
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2015

Analysis of Smartphone Traffic
Nicholas Luke Ruffing
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Ruffing, Nicholas Luke, "Analysis of Smartphone Traffic" (2015). ETD Archive. 803.
https://engagedscholarship.csuohio.edu/etdarchive/803

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by EngagedScholarship @ Cleveland State University

https://core.ac.uk/display/301547982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/803?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F803&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Analysis of Smartphone Traffic

NICHOLAS RUFFING

Bachelor of Science in Computer Engineering

Cleveland State University

May, 2014

submitted in partial fulfillment of the requirements for the degree

Master of Science in Electrical Engineering

at the

CLEVELAND STATE UNIVERSITY

May 2015

We hereby approve this thesis for

Nicholas Ruffing

Candidate for the Master of Science in Electrical Engineering degree

for the

Department of Electrical and Computer Engineering

and the CLEVELAND STATE UNIVERSITY

College of Graduate Studies

Thesis Chairperson, Dr. Ye Zhu

Electrical and Computer Engineering Department & Date

Thesis Committee Member, Dr. Chansu C. Yu

Electrical and Computer Engineering Department & Date

Thesis Committee Member, Dr. Yuanjian Fu

Electrical and Computer Engineering Department & Date

Student’s Date of Defense: April 16, 2015

ACKNOWLEDGMENTS

I would first like to thank Dr. Ye Zhu for giving me the opportunity to work

on this project. I would also like to thank Dr. Chansu Yu and Dr. Yuanjian Fu for

being a part of my committee as well as the remaining faculty at Cleveland State

University who helped me to succeed.

Most importantly, I would like to thank my family and friends for all of their

support.

Analysis of Smartphone Traffic

NICHOLAS RUFFING

ABSTRACT

Smartphone reconnaissance, the first step to launch security attacks on a target

smartphone, enables an adversary to tailor attacks by exploiting the known vulner-

abilities of the target system. We investigate smartphone OS identification with

encrypted traffic in this paper. Four identification algorithms based on the spectral

analysis of the encrypted traffic are proposed. The identification algorithms are de-

signed for high identification accuracy by removing noise frequency components and

for high efficiency in terms of computation complexity. We evaluate the identification

algorithms with smartphone traffic collected over three months. The experimental

results show that the algorithms can identify the smartphone OS accurately. The

identification accuracy can reach 100% with only 30 seconds of smartphone traffic.

iv

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

I. INTRODUCTION . 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Organization . 4

II. RELATED WORK . 5

2.1 OS Fingerprinting . 5

2.2 Reconnaissance through Packet-Content Agnostic Traffic Analysis 7

2.2.1 Website Fingerprinting 7

2.2.2 Inferring Users’ Online Activities Through Traffic Analysis 8

2.2.3 Hidden Services . 8

2.3 Analysis of Smartphone Traffic 9

III. NETWORK AND THREAT MODEL 11

3.1 Network Model . 11

3.2 Threat Model . 12

IV. IDENTIFYING SMARTPHONE OPERATING SYSTEMS 14

4.1 Rationale . 14

4.2 Identification Framework . 16

4.2.1 Spectrum Generation . 17

v

4.2.2 Feature Extraction . 18

4.2.3 OS Identification . 19

4.3 Full Spectrum . 20

4.4 Spectrum Selection . 22

4.5 Suppression . 25

4.6 Hybrid Algorithm . 29

4.7 Comparison of the OS Identification Algorithms 30

V. EMPIRICAL EVALUATION . 33

5.1 Experiment Setup . 33

5.2 Performance Metrics . 35

5.3 Length of Traffic Traces . 35

5.4 Number of Labeled Traces . 39

5.5 Sample Interval . 40

5.6 Number of Top Significant Frequency Components Kept (Suppres-

sion Algorithm) . 41

VI. DISCUSSION . 44

6.1 Application Identification . 44

6.2 Running Time . 45

VII. CONCLUSION . 47

BIBLIOGRAPHY . 49

vi

LIST OF TABLES

Table Page

I Complexity of the Feature Extraction and Correlation in the Identi-

fication Algorithms (P : Number of Different Smartphone OSes, Q:

Number of labeled traces available for each smartphone OS, K: Num-

ber of most significant frequency components to keep, L: Length of

Spectra) . 31

II Specifications of Smartphones Used 34

III Application Resource Consumption (The consumption data is obtained

by running each application alone for 50 minutes on the devices. Since

the Symbian OS and the Windows phone do not have built-in moni-

toring tools, we do not collect the data for the two OSes.) 36

IV Empirical running times for the Full Spectrum, Suppression, Spectrum

Selection and Hybrid OS detection algorithms. 15 minutes of traffic

with an 8 ms sample interval is used to generate this data. 45

vii

LIST OF FIGURES

Figure Page

1 A sample frequency spectrum of YouTube streaming traffic on the An-

droid OS. To generate the spectrum 50 minutes of streaming traffic

with an 8 ms sample interval is used. 16

2 Correspondence Between the periodicities in a Time Domain Signal

and the Characteristic Frequency Component in the spectrum 17

3 Identification Framework Diagram . 17

4 Magnitude Distribution of the Frequency Spectrum in Figure 1 26

5 Data Collection Setup . 34

6 Identification Performance with Traces of Different Length 36

7 False Alarm Rates (Spectrum Selection Algorithm) 39

8 Identification Performance with Different Number of Labeled Traces . 39

9 Identification Performance with Different Sample Intervals 40

10 Number of Top Significant Frequency Components to Keep in the Sup-

pression Algorithm. K is determined in the feature selection step (Al-

gorithm 7) based on the mean and standard deviation of the magnitude

of frequency components in the spectra of the labeled traces. 42

11 Application Identification Performance (Spectrum Selection). The ap-

plications to be detected are YouTube, Skype, and Downloading. The

applications are equally distributed making the random guess rate 33%. 45

viii

CHAPTER I

INTRODUCTION

1.1 Motivation

This paper studies the identification of operating systems (OS) of smartphones

that communicate using encrypted traffic. Smartphones have become the central

communication and computing devices in our daily life because of (a) their nearly

ubiquitous Internet access through various communication capabilities such as WiFi,

3G, or even 4G networks, (b) their user-friendly interfaces supporting touch and ges-

ture based input, and (c) their numerous applications and games. With the increasing

reliance on smartphones, users are increasingly using them to share sensitive data,

such as personal contacts and banking information. Smartphones are also adopted

in business and military environments [9] because of their portability and constant

network access. As a result, smartphone security is of great importance nowadays.

In order to launch an effective attack on a particular smartphone an attacker

must be able to tailor the attack to the target smartphone’s platform (i.e. OS). This is

turn requires that the attacker be able to identify the operating system running on the

1

2

target smartphone. Once the attacker knows the target OS, he or she becomes able to

exploit known vulnerabilities both of the smartphone OS and of the applications and

services running on the OS. The most readily obtainable information that enables OS

identification is the wireless traffic generated by the target smartphone. Since more

and more smartphone traffic is encrypted to protect the confidentiality of the wireless

communications [7], the OS identification must not rely on the content of packets or

packet headers.

The ability to identify smartphone OSes has many applications, some of which

are malicious in nature while others are not: (1) As a smartphone owner or a smart-

phone defense designer, we would like to know how susceptible a particular OS plat-

form is to identification based on encrypted traffic. (2) The OS identification can

enable content providers, including websites, to tailor the content for different ap-

plications running on smartphones in different OSes. (3) The OS identification in

conjunction with application identification enables network operators, especially mo-

bile network operators, to predict the bandwidth requirements from a smartphone so

that the network operators can better allocate resources to match expected bandwidth

requirements.

When the traffic is encrypted, the observer can not access packet content, and

his or her ability to monitor the traffic is limited to the timing of the packets. Obser-

vations indicate, however, that different OSes cause the smartphone to generate traffic

with different timing. Differences in timing footprints are caused by differences in OS

implementations (e.g. CPU scheduling, TCP/IP protocol stack), and by differences

in resource management (e.g. memory management or power management). Simi-

larly, differences in applications caused by the OS differences (e.g. audio/video codecs

available for multimedia communications) become visible in the timing footprint of

sent packets as well.

3

1.2 Contributions

In this paper we describe how differences in OSes can be identified by analyzing

the timing traces of the generated traffic in the frequency domain. Frequency domain

analysis is a classical tool to analyze temporal signals [18], including the timing be-

havior of traffic in our project, by converting signals from the time domain to the

frequency domain.

