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Abstract

Due to the increasing penetration of fluctuating distributed generation electrical grids require reinforcement,

in order to secure a grid operation in accordance with given technical specifications. This grid reinforcement

often leads to over-dimensioning of the distribution grids. Therefore, traditional and recent advances in

distribution grid planning are analysed and possible alternative applications with large scale battery storage

systems are reviewed. The review starts with an examination of possible revenue streams along the value

chain of the German electricity market. The resulting operation strategies of the two most promising business

cases are discussed in detail, and a project overview in which these strategies are applied is presented. Finally,

the impact of the operation strategies are assessed with regard to distribution grid planning.

Keywords: grid planing, distribution grid, large scale batteries, community storage, primary frequency

control.

1. Introduction

The energy system in Germany is currently changing. In the past, electrical energy was injected by large

power plants into the transmission system (220 kV and 380 kV) to cover long distances. It was then delivered

to costumers via distribution (smaller) grids (1 kV to 110 kV). Since the German Federal Government decided

to withdraw from the nuclear energy programme and to reduce the greenhouse gas emissions in order to

mitigate climate change, the expansion of renewable energy sources was subsidised by introducing the

German Renewable Energy Act (EEG) in 2000. This led to a tripling of the share of renewable energy in

the German electricity mix from 7 % in the year 2000 to 25 % in the year 2013 [1]. As a consequence, the

sinking levelised cost of electricity (LCOE) of renewable energy sources (RES) led to grid parity. [2]. This

trend will probably continue as the German Federal Government committed itself to a RES ratio of 80 %

of the gross electricity production in the year 2050 [3]. In contrast to conventional power plants, RES are
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mainly realised as distributed generators (DG), as defined by [4, 5]. Due to their relatively small installed

nominal power they are mainly connected to the distribution grid at medium voltage (MV) and low voltage

(LV) levels [6, 7]. For example, 80 % of photovoltaic (PV) power plants in Germany are connected to the

LV grid [8]. Due to this, the nominal DG power installed in the distribution grid surpassed the power

installed in the transportation grid in 2010 [9]. Furthermore, the DG are distributed very inhomogeneous

in Germany with wind power plants in the north and photovoltaic systems in the south [10]. This, and

the fact that the power feed-in of DG is not necessarily simultaneous to the local load demand, results in

a transformation process of the distribution grids. Formerly they were characterised by the consumption

whereas now the reverse power flow becomes increasingly common. This means that in some moments of the

year there is a power flow from the distribution grid to the transportation grid [11]. As German electricity

grids are planned to work uni-directional with a power flow from high to low voltage levels this could lead

to several problems. For example the protection concept is designed such as to work for an uni-directional

power flow and may not work in a bi-directional way [12]. Furthermore, power quality issues can arise. In

some grids the maximum possible PV penetration rate is reached as DG are often installed in rural grids

[13]. Therefore, an additional installation of DG is often followed by grid reinforcement in order to solve

over-voltage and equipment over-loading issues. The drawback of this traditional grid planning procedure

is large investment in infrastructure with a low utilisation rate. Historically, network extension planning

has been based on maximum load scenarios, but in the case of a high penetration with DG the grid is

dimensioned to deal with maximum generation [14]. In Germany, the number of hours in which PV-systems

feed more than 90 % of their nominal power into the grid is below 100 hours a year [15]. Due to this,

traditional grid planning may cause inefficient grid operation and higher grid utilisation fees that have to be

borne by the general public (cost increase of 9,2 % from 2008 to 2014) [16]. As in [17] predicted, this will

lead to a linear cost increase for DG induced grid reinforcement due to over-voltage and over-loading issues

of 331 EUR/ kW until 2030. The cost can be designated to different voltage levels (400V:13 % / 1 kV-36

kV:29 % /60 kV − 380 kV: 58 %). Therefore, the impact of different operation strategies of microgrids

[18], electrical vehicles [19] and residential storage systems [20, 21] to increase the hosting capacity of DG

in distribution grids have been analysed by the authors. Although [22] provides an overview of (large scale)

energy storage technologies suitable for wind power application, the implications of the operating strategies

as for example voltage control for distribution grid planning have not been analysed in detail. Extending

the previous work of the authors, this paper gives an overview and evaluates alternative possibilities to

traditional DG induced grid extension with large scale battery storage systems (BSS). As in most cases, this

alternative turns out not to be profitable, if the BSS’s only purpose is to mitigate traditional grid extension

[14] additional revenue streams have to be taken into account. Therefore, the objectives of this paper are to

review additional applications for BSS in the German electricity market in order to combine them with the

task of mitigating grid extension caused by DG and evaluate the impact of the resulting operation strategies
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on traditional and new approaches of distribution grid planning. The paper is structured as follows: In

section 2 the legal framework for the operation of distribution grids in Germany and the challenges that

arise with integration of high shares of DG are described briefly. Section 3 covers traditional distribution

grid planning and in section 4 new grid reinforcement planning methods are presented. A brief overview of

different BSS applications and their possible profit margins for the German energy market is presented in

section 5. In the same section, the implementation of large scale battery systems in distributions grids is

discussed. The focus lies on BSS that apply self-consumption maximisation and primary control reserve, due

to their economical relevance, as well as the possible impact on the grid planning. Finally, the conclusions

are summarised in section 6.

2. Legal framework, arising challenges and possible solutions for DG and BSS connected to

distribution grids in Germany

2.1. Legal framework for the operation of distribution grids

According to the German Energy Act (EnWG) section 14(1) [23] the grid operators are legally bound

to ensure a safe and stable energy supply. Especially the power quality issues of over-loading of cables and

transformers as well as over-voltage are of major interest. The parameters that should fulfilled regarding

over-loading of transformers and LV-cables are defined in DIN EN 60076-2:2011 [24] and DIN VDE 0276-603

[25], respectively. Table 1 shows the load factors of the rated apparent power Sr for different components

according to [17] under normal operation conditions that are defined in [26]. For the heavy load flow (HLF)

and reverse power flow (RPF) different maximum load factors apply. This is due to the different shape of

the profiles in both cases. Furthermore, the (n-1)-criterion as defined in [27] and further specified in [17]

applies for MV-cables and HV/ MV transformers for the load case. In the case of a HLF for MV-cables and

HV/ MV transformers [17] sets the maximum loading to 120 %. For all other components and scenarios it is

set to 100 %. Nevertheless, the maximum loading of MV/ LV transformers depends not only on the profile

but is also not consistent in the literature: it ranges from 150 % for oil immersed transformers only[28, 29]

to 120 % [30, 31] and 100 % [17] for all kind of transformers in the case of a RPF caused by PV systems .

[Table 1 about here.]

Voltage characteristics of electricity in distribution grids are defined in [26]. The most important restric-

tions are that the frequency has to be kept at 50 Hz ±1 Hz and the 10−minute RMS average of the voltage

at the point of common coupling (PCC) has to be kept with in an interval ±10 % of the nominal voltage. To

ensure this two technical specifications for DG quantify the permitted voltage rise of 2 % in the MV [32] and

of 3 % in the LV, respectively [33]. These technical specifications apply if the MV or the LV are calculated

separately, otherwise these thresholds don‘t have to be considered. Furthermore, all generators connected
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to the electrical grid have to comply with the specifications of [34], [35] and [36], respectively. Furthermore,

the technical note [37] has to be considered for BSS connected to the LV.

The technical restrictions for over-voltage and over-loading are commonly used to determine the hosting

capacity, as defined in [38], to integrate DG into existing grids. An exhaustive international overview of the

main technical issues limiting the hosting capacity for DG of distribution feeders is given in [39].

2.2. Challenges and solutions for electrical grids with fluctuating feed-in of renewable energies

In this subsection the challenges that arise from the integration of high shares RES into the electrical

grid are discussed. The increasing penetration of DG has, among other issues, led to the following [39, 40, 41]:

For distribution grids in particular:

• Thermal over-loading of network equipment

• Voltage rise

• Increased fault levels, especially for MV grids

• Power quality issues

• Impact on grid protection due to RPF

• Effect on the operation of voltage regulators and tap changers because of RPF

• Impact on grid losses

For the whole electrical system:

• Increased demand of control power

• Increase of transmission line bottlenecks

• Decreasing spinning reserve

The most important challenge in distributions grids on an international level is due to over-voltage issues

[39]. In Germany for example, 80 % of the grid reinforcement is due to over-voltage issues in distribution

grids [42]. Besides grid reinforcement, ancillary services have to be provided by generators and loads to cope

with these issues. These services are defined in [43] and classified as follows for normal operation conditions:

• Frequency control

• Voltage control
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• Remote automatic generation control

• Grid loss compensation

All these ancillary services can be provided by DG and in particular by BSS [44]. Therefore, the

technical and economic applications of BSS are analysed hereafter in order to supply ancillary services and

as an alternative to traditional grid reinforcement.

3. Traditional distribution grid planning

Although, there are different guidelines for distribution grid planning on a national [45]and an interna-

tional level [46], as well as recommendations like [47] , every DSO has a different planning process because

of the different characteristics of each distribution grid and DSO [48]. To standardise the different planning

approaches a study was conducted that summarises the methodology of 17 DSO covering more than 50 %

of all distribution grids in Germany [17] and which can be regarded as the state-of-the-art approach. Fig. 1

describes the conventional distribution grid planning schematically:

[Fig. 1 about here.]

One problem of this approach lies in the input data, since the LV load is usually not measured and has

to be estimated. The estimated LV load may be gained from the (measured) annual maximum load of the

secondary transformers [49], the rated power of these transformers [50] or structural data as the degree of

electrification or population density [49, 45]. Also, approaches employing combinations of these datasets are

possible and described in [17]. On the generation side the rated power of the generators are usually well

known and published [51].

To evaluate whether a certain threshold is reached (as described in section 2) a power flow calculation

is conducted in which the power of the load and the generator are adjusted to certain worst case scenarios,

specified in subsection 3.1. If a threshold is passed, the grid will be reinforced according to the methodology

described in subsection 3.2.

3.1. Assumed scenarios - worst case parameters

Distribution grids are traditionally planned in a deterministic manner [46]. The traditional scenario to

conduct a power flow only considers maximum demand, whereas the generation is assumed to be constant.

As aforementioned, the higher penetration rate of DG leads to two worst case considerations: the heavy

load flow (HLF) and the reverse power flow (RPF) scenario. On an international level they are parametrised

according to [46]:
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1) Heavy load flow: Max load; no generation.

2) Reverse power flow: Min load; max generation.

These extreme parameters do not consider the time variability of demand and generation. Thus, a

simple probabilistic determination of the worst case scenario parameters that covers all possible grid states

for Germany sets the scenarios closer to the reality. For loads, this scenario parameter is called coincidence

factor and is defined in [46] as the average power absorbed related to the installed power. For generators,

this factor is referred to as diversity factor by [52], and is defined as the quotient of the actual and the

installed capacity. To quantify the coincidence and the diversity factor taking into account the simultaneity

of generation and consumption, several studies have been conducted [7, 17, 53, 54]. The diversity factors of

[7] apply for ten generators of the same type. The same study presents that diversity factor differs if the

correlation between the generators is taken into account. The results are listed in Table 2 and Table 3.

