitable, the total peak shaving compensation has to be higher than
the total cost (incl. battery and losses) over the payback period; this condition is expressed in Equation
(14). Next, as shown in Equation (15), the peak reduction-to-capacity ratio can be expressed in function
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of all economic parameters. Finally, by replacing with the values of Table 2, it can be concluded that
the ratio needs to be higher than 0.43–0.67 (Equation (16)).

Rev·8760·ROI·∆Ppeak > Cap·(Costbat + Ratecons incr·Pelect·8760·ROI) (14)

∆Ppeak

Cap
>

Costbat + Ratecons incr·Pelect·8760·ROI
Rev·8760·ROI

(15)

∆Ppeak

Cap
> 0.43− 0.67 (16)

where ∆Ppeak is the peak reduction, ROI is the return of investment (payback period), Rev is the peak
compensation (revenue), Cap is the battery capacity, Costbat is the battery capex, Ratecons incr is the
rate of consumption increase and Pelect is the electricity price.

Over the 10-year period, the total capacity loss of the battery will be 20%. Consequently, to ensure
that the peak threshold will always be met, we have to oversize the battery capacity. Finally, the results
of the economic feasibility study are illustrated in Figure 8. Figure 8 can be made easily from Figure 6a
(see Section 3.1) by adding a 20% margin to the minimum battery capacity requirement. The color at
each point [x,y] represents the total number of users whose peak reduction-to-capacity exceeds the
y value (similarly to the quantile plots of Figure 6a). The yellow and green dashed lines represent
the profitability thresholds 0.43 and 0.67, respectively (see Equation (16)). As can be seen, there are
several positive use cases; of course the number of positive cases depends on the battery size. To give
an example, when the ratio capacity/mean power equals 2, there are 15–20 users exceeding the value
0.43 (lower profitability threshold), whereas when the ratio capacity/mean power becomes 10, there are
only 0–5 users exceeding that value (0.43). With that being said, we do now have an estimation of the
profitability margins for the Belgian use cases.

Energies 2020, 13, x FOR PEER REVIEW 13 of 17 

 

Rev ∙ 8760 ∙ ROI ∙ ΔP > Cap ∙ (Cost Rate  ∙ P ∙ 8760 ∙ ROI)   (14)ΔPCap > Cost Rate  ∙ P ∙ 8760 ∙ ROIRev ∙ 8760 ∙ ROI  (15)

ΔPCap > 0.43 − 0.67 (16)

where ΔP  is the peak reduction, ROI is the return of investment (payback period), Rev is the 
peak compensation (revenue), Cap is the battery capacity, Cost  is the battery capex, Rate   
is the rate of consumption increase and P  is the electricity price. 

Over the 10-year period, the total capacity loss of the battery will be 20%. Consequently, to 
ensure that the peak threshold will always be met, we have to oversize the battery capacity. Finally, 
the results of the economic feasibility study are illustrated in Figure 8. Figure 8 can be made easily 
from Figure 6a (see Section 3.1) by adding a 20% margin to the minimum battery capacity 
requirement. The color at each point [x,y] represents the total number of users whose peak reduction-
to-capacity exceeds the y value (similarly to the quantile plots of Figure 6a). The yellow and green 
dashed lines represent the profitability thresholds 0.43 and 0.67, respectively (see Equation (16)). As 
can be seen, there are several positive use cases; of course the number of positive cases depends on 
the battery size. To give an example, when the ratio capacity/mean power equals 2, there are 15–20 
users exceeding the value 0.43 (lower profitability threshold), whereas when the ratio capacity/mean 
power becomes 10, there are only 0–5 users exceeding that value (0.43). With that being said, we do 
now have an estimation of the profitability margins for the Belgian use cases. 

 

Figure 8. Peak shaving—results of economic feasibility study. At each point [x, y], the color represents 
the total number of users whose peak reduction-to-capacity exceeds the y value. The yellow and green 
dashed lines represent the profitability thresholds 0.43 and 0.67, respectively (see Equation (16)). 