The main challenge in OS identification with the frequency analysis comes from

the fact that the frequency spectrum contains many noise frequency components, i.e.,

frequency components that are not caused by the OS features, but rather by appli-

cation or user behavior. The noise frequency components can be caused by network

dynamics (such as network congestion and round trip time), and traffic content (such

as periodicities in the video content when streaming a video clip). In this paper,

we call the frequency components that are helpful for OS identification, i.e., the fre-

quency components caused by OS features, the characteristic frequency components.

The effectiveness of any frequency-domain based identification clearly depends on its

ability to filter out noise and keep the characteristic frequency components.

Once the frequency spectrum of a device has been collected, it must be matched

against training data, that is the spectrum of interest needs to be matched with the

spectrum generated by a known smartphone OS. Correlation can be used for this

matching. The complexity of the matching is O(L) where L denotes the length of the

spectra. In this paper, we propose approaches to reduce the computational complexity

significantly and still identify smartphone OS accurately.

Our major contributions are summarized as follows:

• We propose four smartphone OS identification algorithms. The identification

algorithms use frequency spectrum to capture the differences in smartphone

OSes. Correlation is used to match the spectrum of interest to the spectra

4

generated by known smartphone OSes.

• We propose OS identifications algorithms that can remove noise frequency com-

ponents to improve the identification accuracy.

• We evaluated the OS identification algorithms with extensive empirical exper-

iments. The experiments with 336 GB of smartphone traffic collected over

3 months show that the OS identification algorithm can identify smartphone

OS with very high accuracy and only small amounts of smartphone traffic.

• We extend the OS identification algorithms to identify the applications run-

ning on smartphones. We applied the application identification algorithms to

identify popular applications available on smartphones in different OSes. The

experimental results show that high identification accuracy can be achieved with

as little as 30 seconds of smartphone traffic.

1.3 Organization

This paper is organized as follows: Chapter II reviews related work. The net-

work model and the threat model used in this paper are presented in Chapter III. We

explain the rationale behind the proposed identification approach and describe the

details of the smartphone OS identification algorithms in Chapter IV. In Chapter V,

we evaluate the smartphone OS identification algorithms with 336 GB of traffic data

collected over 3 months. The extension of the OS identification algorithms for applica-

tion identification is discussed in Chapter VI. We conclude the paper in Chapter VII

with a discussion of the future work.

CHAPTER II

RELATED WORK

In this chapter, we review related work on existing OS fingerprinting ap-

proaches, reconnaissance through traffic analysis, and analysis of smartphone traffic.

2.1 OS Fingerprinting

Approaches to traffic based fingerprinting can be either passive or active. In

the former the observer monitors the traffic from the target, while in the latter the

observer may stimulate the target by sending requests and cause the target to display

a richer behavior for the observer to monitor. Most existing passive methods for

computer OS fingerprinting are based on packet headers. The methods discussed in

[16] detect the computer OS by checking the initial Time to Live (TTL) value in the

IP header and the TCP window size in the first TCP packet. Methods to identify

the computer OS by inspecting the application layer data in traffic, such as server

banners in HTTP, SSH, and FTP as well as HTTP client User-Agent strings are

also discussed in [16]. Kollmann [13] proposes to fingerprint the computer OS based

5

6

on its implementation of the DHCP protocol, as different computer OSes support

different combinations of DHCP options. The network analysis tools siphone and

p0f developed as a part of the Honeynet Project [21] fingerprint the computer OS by

checking four TCP signatures. Two of them are the TTL and the TCP window size

as discussed in [16]. The two additional signatures are on the Don’t Fragment (DF)

bit and the Type of Service (ToS) bits.

Active OS fingerprinting methods to identify the OS of a remote machine are

used by Nmap [17], a software utility for network discovery and security auditing.

Nmap identifies the remote OS by sending TCP/IP probes and checking how the

remote machine responds to these probe packets. Based on the response, Nmap uses

its large database of heuristics to identify the OS. Another software package created

by Durumeric et al. [5], called Zmap, allows a single computer with a gigabit Ethernet

connection to scan the entire IPv4 address space in 45 minutes. This is a new tool

that can easily be used to establish active fingerprints very quickly.

Countermeasures have been proposed that are designed to defeat OS finger-

printing. Smart et al. [22] developed a TCP/IP stack fingerprint scrubber to defend

against active and passive OS fingerprinting attacks based on the TCP/IP stack.

The scrubber sanitizes packets from a group of hosts at both the network and trans-

port layers to block fingerprinting scans. These sanitized packets will not reveal OS

information.

All of the computer OS fingerprinting methods reviewed above require access to

the packet headers or packet content. As a result these methods are largely ineffective

when applied to encrypted traffic.

7

2.2 Reconnaissance through Packet-Content Ag-

nostic Traffic Analysis

Various reconnaissance approaches through packet-content agnostic traffic anal-

ysis have been proposed, and some of the approaches are studied in the context of

privacy breaches.

2.2.1 Website Fingerprinting

Herrmann et al. [11] developed a method for website fingerprinting with traffic

encrypted and anonymized by Tor. The method uses common text mining approaches

on frequency distributions of packet sizes. The method is reported to be capable of

identifying 300,000 real-world traffic traces with 97% accuracy using a sample of 775

sites. Panchenko et al. [20] showed the effectiveness of website fingerprinting attacks

on anonymity networks. Their approaches can increase the detection accuracy from

3% to 55% with a Tor data set and from 20% to 80% with a JAP data set. Their

experiments on a real-world data set can achieve an accuracy of 73%. The counter-

measure of applying camouflage to hamper the fingerprinting attack was proposed

in [20] and the countermeasure is able to decrease the accuracy to as low as 3%. A

website detection attack that could be executed from a remote location was proposed

in [8]. The attack first estimates the load inside a victim’s router queue by sending

regularly spaced probe packets and then measuring their round trip time. Based on

this estimation of the load, any of the website fingerprinting methods described above

can be used. Cai et al. [2] attempted to defeat countermeasures proposed for website

fingerprinting, more specifically HTTPOS and randomized pipelining over Tor. The

method used packet size vectors from encrypted traffic and the Damerau-Levenshtein

algorithm to detect which web pages the traffic is associated with. They were able to

8

achieve website fingerprinting accuracy as high as 90% against some countermeasures

with a sample set of 100 websites. Early on, Liberatore and Levine [14] proposed traf-

fic analysis on encrypted HTTP streams to infer the source of a web page retrieved

in encrypted HTTP streams. A profile of each known website is created in advance.

The traffic analysis identifies the source by comparing observed traffic with estab-

lished profiles with classified algorithms. They used a sample size of 2,000 websites

with 400,000 traffic traces.

2.2.2 Inferring Users’ Online Activities Through Traffic Anal-

ysis

Zhang et al. [25] use short traces of encrypted traffic on IEEE 802.11 wireless

local area networks (WLAN) to infer activities of a specific user (e.g. web browsing,

file downloading, or video streaming). Their experiments include traffic traces from

web browsing, online chatting, online gaming, file downloading, and video conversa-

tions. They developed a learning hierarchical classification system to discover if web

activities were associated with a traffic trace. They performed their experiments in

a home environment, a university campus, and on a public network. They were able

to infer the users activities with 80% accuracy using 5 seconds of traffic and 90%

accuracy with 1 minute of traffic.

2.2.3 Hidden Services

Hidden services are used in anonymity networks like Tor to resist censorship

and attacks like a denial of service attack. Øverlier and Syverson [19] propose attacks

that reveal the location of a hidden server in the Tor network. Using one corrupt

Tor node they were able to locate a hidden server in minutes. They then proposed

changes to the Tor network in order to resist their attacks and these changes were

9

implemented. A very similar effort in [1] investigates the flaws in the Tor network

and its hidden services. Three practical cases including a botnet with hidden services

for command and control channels, a hidden service used to sell drugs, and the Duck-

DuckGo search engine are used for evaluation. Their method involves first gaining

control of the descriptors of a hidden service and then performing a traffic correlation

attack on the hidden service. Zander and Murdoch [24] aim to improve their clock-

skew measurement technique for revealing hidden services. Their original method

[15] correlates clock-skew changes during times of high load. They noticed two areas

of noise, network jitter and timestamp quantization error, and aim to reduce the lat-

ter by synchronizing measurements to the clock ticks. They were able to reduce the

timestamp quantization error and increase their accuracy by two magnitudes.

2.3 Analysis of Smartphone Traffic

Smartphone traffic has been analyzed for various purposes. In [23] Tzagkarakis

et al. proposed to use the Singular Spectrum Analysis to characterize network load

in a large WLAN. This is beneficial to monitor the load and to place access points

accordingly. Their findings can help design large-scale WLAN’s that can be used by

smartphones in large public areas. Chen et al. [4] studied the network performance

of smartphones in a university-wide WLAN. They analyzed 2.9 TB of data collected

over three days and were able to gather interesting insights on TCP and application

behavior of smartphones and their effect on performance. Huang et al. [12] proposed

a methodology for comparing application performance based on 3G communications.

