8 research outputs found

    Analysis of Smartphone Traffic

    Get PDF
    Smartphone reconnaissance, the first step to launch security attacks on a target smartphone, enables an adversary to tailor attacks by exploiting the known vulnerabilities of the target system. We investigate smartphone OS identification with encrypted traffic in this paper. Four identification algorithms based on the spectralanalysis of the encrypted traffic are proposed. The identification algorithms are designed for high identification accuracy by removing noise frequency components and for high efficiency in terms of computation complexity. We evaluate the identification algorithms with smartphone traffic collected over three months. The experimental results show that the algorithms can identify the smartphone OS accurately. The identification accuracy can reach 100 with only 30 seconds of smartphone traffi

    Analysis of Smartphone Traffic

    Get PDF
    Smartphone reconnaissance, the first step to launch security attacks on a target smartphone, enables an adversary to tailor attacks by exploiting the known vulnerabilities of the target system. We investigate smartphone OS identification with encrypted traffic in this paper. Four identification algorithms based on the spectralanalysis of the encrypted traffic are proposed. The identification algorithms are designed for high identification accuracy by removing noise frequency components and for high efficiency in terms of computation complexity. We evaluate the identification algorithms with smartphone traffic collected over three months. The experimental results show that the algorithms can identify the smartphone OS accurately. The identification accuracy can reach 100 with only 30 seconds of smartphone traffi

    Support for dependable and adaptive distributed systems and applications

    Get PDF
    Tese de doutoramento, Informática (Engenharia Informática), Universidade de Lisboa, Faculdade de Ciências, 2011Distributed applications executing in uncertain environments, like the Internet, need to make timing/synchrony assumptions (for instance, about the maximum message transmission delay), in order to make progress. In the case of adaptive systems these temporal bounds should be computed at runtime, using probabilistic or specifically designed ad hoc approaches, typically with the objective of improving the application performance. From a dependability perspective, however, the concern is to secure some properties on which the application can rely. This thesis addresses the problem of supporting adaptive systems and applications in stochastic environments, from a dependability perspective: maintaining the correctness of system properties after adaptation. The idea behind dependable adaptation consists in ensuring that the assumed bounds for fundamental variables (e.g., network delays) are secured with a known and constant probability. Assuming that during its lifetime a system alternates periods where its temporal behavior is well characterized (stable phases), with transition periods where a variation of the network conditions occurs (transient phases), the proposed approach is based on the following: if the environment is generically characterized in analytical terms and it is possible to detect the alternation of these stable and transient phases, then it is possible to effectively and dependably adapt applications. Based on this idea, the thesis introduces Adaptare, a framework for supporting dependable adaptation in stochastic environments. An extensive evaluation of Adaptare is provided, assessing the correctness and effectiveness of the implemented mechanisms. The results indicate that the proposed strategies and methodologies are indeed effective to support dependable adaptation of distributed systems and applications. Finally, the applicability of Adaptare is evaluated in the context of two fundamental problems in distributed systems: consensus and failure detection. The thesis proposes solutions for these problems based on modular architectures in which Adaptare is used as a middleware for dependable adaptation of assumed timeouts.Aplicações distribuídas que executam em ambientes incertos, como a Internet, baseiam-se em pressupostos sobre tempo/sincronia (por exemplo, assumem um tempo máximo para a transmissão de mensagens) a fim de assegurar progresso. No caso de sistemas adaptativos, esses limites temporais devem ser calculados em tempo de execução, usando abordagens probabilísticas ou desenhadas de forma específica e ad hoc, tipicamente visando melhorar o desempenho da aplicação. Sob o ponto de vista da confiabilidade, no entanto, o objetivo é garantir algumas propriedades nas quais a aplicação pode confiar. Esta tese aborda o problema de suportar sistemas adaptativos e aplicações que operam em ambientes estocásticos, numa perspectiva de confiabilidade: mantendo a correção das propriedades do sistema após a adaptação. A ideia da adaptação confiável consiste em garantir que os limites assumidos para variáveis fundamentais (por exemplo, latências de transmissão) são assegurados com uma probabilidade conhecida e constante. Supondo que durante a execução o sistema alterna períodos nos quais o seu comportamento temporal é bem caracterizado (fases estáveis), com períodos de transição durante os quais ocorrem variações das condições da rede (fases transientes), a abordagem proposta baseia-se no seguinte: se o ambiente é genericamente caracterizado em termos analíticos e é possível detetar a alternância entre fases estáveis e transientes, então é possível adaptar as aplicações de forma efetiva e confiável. Com base nesta ideia, a tese apresenta uma plataforma para suportar a adaptação confiável em ambientes estocásticos, denominada Adaptare. A tese contém uma extensa avaliação do Adaptare, que foi realizada para verificar a correção e eficácia dos mecanismos desenvolvidos. Os resultados indicam que as estratégias e metodologias propostas são de facto efetivas para suportar a adaptação confiável de sistemas e aplicações distribuídas. Finalmente, a aplicabilidade do Adaptare é avaliada no contexto de dois problemas fundamentais em sistemas distribuídos: consenso e deteção de falhas. A tese propõe soluções para estes problemas baseadas em arquiteturas modulares nas quais o Adaptare é usado como um middleware para a adaptação confiável de timeouts.Fundação para a Ciência e a Tecnologia (FCT

    Reduction of wind induced microphone noise using singular spectrum analysis technique

    Get PDF
    Wind induced noise in microphone signals is one of the major concerns of outdoor acoustic signal acquisition. It affects many field measurement and audio recording scenarios. Filtering such noise is known to be difficult due to its broadband and time varying nature. This thesis is presented in the context of handling microphone signals acquired outdoor for acoustic sensing and environmental noise monitoring or soundscapes sampling.Thethesis presents a new approach to wind noise problem. Instead of filtering, a separation technique is developed. Signals are separated into wanted sounds of specific interest and wind noise based on the statistical feature of wind noise. The new technique is based on the Singular Spectrum Analysis methodwhich has recently seen many successful paradigms in the separation of biomedical signals, e.g., separating heart soundfrom lung noise. It has also been successfully implemented to de-noise signals in various applications.The thesis set out with particular emphasison investigating the factor that determines and improves the separability towards obtaining satisfactory results in terms of separating wind noise components out from noisy acoustic signals. A systematicapproach has been established and developed within the framework of singular spectral separation of acoustic signals contaminated by wind noise. This approach, which utilisesa conceptual framework, has, in its final form, three key objectives; grouping, reconstruction and separability. This approach is offered through introducing new mathematical models particularly for window length optimisation along with new descriptive figures.The research question has therefore been addressed considering developing algorithms according to updated requirements from method justification to verification and validation of the developed system. This thesis follows suitable testing criteria by conducting several experiments and a case-study design, with in-depth analysis of the results using visual tools of the method and related techniques.For system verification, an empirical study using testing signals thatintroduces a large number of experiments has been conducted. Empirical study with real-world sounds has been introduced next in system validation phase after rigorously selecting and preparing the dataset whichis drawn from two main sources: freefield1010 dataset, internet-based Freesound recordings. Results show that microphone wind noise is separable in the singular spectrum domain after validating and critically evaluating the developed system objectively. The findings indicate the effectiveness of the developed grouping and reconstruction techniques with significant improvement in the separability evidenced by w-correlation matrix.The developed method might be generalised to other outdoor sound acquisition applications
    corecore