[Table 2 about here.]

[Table 3 about here.]

The coincidence and diversity factors all apply to the maximum/rated power of the generators and loads.

In case of PV this factor refers to the installed module power PST C [53, 54]. In the reverse power flow case

the factor for the load of the MV is higher, as higher blending of the stochastic behaviour of the loads is

taken into account. Some bigger costumers/loads have their own secondary transformer and are connected

directly to MV (C. load). The maximum power of these loads can be assumed as 40 % of the rated apparent

power Sr,t of the secondary transformer [55]. Based on experience, these simple worst case parameters cover

all possible grid states. These worst case scenarios are therefore commonly used, e.g. in [56, 57, 17], as

this method provides a high level of reliability without measurements in the LV [45]. The likelihood of

these extreme grid states however, is not considered with this practice, and may never occur in reality [58].

Furthermore, no time interdependencies of the assets are considered. As a consequence, the distribution

grids tend to be over-dimensioned. Thus [59] and [46] claim that new planning approaches should be taken

into account as they may use infrastructure more efficiently [47], as well as avoid redundant investments and

minimise O&M costs [60]. There are plenty of different approaches to come to a more realistic assessment

of the scenario parameters, as for example [55, 52, 61].

In general, there is a wide field of different new planning approaches for different applications which are

analysed in subsection 4.1.

3.2. Grid reinforcement methodology

Hereinafter the methodology of grid reinforcement for distribution grids, especially for low and medium

voltage grids, is described. The methodology is depicted in the figures for radial grid structures in the
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LV and for open ring structures in the MV. Nevertheless, these methodologies are transferable to other

grid topologies and can be considered as state-of-the-art in Germany [17]. As described before, triggers

for grid reinforcement are either local over-voltages or over-loadings of a cable or a transformer. First, the

over-loading measures are implemented, then another load-flow is conducted. If there are still over-voltage

problems in the grid, the measures to solve these apply.

Methodology for low voltage grids:

As depicted in Fig. 2, an over-voltage is solved by installing a parallel cable (type see Table 4) from the

distribution substation to the next distribution cabinet over 2/3 of the line length. A critical over-loading

of a line is solved by installing a parallel line till the next distribution cabinet, starting to search from half

of the line on.

[Fig. 2 about here.]

If more than one line is affected, as shown in Fig. 3, all affected lines are divided at the distribution

cabinet that lies closest behind one half of the line. The lines of the second half are connected to a new

secondary substation. The rated apparent power Sr,t of the additional MV/LV transformer is the same as

the one that was formerly feeding the entire LV-grid. If there is an over-loading in a transformer and its

apparent power Sr,t ≤ 400 kV A, it is replaced by the next bigger standard transformer (630 kVA). If the

over-loading is not solved, a parallel 630 kVA transformer is installed.

[Fig. 3 about here.]

Methodology for medium voltage grids:

Similar to the LV a parallel line is installed in the case of over-loading or over-voltage. In case of over-

voltage the length of the new line is 2/3rd of the length of the affected feeder, whereas for over-loading

the parallel line is installed between the primary substation and the DG that causes the trouble (see Fig.

4). It applies for both measures that no secondary substations are installed on the parallel MV line which

is connected to the bus bar of the primary substation. At the connection points an additional breaker is

installed in the affected feeder.

[Fig. 4 about here.]

If the parallel cable does not solve the issue, a new MV ring is installed according to Fig. 5. By this

measure the critical part of the affected open MV ring is transferred to two uncritical open MV rings by

separating the DG that causes the problems with a parallel MV line. The costs for the earthworks apply

only once, as it is assumed that both lines share the same trench.
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[Fig. 5 about here.]

If the HV/MV transformer is over-loaded it is replaced with a 40 MVA transformer. If the over-loading

still remains a parallel 40 MVA transformer for the same feeder is installed. In case all the aforementioned

measures do not solve the problems, a new primary substation is installed as depicted in Fig. 6. In this

case, the placement of the new substation and new breakers is done manually in order to solve all occurring

issues in the MV-grid manually.

[Fig. 6 about here.]

Other studies [62, 63, 64, 30, 31] suggest slightly different approaches. For example [62, 63, 31] regard

low voltage exclusively, whereas [64] focuses only on the medium voltage and [30] considers both voltage

levels. Another difference in [62, 31] is that the new parallel line is installed from the secondary transformer

to the distribution cabinet closest to the critical node within the feeder.

According to [17, 62, 31] all new lines are supposed to be underground cables, instead of overhead lines

due to the higher acceptance of the general public. For an easier automation the reinforcement equipment

is standardised but differs from case to case as shown in Table 4.

[Table 4 about here.]

According to [13] who conducted a statistical analysis of distributions grids in southern Germany, the

NAYY 4x240mm2 is the most commonly used cable type in LV (36 % in rural grids, 84 % in villages and

38 % suburban grids) and is used twice as often as any other cable type.

4. New planning methods and definitions for BSS

4.1. New planning methods for integrating DG and BSS in distribution grids

The aim of the reviewed studies in this section is to determine, besides other network parameters, the

optimal number, location and size of DG and BSS units. This is achieved by optimising the total capital

expenditures (CAPEX) and operational expenditures (OPEX) including DG and BSS. Several objectives

have been pursued via this optimisation of DG integration in distribution grids. Some of the most com-

mon objectives are: minimisation of energy losses, maximisation of DG capacity or energy via sizing and

allocation of DG, minimising curtailment losses, minimising costs, as well as the minimisation of the grid

reinforcement cost associated with DG [65]. The planning process can be described as a non-linear mixed

integer optimisation problem. There are several comprehensive reviews for new distribution grid planning

approaches. While [66, 67, 68] describe and classify the planning approaches generally, [65, 69, 70] con-

centrate on DG integration. Hereafter, the criteria and definitions as well as the three-level tree-structure
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according to [66] are used to classify the planning methods used in a selection of reviewed studies listed in

Table 5.

According to the first level of the tree-structure, all methods can be divided into models with or with-

out reliability considerations. In planning models without reliability features the grid is operated under

operational constraints. The aims of planning optimisations are minimising CAPEX of substations, feeders

or feeder branches (assets), minimising the costs of capacity upgrades of the existing facilities, as well as

minimising the OPEX and the energy losses.

In the second level, the models may or may not include uncertainty considerations. In contrast to deter-

ministic planning, uncertainty models consider the unpredictability of future load demand and generation at

the design stage. The reliability considerations may be considered in the planning and can be incorporated

either under normal conditions or under contingency conditions. To include the maximum network reliabil-

ity under normal conditions, a reliability objective function minimising the expected outage cost or expected

annual non-delivered energy is added to the other objective functions. In order to include predefined fault/

contingency conditions an objective function similar to the aforementioned reliability objective function is

employed.

The third level categorises all types of optimisation models depending on the type of (decision) variables

and objectives. There are (a) mixed-integer (b) discrete and (c) continuous models. Commonly, integer

variables in distribution system planning problems are used for decisions on whether or not new assets

are installed or existing equipment is replaced or extended. Discrete variables are usually used for the

dimensioning of the equipment, whereas continuous variables are generally used for voltages and power

flows. In mixed-integer models, all three types of variables can be optimised. Discrete and continuous

models on the other hand are restricted to discrete and continuous decision variables, respectively. All

reviewed studies are categorised within these three models and listed in Table 5 including their type of

solution strategy. The different solution strategies are discussed in [66] with more detail. For reasons of

conciseness the various methods have been denoted with indices, which are used in Table 5.

(a) Mixed-integer models

The mixed-integer models are the most common ones. They combine binary decision variables (1(Yes),

0(No)) with a set of continuous and discrete variables.

• Mixed-integer linear programming (MILP)a

MILP is a two-step approach. In the first step, an initial solution is determined by solving a

linear problem, where all variables are treated as continuous variables, usually using the simplex

algorithm. In the second step, successive searches are performed to obtain better solutions for the

integer variables.

For example in [71] MILP is used to determine the achievable gross margin in the different elec-
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tricity markets for BSS and its resulting operation, as well as for the determination of the storage

redispatch and DG curtailment measures and their respective power flows. Whereas, [72] uses

MILP to calculate the optimal size and location of feeders and substations over the planning horizon

of 10 years.

• Mixed-integer non-linear programming (MINLP)b

MINLP refers to optimisation problems with continuous and discrete variables and a non-linear

objective function and/or non-linear constraints.

In [73] a MINLP is used to decide whether to invest in DG and/or purchase power from the main

grid and invest in feeders and substations in case of future load growth. Another approach is used by

[74], who formulated the MINLP as a TRIBE particle swarm optimisation and ordinal optimisation

with the aim of minimising total costs by optimal allocation of DG. Reactive capabilities of different

DG and uncertainty in load demand and generation has been analysed. However, BSS have not

been considered. A multi-objective optimisation using MINLP in order to find a trade-off between

minimising the investments and the emission of pollutants, taking into account uncertain market

prices, has been presented by [75].

• Bender’s decomposition (BD)c

In this algorithm the mixed-integer model is separated into two discrete models: the discrete

’relaxed master problem’ and a quadratic ’sub-problem’. First, the master problem is solved to

decide on investments in new equipment. Secondly, the quadratic sub-problem is solved to optimise

the power flow in order to minimise the operational costs.

A long-term multi-stage model has been presented by [76] and [77]. This model uses new-path and

fencing constraints to reduce the complexity of the solution space. This grid expansion planning

method minimises investment costs for growing load demand by including DG, similar to [73].

• Genetic algorithm (GA)d

Inspired by natural evolution processes in genetic algorithms generations of individuals exist. Sim-

ulating the evolutions of individuals by emulating the process of selection, mutation and recombi-

nation of genes, the reproduction is based on fitness functions preferring the best individuals. GA

can be used for different purposes in distribution grid planning: In [78] it is used to find the opti-

mal grid topology. In [71]the GA is used for BSS allocation and calculation of grid reinforcement

measures. The optimal trade-off between traditional grid expansion and implementation and/or

the energy purchase of DG is considered in [79, 80, 81, 82].

• Particle swarm optimisation (PSO)e

PSO is another evolutionary algorithm that simulates individuals (particles) in a swarm and their

social behaviour. A vector is used to locate every particle and its velocity in the swarm. The
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population of particles searches for the optimal solutions using the individual experience of the

particles and sharing it with the others. The swarm can also return to promising regions found

before. Generally it is used to allocate DG [83, 84, 74] and/or BSS [85], or on-load tap-changer

[63]. PSO might also be used to calculate the minimal reactive power output of DGs to solve

over-voltage problems [63].

• Expert system (ES)f

Expert systems are knowledge-based systems, that try to emulate the decisions a human would

make. Besides heuristic rules a broad data basis like GIS-Data, economic data from asset-management

databases as well as the grid topology and measured data are combined for this purpose to create

a semi-automatic grid planning process [86].