Their study shows how YouTube buffering techniques vary across smartphone OSes.

Throughout these experiments, the observer has access to header and payload

data. In comparison, our work is focusing on the analysis of encrypted traffic. To our

knowledge, we are describing in this paper the first work proposing traffic analysis of

10

encrypted traffic for smartphone OS identification.

CHAPTER III

NETWORK AND THREAT MODEL

3.1 Network Model

In this paper, our goal is to identify smartphone operation systems (OS) when

the smartphone communicates using encrypted traffic. The capability of OS iden-

tification is needed for various purposes: (1) On one hand, to launch attacks to a

smartphone, an attacker needs to determine first the OS and then the applications

running on the target smartphone. Given the OS and application information, attacks

can exploit known vulnerabilities to tailor attacks specific to the OS and the appli-

cations. On the other hand, to defend against the reconnaissance from the attackers,

smartphone defense designers and smartphone owners need to know how accurate the

identification can be. (2) The OS identification can enable content providers, includ-

ing websites, to tailor the content for different applications running on smartphones in

different OSes. (3) The OS identification allows mobile network operators to predict

the bandwidth requirements from any particular smartphone so that the network

operators can better allocate resources with the knowledge of expected bandwidth

11

12

requirements.

We are particularly interested in the identification based on WiFi traffic for

three reasons: First, although current smartphones have various communication ca-

pabilities, such as WiFi, 3G, or even 4G, nearly every smartphone on the market is

capable of WiFi communication. Next, the majority of traffic from smartphones is

sent through WiFi [3] partly because of its low cost and relatively high bandwidth.

Finally, WiFi based passive attacks are easy to stage. A drive-by or walk-by detection

of the smartphone OS is therefore very easy to stage.

3.2 Threat Model

In this paper we assume a passive adversary who is able to capture packets

exchanged by the smartphone of interest. The smartphone, in turn, communicates

using encryption. This assumption reflects the increasing popularity of encryption

tools available for smartphones [10]. The traffic encryption disables access to packet

content and renders traffic analysis based on packet content ineffective.

In summary, we assume that the adversary has the following capabilities:

• The adversary is able to eavesdrop on WiFi communications from the target

smartphones and collect encrypted traffic for the identification.

• The adversary is able to collect traffic from known smartphone OSes and analyze

the traffic for future identification.

• We assume a passive adversary. That is, the adversary is not allowed to add,

delete, delay, or modify existing traffic for OS identification.

• The traffic traces including the traffic traces collected for training on known

smartphone OSes and the traffic traces of interest for identification by the adver-

13

sary are collected independently. In other words, the traffic traces are collected

in different network sessions and possibly on different WiFi networks.

Other attack scenarios can be very easily imagined. For example one where

the observer does not have access to the wireless link, but rather collects data on the

wired part of the path downstream. In this paper we focus on data collection on the

wireless link.

CHAPTER IV

IDENTIFYING SMARTPHONE

OPERATING SYSTEMS

In this chapter, we present approaches to identify smartphone operating sys-

tems based on the threat model described above. We begin this chapter with an

introduction of the rationale behind the identification approach. We then describe

the identification framework and the details of each identification algorithm.

4.1 Rationale

OS identification through encrypted traffic is possible because of implementation dif-

ferences and differing resource management policies among smartphone OSes. These

differences include:

• Differences in OS implementations: Different smartphone OSes may have differ-

ent kernels, different CPU scheduling algorithms, and different implementations

of the TCP/IP protocol stack. These differences in the OS implementations can

cause the timing behavior of traffic to differ from one smartphone OS to another.

14

15

• Differences in Resource Control: Smartphones are resource-constrained devices.

Largely due to their small form factor, smartphones have limited CPU process-

ing capability, limited memory, and limited battery lifetime. To better utilize

these resources, smartphone OSes adopt a number of policies for resource con-

trol. For example, different smartphone OSes may have different power man-

agement policies.

• Differences in Applications: Because of the differences across OSes, the same ap-

plication for different smartphone OSes may be implemented differently. For ex-

ample, different OSes support different combinations of audio and video codecs

used for multimedia communications. Obviously, different codecs used for mul-

timedia communications will very likely generate network traffic differently. An-

other example is YouTube: In [12], iPhone is reported to first download a por-

tion of video at a high rate, pause a while, and then continue downloading.

The authors conjecture that this pattern is caused by the memory management

and power saving policy in Apple’s iOS. The Android phone reported in [12]

periodically downloads small chunks of YouTube video every 10 seconds. The

authors conjecture is that the download pattern is due to hedging against the

user not wanting to watch the entire video.

The differences described above will obviously give raise to different timing

behaviors for the traffic generated by different smartphone OSes. These differences

in the timing behavior can be easily captured in the frequency domain. A typical

spectrum of YouTube video streaming on the Android OS is shown in Figure 1: We

can observe that the YouTube traffic flow has many significant frequency components.

While some of these components are coincidental, others are associated with the

YouTube buffering strategy on the Android OS. Others again may be associated

with specific OS implementation approaches. To show the correspondence, we draw

16

the time domain signal of the YouTube traffic flow in Figure 2(a). We can easily

observe the periodic nature of the buffering in the figure. By checking the data, we

confirm that the periodic buffering happens every 250 seconds. For verification, we

zoom in the corresponding frequency range of Figure 1 and the zoomed-in portion

is shown in Figure 2(b). In Figure 2(b), we can observe the peak at the frequency

of 0.004Hz, which corresponds to the buffering period of 250 seconds. Obviously the

frequency component corresponding to the buffering is helpful in OS identification.

We call such frequency components characteristic frequency components. In Figure 1,

we observe a large number of noise frequency components as well, which in turn are

caused by network dynamics such as round trip time and the video content. These

noise frequency components are not caused by OS features, and they are therefore

not helpful for OS identification. Obviously, removing the noise frequency components

will very likely improve the identification accuracy.

4.2 Identification Framework

We propose four identification algorithms for OS identification. The four iden-

tification algorithms are designed under the same framework. So before introducing

10 20 30 40 50 60
0

50

100

150

200

250

Frequency (Hz)

M
ag

ni
tu

de

Figure 1: A sample frequency spectrum of YouTube streaming traffic on the Android
OS. To generate the spectrum 50 minutes of streaming traffic with an 8 ms sample
interval is used.

17

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

Time (Second)

T
ra

ffi
c

R
at

e
(k

B
ps

)

(a) Time domain signal of the
YouTube streaming traffic on the An-
droid OS.

0 0.002 0.004 0.006 0.008 0.01
0

100

200

300

400

500

600

700

Frequency (Hz)

M
ag

ni
tu

de

(b) Zoomed-in Portion of the Spec-
trum shown in Figure 1

Figure 2: Correspondence Between the periodicities in a Time Domain Signal and
the Characteristic Frequency Component in the spectrum

the details of each identification algorithms, we present the framework first.

The identification can be divided into two phases as shown in Figure 3: train-

ing phase and identification phase. The training phase consists of two steps: spectrum

generation and feature extraction. The two steps in the identification phase are spec-

trum generation and OS identification. We describe the details of each step below.

4.2.1 Spectrum Generation

The spectrum generation step converts traffic traces into frequency spectra.

The input of this step is a vector S = [s1, s2, · · · , sN], where N is the number of

samples. The element si in the vector is calculated as follows:

Raw

Traffic

Traces

Spectrum

Computation

Feature

Extraction

OS Identification

Frequency

Spectra

Extracted Features

Frequency

Spectra

Final

Detection

Results

Training Phase

Identification Phase

Figure 3: Identification Framework Diagram

18

si =
sum of bytes received during the ith sample interval

T
, (4.1)

where T is the length of sample intervals. The output of this step is the correspond-

ing frequency spectrum F S = [fS
1 , f

S
2 , · · · , f

S
M], where M denotes the length of the

spectrum. The spectrum F S is calculated in two steps. First we apply the Discrete

Fourier Transform (DFT) to the vector S as follows:

yk =
N
∑

j=1

sjω
(j−1)(k−1)
N , k = [1, 2, · · · ,M] , (4.2)

where yk denotes the transform coefficients, ωN = e−
2πi
N

1, and N denotes the number

of samples. The spectrum F S is calculated as below:

fS
k = |yk|, k = [1, 2, · · · ,M] (4.3)

where the operator | · | denotes the absolute value. Because of the symmetry of the

spectrum [18], we only use the single-sided spectrum, i.e., F S = [fS
1 , f

S
2 , · · · , f

S
L] where

L = ⌊M
2
⌋+ 1.