Needless to say that our estimation is strongly influenced by the considered parameter values 
(Table 2). Even without changing neither the electricity price nor the peak shaving compensation, 
simply by varying the payback period and/or the battery capex we would get different results. Here, 
it is worth noting that the battery capex at 500 €/kWh is very realistic for the time being and it is 
expected to decline further in the coming years [34]. (To define the battery capex we consulted 
manufacturers and received offers.) As a general conclusion, we can note that given the current 
electricity prices (fixed, no ToU dependency) and capital expenditures, particularly for Belgium, peak 
shaving through battery storage seems to be interesting from an economic perspective for several 
low-voltage enterprises. 

Figure 8. Peak shaving—results of economic feasibility study. At each point [x, y], the color represents
the total number of users whose peak reduction-to-capacity exceeds the y value. The yellow and green
dashed lines represent the profitability thresholds 0.43 and 0.67, respectively (see Equation (16)).

Needless to say that our estimation is strongly influenced by the considered parameter values
(Table 2). Even without changing neither the electricity price nor the peak shaving compensation,
simply by varying the payback period and/or the battery capex we would get different results. Here, it
is worth noting that the battery capex at 500 €/kWh is very realistic for the time being and it is expected
to decline further in the coming years [34]. (To define the battery capex we consulted manufacturers
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and received offers.) As a general conclusion, we can note that given the current electricity prices (fixed,
no ToU dependency) and capital expenditures, particularly for Belgium, peak shaving through battery
storage seems to be interesting from an economic perspective for several low-voltage enterprises.

4. Discussion and Conclusions

To summarize briefly what has been done, a model was developed in Matlab/Simulink for peak
shaving. The dichotomy method was proposed as an optimization algorithm to find the minimum
threshold above which we are 100% certain that the peak will never be exceeded. The model was
tested for 40 low-voltage users with peak demand charge derived from the Belgian grid operator.
We introduced five performance metrics to evaluate the simulation results. Furthermore, we gave
an example how to interpret the results from economic perspective and explored the profitability of
the application in Belgium. Below is a summary of the most important conclusions resulting from
our analysis:

• For a battery capacity 2 times the mean power, the peak reduction of the group of users Q5–Q75
varies between 6% and 27%, whereas for a battery capacity 10 times the mean power, the peak
reduction ranges between 20% and 44%.

• The SoC active time is limited for almost all cases. Even with an over-dimensioned battery
(capacity-to-mean power is 10), for seventy-five percent of the users (Q0–Q75), the battery remains
idle for at least 80% for the time. Consequently, peak shaving could possibly be hybridized with
other services (e.g., increasing PV self-sufficiency, ancillary services) in order to accelerate the
return of investment of the battery storage system. (By adding more revenue streams (stacked
services) the payback period of the investment can be reduced.)

• The battery utilization is very low, up to 80 cycles per year in worst case. This number is
significantly lower compared to the cycle lifetime of nowadays’ lithium-ion batteries.

• The consumption increase gets higher with the battery capacity. It lies in the range 0% to 5% and
does not substantially impact the operating cost of the system.

• From an economic perspective, peak shaving seems to be interesting for several low-voltage users
in Belgium under the current capex and fixed electricity prices (no ToU dependency).

One of our main conclusions is that the battery utilization (SoC active time and number of cycles)
is very low for almost all users. Consequently, there seems to be enough potential to let our battery
provide additional services during those inactive periods in order to accelerate the payback period of
our investment. Which services can be combined and how efficiently this can be done is certainly a
topic to be addressed by future research works.

As an initial step, we suggest studying the predictability of the load profile. In our study,
we consider the battery to be available for peak shaving 100% of the time; therefore, there is no need
to know in advance when the peak occurs. However, in hybrid applications, time must be allocated
appropriately and as a result load prediction plays an important role. To better explain this argument,
let us consider two different load profiles derived from our dataset, user A and B (Figures 9 and 10
respectively). Although the battery utilization is in both cases very low (peak occurs rarely), user
A is by far more predictable than the user B. For user A, the peak occurrence is dependent on the
day, the time of use and the temperature, whereas for user B, there seem to be no clear explanatory
variables. Consequently, user B cannot know how to allocate his inactive time to other services; hence,
the battery remains underutilized solely reserved for peak shaving. Closing this paragraph, we note
that, so far, most research works on battery storage have addressed only single applications. In our
view, the concept of hybridization will gain more attention in the coming years as users gradually
acquire more incentives to interact with the grid.
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