Qualitative evaluation

Mixed-integer linear models allow a high degree of generalisation. Nevertheless, in order to optimise real

grids, non-linear characteristics like cost functions and grid characteristics have to be linearised. Con-

sequently, the optimal solution is not necessarily the best for the real system, due to the simplifications

[87, 88].

(b) Discrete models

In these models, discrete and binary variables (yes/ no) are used in the objective function formulation

to deal with the decision on location and size of the network facilities.

Qualitative evaluation

Discrete models allow the determination of the timing of reinforcement measures for long term planning,

but only discrete variables are allowed. Generally, the same restrictions for large scale systems apply

as for mixed integer models due to high number of possibilities [66]. To the authors knowledge discrete

models are not applied for DG integration in distribution grids, as no work has been published on this

topic in the public domain.

(c) Continuous models

In continuous models the considered variables have to be continuous and thus the need of discrete

decision variables is eliminated.

• Dynamic programming (DP)g

Dynamic programming allows to represent the ever-changing nature of the planning process. This is

realised by modelling the states of the network in nodes with certain states. These states can change

in time with every investment in grid reinforcement and are based on the former state. In [89] this

11



method is used to realise a long-term planning (10 years) for the optimal sizing, allocation and

most important the timing of investment in DG based on measured values (current and voltage).

• Non-linear programming (NLP)h

NLP is a numerical method, which only accepts continuous variables. The most common applica-

tion for NLP in the context of distribution grid planning is AC optimal power flow (AC-OPF), as

used in [71] to minimise active power redispatch for all DG and BSS. NLP is applied by [72] to

determine the optimal capacities and production of the DG.

Qualitative evaluation

The biggest advantage of these models are, that no linearisation is required making it a good choice

for extension planning purposes of large scale distribution grids. The drawbacks are, besides the large

computational effort [60], that these models are badly suited for greenfield considerations [90].

Furthermore, all the methods might be either deterministic or consider uncertainty in the model. The

uncertainty can be considered by using a possibilisticy approach as used in models that apply a fuzzy total

installation and operational cost or a fuzzy non-delivered energy as objective function. A multi-objective

optimisation based on fuzzy logic has been presented by [91], who uses a Bellman-Zadeh algorithm to

analyse a wide range of technical, economic and environmental criteria to find optimal allocation of DG in

distribution grids.

Another approach to handle uncertainty is called probabilisticz approach. In this model the uncertainty is

calculated by applying a probability distribution function. The power generation or the size of the DG is a

common example for a probabilistic application.

[Table 5 about here.]

As presented in Table 5, deterministic approaches without reliability considerations show the highest

variety of numerical and evolutionary methods, and are the most commonly used. In studies that implement

reliability considerations evolutionary algorithms seem to be the predominant method, because of their

advantage to optimise several criteria at the same time.

In most of the cited studies the DSO is at the same time the owner of the DG, BSS or OLTC-transformer and

can decide on the allocation and/or the operating strategy of the equipment [73, 74, 77, 76, 78, 75, 91, 89, 85,

83, 84, 82, 79, 80, 81]. Only few works consider that the equipment might be privately owned and operated,

as is the case in Germany [72, 86, 63, 71, 92]. In Germany, due to unbundling the DSO is normally not the

owner of the DG or BSS and therefore has only very little or no influence on the location. Furthermore,

the volatile character of the DG, as well as the stochastic behaviour of loads and the possible participation

of DG, BSS and loads at the energy market, lead to extreme scenario parameters. Consequently, the grid

is over-dimensioned, if the conventional planning based on worst case scenarios is applied. The over-sizing
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problem remains with the presented new grid distribution planning methods as long as extreme scenarios

are used, even if the systematic approach of the new methods eliminate the uncertainty of manual planning.

The problem can be solved by applying possibilistic or probabilistic methods. Probabilistic algorithms

use probability density functions for loads and generation to quantify the likelihood of grid states as for

example very rare loading situations and can derive the reliability of the electrical power supply. The main

drawback is that high quality time-series of the grid participants are needed to generate the probability

density functions, which are often not available in LV grids. This applies especially for the active power flow

of BSS as their operation strategy depends on the business case which might depend on the energy market

for instance. Furthermore, the reactive power flow of the BSS, depends on other network participants and

on the current grid state. Consequently, to generate realistic time-series existing interdependencies in the

distribution grid as well as business case related issues have to be considered. These time series can be

used as an input for any planning optimisation method mentioned above and should be an improvement to

traditional worst case considerations.

Several studies exist combine grid planning with DG and take the active power control of large scale

batteries for peak shaving into account [85, 83, 14, 93]. Nevertheless, from the studies mentioned above only

[85] and [93] consider reactive power control, even though [94] highly recommends further studies on this

issue. This is due to the fact that reactive power control from BSS is as a very easy and cost-effective way

of voltage control which is independent from the state of charge of the battery.

4.2. Definitions of behaviours of BSS

As stated before, BSS may provide active and reactive power. The application dependent power flow may

either lead to less or to additional grid reinforcement cost [17]. In this section different system behaviours

and the criteria of the BSS in order to quantify their impact on the distribution grid planning are defined. In

this study the term system refers to electrical systems, whereas the heat and transport sector are excluded.

Every BSS may be categorised in one or several of the four categories mentioned hereafter [95, 96]:

(a) Grid compatible

If the minimal technical requirements in regard to quality, reliability and safety imposed by the DSO

are fulfilled by the BSS, it can be considered as grid compatible. In the near future operators of DG

will need to prove this behaviour via certificates to the DSO. Based on the criteria for to PV systems,

possible future criteria which have to be proven by the BSS, are [97]:

(i) Short-circuit current capability, (continuous) current carrying capacity ampacity and switching

capacity of the main components

(ii) Active power feed-in

(iii) Active power concept
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(iv) Network disturbances like rapid voltage drops, long-term flicker, harmonics and interharmonics

(v) Fault ride through

(vi) Contribution to the short circuit current

(vii) Static provision of reactive power

(viii) Conditions for connecting and protection concept for disconnecting the system

(b) Grid supportive

This characteristics describes the behaviour of the BSS of actively stabilising the grid that goes beyond

the minimal prerequisites described before. It has a local component as some issues like over-voltage and

over-loading have to be solved locally. Over-voltage may be solved with active or/and reactive power

control as addressed for instance by [96]. The market incentive programme from the German Federal

Government and the state-owned KfW banking group is coupled to several technical requirements. The

most important measure in this context is the limitation of maximum feed-in power of the PV storage

system to 60 % of its nominal power at the point of common coupling [98].

(c) System compatible

Analogue to a grid compatible behaviour a system compatibility is given with the fulfilment of the

minimal requirements of the BSS to ensure a safe operation of the whole electrical system. In this case

the contribution to the spinning reserve, as well as the provision of ancillary services as for instance

black start capability and frequency control play an important role. Some of these services, like the

provision of primary frequency control, are remunerated whereas some, such as the provision of spinning

reserve or active power reduction in case of over-frequency, are not [96].

(d) System supportive

A BSS can be considered system supportive, if it leads to greater flexibility of the electrical system.

The operation of the BSS is then optimised to minimise local issues as described for the grid supportive

behaviour and at the same time to provide services for the whole electrical system. An example may be

the provision of reactive power to reduce local over-voltage issues and the provision of active power to

provide frequency control and/or spinning reserve.

5. Overview of large scale battery systems in distribution grids

Large scale battery systems are not clearly defined. They may be defined by their type of operation, as

in [99, 100]. In [99] large scale BSS are delemited from small scale BSS, if they supply peak levelling services

and are grid connected or if power-quality control applications are applied. A more specific definition of the

application of large scale BSS is given by [100], who distinguishes between energy related or power related
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applications. In energy related applications, the storage is charged and discharged during several hours,

reaching one cycle a day. In contrast to this, for power applications the BSS is cycled several times a day

and discharged and charged in shorter periods (typically seconds and minutes). The type of application

directly affects the range in which the rated power range of the BSS tends to be and might be used as an

indication, as listed in Table 6 according to[101].

[Table 6 about here.]

In subsection 5.1 the market potential of large scale BSS in German distribution grids according to the

definition mentioned above is estimated. The operation strategies of the two most promising business cases

are analysed in subsection 5.2 and 5.3 and the impact of the operation strategies is concluded in subsection

5.4.

5.1. BSS applications and German energy market

In broad terms, there are two ways to gain monetary benefits along the electricity value chain with

existing BSS applications in the German electricity market: first, revenues received by the storage owner

or operator and second, cost reduction or avoidance by the storage owner or operator [102]. Generally,

revenues can be achieved through existing markets and bilateral contracts. Cost reduction or avoidance

on the other hand is highly based on individual use cases. Some important application analyses have been

summarised for the German electricity market in [103, 104, 105, 106] and are shortly presented in the next

sections together with their potential benefit estimations:

(a) Market revenues

(i) Power exchange markets:

As electricity is a homogeneous commodity and the majority of the power supply must be consumed

at time of production, electricity prices show a high volatility. In addition, the short-term demand is

not very price elastic [107]. These circumstances allow inter- temporal arbitrage transactions at the

EPEX-Spot (day-ahead and intraday market). Arbitrage contains purchases of electricity in times of

low energy prices (off-peak prices) and sales of electricity when prices are comparatively high (peak

prices) [108]. The attractiveness of the application depends on price spreads and the frequency of price

spreads in these markets. On the day-ahead market, 24 hour single contracts and diverse block contracts

are traded for the next day via a daily static auction. The intraday market starts shortly after the day-

ahead market (trades for the following day start at 3 pm and end 30 minutes before the actual physical

delivery of the respective contract) and is organised by continuous trading.

(ii) Control reserve markets:

A stable operation of the power supply system at a system frequency of 50 Hz requires that the system
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balance of feed-in, off-take and losses are balanced at any time or that it will be balanced in case

of any deviations in a short period of time [109]. An increase or decrease in net output of BSS can

ensure a real-time system balance [110]. Since 2001, the German TSOs procure their needs for different

control reserves (primary, secondary and tertiary control reserve) on an open, transparent and non-

discriminatory market. The main differences between the three control reserve forms are the tender

time and period, the product time-slice, the award criteria and the remuneration. In addition, positive

and negative SCR and TCR are separately marketed, whereas in the case of PCR the power increase

and decrease must be ensured by a single offer, but the forms of control reserve can be provided by

various technical units (also known as pooling).

(b) Revenues based on bilateral contracts

(i) Voltage support:

In order to maintain stable network operation, the voltage level must be kept in certain ranges. The

static voltage support can, among others be achieved by a local offset of reactive power [111]. BSS

with an inverter and a corresponding power electronic can principally provide reactive power [112].

A compensation of reactive power is exclusively paid on the high and extra high voltage level by the

respective TSO. On the distribution level the requirements are part of the FNN-guidelines but there is

no monetary compensation [95].

(ii) System restoration:

BSS can be used to energise transmission and distribution lines and have the ability to synchronise

sub-systems as well as back-up other black start units [105]. In Germany, each of the four TSOs in

cooperation with the DSOs are obliged to have a sufficient capacity of black start units plus a concept

for the restoration of supply in their control area. The black start capability is not explicitly defined

in the Transmission Code. The requirements for the type, scope and remuneration are negotiated

bilaterally.