The spectrum generated in this step is fed to the feature extraction step in the

training phase or fed to the OS identification step in the identification phase.

4.2.2 Feature Extraction

The feature extraction step is designed to extract features in the frequency

spectra generated in the previous step for OS identification. The inputs to the step

are the frequency spectra of labeled traces that we use for training. The outputs are

the features that are selected for the identification step.

1We use i to denote the imaginary unit.

19

4.2.3 OS Identification

The identification step identifies the OS based on two inputs: (1) F x, the

spectrum generated from the trace of interest, denoted as Trace x, and (2) the feature

selection from the feature extraction step in the training phase. The output will be

the identification result. The pseudo code of the OS identification step for each

identification algorithm can be found in the remainder of this chapter.

In all the four algorithms, the OS identification step will first apply the fea-

ture selection decided in the feature extraction step to F x, the spectrum generated

from the trace of interest. We denote the feature extracted spectrum as F ′x. The

selected spectral features of the test trace will be compared with the spectral fea-

tures in the labeled traces of each smartphone OS by correlation. In the following,

we denote the pth labeled trace of smartphone OS A as Ap, its spectrum as FAp ,

and its feature-extracted spectrum as F ′Ap . The correlation between the two feature-

extracted spectra F ′x and F ′Ap can be calculated as follows:

corr(F ′x, FAp) =

L
∑

k=1
(f ′x

k − F ′x)(f
′Ap

k − F ′Ap)
√

L
∑

k=1
(f ′x

k − F ′x)2
L
∑

k=1
(f

′Ap

k − F ′Ap)2
, (4.4)

where F ′x =

L
∑

k=1

f ′x
k

L
and F ′Ap =

L
∑

k=1

f
′Ap

k

L
.

The identification decision is made by comparing the average of the correlation

between F ′x, the feature-extracted spectrum of the test trace, and all the feature-

extracted spectra of labeled traces generated by the same smartphone OS. We denote

the average of the correlation between the trace x and the labeled traces generated

by smartphone OS A as corrA. If the average correlation corrA is the largest among

the average correlations between trace x and the labeled traces generated by any

smartphone OS, the identification step declares the Trace x to match smartphone OS

20

A.

In the following we describe and compare four identification algorithms, which

we call full spectrum, spectrum selection, suppression, and hybrid. The framework

described above is used in designing all four identification algorithms proposed in this

paper: The spectrum generation step is the same in all four algorithms. The major

differences among the four identification algorithms are in how features are extracted

during training and how the extracted features are in turn used for identification.

4.3 Full Spectrum

Function 1: Feature Extraction (Full Spectrum)

Input: F p,q : The qth spectrum generated by the pth smartphone OS,
1 ≤ p ≤ P , 1 ≤ q ≤ Q, where P and Q denote the number of
different smartphone OSes and the number of traces available for
each smartphone OS respectively

Output: F ′p,q : The qth feature-extracted spectrum of the pth
smartphone OS, 1 ≤ p ≤ P , 1 ≤ q ≤ Q

for p← 1 to P do
for q ← 1 to Q do

for k ← 1 to L− 1 do
f
′p,q
k = f

p,q
k+1;

// just remove the DC component from the spectrum,

L: Length of the spectra

end

end

end

The full spectrum identification algorithm includes all frequency components

except for the DC component as feature frequency components. We remove the DC

component because the DC component is largely determined by the average traffic

rate, which depends on the content in the traffic instead of the smartphone OS.

The spectrum generation step of the full spectrum identification algorithm is

the same as the step described in Section 4.2. The pseudo code of the feature extrac-

21

Function 2: OS Identification (Full Spectrum)

Input: F ′p,q: Feature extracted spectrum of each labeled trace, F x:
spectrum of the test trace

Output: OStype: Smartphone OS Type
// remove the DC component from the spectrum F x

for k ← 1 to L− 1 do
f ′x
k = fx

k+1;
end
OStype = Decision(F ′p,q, F ′x);

Function 3: Decision
Input: F ′p,q: Feature extracted spectrum of each labeled trace, F ′x:

Feature extracted spectrum of the test trace
Output: OStype: Smartphone OS Type
// correlate the feature-extracted spectrum of the test trace

with the feature-extracted spectra of the labeled traces

for p← 1 to P do
for q ← 1 to Q do

Calculate corrp,q the correlation between F ′x and F ′p,q;
end

corrp=

Q
∑

q=1

corrp,q

Q
;

// average correlation between F ′x and the

feature-extracted spectra of OS type p

end
Find the maximum corrk from the vector [corr1, corr2, · · · , corrP];
// without loss of generality, we assume the maximum is corrk

in the vector

OStype = k;

22

tion step and the OS identification step can be found in Function 1 and Function 2,

respectively.

4.4 Spectrum Selection

The spectrum selection identification algorithm is designed to improve the

identification performance by removing noise frequency components, which are not

helpful for OS identification, from the spectrum. As shown in Figure 1 and Figure 2, a

traffic flow may have many frequency components. The frequency components include

characteristic frequency components, such as the frequency components caused by the

OS’s power management, as well as noise frequency components, such as the frequency

components caused by network round-trip time, network congestion, and other effects

caused by network dynamics. Obviously, removing the noise frequency components

can improve identification performance.

Ideally, each frequency component should be evaluated to decide whether it

is helpful for OS identification. But the computational cost is prohibitive because

of the large number of possible combinations. To make this approach practical, we

apply a genetic algorithm to decide which frequency components should be kept for

OS identification.

Whether a frequency component is helpful for OS identification is decided

during the training phase, based on the labeled traces. The feature extraction step

will first divide the labeled traces into two sets: SetA and SetB. Instead of exhaus-

tively searching over all the possible combinations of selected frequency components,

the step searches for the best combination of the selected frequency components by

formulating the search as an optimization problem. The objective function to be

optimized is the identification rate obtained by identifying the labeled traces in SetB.

The variables of the optimization problem are binary numbers and each of these bi-

23

Function 4: Feature Extraction (Spectrum Selection)

Input: F p,q : The qth spectrum generated by the pth smartphone OS,
1 ≤ p ≤ P , 1 ≤ q ≤ Q, where P and Q denote the number of
different smartphone OSes, the number of traces available for each
smartphone OS, and L: number of frequency components

Output: F ′p,q : The qth feature-extracted spectrum of the pth
smartphone OS, 1 ≤ p ≤ P , 1 ≤ q ≤ Q, Bselected=[b1,b2,· · ·,bL]:
spectrum selection vector where the binary bit bi indicate
whether the ith frequency component is selected

Bselected = ga(fitfun, Seta, Setb);
// We use ga to represent any genetic algorithm and ga

accepts the definition of the fitness function fitfun and

outputs values of the variables (in our case the vector

Bselected) resulting the maximum of the fitness function.

The fitness function fitfun is defined in Function 5

foreach spectrum in the input do
for i← 1toL do

if Bi==1 then
include the ith frequency component in F p,q to the
feature-extracted spectrum F ′p,q;

end
// without loss of generality, we assume the spectrum

F p,q is being processed

end

end

24

Function 5: Fitness Function (fitfun) (Spectrum Selection)

Input: Bselected = [b1, b2, · · ·,bL]: spectrum selection vector, SetA: one
set of labeled traces, SetB: one set of the remaining labeled traces

Output: RateIdentification: Identification Rate
foreach spectrum in SetA do

for i← 1toL do
if Bi==1 then

include the ith frequency component in F p,q to the
feature-extracted spectrum F ′p,q;

end
// without loss of generality, we assume the spectrum

F p,q is being processed

end

end
foreach spectrum in SetA do

include the corresponding feature-extracted spectrum into F ′Seta ;
end
success=0;
foreach spectrum F u,v in SetB do

OStype = OS IdentificationSpectrumSelection(F
′SetA , F u,v, Bselected);

if OStype == u then
success = success+ 1;

end

end
RateIdentification = success

number of traces in SetB
;

25

nary numbers indicates whether the corresponding frequency component is selected.

We represent the binary variables as a vector Bselected = [b1, b2, · · · , bL] where the

binary variable bi indicates whether the ith frequency component is selected. We use

a genetic algorithm to solve the optimization problem. In comparison with the ex-

haustive search, this approach is more efficient at the cost of possibly finding a local

maximum and so leading to a less effective identification.

The pseudo code of the feature extraction step in the spectrum selection al-

gorithm is shown in Function 4 and the pseudo code of the OS identification step is

shown in Function 6.

