
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Support for Dependable and Adaptive
Distributed Systems and Applications

Mônica Lopes Muniz Corrêa Dixit

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE ENGENHARIA INFORMÁTICA

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/12424584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:mdixit@di.fc.ul.pt

UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Support for Dependable and Adaptive
Distributed Systems and Applications

Mônica Lopes Muniz Corrêa Dixit

DOUTORAMENTO EM INFORMÁTICA
ESPECIALIDADE ENGENHARIA INFORMÁTICA

2011

Tese orientada pelo Prof. Doutor António Casimiro Costa

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:mdixit@di.fc.ul.pt

Abstract

Distributed applications executing in uncertain environments, like the In-

ternet, need to make timing/synchrony assumptions (for instance, about

the maximum message transmission delay), in order to make progress. In

the case of adaptive systems these temporal bounds should be computed at

runtime, using probabilistic or specifically designed ad hoc approaches, ty-

pically with the objective of improving the application performance. From

a dependability perspective, however, the concern is to secure some pro-

perties on which the application can rely.

This thesis addresses the problem of supporting adaptive systems and ap-

plications in stochastic environments, from a dependability perspective:

maintaining the correctness of system properties after adaptation. The

idea behind dependable adaptation consists in ensuring that the assumed

bounds for fundamental variables (e.g., network delays) are secured with

a known and constant probability.

Assuming that during its lifetime a system alternates periods where its

temporal behavior is well characterized (stable phases), with transition

periods where a variation of the network conditions occurs (transient pha-

ses), the proposed approach is based on the following: if the environment

is generically characterized in analytical terms and it is possible to detect

the alternation of these stable and transient phases, then it is possible to

effectively and dependably adapt applications.

Based on this idea, the thesis introduces Adaptare, a framework for sup-

porting dependable adaptation in stochastic environments. An extensive

evaluation of Adaptare is provided, assessing the correctness and effec-

tiveness of the implemented mechanisms. The results indicate that the

proposed strategies and methodologies are indeed effective to support de-

pendable adaptation of distributed systems and applications.

Finally, the applicability of Adaptare is evaluated in the context of two
fundamental problems in distributed systems: consensus and failure detec-
tion. The thesis proposes solutions for these problems based on modular
architectures in which Adaptare is used as a middleware for dependable
adaptation of assumed timeouts.

Keywords: Adaptive distributed systems, Dependability, QoS adaptation,
Stochastic network characterization, Adaptive consensus, Adaptive failure
detector

Resumo

Aplicações distribuídas que executam em ambientes incertos, como a In-

ternet, baseiam-se em pressupostos sobre tempo/sincronia (por exemplo,

assumem um tempo máximo para a transmissão de mensagens) a fim de

assegurar progresso. No caso de sistemas adaptativos, esses limites tem-

porais devem ser calculados em tempo de execução, usando abordagens

probabilísticas ou desenhadas de forma específica e ad hoc, tipicamente

visando melhorar o desempenho da aplicação. Sob o ponto de vista da

confiabilidade, no entanto, o objetivo é garantir algumas propriedades nas

quais a aplicação pode confiar.

Esta tese aborda o problema de suportar sistemas adaptativos e aplicações

que operam em ambientes estocásticos, numa perspectiva de confiabili-

dade: mantendo a correção das propriedades do sistema após a adaptação.

A ideia da adaptação confiável consiste em garantir que os limites assumi-

dos para variáveis fundamentais (por exemplo, latências de transmissão)

são assegurados com uma probabilidade conhecida e constante.

Supondo que durante a execução o sistema alterna períodos nos quais o

seu comportamento temporal é bem caracterizado (fases estáveis), com

períodos de transição durante os quais ocorrem variações das condições da

rede (fases transientes), a abordagem proposta baseia-se no seguinte: se o

ambiente é genericamente caracterizado em termos analíticos e é possível

detetar a alternância entre fases estáveis e transientes, então é possível

adaptar as aplicações de forma efetiva e confiável.

Com base nesta ideia, a tese apresenta uma plataforma para suportar a

adaptação confiável em ambientes estocásticos, denominada Adaptare. A

tese contém uma extensa avaliação do Adaptare, que foi realizada para ve-

rificar a correção e eficácia dos mecanismos desenvolvidos. Os resultados

indicam que as estratégias e metodologias propostas são de facto efetivas
para suportar a adaptação confiável de sistemas e aplicações distribuídas.

Finalmente, a aplicabilidade do Adaptare é avaliada no contexto de dois
problemas fundamentais em sistemas distribuídos: consenso e deteção de
falhas. A tese propõe soluções para estes problemas baseadas em arquite-
turas modulares nas quais o Adaptare é usado como um middleware para
a adaptação confiável de timeouts.

Palavras Chave: Sistemas distribuídos adaptativos, Confiabilidade, Adap-
tação de QoS, Caracterização estocástica da rede, Consenso adaptativo,
Detector de falhas adaptativo

Resumo Alargado

Sistemas e aplicações estão se tornando cada vez mais distribuídos, por exemplo,

através da Internet. O crescimento do uso de dispositivos móveis e distribuídos re-

sulta em ambientes complexos (incluindo redes e plataformas computacionais) que

tendem a ser incertos, tornando impraticável, ou até mesmo incorreto confiar em limi-

tes temporais fixos, previamente configurados. No entanto, em diversos domínios de

aplicação (por exemplo, automação industrial, serviços interativos na Internet e aplica-

ções veiculares) existem fortes requisitos para a operação dentro de limites temporais

bem definidos, além de uma crescente necessidade de garantir a confiabilidade. Ape-

sar da impossibilidade de oferecer garantias de tempo-real em tais cenários, soluções

baseadas no melhor esforço não são suficientes em alguns dos domínios de aplica-

ção referidos. Uma possível forma de lidar com a incerteza temporal do ambiente e,

ao mesmo tempo, garantir requisitos de confiabilidade consiste em assegurar que as

aplicações se adaptam aos recursos disponíveis, e que essa adaptação é feita de forma

confiável. Ou seja, as aplicações permanecem corretas como resultado da adaptação.