(iii) Redispatch:

In many areas in Germany, transmission capacities are not keeping pace with the changing feed-in and

off-take infrastructure. In order to ensure security of supply, TSOs with the help of DSOs take redispatch

measures, adjusting feed-in from particular generating and storage facilities [113]. A transparent market

for redispatch does not exist. The selection of generators for redispatching is based on their location

in the network, their generation form and their size, which determines either the cost-based (where the

adequacy of costs is regulated) or market-based (based on individual bids submitted by the generators)

redispatch [114].

(c) Cost reduction or avoidance

(i) Uninterrupted power supply (UPS):
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Large and long power cuts (> 3 min) arise relatively arbitrarily in Germany. However, voltage dips

(< 1 min) as well as short interruptions (< 3 min) occur 10 to 100 times per year [114]. Therefore,

depending on the specific outage times and individual power quality needs (e.g. voltage, frequency,

harmonics), a UPS system can consist of a BSS in combination with a generation unit like a diesel or

gas generator or of a battery only [106].

(ii) Balancing group management (BGM):

With the liberalisation of electricity markets in Europe and Germany, the balancing group system was

established. Accordingly, each producer or consumer must belong to a balance group and all balance

groups must be levelled at a quarter-hourly basis. The German TSOs are liable for determining and

settling the amounts of balancing energy in their control area, using a common symmetric imbalance

price for each 15-minute time period (German: regelzonenübergreifender einheitlicher Bilanzausgleich-

senergiepreis, reBAP) [115]. Consequently, a BSS can optimise the individual energy balancing costs.

(iii) Energy cost management (ECM):

The benefit area is similar to arbitrage at power exchange markets. In this case not wholesale prices

but individual end-user tariffs are relevant. The BSS can avoid high price energy purchases during peak

demand hours for residential and commercial/industrial users [116]. Since 2010, according to section

40(5) EnWG energy suppliers are obliged to offer load-variable and daytime dependent tariffs. The

tariff-structure and -spreads depend mainly on the respective supplier and individual electrical demand

amounts (e.g. industrial, residential).

(iv) Reactive power management (RPM):

Producers and network operators need to transfer the apparent power according to the active and re-

active power demand of the end user. Common supply contracts in the industry allow that 50 % of the

active energy can be obtained free of charge as reactive energy, which corresponds to a cosϕ of 0.89

[117]. In case of a higher demand for reactive power an additional fee must be paid, which is subject

to individual negotiations. This inductive reactive power demand can be covered amongst others by a

BSS.

(v) Demand management:

As standard load profiles are applied in the customer segment and only annual energy consumptions

are measured, no tariffs with power limits or incentives are available at the moment. This can poten-

tially change with the roll out of smart meters. However, industrial consumers typically have two price

components: expenses of the peak power demand and expenses for the consumed energy [103]. Usually,

demand management is done by the retraction of running processes. Therefore, a load-shift via BSS

may have (alongside with economic aspects) production-related benefits.

(vi) Renewable energy self-consumption (RESC):

End-consumers with generation capacity (e.g. photovoltaics) can increase the amount of self-consumed
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energy by adding BSS. With the increasing difference between cost of generation and purchase price

BSS become more and more attractive to end-consumers. For instance, PV-generation costs and feed-in

tariffs have dropped well below purchase prices from the grid, whereas purchase prices have increased

continuously [103]. It is noteworthy that due to the EEG amendment from 2014, newly installed systems

over 10 kW or 10.000 kWh/a are surcharged for own consumption. Overall, the attractiveness of RE

self-supply depend highly on electricity fee regulations.

(vi) Grid expansion relief:

Due to the growing energy demand, decoupled supply and demand regions, as well the fluctuating nature

of most renewable energy generation, further investment in new lines, transformers and substations may

become necessary [118]. According to the usual load characteristics, the available transmission capacity

limits only the maximum transmittable power, but not the energy [119]. BSS can help defer or avoid

grid expansions by storing energy. Nevertheless, BSS in general are more cost intensive and the current

incentive regulation (ARgeV) does not consider alternative and perhaps more expansive infrastructure

investments.

According to a German market analysis based on data from 2013 the benefits can be grouped in ac-

cordance to their market potential (see Table 7). The market potential consists of three core aspects:

conceivable revenue, applicability for BSS and a favourable legal framework. Only a low potential for BSS

benefits lies in grid expansion relief, voltage support and system restoration; redispatch, demand manage-

ment and reactive power management hold a medium benefit potential. A high market potential is given by

energy trading at the day-ahead and intra-day market, frequency support, un-interruptible power supply,

balancing group management, energy cost management and renewable energy self consumption. The highest

revenue potential for the market based applications lies in the primary control reserve market whereas the

highest cost reduction potential can be seen in maximising the self consumption using renewable energies,

especially for households. Therefore, many BSS projects, especially in Germany, but also world-wide focus

on these two applications [120]. An up-to-date world-wide database on energy storage systems and their

applications is maintained by the US Department of Energy [121], which confirms that these two applica-

tions are the most common. Ergo, the focus of this work lies on operating strategies for the maximisation of

self consumption (subsection 5.2) and primary frequency control (subsection 5.3). Another approach is to

combine complementary business models, this may increase the profit compared to a single revenue stream

[122].

[Table 7 about here.]
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5.2. Detailed overview of operating strategies for self-consumption

With the rise of DG the idea of the prosumer (entities that consume and produce), first mentioned in

1980 [123], became more popular. The main motivation to become an electrical prosumer as defined in [124],

is that self-consumption of locally generated electricity, as defined in [125], is more profitable than drawing it

from alternative supplies. This is the case if the levelised costs of electricity (LCOE) of the DG can compete

with the cost to draw electricity from the power grid (electricity retail price). A comprehensive manual to

calculate the LCOE for renewable energies was first presented by [126] and has further been discussed by

[127] [128] and [129]. To incorporate the cost of storage [130] proposed to calculate the levelised cost of

stored energy.

A comprehensive overview on grid parity world-wide is given by [131]. It is shown that Europe was the

first main market world-wide where grid parity was achieved in 2010. It is quite likely that the market

volumes for self-consumption business cases will grow in the future as the trend of falling LCOE of DG and

BSS continues. The LCOE of PV, for example, are assumed to decrease by 30-50 % from 2014 to 2030 [132].

An even more drastic price decline is foretold for BSS, especially for lithium-ion batteries (LIB). The lowest

battery cell price for utility scale LIB could decrease by 64 % from 2014 to 2020 [133]. Although normally

only addressed as LIB, there are at least four promising types of LIB suitable energy storage applications

with different cell chemistries [134] and price reduction potentials till 2020 [133]: lithium manganite (39 %),

lithium nickel cobalt aluminum oxide (50 %), lithium-iron phosphate (37 %) and lithium titanate (25 %). A

more conservative meta-study conducted by Nykvist et al. indicates that the costs of LIB for battery electric

vehicles could fall below 150 USD/kWh by 2025, and therefore decrease by more than 50 % [135]. The lowest

battery cell price for utility scale flow batteries is predicted to decrease by 48 % until 2020, making them

the second most interesting battery type concerning the price reduction potential [133].

The liberalisation of the energy market since the 1990s has not lead, as theoretically predicted, to a

decline of the electricity price for household consumers due to more competition, but to an increase in all 27

member countries of the EU-27, except Finland, between 1998 and 2008 [136]. As electricity prices are much

harder to predict than, for example, the LCOE of PV a large variety of methods have been applied over the

past 15 years [137], indicating that the electricity price for households will further rise all over Europe [136].

Keeping in mind the big uncertainty of predicting these prices the electricity retail price in Germany is likely

to increase until 2030 according to a technical report commissioned by the Federal Ministry for Economic

Affairs and Energy [138].

In countries with lower LCOE of PV compare to Germany like Spain for instance, self-consumption

systems might have a positive NPV, but a possible back-toll fee could turns a profitable system to a negative

NPV[139]. Therefore a favourable legislative framework, as it is the case in Germany, is mandatory for this

business case. By analysing the Italian market, one can deduce which size is more profitable in a post feed-in

market. It can be concluded that small residential PV systems have higher net present values than bigger
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systems, as the economy of scale does not compensate the benefits of smaller systems [140]. Therefore,

the trend of installing PV systems in LV grids in Germany is likely to continue. PV systems in southern

Germany reached PV grid parity in 2012 [2]. With only a PV-system to match the demand, the achievable

self-consumption rates are limited, and can only be increased by demand side management (DSM) and BSS

come into play. It is shown by [141] that BSS have a higher potential to increase self-consumption than DSM

[141]. Consequently, self-consumption increase is mainly realised with residential energy storages (RES),

as this business case became profitable in 2013 in Germany [142]. As described before, the benefit in 2013

results from the PV LCOE, which are currently between 9.8 and 14.2 EURct./kWh in Germany [143], and

the electricity costs for households, which amount to 28.9 ct./kWh [144]. It is noteworthy that due to the

EEG amendment from 2014 newly installed systems over 10 kW or 10.000 kWh/a are surcharged for own

consumption (currently with 6.2 EURct./kWh). Therefore, the theoretically achievable profit margin lies

between 8.5 and 19.1 EURct./kWh. This led to an installation of more than 4600 residential storage systems

for self consumption in Germany until June 2015[145].

In the industry segment the PV generation costs are generally 2 EURct./kWh lower than in household

applications because of the larger systems sizes and lie between 7.8 and 14.2 EURct./kWh [143]. The

power purchase costs for large customers with a consumption of 100 GWh/a range between 4.1 and 15.6

EURct./kWh. Thus, the theoretical realisable value range (considering the EEG surcharge) is 0 to 5 ct./kWh.

But could it be economically feasible to pool the prosumer and instead of having a BSS and PV-system

in every household share and scale them up? [146] showed that the pooling of prosumer generators and

loads has been beneficial in all calculated scenarios in the UK compared to a single prosumer. This is due

to the combination of PV systems, wind turbines and loads. By doing this the self-consumption level could

be raised up to 17,5 % , wherefore the economics in case of grid parity improve significantly. However, BSS

were not considered in this study. Large scale or pooled BSS that apply a self-consumption maximisation

can be addressed as community electricity storage (CES), as defined in [147, 148]. A more detailed definition

of CES is given in [149]. Parra et al. [150] conducted a study in which the LCOE of single households in the

UK using PV residential storage systems and using a CES instead were compared. It has been shown, that

the LCOE could be lowered by 37 % for a 10-household community and 66 % for a 60-household community.