Function 6: OS Identification (Spectrum Selection)

Input: F ′p,q: Feature-extracted spectrum of each labeled trace, F x:
spectrum of the test trace, Bselected = [b1, b2, · · · , BL]: spectrum
selection vector

Output: OStype: Smartphone OS Type
for i← 1 to L do

if bi = 1 then
Include the ith frequency component in F x to the
feature-extracted spectrum F ′x;

end

end
OStype = Decision(F ′p,q, F ′x);
// The Decision function is defined in Function 3

4.5 Suppression

The cost of selecting the characteristic frequency components in the selection

algorithm is very high, and so we must find more efficient means for feature extrac-

tion. The suppression identification algorithm is designed to remove noise frequency

components based on two observations that can be made from the typical spectrum

shown in Figure 1: (1) Most frequency components in a spectrum are insignificant

(i.e. small in magnitude). (2) Most insignificant frequency components are noise fre-

26

quency components. Based on the two observations, we design an algorithm (which

we call suppression algorithm) that suppresses insignificant frequency components

and leaves only significant frequency components for OS identification.

A key consideration in designing such an algorithm is the number of most

significant frequency components to keep for OS identification. To determine this

number, we analyze the distributions of the magnitude of all the frequency compo-

nents in a spectrum. A typical distribution is shown in Figure 4. We observe that (1)

the majority of the frequency components are insignificant and (2) the insignificant

components’ magnitude can be modeled as a Gaussian distribution.

Based on the observations described above, the number of significant frequency

components to keep, denoted byK, is determined by the distribution of the magnitude

of frequency components. For any given spectrum F i we first calculate the mean µi

and standard deviation σi of the distribution on the magnitude. We then set a

threshold corresponding to Ti = µi + 6σi making the probability of the magnitude

being larger than the threshold Ti to be about 2E-9 according to the property of

Gaussian distributions. In other words, the threshold Ti can filter out over 99% of

insignificant frequency components. With the threshold calculated for each trace, we

find the number of frequency components with magnitude larger than the threshold

in each trace. We set K, the number of significant frequency components to keep, to

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Magnitude

F
re

qu
en

cy

Figure 4: Magnitude Distribution of the Frequency Spectrum in Figure 1

27

Function 7: Feature Selection (Suppression)

Input: F p,q : The qth spectrum generated by the pth smartphone OS,
1 ≤ p ≤ P , 1 ≤ q ≤ Q, where P and Q denote the number of
different smartphone OSes and the number of traces available for
each smartphone OS

Output: F ′p,q :The qth feature-extracted spectrum of the pth smartphone
OS, 1 ≤ p ≤ P , 1 ≤ q ≤ Q, K: the number of top K frequency
components to keep in feature-extracted spectra

foreach spectrum in the input do
Calculate mean µi and standard deviation σi of the magnitude of
frequency components;
// without loss of generality, we assume the ith trace is

being processed;

Ti=µi + 6σi

;
Set ki to be the number of frequency components with magnitude
larger than Ti;

end

K=

PQ
∑

i=1

ki

PQ
;

// PQ: the number of labeled traces

foreach spectrum F p,q in the input do
The corresponding feature-extracted spectrum F ′p,q is formed by
keeping the top K significant frequency component and suppressing
the magnitude of the rest frequency components to zero;

end

Function 8: OS Identification (Suppression)

Input: F ′p,q: Feature extracted spectrum of each labeled trace, F x:
spectrum of the test trace, K: the number of top K frequency
components to keep in feature-extracted spectra

Output: OStype: Smartphone OS Type
Form the feature-extracted spectrum F ′x by keeping the top K significant
frequency components in F x and suppressing the magnitude of the rest
frequency components to zero;
OStype = Decision(F ′p,q, F ′x);
// The Decision function is defined in Function 3

28

Function 9: Feature Extraction (Hybrid)

Input: F p,q : The qth spectrum generated by the pth smartphone OS
respectively, 1 ≤ p ≤ P , 1 ≤ q ≤ Q, where P and Q denote the
number of different smartphone OSes and the number of traces
available for each smartphone OS respectively

Output: F ′p,q : The qth feature-extracted spectrum of the pth
smartphone OS, 1 ≤ p ≤ P , 1 ≤ q ≤ Q, Bselected=[b1, b2, · · · , bL]:
band selection vector where the binary bit bi indicates whether
the ith frequency component is selected, K: the number of top
K frequency components to keep in feature-extracted spectra

foreach spectrum in the input do
Calculate mean µi and standard deviation σi of the magnitude of
frequency components;
// without loss of generality, we assume the ith trace is

being processed

Ti=µi + 6σi;
Set ki to be the number of frequency components with magnitude
larger than Ti;

end

K=

PQ
∑

i=1

ki

PQ
;

// PQ: the number of labeled traces

foreach spectrum F p,q in the input do
The corresponding intermediate spectrum F ′′p,q is formed by keeping
the top K significant frequency components and suppressing the
magnitude of the rest frequency components to zero;

end
Divide the intermediate spectra F ′′p,q of each smartphone OS into two sets
SetA and SetB;
Bselected=ga(fitfun, Seta, Setb);
// We use ga to represent any genetic algorithm and ga

accepts the definition of the fitness function fitfun and

outputs values of the variables (in our case the vector

Bselected) resulting the maximum of the fitness function.

The fitness function fitfun is defined in Function 5

foreach spectrum in the input do
for i← 1 to L do

if bi==1 then
include the ith frequency component in F p,q to the
feature-extracted spectrum F ′p,q;

end
// without loss of generality, we assume the spectrum

F p,q is being processed

end

end

29

Function 10: OS Identification (Hybrid)

Input: F ′p,q: Feature extracted spectrum of each labeled trace, F x:
spectrum of the test trace, K: the number of top K frequency
components to keep in feature-extracted spectra,
Bselected = [b1, b2, · · · , bL]: spectrum selection vector

Output: OStype: Smartphone OS Type
Form the intermediate spectrum F ′′

x by keeping the top K significant
frequency component in F x and suppressing the magnitude of the rest
frequency components to zero;
for i← 1 to L do

if bi=1 then
Include the ith frequency component of spectrum F ′′x into F ′x;

end

end
OStype = Decision(F ′p,q, F ′x);
// The Decision function is defined in Function 3

be the average number of the frequency components with the magnitude larger than

the threshold in each trace.

The feature-extracted spectrum is formed by: (1) keeping the top K frequency

components and (2) suppress the magnitude of the rest frequency components to zero.

The pseudo code of the feature selection step in the suppression algorithm in shown

in Function 7 and the corresponding OS identification step is shown in Function 8.

4.6 Hybrid Algorithm

Finally, we describe an algorithm (which we call hybrid algorithm) that com-

bines the effectiveness of the spectrum selection algorithm with the efficiency of the

suppression algorithm described earlier. We observe that the suppression algorithm

keeps the significant frequency components (i.e. large components) for OS identifi-

cation. Some of the significant frequency components (such as the frequency compo-

nents caused by round-trip time) are extraneous to the OS operation and are therefore

not useful for smartphone OS identification. The hybrid algorithm removes those sig-

30

nificant frequency components from the spectrum before proceeding to select the

characteristic frequency components.

The feature extraction step in the hybrid identification algorithm works as fol-

lows: First, as in the suppression algorithm, only the top K significant frequency

components in the spectrum F p,q are kept in the intermediate spectrum F ′′p,q. Then

the algorithm searches for the best combination of the remaining frequency compo-

nents with genetic algorithm. The final feature-extracted spectrum F ′p,q is formed

by applying the best selection on the intermediate spectrum F ′′p,q.The pseudo code

of the feature extraction step and the corresponding OS identification step are shown

in Function 9 and Function 10 respectively.

4.7 Comparison of the OS Identification Algorithms

In this section we proceed to compare the four OS identification algorithms

described above. The comparison is in terms of identification performance and com-

putational complexity.

As discussed above, the spectrum of any smartphone traffic contains both

characteristic frequency components and noise frequency components. To improve the

identification performance, we need to remove the noise frequency components as

much as possible. Among the proposed algorithms it is to be expected that the spec-

trum selection algorithm performs best since it largely relies on a search algorithm to

identify the most characteristic frequency components. The suppression algorithm fil-

ters out the noise frequency components following the heuristic that most insignificant

frequency components tend to be noise frequency components. The hybrid algorithm

aims to improve the performance of the suppression algorithm by removing the noise

frequency components that are significant. The full spectrum algorithm simply re-

moves the DC frequency component so most noise frequency components are left in

31

Table I: Complexity of the Feature Extraction and Correlation in the Identification
Algorithms (P : Number of Different Smartphone OSes, Q: Number of labeled traces
available for each smartphone OS, K: Number of most significant frequency compo-
nents to keep, L: Length of Spectra)

Full Spectrum Spectrum Selection Suppression Hybrid
Feature Extraction O(PQ) Complexity of Genetic Algorithms O(PQ) Complexity of Genetic Algorithms

Correlation O(L) Dependent on Selection Results O(K) O(K)

the spectrum.

