923 research outputs found

    Analysis of Smartphone Traffic

    Get PDF
    Smartphone reconnaissance, the first step to launch security attacks on a target smartphone, enables an adversary to tailor attacks by exploiting the known vulnerabilities of the target system. We investigate smartphone OS identification with encrypted traffic in this paper. Four identification algorithms based on the spectralanalysis of the encrypted traffic are proposed. The identification algorithms are designed for high identification accuracy by removing noise frequency components and for high efficiency in terms of computation complexity. We evaluate the identification algorithms with smartphone traffic collected over three months. The experimental results show that the algorithms can identify the smartphone OS accurately. The identification accuracy can reach 100 with only 30 seconds of smartphone traffi

    Analysis of Smartphone Traffic

    Get PDF
    Smartphone reconnaissance, the first step to launch security attacks on a target smartphone, enables an adversary to tailor attacks by exploiting the known vulnerabilities of the target system. We investigate smartphone OS identification with encrypted traffic in this paper. Four identification algorithms based on the spectralanalysis of the encrypted traffic are proposed. The identification algorithms are designed for high identification accuracy by removing noise frequency components and for high efficiency in terms of computation complexity. We evaluate the identification algorithms with smartphone traffic collected over three months. The experimental results show that the algorithms can identify the smartphone OS accurately. The identification accuracy can reach 100 with only 30 seconds of smartphone traffi

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    Towards Scalable Design of Future Wireless Networks

    Full text link
    Wireless operators face an ever-growing challenge to meet the throughput and processing requirements of billions of devices that are getting connected. In current wireless networks, such as LTE and WiFi, these requirements are addressed by provisioning more resources: spectrum, transmitters, and baseband processors. However, this simple add-on approach to scale system performance is expensive and often results in resource underutilization. What are, then, the ways to efficiently scale the throughput and operational efficiency of these wireless networks? To answer this question, this thesis explores several potential designs: utilizing unlicensed spectrum to augment the bandwidth of a licensed network; coordinating transmitters to increase system throughput; and finally, centralizing wireless processing to reduce computing costs. First, we propose a solution that allows LTE, a licensed wireless standard, to co-exist with WiFi in the unlicensed spectrum. The proposed solution bridges the incompatibility between the fixed access of LTE, and the random access of WiFi, through channel reservation. It achieves a fair LTE-WiFi co-existence despite the transmission gaps and unequal frame durations. Second, we consider a system where different MIMO transmitters coordinate to transmit data of multiple users. We present an adaptive design of the channel feedback protocol that mitigates interference resulting from the imperfect channel information. Finally, we consider a Cloud-RAN architecture where a datacenter or a cloud resource processes wireless frames. We introduce a tree-based design for real-time transport of baseband samples and provide its end-to-end schedulability and capacity analysis. We also present a processing framework that combines real-time scheduling with fine-grained parallelism. The framework reduces processing times by migrating parallelizable tasks to idle compute resources, and thus, decreases the processing deadline-misses at no additional cost. We implement and evaluate the above solutions using software-radio platforms and off-the-shelf radios, and confirm their applicability in real-world settings.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133358/1/gkchai_1.pd

    Optimizing multiuser MIMO for access point cooperation in dense wireless networks

    Get PDF
    As the usage of wireless devices continues to grow rapidly in popularity, wireless networks that were once designed to support a few laptops must now host a much wider range of equipments, including smart phones, tablets, and wearable devices, that often run bandwidth-hungry applications. Improvements in wireless local access network (WLAN) technology are expected to help accommodate the huge traffic demands. In particular, advanced multicell Multiple-Input Multiple-Output (MIMO) techniques, involving the cooperation of APs and multiuser MIMO processing techniques, can be used to satisfy the increasing demands from users in high-density environments. The objective of this thesis is to address the fundamental problems for multiuser MIMO with AP cooperation in dense wireless network settings. First, for a very common multiuser MIMO linear precoding technique, block diagonalization, a novel pairing-and-binary-tree based user selection algorithm is proposed. Second, without the zero-forcing constraint on the multiuser MIMO transmission, a general weighted sum rate maximization problem is formulated for coordinated APs. A scalable algorithm that performs a combined optimization procedure is proposed to determine the user selection and MIMO weights. Third, we study the fair and high-throughput scheduling problem by formally specifying an optimization problem. Two algorithms are proposed to solve the problem using either alternating optimization or a two-stage procedure. Fourth, with the coexistence of both stationary and mobile users, different scheduling strategies are suggested for different user types. The provided theoretical analysis and simulation results in this thesis lay out the foundation for the realization of the clustered WLAN networks with AP cooperation.Ph.D

    Bandwidth management in live virtual machine migration

    Get PDF
    In this thesis I investigated the bandwidth management problem on live migration of virtual machine in different environment. First part of the thesis is dedicated to intra-data-center bandwidth optimization problem, while in the second part of the document I present the solution for wireless live migration in 5G and edge computing emerging technologies. Live virtual machine migration aims at enabling the dynamic balanced use of the networking/computing physical resources of virtualized data centers, so to lead to reduced energy consumption and improve data centers’ flexibility. However, the bandwidth consumption and latency of current state-of-the-art live VM migration techniques still reduce the experienced benefits to much less than their potential. Motivated by this consideration I analytically characterize and test the optimal bandwidth manager for intra-data-center live migration of VMs. The goal is to min- imize the migration-induced communication energy consumption under service level agreement (SLA)-induced hard constraints on the total migration time, downtime, slowdown of the migrating applications and overall available bandwidth

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    Edge on Wheels With OMNIBUS Networking for 6G Technology

    Get PDF
    In recent years, both the scientific community and the industry have focused on moving computational resources with remote data centres from the centralized cloud to decentralised computing, making them closer to the source or the so called “edge” of the network. This is due to the fact that the cloud system alone cannot sufficiently support the huge demands of future networks with the massive growth of new, time-critical applications such as self-driving vehicles, Augmented Reality/Virtual Reality techniques, advanced robotics and critical remote control of smart Internet-of-Things applications. While decentralised edge computing will form the backbone of future heterogeneous networks, it still remains at its infancy stage. Currently, there is no comprehensive platform. In this article, we propose a novel decentralised edge architecture, a solution called OMNIBUS, which enables a continuous distribution of computational capacity for end-devices in different localities by exploiting moving vehicles as storage and computation resources. Scalability and adaptability are the main features that differentiate the proposed solution from existing edge computing models. The proposed solution has the potential to scale infinitely, which will lead to a significant increase in network speed. The OMNIBUS solution rests on developing two predictive models: (i) to learn timing and direction of vehicular movements to ascertain computational capacity for a given locale, and (ii) to introduce a theoretical framework for sequential to parallel conversion in learning, optimisation and caching under contingent circumstances due to vehicles in motion
    • …
    corecore