In Germany, CES, diverging from the definition in [148] cannot be operated or owned by the DSO using

the CES to participate in the energy market because of the unbundling. The CES has to be owned and

operated by a citizen cooperative or an external storage operator, for example. In Germany, no similar

calculations considering the potential of lowering the LCOE have been conducted, but [151] showed that by

applying CES the losses caused by the grid-compatible storage operation can be lowered by 50 % on average

compared to RES. With the existing legal framework the business models of residential storages and CES

cannot be directly compared because of the additional burden of extra fees and taxes for CES. Nevertheless,

the studies mentioned before seem to indicate that CES have some advantages over residential storages.
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The operation strategies however, can be transferred and classified into the following four categories

[95, 98]: direct loading, schedule mode, peak shaving and based on a prognosis. A more detailed description

and quantitative comparison of the control strategies for residential systems can be found in [20]. Although

being very similar, the control strategies for CES are different, as the incentive programme introduced by

the German government only supports storage systems for grid connected PV systems up to 30 kW [98]. As

a consequence, CES do not have to limit the rated power of the DG PrDG. For the following graphs it is

assumed that the CES is connected to the low voltage and the yearly energy consumption is equal to the

energy production of the DG in the LV grid. It is assumed that all DG are PV systems. As suggested in

[152] the ratio between capacity and the rated power of the PV system is 1:1. The implementation of the

different operating strategies of the German CES projects listed in Table 8 are sorted in the four categories

and described briefly.

(a) Direct loading

The generated energy is directly stored in the BSS if the residual power Pres of load and generation is

positive. This simple strategy maximises the self consumption rate as it ensures that the BSS is loaded

as soon as possible. Drawback of this strategy are the steep gradients depicted in Fig. 7 and that,

depending on the battery capacity, an excessive feed-in to the grid might occur during peak irradiation

around noon, if there is no PV power limitation on the power of the PV systems.

[Fig. 7 about here.]

A grid compatible operating strategy using direct loading to ensure a maximal renewable energy self-

consumption rate (RESCR) is used by [153] and [154]. In [153] the BSS is placed in the LV side of a

micro grid with DG, which is connected to the public grid via one MV/ LV transformer. The charging

and discharging of the battery is calculated in 1-h steps, from measured and synthesised time series.

The main differences in the CES project of [154] are that the generation and load of every participating

prosumer is measured every 5-7 seconds and that the BSS is not necessarily placed at the same location

as the DG and consumers. The idea of this project is that every participant may use a part of the

battery that is virtually partitioned to increase the individual RESCR.

(b) Schedule

In this strategy, the time to charge the battery will be shifted to a typical time with high radiation. The

schedule mode with constant charging power is depicted in Fig. 8 showing a more favourable behaviour

from grid perspective because feed-in peaks as in the direct loading strategy are prevented.

[Fig. 8 about here.]
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Nevertheless, the self-consumption rate might be reduced, as in days with lower radiation the BSS might

not be fully loaded. Several strategies have been proposed for this purpose. The main differences are

that [155] and [156] propose a starting point around noon and charge the battery with full power whereas

others, for example [157], suggest a constant charging power over a larger period. Currently there is no

CES project in Germany known to the authors using this strategy.

(c) Peak-shaving (load levelling)

The main objective of the peak shaving strategy (Fig. 9) is to avoid over-voltage and equipment over-

loading issues by limiting the power at the PCC and using the remaining residual power to charge the

battery [158, 152, 159].

[Fig. 9 about here.]

The limitation of power at the PCC should be based on the voltage at the PCC, the power range of the

battery, and the PV penetration of the grid [158]. The main objective of this strategy is to not surpass

a certain level of Pres/PrDG at the PCC of the BSS. There are mainly three possibilities to achieve this

aim:

(i) The battery is sized for the worst case, e.g. the day with the highest irradiation and no load, as

in [160].

(ii) The power of the DG is curtailed in case of a full battery, as depicted in Fig. 9 and described in

[159].

(iii) Instead of curtailing the DG an additional load is used to reduce the residual load by using, for

example, power-to-head [161].

This grid supportive operating strategy is applied to large scale BSS by [14], [160], [162] and [163]. The

focus of IRENE Project lies on grid expansion relief. Therefore, one or several BSS are dimensioned and

placed strategically in the LV to mitigate the total feeder RPF to 70 % of the cumulated PrDG of the

respective feeder in which the BSS are installed. Additionally to this active power control, a reactive

power control is implemented. The calculation of the set-points of P and Q are calculated externally

and not by the BSS itself. [160]

Similar to the aforementioned project the BSS in Fechheim limits the power to 40 % of the cumulated

PrDG of feeder in which the BSS is allocated with an active power control and uses a reactive power

control to reduce the voltage in the case of a fully loaded storage [162].

The aim of the SmartOperator project is to minimise voltage deviations and line utilisation. The BSS

is dimensioned to enable a peak shaving of 50 % for a period of 5 h [163] based on initial studies by
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[164]. A learning algorithm is used to calculate the forecast of generation and load as well as future grid

states, based on real time data of voltage and current [165]. This forecast is used to calculate the active

and reactive power flows of the BSS to ensure peak shaving of the PV systems and that the voltage

values of the grid nodes stay within given thresholds.

The advantage of peak shaving is that critical voltages might be avoided by limiting the feed-in power.

The voltage can be further reduced by absorbing reactive power. From the point of view of self consump-

tion maximisation, a problem is raised during cloudy or foggy days, when there is not enough radiation

to charge the battery. Consequently, the self-consumption rate will be reduced. On the other hand,

during high irradiance days, the power curtailment is high as can be seen in Fig. 9 for case (ii). For

case (i) and (iii), however the additional investment costs have to be considered critically. This applies

in particular for case (i) in a distribution grid with many wind generators as in this case the energy to

power ratio of the BSS needs to be higher as for PV systems [164]. To avoid these losses or additional

invest, an optimisation of the power flow based on a prognosis is proposed in the next strategy.

(d) Prognosis based strategy

This strategy uses load and weather forecast data to adjust the charging power and feed-in power to

get a fully charged battery at the end of the day and/or avoid over-voltage and asset over-loading (Fig.

10).

[Fig. 10 about here.]

A control loop within the day corrects the deviation from the forecast data. This strategy reaches the

highest self consumption rate after the direct loading strategy while still being grid supportive, this is

due to the lower curtailment losses compared to other strategies [20, 125]. The main differences of this

strategy are the forecast techniques. Principally, the previously published studies can be divided into

four classes:

(i) Studies using a perfect forecast [152, 166].

(ii) Studies using synthetic forecasts (modified measured time series) [167, 168, 169].

(iii) Studies based on external weather-based forecast from meteorological services [170, 171, 161, 172]

(iv) Studies that base their forecast on a persistence method based on values measured by the PV-

system [167, 125, 173]

Obviously, no prediction errors apply to a perfect forecast. The only difference is the time resolution,

which in the case of [152] is 1 min and in the case of [166] is 15 min.

One proposition for modelling synthetic forecast which has been presented by [168] and also used by
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[169], uses the Spherical Harmonic Discrete Ordinate Method [174]. In this model measured data is used

to generate the global solar irradiation at ground level for the next days. By forecasting the weather

data a minute-based PV power is calculated taking into account the orientation and angle of the power

plant. An error analysis of the model has shown that the average error (rRMSE) of the weather forecast

for the next day is 32.5 % for one site. This is very close to the accuracy of approximately 30 % of

current numerical weather prediction models for Central Europe [175]. The value increases for a longer

forecast horizon. Instead of a physical model, [167] uses a noise sequence to fabricate a forecast based

upon the hourly average of the measured data. This results in an hourly forecast for the next day with

an rRMSE of 30 %.

Several studies use external weather forecasts and calculate the AC power profile of the PV system

according to predicted irradiance instead of synthesising the forecast data. A simple forecast method

in which the historical data of the solar irradiance and the predicted weather conditions (sunny, cloudy,

rainy) are used to calculate the PV profile in 1 h steps is presented by [170]. Also on an hourly basis,

[171] predicts the PV power output for different region sizes in Germany based on forecasts for up

to three days ahead that are provided by the European Centre for Medium-Range Weather Forecasts

(ECMWF). For a single site and day ahead forecast an rRMSE of 36 % could be quantified. As the

rRMSE decreases as the examined area rises for the whole of Germany the accuracy of the rRMSE

is 13 %. Another study uses the irradiance forecast based on the Weather Research and Forecasting

(WRF) Model [176] and evaluated the deviation of the measured irradiance values of a pyranometer

(5-8 %) and the PV power output (3-5 %) on a 15 minute base for a PV plant in Italy [172]. Historical

forecast data of irradiance and temperature in 1-h steps from Meteotest [177] has been used by [161] to

calculate the PV output power and it is shown that the RESCR decreases by 15 % if forecast errors are

taken into account instead of assuming a perfect forecast .

Another approach is to use persistence weather forecast. The forecasting method is based on extrapo-

lating the current or recent PV power plant output taking into account the changing of the sun angle.

Since the persistence is based on stochastic learning technique from historical pattern, the accuracy

highly depends on the forecast horizon due to the change of cloudiness [178]. The forecast method is

suitable for minute based forecasts for one location. For simulation purposes, an autonomy forecasting

using a learning algorithm is more preferable compared to the one that depends on the global weather

data. The differences of the different persistence forecasts arise in the algorithms used to predict the

load and PV output and the values that are used to correct the intra-day deviation from the forecasted

values. As described before, [167] uses a synthesised forecast data with a noise and a learning algorithm

based on historical data to adapt the charging algorithm to the PV output and load within the day. Also

[169] uses a synthesised PV forecast; concerning the load an easier method is proposed by predicting it

based on the load profile of the past five days. In this method, the day is divided into three periods:
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midnight to sunrise, sunrise to sunset and sunset to midnight. Using the arithmetic means of the past

five days, the load profiles of each period define the load for the next two days.

Fully autonomous persistence, which is not dependent on an external or synthesised forecast is presented

by [125] and [173]. In [125] a method is used that assumes a load profile for the predicted weekday iden-

tical to the load profile of the weekday from the previous week and predicts the PV for the next day

based on the day before. To correct prediction errors within the day a proportional plus integral con-

troller (PI-controller) adjusts the feed-in limit by constantly comparing the difference between target

and actual SOC. The load prediction in [173] is the same as before-mentioned. The study also shows

that the forecast of the PV output has a stronger impact on the curtailment losses and self-sufficiency

rate than the load forecast compared to a perfect load forecast. Therefore, an elaborated method for the

PV persistence forecast is presented: First a bell-shaped profile based on the last ten days is calculated.

To achieve a higher accuracy a moving horizon is introduced that combines the PV data from the last 4.5

hours with the bell-shaped profile. For the intra-day correction the feed-in limit is adapted dynamically

every 15 minutes by running an optimisation with 15 minutes of forecast resolution and 15 hours of

optimisation horizon, if the measured values (residual load and battery charge power) differ from the

predicted. This differs from [125] and [169]where the optimisation for the day is conducted only once

and the correction due to forecast errors is done by comparing the forecasted SOC with the measured

SOC. Thus, inaccuracies may occur as the SOC cannot be measured directly, but is a calculated value

from the battery management system.

The differences of the forecast and operation strategy lead to similar curtailment losses as in [125], but

the self-sufficiency is higher with the adaptive forecast approach of [173]. It could be shown, that the

adaptive forecast shows advantages over a persistence forecast with a fixed horizon. As the control

algorithm based on autonomous persistence forecasts reaches similar curtailment losses as the one based

on external forecasts [173], these forecasts seem to be preferable as they need no additional hardware

and are independent of the additional cost of external forecasts or meteorological services. Nowadays,

up to one third of the installed residential PV storage systems in Germany are capable of applying a

prognosis based charging algorithm [95, 145].