The identification performance advantages of the selection algorithm a come at

the cost of a significant increase in computational complexity, and the suppression and

hybrid algorithm both aim at reducing this cost. The four identification algorithms

differ in the feature extraction step and the OS identification step, while the other

two steps do not vary. In the following comparison we focus on the computational

complexity of these two steps.

A qualitative comparison of the complexity of the feature extraction step during

the training phase of the four algorithms is shown in Table I. The feature extraction

step in both the spectrum selection and the hybrid algorithm is most time-consuming

since it needs to use an optimization step (genetic algorithm in our case) to find

the best combination of frequency components for identification. The complexity of

feature extraction step in the full spectrum algorithm and the suppression algorithm

is much lower since the step in the full spectrum algorithm only needs to remove

the DC component from each spectrum and the suppression only needs to suppress

insignificant frequency components in each spectrum.

We also want to point out that the cost for feature extraction is only incurred

during the training phase. The complexity of the feature extraction step will not

affect the cost during operation.

The most time-consuming part of the OS identification step is the correlation.

The complexity of correlating two spectra is O(L) where L denotes the length of the

spectra. Thus, the complexity of the correlation in the suppression algorithm is much

32

lower, since a suppressed spectrum can be represented by a sparse vector leading

to a correlation cost of O(K) when we keep the K most significant components.

The correlation in the hybrid algorithm is of the same complexity because of the

suppression in the hybrid algorithm. For the full spectrum algorithm, the complexity

of the correlation is O(L) since only the DC component is removed. The complexity

of the correlation in the spectrum selection algorithm depends on the selection result

and it is usually higher than the suppression and the hybrid algorithms.

CHAPTER V

EMPIRICAL EVALUATION

In this chapter, we evaluate the identification performance of the proposed

identification algorithms. The evaluation is based on 336 GB of smartphone traffic

collected over more than three months on different smartphone OSes.

5.1 Experiment Setup

The experiment setup is shown in Figure 5. The smartphones with different

OSes are used to watch YouTube streaming video, download files with the HTTP

protocol, and make video calls with Skype. These three applications are selected for

our experiments because of their popularity and their availability on different smart-

phone OSes: (1) The three applications are among the most popular applications

according to the number of downloads shown in application stores. (2) We want to

avoid the applications that are only available on one specific smartphone OS. Because

if the OS-specific applications are chosen, then OS identification is equivalent to ap-

plication identification. The three applications are available on all the smartphone

33

34

Table II: Specifications of Smartphones Used

Phone Operating System CPU RAM Internal Storage Battery
HTC Desire HD Android v2.3 1 GHz Scorpion 768 MB 1.5 GB 1230 mAh

iPhone 4S iOS 5 1 GHz Cortex-A9 Dual-Core 512 MB 16 GB 1432 mAh
Nokia Lumia N8 Symbian 3 680 MHz ARM 11 256 MB 16 GB 1200 mAh
Nokia Lumia 900 Windows Phone 7.5 1.4 GHz Scorpion 512 MB 16 GB 1830 mAh

OSes studied in the project. If multitasking is supported in a smartphone OS, we

also use the smartphone for video streaming, file downloading, and Skype video calls

at the same time. The wireless traffic from the smartphone is collected by an HP

dc7800 computer. The data collection is through a Linksys Compact Wireless USB

adapter (WUSB54GC) installed on the computer. The wireless access points used

in the experiments include both the wireless router in our research lab and wireless

access points managed by the university. 1

The smartphone OSes included in our experiments are Apple’s iOS, Google’s

Android OS, Windows Phone OS, and Nokia Symbian OS. According to the market

research by Gartner [6], these four smartphone OSes have taken 94.8% of the market

share in 2012 and Android OS is taking 69.7% of the market share. The smartphones

used in our experiments are listed in Table II. For each possible combination of the

smartphone OS and the application, at least 30 traffic traces of 50 minutes long are

collected.

1In a different scenario, the data-collecting machine may be monitoring the traffic on the wired
portion of the traffic path. The scenario chosen for our experiments is representative of a drive-by
or walk-by attack.

Internet

Fedora 17 collecting

wireless traffic of

smartphone

Smartphone

accessing

Service (e.g.

YouTube, Skype,

file download)

Wireless Router

WLAN

WLAN

YouTube

server

Skype

server

Download

server

Figure 5: Data Collection Setup

35

5.2 Performance Metrics

The identification performance is measured with the following three perfor-

mance metrics: (1) identification rate defined as the ratio of successful identifications

to the number of attempts, (2) false negative rate defined as the proportion of traces

generated by smartphone OS, say Y, identified as traces generated by other smart-

phone OSes, and (3) false positive rate defined as the proportion of the traces gen-

erated by other smartphone OSes identified as traces generated by smartphone OS

Y.

False positive rate and false negative rate can provide more detailed perfor-

mance information than the identification rate since the false positive rate and false

negative rate are specific to each type of smartphone OS. On the other hand the

identification rate, averaged across all the smartphone OSes, can show us the overall

identification performance.

5.3 Length of Traffic Traces

Our first set of experiments focus on the length of the traffic traces used for OS

identification. The traffic used in OS identification includes YouTube video streaming

traffic, file downloading traffic, Skype traffic, and combined traffic. The combined

traffic is collected by running YouTube video streaming, file downloading, and Skype

video calls simultaneously on the OSes supporting multitasking. For brevity, we

call the four types of traffic YouTube Traffic, Download Traffic, Skype Traffic, and

Combined Traffic respectively in the rest of the paper.

The sample interval used in this set of experiments is of length 8ms. For

each type of traffic and each smartphone OS, we collected 30 traces. In this set of

experiments, we use 20 of the 30 traces as labeled traces and the remaining 10 traces

36

0.5 1.0 5.0 10.0 15.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Data Used (Minute)

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(a) Full Spectrum

0.5 1.0 5.0 10.0 15.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Data Used (Minute)

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(b) Suppression

0.5 1.0 5.0 10.0 15.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Data Used (Minute)

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(c) Spectrum Selection

0.5 1.0 5.0 10.0 15.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Data Used (Minute)

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(d) Hybrid

Figure 6: Identification Performance with Traces of Different Length

as test traces. The experiment results are obtained with 1000 random combinations

of the 20 labeled traces and 10 test traces.

The experimental results of the four proposed identification algorithms are

shown in Figure 6.

Full Spectrum Identification Algorithm: From Figure 6(a), we can make the

following observations: (1) The highest identification rates with YouTube Traffic,

Table III: Application Resource Consumption (The consumption data is obtained by
running each application alone for 50 minutes on the devices. Since the Symbian OS
and the Windows phone do not have built-in monitoring tools, we do not collect the
data for the two OSes.)

Application (OS) Battery Consumption CPU Usage
YouTube (iOS) 10% 35%
Skype (iOS) 25% 40%

Download (iOS) 10% 15%
YouTube (Android) 19% 20%
Skype (Android) 50% 74%

Download (Android) 57% 36%

37

Download Traffic, Skype Traffic, and Combined Traffic are 0.88, 0.98, 0.81, and 0.99

respectively. (2) Even with only 30 second traffic traces, the identification rates are

0.61, 0.53, 0.70, and 0.76 for YouTube traffic, download traffic, Skype traffic, and

combined traffic respectively. (3) In general, the identification rates increase with the

length of traces. (4) We can observe that the identification rates on combined traffic

are close to or slightly better than the identification rate on Skype traffic. The iden-

tification rates of combined traffic are higher than the rates of YouTube traffic and

download traffic. The reasons are as follows: (a) Combined traffic has more charac-

teristic frequency components for OS identification in comparison with single type of

traffic since combined traffic contains other types of traffic. (b) When a smartphone is

more heavily loaded because it is running multiple applications, the OS features such

as power saving mechanisms are more frequently used. (5) The identification rates for

Skype traffic are higher than the rates for the Download and YouTube traffic. The

differences are mainly because of the higher resource consumption, in terms of both

power consumption and CPU usage, by Skype as shown in Table III. A higher re-

source consumption leads to a higher chance that power saving features are triggered

by the OS, which in turn generates additional characteristic frequency components.

Suppression Identification Algorithm: The parameter K used in the identifi-

cation step of the suppression algorithm is determined based on the mean and the

standard deviation of the magnitude of frequency components as described in Func-

tion 7. If not specified, the parameter K will be chosen in the same way in the rest

of the paper.

Figure 6(b) shows the experimental results with the suppression algorithm.