A prognosis based operating strategy is applied to large scale BSS by [93], [71], [151], [169] and [179].

In the project SmartRegion Pellworm different business models have been tested and affect the operat-

ing strategy. The scenario which maximises the RESCR is called “Sustainable Regional Load Supply”.

The active power flow of the BSS is an output of an optimisation to maximise the profit for the dif-

ferent business models [93] and is combined with an OPF simulation to incorporate grid restrictions to

calculate the reactive power flow [71]. The prognosis is carried out using a perfect foresight based on

measured time-series for load and generation and historic market data. This central approach ensures

a grid supportive behaviour of the BSS.
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The EEbat project combines the aim to relieve the grid and maximise self-consumption. The grid relief

is achieved, by applying the peak shaving strategy using active power control and curtailing the RPF

to 50 % of the cumulated PV installed in the LV grid. A persistence forecast for load and generation

is used to adjust the charging power and ensure a maximum self-consumption [169]. Furthermore, the

differences between using standard load profiles (SLP) [180] and realistic load profiles as inputs for the

operation strategy are quantified. For this calculation the RESCR and the financial benefit of a CES

allocated in a LV grid consisting of 50 households with PV generation and loads are compared. It is

shown, that SLP are sufficiently accurate to be used as input for this operation strategy. Reactive power

control is not considered in this study.

Another charging strategy is implemented in the Smart Grid Solar project. To predict the PV gen-

eration, a short term weather prediction based on sky-images instead of measured electrical values is

implemented. The charging algorithm is rather simple as the battery is charged with a constant charging

power in case the residual power exceeds a given limit. Another control strategy developed in the same

project is based on the measured voltage at the PCC which is kept within a given range by charging or

discharging the battery [179].

The impact of different operating strategies on distribution grid planning is discussed in section 5.4.

[Table 8 about here.]

5.3. Detailed overview of operating strategies for primary frequency control

Due to the fact that there is only very limited possibility of storing electric energy in the electrical system

nowadays, a constant equilibrium between active power generation and consumption must be maintained.

An indicator for the deviation in this balance is the system frequency, since it is a measure for the rotation

speed of the synchronised generators. An increment of the total load will decrease the speed of the generators

and hence lower the system frequency. A decrease of the demand on the other hand leads to an increase of

the system frequency. [181]

Since frequency deviations can not only damage electronic devices connected to the grid but also endanger

the stability of the whole electrical network, the German transmission system operators (TSOs) are legally

obliged to maintain the system frequency within the strict limits of 50 Hz ±1 % (see also section 2) [23, 26].

In order to achieve this goal, a certain level of active power reserve is required to re-establish the equilibrium

between demand and generation in case of unbalances (this can be unbalances between instantaneous power

consumption and generation, but also major power disturbances in the grid) [181].

The “Operational Handbook” of the ENTSOE (European Network of Transmission System Operators

for Electricity), which sets general rules and technical recommendations regarding reserve power levels and

their associated control performance, defines three different reserve levels: primary, secondary and tertiary
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control reserve [182, 183]. According to the Grid Code of the German TSOs these reserve levels are also

valid in Germany [182]. The primary control reserve (PCR) is automatically activated within a few seconds

after detecting a frequency deviation according to the curve depicted in (Fig. 11).

[Fig. 11 about here.]

The main goals of the secondary control reserve (SCR) are to restore the rated frequency of the system,

to release primary reserves and to restore active power interchanges between control areas to their set points.

The tertiary control reserve (TCR) aims to replace the secondary reserve, manage eventual congestions and

bring back the frequency to its rated value if secondary reserves are not sufficient. [27]

In Fig. 12 the interaction as well as the starting and deployment times for the three reserve levels

according to the guidelines of the German Grid Code is shown [27].

[Fig. 12 about here.]

In Germany, large scale battery storage systems are almost exclusively used to provide PCR. There are

several technical as well as economical reasons for this. From a technical point of view batteries perfectly

suit the operational requirements for providing PCR since they are able to deliver the requested power very

accurately within a time frame of less than one second with a very high reliability [184, 185]. Although

large scale batteries usually have a very limited storage capacity compared to other storage technologies

such as pump storage systems [111], this storage capacity is fully sufficient (when made sure that the state

of charge (SOC) of the battery is kept at an optimal level during operation (see below)) to bypass the time

until primary control reserve is relieved by secondary control reserve (see Fig. 12) [186]. The need for a

relatively low storage capacity of course also has the benefit of reducing investment costs and hence has a

positive effect on the profitability of the battery system.

From a financial point of view, however, there are further points that make the provision of PCR the

most attractive business case for large scale batteries nowadays [40]. As shown in section 5.1, the main

reason for this is, that under the actual economical and legal framework, the weekly income is the highest

when compared to other business cases. Because of this, it is foreseen that already existing PCR battery

projects will turn out as being profitable in the near future [40, 186]. Another argument making the provision

of PCR with large scale BSS very attractive from an investor’s point of view is the already existing PCR

market with its clear rules. This on the one hand reduces the risk for future income expectancies and on

the other hand lowers marketing expenses.

The mentioned technical as well as economic reasons for providing PCR with large scale batteries have

led to an increment of existing as well as planned primary frequency control battery projects in Germany

over the last years. A chronological overview of recent large scale BSS projects for primary frequency control

in Germany are listed in Table 10. The first battery providing PCR within the European grid was a NAS
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battery. This battery was integrated into the German network in the year 2012 by the Younicos AG. As can

be noticed, since then the installed power of the battery systems has been steadily increasing. Furthermore,

it can be derived from Table 10 that almost all projects apply Li-Ion technology. One of the main reasons

for this are the rapidly falling costs for Li-Ion batteries over the last years [186, 187]. Besides this, Li-Ion

batteries have also one of the highest roundtrip efficiencies in comparison to other battery technologies, a

very high energy density, high lifetime expectancy as well as a very favourable power to energy ratio for

providing PCR [188, 189]. This means that a high installed power does not lead to an unnecessarily high

storage capacity. Nonetheless, flow batteries in primary reserve applications have also been discussed in

literature [190]. The same author claims that short response times as well as the ability of some systems of

being overloaded give BSS an advantage over conventional facilities. As more and more private companies

plan PFC projects without federal funding one can deduce that this business case seems promising from

their point of view and is technically mature. Still, the pre-qualification that allows the facility to operate

at the PFC market is the bottle neck at the moment, as most of the commissioned projects did not pass the

pre-qualification yet. Another trend is the increase of the system size of large scale BSS as it can be seen

for the most recent systems under construction in 2016.

Whether the number of grid connected large scale battery systems will continue to rise in the future

depends to a great extent on prices decline for batteries and the future development of the remuneration

for primary control reserve. Since the request for batteries has steadily been increasing over the past years,

battery costs are generally expected to fall in the future [185, 191, 192, 133]. For a more detailed cost

prognosis please refer to section 5.2) The future development of the remuneration for PCR, however, is

relatively unclear since it depends on many factors that are barely predictable. These are for example the

number of players in the PCR market and the future request for primary reserves. In [193] and [194] it is

estimated that the future request for primary reserves will rise due to an expected increase of the share of

fluctuating renewable energy sources along with their low predictability of electricity production. In [40] and

[195] on the other hand it is estimated that the request for primary reserves will stay more or less constant

in the future. This is explained by the fact that the demand for PCR in Europe is actually determined

on the basis of the simultaneous loss of the two largest power plants within the European grid, which is

not expected to change significantly in the future. A comprehensive study on how the rise of variable

renewable energies and the reserve market interacted in Germany in the past years is given by [115]. Hirth

and Ziegenhagen [115] try to explain the possible reasons of the reduction of the balancing reserves and

costs and the simultaneous increase of installed wind and solar power. One of the major findings is that

the wind and solar power forecast errors might not be the most prominent driver for the balancing reserve

requirement, but that other factors like the design of the control market might be more important. Due

to all these uncertainties, the prediction of the price development for PCR is hardly possible and expert

opinions strongly differ in this point [185, 195, 115].
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Another important factor that can have a big influence on the development of the number of large scale

batteries in the German grid are future adjustments of the participation conditions for the PCR market.

On their basis it is not only decided who is able to enter the market and who is not, but they also set the

operational framework for PCR providers. On the other hand, this can have a big influence on the economics

of PCR projects. For example, if the required storage capacity of PCR batteries has to be increased, as it

is currently discussed [185, 196], it would have a negative impact on the economics of those projects.

The guidelines for entering the PCR market are defined by the TSOs, since they are legally obliged to

ensure that all technical standards for operating the electrical network are safely fulfilled [23]. The actual

key parameters for the provision of PCR are summarised in Table 9. Furthermore, according to the German

Grid Code all prospective providers of PCR have to complete a pre-qualification procedure to demonstrate

their ability to meet the requirements in this respect [27].

[Table 9 about here.]

As can be seen in Table 9, the primary control reserve has to be provided for a tendering period of one

week with an availability of one hundred percent. For battery storages this would mean that they would

have to be dimensioned for the case that the full offered power is requested continuously during a whole

week. The dimensioning for this unrealistic worst case scenario, however, would make all battery projects

uneconomical. Because of this, the German TSOs have defined “degrees of freedom”, which give battery

operators the chance to readjust the SOC of the storage system during operation [197]. As a consequence,

the required storage capacity is reduced, since the SOC can be kept at a level, where it is ensured that the

battery is able to provide the requested balancing power until primary control reserve is relieved by the

secondary control reserve Fig. 12. For this case a power to energy ratio of one (e.g. 1 MWh / MW) is fully

sufficient [186, 187].

According to [184] and [187] the optimal SOC for batteries providing primary control reserve lies around

fifty percent. The reason for this is that the network frequency generally fluctuates more or less normally

distributed around the nominal value of 50 Hz [103]. Therefore, approximately the same amount of balancing

power has to be provided in positive (unload) as well as negative (load) direction. Due to the losses of the

storage system, however, the SOC tends to fall in the long run. Hence, it is advisable to keep the SOC

slightly above fifty percent [184]. The TSOs in total defined six degrees of freedom for SOC adjustments.

They can be found in [197]. The main difference between them is that some generate extra costs for the

battery operator and some do not. Those degrees of freedom that do not generate costs can be applied as

often as required. Those that do generate costs on the other hand should be applied as seldom as possible.

In this case the decision whether to use the degree of freedom or not becomes more complex and should

be determined on the basis of a cost benefit calculation. All six degrees of freedom listed in [197] are

briefly described hereafter (italic letters): As can be seen in Fig. 13 the “optional overfulfillment” gives the
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battery operator the chance to provide 20 percent more balancing power than required, if it is useful for an

adjustment of the SOC.

[Fig. 13 about here.]

The degree of freedom “dead-band” makes it possible to readjust the battery SOC by using the dead-band

(Fig. 14). One condition for the application of this degree of freedom is that the behaviour of the battery

must always support the stability of the electrical network, meaning that, for example the battery is not

allowed to charge when positive primary control reserve (unload) is required.

[Fig. 14 about here.]

One degree of freedom that has to be remunerated when applied is the option to charge or discharge the

battery with “schedule transactions”. In this case the SOC can be optimised by purchasing or selling energy

at the energy market (stock market or over the counter transactions). Of course, when using this degree of

freedom the battery operator has to make sure that the sum of battery output and purchased / sold energy

corresponds exactly to the requested value by the TSO at any point in time. An exemplary behaviour of

the battery during a schedule transaction is shown in Fig. 15 and Fig. 16. In this case the SOC of the

battery is in its lower half at 8:00 o’clock. Since the battery has to keep continuously unloading due to low

grid frequencies, a schedule transaction is carried out between 9:00 and 9:15 o’clock. As can be noticed, this

prevents the SOC from reaching a critical value, since the battery is loaded instead of unloaded in this time

window (see Fig. 16).

[Fig. 15 about here.]

[Fig. 16 about here.]

Similarly to the just described degree of freedom it is possible to “load or unload the battery with another

technical unit”. One condition for doing this is that all entities involved in the re- or discharging process

must belong to the same balancing group. Furthermore, an optimal interaction of the involved units has to

be demonstrated in advance.

Another degree of freedom for batteries consists in the “relocation of the dead-band when grid-time

corrections are planned”. When required the PCR provider is informed one day in advanced about the

target frequency for the upcoming day by the TSO. In this way the PCR provider is able to prepare the

dead-band shifting for the time period of the grid-time correction.

[Fig. 17 about here.]

30



According to [181], the maximum deployment time for PCR increases linearly with the requested primary

control power. Starting from a value of zero the maximum offered power by a PCR provider must be fully

activated after 30 seconds at the latest. However, BSS that are able to provide the requested power much

faster are allowed to use this characteristic as a degree of freedom. This means that battery operators are

allowed to use the whole “permissible operating range” depicted in Fig. 17 to readjust the SOC of their

storages.

[Table 10 about here.]

5.4. Impact of BSS maximising self-consumption and applying PCR on distribution grid planning

In this section the impact of the operating strategies derived from the business cases of self-consumption

maximisation and primary control reserve as shown in subsection 5.2 and 5.3 on distribution grid planning

are discussed. How BSS can be implemented in traditional grid planning as presented in subsection 2.2 is

subject to ongoing research. However, [198] gives some hints by showing that DSO only consider active

power flows, which seems a viable proposition as they are responsible for the revenue stream for the two

business cases and a reactive power control is not yet mandatory for large scale BSS. Therefore, in the fist

part of this section only the active power flows are evaluated using the worst case approach of traditional grid

planning and the resulting diversity factors for BSS are listed in Table 11. Secondly, the effect of reactive

power control on the planning is discussed briefly as it can be considered independent of the business case,

given that the power electronics is able to provide a four quadrants operation. In the last part deficiencies

of the traditional planning methodology are presented and possible steps to new planning approaches, as

explained in subsection 4.1, are discussed.

• grid compatible self consumption

The worst case is that the battery is fully loaded for the RPF scenario and fully discharged in the

HLF-case. The resulting diversity factors for implementing BSS in the grid planning are listed in Table

11 and result in a neutral behaviour of the BSS. The operation strategy direct loading and schedule

as used in the projects Strombank and MSG EUREF (see Table 8) can be mentioned as an example.

• grid supportive self consumption

For the HLF the same as for grid compatible BSS applies, as the battery might be fully discharged as

well. The difference arises for the RPF. In this case the battery is used to mitigate the reverse power

flow caused by DG with peak shaving. The peak shaving threshold can be either fixed or adaptive as

in the case of forecast based charging and discharging. For the projects listed in Table 8 that use a

forecast based operation mode a peak shaving functionality is implemented. Nevertheless, the rated

power of the BSS might be higher than the power used to mitigate the power at the PCC, which is the

case in the EEBatt project where the energy to power ratio of the BSS is 1:1. In this case, the diversity
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factor is the quotient of the power used for peak shaving purposes and the rated charging power of the

BSS. For example, for the project SmartOperator (pure peak shaving) the diversity factor is 1, but

it is < 1 in the EEBatt project (forecast based SC). This operating strategy can solve over-voltage

(cable) and thermal issues (cable and secondary transformer) if the BSS is installed in the same LV

feeder as the DG causing them. The thermal load of the primary transformer is reduced in any case

independently of the allocation of loads, DG and BSS, as the peak of the RPF is mitigated in any

case, if a diversity factor of > 0 for the BSS is reached.

• system compatible primary control reserve

It can be deduced from Fig. 18, that a BSS providing PFC might discharge or charge with its full

rated power at any moment. Depending on the system architecture, some BSS have the capability to

be overloaded, as reported in [190] for VRF (100 % over-loading), in [184] for LIB (30 % over-loading

for 15 min), and in [199] (25 %) also for LIB. In a worst-case scenario, the normal operation together

with the application of the degrees of freedom as described in subsection 5.3 can lead to a diversity

factor > 1. Depending on the allocation of the BSS it might reduce the hosting capacity of DG of the

affected grid as this operation strategy tightens the over-voltage and over-loading issues. All projects

listed in Table 10, except the SmartPowerFlow project, where the BSS behaves in a system supportive

way fall into this category.

[Fig. 18 about here.]

• system supportive primary control reserve

The diversity factor for this operating strategy is the same as for the gird compatible behaviour, as

the active power flows are the same. The difference here is that a reactive power control is used to

solve over-voltage issues.

[Table 11 about here.]

In the traditional distribution grid planning reactive power control is usually not considered and only a

fixed cosϕ can be taken into account as only one time-step for the two worst case scenarios is calculated.

In a grid/ system compatible behaviour cosϕ may be set to 0 and in a grid/ system supportive behaviour

to the maximum favourable value from grid perspective. Nevertheless, this issue has not been analysed

systematically yet and may lead to wrong results if the method of the traditional planning is applied. For an

accurate simulation of a reactive power control, a load flow analysis based on time series has to be applied.

It can be concluded that the traditional planning method of passive distribution systems for large scale

BSS will lead to over-capacities and uncertainties concerning the reactive power flows. Therefore, CIGRE

promotes the shift to active distribution systems as defined in CIGRE WG C6.11 [200], which will incorporate
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DG and BSS in a more active way than the fit-and-forget approach which is currently used and will allow to

apply new planning approaches more efficiently. This transition is described in detail by [46]. As discussed

in subsection 4.1, BSS, as well as DG and the distribution grids need to be modelled to calculate time-series

and derive suitable probability density functions. Depending on the application and technology different

time-steps need to be realised in these models [46]. In [201] it is shown that for SC the operation strategy

should be simulated at least in one minute time-steps to avoid short-term feed-in peaks. For PCR the

resolution has to be even higher and one second time-steps seem appropriate, in order to incorporate all

degrees of freedom described in subsection 5.3 properly.

As for the reactive power control current studies focus on two main directions: a central approach using

an AC OPF, such as [71], or an autonomous voltage control, as for example a Q(V) control [41]. It seems

as if autonomous voltage control strategies are the more favoured solution at the moment as the technical

standard for connecting BSS and DG in MV and LV are aiming in this direction [31].

The challenges of future investigation lie in modelling BSS to calculate active and reactive power time

series for different applications in order to apply them for new planning approaches in active distribution

systems.

6. Conclusion

In this paper, traditional approaches and recent advances in distribution grid planning alongside with

alternative possibilities to traditional grid extension with large scale battery storage systems are described.

In addition the German energy storage market is analysed and the operation strategies of the two most

profitable applications, self-consumption maximisation and primary frequency control, are described in detail

after an extensive literature review. The main findings and contributions of the paper are:

• A clear methodology for grid extension measures in distribution grids has been presented.

• Most of the new approaches for distribution grid planning use deterministic models and do not consider

reliability issues. There is a great variety of these models with their respective pros and cons that have

to be considered for the given planning task. Nevertheless, it is shown that the over-sizing problem

remains even for advanced grid planning methods if worst case scenarios are applied. Therefore, there

is a great need for detailed models to generate combined active and reactive power flows of BSS that

are market-driven and grid/ system supportive at the same time.

• An analysis of 20 potential revenue streams for BSS shows that the primary control reserve market

holds the highest revenue potential for market based applications, whereas the highest cost reduction

potential lies in the maximisation of the self-consumption using renewable energies, especially for

households.
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• As suitable options for the maximisation of self consumption the operation strategies direct loading,

schedule mode, peak shaving, and prognosis based loading were identified. Additionally, several large

scale BSS projects in Germany applying those strategies were presented. The prognosis based operation

strategy with a peak limit restriction seems to be the most promising, as it leads to manageable

curtailment losses, especially if the feed-in limit is reduced in the future. Within the forecast based

strategies the adaptive forecast algorithm combines the advantages of autonomy from external forecasts

with their accuracy. Nevertheless, due to additional fees and taxes applying for community electricity

storages, this business case is hard to transfer from residential to large scale storages. Besides a need

of revising the existing legal framework in order to make CES economically feasible, there is also a

need for future research regarding this application. Nonetheless, it seems especially interesting as in

the near future PV systems, that have reached the end of their 20 year period of feeding into the grid

with a fixed feed-in tariff, can be used for this applications with an extreme low LCOE.

• Primary frequency control seems to be the most promising business case for BSS in Germany at the

moment. Although the net present value is just becoming positive, there is still a great challenge to

make it profitable. Although the degrees of freedom help to achieve this goal, research is still necessary

to determine the different benefits of these options, especially for VRFB, since most of the BSS used

for primary frequency control are lithium-ion batteries.

• The task to implement BSS in (traditional) distribution grid planning is also subject to ongoing re-

search. At the moment many of the studies only consider active power flows and worst case assumptions

are applied. If traditional planning methods for passive distribution systems are applied for large scale

BSS, over-capacities will probably be the result. In order to evaluate the potential of BSS to behave

in a grid supportive manner, power flow simulations considering operation strategies for active and

reactive power control for different time scales depending on the application have to be conducted.