From Figure 6(b), we can make the following observations: (1) The highest identifi-

cation rates with YouTube Traffic, Download Traffic, Skype Traffic, and Combined

Traffic are 0.81, 0.94, 0.69, and 0.81 respectively. (2) Even with only 30 second traf-

38

fic traces, the identification rates are 0.51, 0.46, 0.42, and 0.5 for YouTube traffic,

download traffic, Skype traffic, and combined traffic respectively. (3) In general, the

identification rates increase with the length of traces. (4) We can also have similar

observations as in Figure 6(a) that the identification rates of the Skype traffic are

higher than the rates of the download and YouTube traffic.

Spectrum Selection Identification Algorithm: Figure 6(c) shows the identifi-

cation performance of the spectrum selection algorithm. We can observe that the

algorithm significantly improves the identification performance: (1) With 30 seconds

of traffic traces, the identification can reach .68, .67, .77, and 1 for YouTube traffic,

download traffic, Skype traffic, and combined traffic respectively. (2) When com-

paring with the full spectrum algorithm, the algorithm improves the identification

performance by 7%, 0%, 12%, and 1% for YouTube traffic, download traffic, Skype

traffic, and combined traffic respectively. When comparing with the suppression algo-

rithm, the improvements are 14%, 2%, 23%, and 19% for YouTube traffic, download

traffic, Skype traffic, and combined traffic respectively.

Hybrid Identification Algorithm: The experimental results of the hybrid algo-

rithm are shown in Figure 6(d). In comparison with the suppression algorithm, the

hybrid algorithm can achieve higher identification rates as shown in Figure 6(d). The

improvement is mainly because of the hybrid algorithm’s ability to filter out noise

frequency components using a genetic algorithm. But when compared with the spec-

trum selection algorithm, the identification rates of the hybrid algorithm are lower.

The performance differences are because of the assumption made in both the hybrid

algorithm and the suppression algorithm: most of the insignificant frequency com-

ponents are noise frequency components. Removing all the insignificant frequency

components means that some characteristic frequency components that are insignifi-

cant may also be removed.

39

0.5 1.0 5.0 10.0 15.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Data Used (Minute)

R
at

e

Android FP
Android FN
iOS FP
iOS FN
Symbian FP
Symbian FN
Windows FP
Windows FN

(a) YouTube

0.5 1.0 5.0 10.0 15.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Data Used (Minute)

R
at

e

Android FP
Android FN
iOS FP
iOS FN
Windows FP
Windows FN

(b) Skype

Figure 7: False Alarm Rates (Spectrum Selection Algorithm)

5 10 15 20 25
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Number of Labeled Traces

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(a) Full Spectrum

5 10 15 20 25
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Number of Labeled Traces

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(b) Suppression

5 10 15 20 25
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Number of Labeled Traces

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(c) Spectrum Selection

Figure 8: Identification Performance with Different Number of Labeled Traces

False Alarm Rates

To investigate the identification performance on each OS, we use false alarm

rates as the performance metrics. Figure 7 shows the false alarm rates of the OS

identification with the spectrum selection algorithm. Similar observations can be

made on the other identification algorithms.

From Figure 7, we observe that the false alarm rates decrease with the length

of traces. When the trace length approaches 15 minutes, the false alarm rates are

below 20%.

5.4 Number of Labeled Traces

The number of labeled traces can affect the identification performance. To

evaluate the effect, we vary the number of the labeled traces from five to 25 in this

40

0.008 0.016 0.032 0.064 0.128 0.256 0.512 1.024

0.65

0.50
0.55

0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.60

0.35
0.40
0.45

Sample Interval (Second)

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(a) Full Spectrum

0.008 0.016 0.032 0.064 0.128 0.256 0.512 1.024

0.65

0.50
0.55

0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.60

0.35
0.40
0.45

Sample Interval (Second)

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

(b) Spectrum Selection

Figure 9: Identification Performance with Different Sample Intervals

set of experiments. The rest of the parameters used in the experiments are set as

follows: (1) The sample interval is set to be 8ms. (2) The length of traces used in the

experiments is 15 minutes.

Figure 8 shows the experimental results with different number of labeled traces.

The results show: (1) Even with five labeled traces, the identification of the spec-

trum selection algorithm can reach 1, 0.97, 0.72, and 0.73 with Combination, Skype,

YouTube, and Download Traffic respectively. (2) The identification rate increase

with the number of labeled traces. The results are compliant with our expectation

since more labeled traces can lead to better knowledge of the characteristic frequency

components.

5.5 Sample Interval

One of the critical parameters that will affect the identification performance

is the length of the sample interval. The effect of sampling is equivalent to low pass

filtering since the fluctuation within a sample interval is completely removed. The

sampling can be helpful for OS identification if the sampling filters out noise frequency

components. The sampling can also degrade the identification performance if the

sampling filters out characteristic frequency components.

41

We vary the length of sample intervals from 8ms to 1024ms. The identification

performance of the full spectrum algorithm and the spectrum selection algorithm

is shown in Figure 9(a) and Figure 9(b) respectively. The figures show that the

best identification performance is achieved when the sample interval is short like

length 8ms for both identification algorithms. We can also observe the decrease of

the identification rate when the sample intervals becomes larger. The decrease is

simply because a large sample interval means less number of samples available for

OS identification. We also observe some fluctuation in both figures. We believe it is

because of the filtering effect of the sampling interval: If some characteristic frequency

components are filtered out, the identification rates may go down. If some noise

frequency components are filtered out due to the sample interval, the identification

performance can be improved. But in general, for spectrum selection algorithm, it

is better to use a small sample interval so that most frequency components are kept

and the spectrum selection algorithm can use a genetic algorithm to remove the noise

frequency components.

5.6 Number of Top Significant Frequency Compo-

nents Kept (Suppression Algorithm)

As discussed in Section 4.5, the key parameter of the suppression algorithm is

K, the number of most significant frequency components to keep for identification. In

the suppression algorithm, the parameterK is determined in the feature selection step

(Function 7) based on the mean and standard deviation of the magnitude of frequency

components in the spectra of the labeled traces. The parameter K calculated in the

feature selection step is then used in the OS identification step (Function 8) to identify

smartphone OSes.

42

10 25 50 75 100 200

0.65

0.50
0.55

0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.60

0.35
0.40
0.45

Number of Components Kept

Id
en

tif
ic

at
io

n
R

at
e

YouTube
Skype
Download
Combination

K(33)

K(29)

K(47)

K(101)

Figure 10: Number of Top Significant Frequency Components to Keep in the Sup-
pression Algorithm. K is determined in the feature selection step (Algorithm 7) based
on the mean and standard deviation of the magnitude of frequency components in
the spectra of the labeled traces.

In this set of experiments, we vary the parameter K used in the OS identifica-

tion step of the suppression algorithm. The value of K calculated based on the mean

and standard deviation is also included in the experiments.

Figure 10 shows the identification performance with different values for K. We

observe: (1) When the number of frequency components to keep is relatively small,

the identification rate is relatively low. It is because lots of significant frequency com-

ponents that can be helpful for identification are not selected. (2) Similarly, when

K becomes too large, the identification rate may drop as well. This is expected as

the number of noise frequency components that are considered as features grows. (3)

We also observe that when the number of frequency components to keep is calculated

based on the mean and the standard deviation as in Algorithm 7, the identification

rate is close to the maximum for YouTube and download traffic. For Skype and

combination traffic, the identification rates increase slightly after the number of fre-

quency components calculated based on the mean and standard deviation. We gather

that Function 7 effectively selects a set of frequency components to be retained and

so filters out the noise frequency components and keeps the characteristic frequency

components.

43

In comparison with the identification performance of other algorithms shown

in Figure 6(a) and Figure 6(c), the identification performance of the suppression al-

gorithm is very close to the performance of the full spectrum algorithm and worse

than the performance of the spectrum selection algorithm. The performance differ-

ences indicate that some characteristic frequency components may not be among the

most significant frequency components. But the heuristic that most characteristic

frequency components are significant frequency components works well since (1) the

suppression algorithm can greatly reduce the computational cost as described in Sec-

tion 4.7 in comparison with the full spectrum algorithm, and (2) the performance of

the suppression algorithm is similar to the full spectrum algorithm and comparable

to the performance of the spectrum selection algorithm.

CHAPTER VI

DISCUSSION

6.1 Application Identification

The algorithms proposed above for OS identification can be naturally extended

to identify applications running on a target device. Obviously, the application infor-

mation can be critical to an adversary planning security and privacy attacks to the

target device.

We use the spectrum selection algorithm to briefly illustrate how to apply the

techniques described earlier to the identification of applications. The algorithm itself

does not need to be modified in any way other than being trained on application-

generated traces rather than OS generated ones.