In conclusion, it is worth pointing out that large scale BSS are becoming economically feasible in Ger-

many, however there is a lack of planning guidelines for DSO to integrate the BSS in their grid. Furthermore,

not all the applications and operating strategies are mitigating the problems of the DSO that arise with

increasing penetration of DG. Future studies should concentrate on combining a profitable and a grid sup-

portive behaviour into one operation strategy, otherwise the implementation of BSS in distribution grids

might lead to further grid extension instead of grid relief.
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[5] T. Ackermann, G. Andersson, L. Söder, Distributed generation: a definition, Electric Power Systems Research 57 (3)

(2001) 195–204. doi:10.1016/S0378-7796(01)00101-8. 2

[6] C. Gonzalez, R. Ramirez, R. Villafafila, A. Sumper, O. Boix, M. Chindris, Assess the impact of photovoltaic generation

systems on low-voltage network: software analysis tool development, in: 2007 9th International Conference on Electrical

Power Quality and Utilisation, IEEE, 2007, pp. 1–6. doi:10.1109/EPQU.2007.4424183. 2

[7] S. Nykamp, A. Molderink, J. L. Hurink, G. J. Smit, Statistics for PV, wind and biomass generators and their impact on

distribution grid planning, Energy 45 (1) (2012) 924–932. doi:10.1016/j.energy.2012.06.067. 2, 6, 66, 68

[8] A. von Oehsen, Y.-M. Saint-Drenan, T. Stetz, M. Braun, Vorstudie zur Integration großer Anteile Photovoltaik in die

elektrische Energieversorgung - Ergänzte Fassung vom 29.05.2012, Tech. Rep. November 2011, Frauenhofer IWES, Studie

im Auftrag des BSW - Bundesverband Solarwirtschaft e.V., Kassel (2012). 2

[9] A. Mohring, J. Michaelis, Techno-ökonomische Bewertung von Stromspeichern im Niederspannungsnetz, Tech. rep.,

Fraunhofer ISI, Karlsruhe (2013). 2
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sorgung mit hohem Anteil erneuerbarer Energien, Tech. rep. (2014). 4, 27, 28

[41] T. Stetz, Autonomous Voltage Control Strategies in Distribution Grids with Photovoltaic Systems: Technical and Eco-

nomic Assessment, Phd thesis, University of Kassel (2014). 4, 33

[42] Agora Energiewende, Stromverteilnetze für die Energiewende, Tech. rep., Berlin (2014). 4

[43] Union of the Electricity Industry (EURELECTRIC), Ancillary Services Unbundling Electricity Products - an Emerging

Market, Tech. Rep. February (2004). 4

[44] M. Braun, Provision of Ancillary Services by Distributed Generators, Phd thesis, Kassel University (2008). 5

[45] Hermann Nagel. Hrsg. Rolf R. Cichowski, Systematische Netzplanung, 2nd Edition, Berlin : VDE-Verl.; Frankfurt, M. :

VWEW-Energieverl., 2008. 5, 6

[46] F. Pilo, S. Jupe, F. Silvestro, K. E. Bakari, C. Abbey, Planning and Optimization Methods for Active Distribution

Systems, Tech. Rep. August, CIGRE (2014). 5, 6, 33

[47] ETG-Task Force Aktive EnergieNetze, Aktive Energienetze im Kontext der Energiewende: Anforderungen an künftige
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battery storage systems in smart grids, in: Internationaler ETG-Kongress 2013, 2013, pp. 1–8. 22, 74

[161] Y. Riesen, P. Ding, S. Monnier, N. Wyrsch, C. Balli, Peak Shaving Capability of Household Grid-Connected PV-System

with Local Storage: A Case Study, in: 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp.

3740–3744. doi:10.4229/28thEUPVSEC2013-5CO.7.4. 22, 23, 24

[162] M. Siller, Stromspeicher zur Netzstabilisierung, in: Bayerischer Energiekongress, 2013, p. 25. 22, 74

[163] A. Schnettler, J. Nilges, A. Stolte, S. Nykamp, T. Smolka, C. Matrose, S. Willing, Improving quality of supply and usage

of assets in distribution grids by introducing a smart operator, in: 22nd International Conference and Exhibition on

Electricity Distribution (CIRED 2013), no. 0718, 2013, pp. 0718–0718. doi:10.1049/cp.2013.0892. 22, 74

[164] S. Nykamp, A. Molderink, J. L. Hurink, G. J. M. Smit, Storage operation for peak shaving of distributed PV and

wind generation, in: 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), IEEE, 2013, pp. 1–6.

doi:10.1109/ISGT.2013.6497786. 23

[165] P. Goergens, F. Potratz, C. Matrose, S. Schumann, A. Schnettler, S. Willing, T. Smolka, An online learning algorithm

approach for low voltage grid management, in: 22nd International Conference and Exhibition on Electricity Distribution

(CIRED 2013), Vol. 5, 2013, pp. 0702–0702. doi:10.1049/cp.2013.0885. 23, 74

[166] J. Li, M. A. Danzer, Optimal charge control strategies for stationary photovoltaic battery systems, Journal of Power

Sources 258 (2014) 365–373. doi:10.1016/j.jpowsour.2014.02.066. 23

[167] C. Williams, J. Binder, M. Danzer, F. Sehnke, M. Felder, Battery Charge Control Schemes for Increased Grid Compati-

bility of Decentralized PV Systems, in: 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, pp.

1–6. 23, 24

[168] M. Lodl, R. Witzmann, M. Metzger, Operation strategies of energy storages with forecast methods in low-voltage

grids with a high degree of decentralized generation, 2011 IEEE Electrical Power and Energy Conference (2011) 52–

56doi:10.1109/EPEC.2011.6070252. 23

[169] A. Zeh, R. Witzmann, Operational Strategies for Battery Storage Systems in Low-voltage Distribution Grids to Limit

the Feed-in Power of Roof-mounted Solar Power Systems, Energy Procedia 46 (2014) 114–123. doi:10.1016/j.egypro.

2014.01.164. 23, 24, 25, 26, 74

43

http://dx.doi.org/10.1016/j.egypro.2014.01.182
http://dx.doi.org/10.1016/j.egypro.2014.01.182
http://dx.doi.org/10.1109/TSG.2013.2281175
http://dx.doi.org/10.1109/TSG.2013.2291116
http://dx.doi.org/10.4229/28thEUPVSEC2013-5CO.7.4
http://dx.doi.org/10.1049/cp.2013.0892
http://dx.doi.org/10.1109/ISGT.2013.6497786
http://dx.doi.org/10.1049/cp.2013.0885
http://dx.doi.org/10.1016/j.jpowsour.2014.02.066
http://dx.doi.org/10.1109/EPEC.2011.6070252
http://dx.doi.org/10.1016/j.egypro.2014.01.164
http://dx.doi.org/10.1016/j.egypro.2014.01.164


[170] T. Niimura, K. Ozawa, D. Yamashita, K. Yoshimi, M. Osawa, Profiling residential PV output based on weekly weather

forecast for home energy management system, in: 2012 IEEE Power and Energy Society General Meeting, IEEE, 2012,

pp. 1–5. doi:10.1109/PESGM.2012.6345020. 23, 24

[171] E. Lorenz, J. Hurka, D. Heinemann, H. G. Beyer, Irradiance Forecasting for the Power Prediction of Grid-Connected

Photovoltaic Systems, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2 (1) (2009)

2–10. doi:10.1109/JSTARS.2009.2020300. 23, 24

[172] G. Chicco, V. Cocina, P. Di Leo, F. Spertino, Weather forecast-based power predictions and experimental results from

photovoltaic systems, in: 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion,

IEEE, 2014, pp. 342–346. doi:10.1109/SPEEDAM.2014.6872086. 23, 24

[173] J. Bergner, J. Weniger, T. Tjaden, V. Quaschning, Feed-in Power Limitation of Grid-Connected PV Battery Systems

with Autonomous Forecast-Based Operation Strategies, in: 29th European PV Solar Energy Conference and Exhibition,

Amsterdam, 2014. 23, 25

[174] K. F. Evans, The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer,

Journal of the Atmospheric Sciences 55 (3) (1998) 429–446. 24

[175] S. Dierer, J. Remund, R. Cattin, T. Koller, P. Strasser, BFE, Einspeiseprognosen für neue erneuerbare Energien, Tech.

rep., Bundesamt für Energie BFE (2010). 24

[176] The Weather Research & Forecasting, http://www.wrf-model.org/,(accessed 2015-10-01). 24

[177] Meteotest, http://www.meteotest.ch/,(accessed 2015-10-01). 24

[178] S. Pelland, J. Remund, J. Kleissl, T. Oozeki, K. De Brabandere, Photovoltaic and solar forecasting: state of the art,

Tech. rep., International energy agency (IEA) (2013). 24

[179] P. Luchscheider, Smart Grid Solar: A Bavarian Smart Energy Project (2015). 25, 26, 74
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Table 1. Equipment load factors [17]

Equipment Load factor of Sr Load factor of Sr
Heavy load flow Reverse power flow

LV-cable max. 100 % max. 100 %
MV/LV tran. max. 100 % max. 100 %
MV-cable max. 60 % max. 100 %
HV/MV tran. max. 60 % max. 100 %
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Table 2. Diversity factors for generators connected in MV or LV [7, 17, 53, 54]

Wind PV BM Water

0 [17] 0 [7, 17, 53, 54] 0 [17] 1 [17]HLF 0.6 [7]
0.95 [7] 0.85[17, 53, 54] 0.98[7] 1[17]RLF 1 [17] 0.89 [7] 1 [17]
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Table 3. Coincidence factors for loads connected in LV and MV [17, 55]

Load (LV) Load (MV) C. load (MV)

HLF 1 [17] 1 [17] 1 [55]
RPF 0.1 [17] 0.15 [17] 0.5 [55]
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Table 4. Standard equipment for grid extension

Equipment dena [17] Stetz et al. [62] Idlbi et al. [64] Ackermann et al.[30]

LV-cable (NAYY) 4x150 mm2 (3x150; 3x240) mm2 4x150 mm2 4x150 mm2

MV/LV tran. (Sr,t) 630 kVA (400; 600; 800) kVA (400; 600; 800; 1000) kVA 630 kVA
MV-cable (NA2XS2Y) 3x1x185 mm2 - - 3x1x240 mm2

HV/MV tran. (Sr,t) 40 MVA - - -
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Table 5. New distribution grid planning approaches with DG integration

without reliability with reliability under with reliability under
normal conditions contingency conditions

deterministic uncertain deterministic uncertain deterministic uncertain
[73]b, [77]c, [76]c, [72]a,b [75]b,z, [91]y [85]e, [83]e [82]d,z [74]e,z

mixed integer [78]d, [86]f, [63]e, [71]a,d [92]y [84]e [79]d,z - [80]d,z

continuous [72]h, [71]h [89]g,z - - [81]d -
aMILP, bMINLP, cBD, dGA, ePSO, fES, gDP, hNLP, ypossibilistic, zprobabilistic
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Table 6. Energy and power related applications for BSS [101]

Application Nominal power P

Energy related:
Peak shaving 0.1 MW to 10 MW
Load levelling 1 MW to 100 MW
Energy arbitrage 50 MW to 500 MW
Power related:
Frequency control 1 MW to 30 MW
Voltage regulation 1 MW to 30 MW
Power quality regulation 1 MW to 30 MW
Bridging power 1 MW to 30 MW
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Table 9. Key parameters for the provision of primary control reserve [27, 226, 227]

Max. frequency response insensitivity ±10 mHz
Full activation frequency deviation ±200 mHz
Full activation time 30 s
Tendering period 1 week
Min. bid size ±1 MW
Time availability 100 %
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Table 11. Diversity factors for BSS applied for SC and PCR

HLF RPF

grid compatible SC 0 0
grid supportive SC 0 (0-1)charge

system comp./ supp. PCR (1+x)charge (1+x)disch.
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