We apply the spectrum selection algorithm to detect applications using the

same traffic traces described in Chapter 5. The applications to be detected include

YouTube, Skype, and Downloading. Figure 11 shows the performance of the applica-

tion detection along with the false-positive and false-negative identification rates for

each application included in the experiment. According to Figure 11, the application

44

45

Table IV: Empirical running times for the Full Spectrum, Suppression, Spectrum
Selection and Hybrid OS detection algorithms. 15 minutes of traffic with an 8 ms
sample interval is used to generate this data.

Training (Minute) Identification (Second)
YouTube Skype Download Combination YouTube Skype Download Combination

Full Spectrum 0 0 0 0 0.2636 0.1389 0.1397 0.0622
Suppression 0.0075 0.0048 0.0024 0.0014 0.2930 0.1715 0.1707 0.0820

Spectrum Selection 759.6 493.2 336.8 161.4 0.1390 0.0814 0.0836 0.0435
Hybrid 3396 529.3 1727 541.3 0.1118 0.0639 0.0817 0.0299

detection rate can reach 85% with 15 minutes of traffic traces. The results show

that the spectrum selection algorithm can successfully extract application-specific

frequency components for application detection.

6.2 Running Time

Table IV shows the empirical running time for training and identification for

all four algorithms. First it can be observed that each identification for all algorithms

takes less than 0.3 seconds. It means the attack is very efficient and feasible once

the training is finished. We can also observe that the time required for training

varies due to the complexity of the algorithm. The spectrum selection and hybrid

algorithms take more time for training because of the genetic algorithm used in the

two algorithms. The time required for training with the full spectrum algorithm is

0.5 1.0 5.0 10.0 15.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Length of Data Used (Minute)

R
at

e

Identification Rate
YouTube FP
YouTube FN
Skype FP
Skype FN
Download FP
Download FN

Figure 11: Application Identification Performance (Spectrum Selection). The appli-
cations to be detected are YouTube, Skype, and Downloading. The applications are
equally distributed making the random guess rate 33%.

46

zero since no training is required. The full spectrum algorithm just removes the DC

component and uses the rest as characteristic frequency components.

CHAPTER VII

CONCLUSION

In this paper we present, evaluate, and compare a number of frequency-domain

analysis based algorithms in order to illustrate how susceptible smartphones are

against passive attacks that aim at inferring configuration parameters of a target

smartphone despite the phone using encrypted communication. Specifically, we show

how it is possible, based on relatively short measurements, to infer the OS of the

phone or the particular application that is running.

Our future work will focus on the countermeasures. One can envision a number

of possible countermeasures to this type of attack, some of which have been previously

used with varying success in other domains. For example, the OS can attempt to

mask its timing footprint by disturbing the timing of outgoing packets. This has to

be implemented very carefully, as previous results of traffic padding and batching in

the area of anonymous communication have shown. Perturbing the timing behavior

of outgoing packets has a number of effects on applications and interactions across

the network. For latency sensitive applications, for example, any perturbing of the

timing leads to a reduction of timing slack, which makes it the more difficult to satisfy

47

48

end-to-end latency requirements. Similarly, it has been shown that perturbances of

timings on TCP packets can cause visible secondary timing footprints caused by

end-to-end TCP dynamics and so may be counter-productive.

A typical method to counter application detection based on traffic flows is to

aggregate the flows from multiple applications into a single flow. As a result, the

timing characteristics of the individual applications become much more difficult to

detect. In our previous work on anonymous communication we have been applying

blind-source separation techniques to separate traffic components and attribute them

to senders. In our current and future work, we are investigating how similar mech-

anisms can be applied to render OS and application identification effective despite

flow aggregations.

BIBLIOGRAPHY

[1] A. Biryukov, I. Pustogarov, and R.-P. Weinmann. Trawling for tor hidden ser-

vices: Detection, measurement, deanonymization. In Proceedings of the 2013

IEEE Symposium on Security and Privacy, May 2013.

[2] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touching from a distance: Website

fingerprinting attacks and defenses. In Proceedings of the 19th ACM conference

on Computer and Communications Security (CCS 2012), October 2012.

[3] M. Charts. Wifi mobile phone traffic grows. http://www.marketingcharts.

com/wp/direct/wifi-mobile-phone-traffic-grows-19604/, October 2011.

[4] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei. Network performance of smart

mobile handhelds in a university campus wifi network. In Proceedings of the 2012

ACM conference on Internet measurement conference, IMC ’12, pages 315–328,

New York, NY, USA, 2012. ACM.

[5] Z. Durumeric, E. Wustrow, and J. A. Halderman. Zmap. https://zmap.io/.

[6] Gartner. Gartner says worldwide mobile phone sales declined 1.7 percent in 2012.

http://www.gartner.com/newsroom/id/2335616, February 2013.

[7] D. Gayle. This is a secure line: The groundbreaking encryption app

that will scrample your calls and messages. http://www.dailymail.

co.uk/sciencetech/article-2274597/How-foil-eavesdroppers-The-

smartphone-encryption-app-promises-make-communications-private-

again.html, February 2013.

49

50

[8] X. Gong, N. Borisov, N. Kiyavash, and N. Schear. Website detection using re-

mote traffic analysis. In Proceedings of the 12th Privacy Enhancing Technologies

Symposium (PETS 2012). Springer, July 2012.

[9] L. Greenemeier. Cloud warriors: U.s. army intelligence to arm field ops with

hardened network and smartphones. http://www.scientificamerican.com/

article.cfm?id=us-army-intelligence-cloud-smartphone, March 2013.

[10] S. Grimes. App to provide military-level encryption for smartphones. http:

//www.ksl.com/?nid=1014\&sid=22513938, October 2012.

[11] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting: attacking

popular privacy enhancing technologies with the multinomial näıve-bayes clas-

sifier. In Proceedings of the 2009 ACM workshop on Cloud computing security

(CCSW ’09), pages 31–42, New York, NY, USA, October 2009. ACM.

[12] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing

application performance differences on smartphones. In Proceedings of the 8th

international conference on Mobile systems, applications, and services, MobiSys

’10, pages 165–178, New York, NY, USA, 2010. ACM.

[13] E. Kollmann. Chatter on the wire: A look at extensive network traffic and what

it can mean to network security. http://chatteronthewire.org/download/

OS%20Fingerprint.pdf, August 2005.

[14] M. Liberatore and B. N. Levine. Inferring the Source of Encrypted HTTP Con-

nections. In Proceedings of the 13th ACM conference on Computer and Commu-

nications Security (CCS 2006), pages 255–263, November 2006.

[15] S. J. Murdoch. Hot or not: Revealing hidden services by their clock skew. In

Proceedings of CCS 2006, November 2006.

51

[16] Netresec.com. Passive os fingerprinting. http://www.netresec.com/?page=

Blog&month=2011-11&post=Passive-OS-Fingerprinting, November 2011.

[17] Nmap.org. Nmap network scanning. http://nmap.org/book/osdetect.html.

[18] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab. Signals & Systems (2nd ed.).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[19] L. Øverlier and P. Syverson. Locating hidden servers. In Proceedings of the 2006

IEEE Symposium on Security and Privacy. IEEE CS, May 2006.

[20] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website fingerprinting in

onion routing based anonymization networks. In Proceedings of the Workshop

on Privacy in the Electronic Society (WPES 2011). ACM, October 2011.

[21] H. Project. Know your enemy: Passive fingerprinting. http://old.honeynet.

org/papers/finger/, March 2002.

[22] M. Smart, G. R. Malan, and F. Jahanian. Defeating tcp/ip stack fingerprinting.

In Proceedings of the 9th conference on USENIX Security Symposium - Volume

9, SSYM’00, pages 17–17, Berkeley, CA, USA, 2000. USENIX Association.

[23] G. Tzagkarakis, M. Papadopouli, and P. Tsakalides. Singular spectrum analysis

of traffic workload in a large-scale wireless lan. In Proceedings of the 10th ACM

Symposium on Modeling, analysis, and simulation of wireless and mobile systems,

MSWiM ’07, pages 99–108, New York, NY, USA, 2007. ACM.

[24] S. Zander and S. J. Murdoch. An improved clock-skew measurement technique

for revealing hidden services. In Proceedings of the 17th USENIX Security Sym-

posium, July 2008.

52

[25] F. Zhang, W. He, X. Liu, and P. G. Bridges. Inferring users’ online activities

through traffic analysis. In Proceedings of the fourth ACM conference on Wireless

network security, WiSec ’11, pages 59–70, New York, NY, USA, 2011. ACM.

	Cleveland State University
	EngagedScholarship@CSU
	2015

	Analysis of Smartphone Traffic
	Nicholas Luke Ruffing
	Recommended Citation

	C:/Users/ruffn_000/Dropbox/School/Thesis/paper/ruffing_thesis.dvi