O objetivo fundamental desta tese é mostrar que é possível desenvolver soluções

que suportem e facilitem a adaptação confiável de sistemas e aplicações, apesar das

incertezas no ambiente operacional. Em ambientes sujeitos à incerteza, a abordagem

clássica de assumir limites fixos variáveis temporais não é apropriada. Se forem assu-

midos limites muito elevados, com o objetivo de evitar faltas temporais (que ocorrem

quando os limites assumidos são violados), o desempenho do sistema poderá ser com-

prometido devido a atrasos na execução. Por outro lado, se forem assumidos limites

reduzidos para obter um melhor desempenho, a probabilidade de ocorrerem faltas tem-

porais tenderá a ser maior, o que pode ter um impacto negativo na correção do sistema,

ou até mesmo no desempenho (caso existam atrasos decorrentes das faltas).

Esta tese defende que nesses ambientes a confiabilidade deve ser medida em fun-

ção da capacidade do sistema de garantir alguns limites, adaptando-se às mudanças nas

condições observadas. Portanto, enquanto outros trabalhos que estudam sistemas adap-

tativos estão focados essencialmente no desempenho das aplicações, o nosso principal

interesse é garantir confiabilidade, que é medida em termos de cobertura dos pressu-

postos, ou seja, dos limites assumidos para variáveis temporais.

Casimiro & Verissimo (2001) definiram os princípios arquitetónicos e funcionais

para a adaptação confiável. A ideia é centrada em duas premissas essenciais:

• Os limites assumidos para variáveis fundamentais (como prazos ou períodos para

execução de ações) não são estaticamente configurados, mas adaptados ao longo

da execução;

• O processo de adaptação assegura que, ao longo do tempo, os limites assumidos

são tais que as variáveis temporais permanecem dentro desses limites com uma

probabilidade conhecida e constante.

Por exemplo, considerando uma aplicação ou protocolo que define um limite tem-

poral associado à latência de transmissão de mensagens (timeout), esta aplicação vai

adaptar o valor do timeout ao longo da execução, com o objetivo de assegurar que a

probabilidade de receber mensagens dentro do limite estabelecido permanecerá acima

de um valor pré-definido. Portanto, quando as latências de transmissão de mensagens

aumentarem ou diminuírem, o timeout também aumentará ou diminuirá na medida

exata do que é necessário para garantir a estabilidade desejada do valor de probabili-

dade. Por outras palavras, essa aplicação vai garantir a estabilidade da cobertura de um

pressuposto (Verissimo & Casimiro, 2002).

Assim, a qualidade de serviço (QoS) não é mais expressa como um va-

lor único, (por exemplo um prazo que deve ser satisfeito), mas como um par

〈limite temporal, cobertura〉, no qual a cobertura deve ser garantida, enquanto o li-

mite temporal pode variar como resultado da adaptação, de acordo com as condições

verificadas no ambiente. Esta tese adota uma abordagem prática, que procura garantir

que a cobertura observada é sempre maior do que o especificado, enquanto os limites

para as variáveis temporais são configurados com o menor valor possível.

No entanto, só é possível garantir a cobertura se algumas condições forem impos-

tas (assumidas) para o comportamento do ambiente. Se os tempos para a transmissão

de mensagens na rede puderem variar de forma arbitrária, então qualquer observação

ou caracterização do ambiente será inútil, no sentido de que nada pode ser inferido re-

lativamente ao comportamento futuro. Felizmente, esse não é o caso usual. É possível

que ocorram variações instantâneas ou de curto prazo, que são imprevisíveis e impos-

síveis de caracterizar, mas no integral do tempo de execução as variações que ocorrem

seguem normalmente um padrão, permitindo caracterizar probabilisticamente o estado

operacional e derivar os limites que devem ser utilizados para garantir a cobertura es-

perada.

Nesse sentido, Casimiro & Verissimo (2001) adotaram um modelo muito simples,

assumindo apenas que as redes se comportam estocasticamente, mas sem fazerem pres-

supostos sobre as distribuições de probabilidade que descrevem seu comportamento.

Assim, os limites eram calculados de forma conservadora, a fim de serem corretos e

independentes de distribuições específicas. Isso foi suficiente para ilustrar a ideia da

adaptação confiável.

Esta tese defende a possibilidade de definir um modelo mais forte, com hipóte-

ses mais agressivas, com o objetivo de alcançar resultados com viabilidade prática.

Assume-se que os sistemas alternam períodos estáveis, durante os quais o comporta-

mento temporal do ambiente é bem caracterizado, e períodos de transição, durante os

quais ocorrem variações nas condições do ambiente, e que a alternância entre períodos

estáveis e períodos de transição pode ser detetada. Assim, se for possível concretizar

mecanismos para distinguir estas fases, então será também possível calcular dinami-

camente limites temporais melhores (menores) quando uma fase estável é detetada, e

limites temporais mais conservadores, mas ainda assim confiáveis, durante os períodos

de transição.

Com base nesta ideia, a tese propõe um modelo de sistema para suportar a adap-

tação confiável de aplicações que operam em ambientes estocásticos, garantindo a co-

bertura de variáveis temporais. O modelo e arquitetura propostos são definidos a partir

da especificação do conjunto de premissas adotado, da apresentação da metodologia

para adaptação confiável, e da discussão teórica das condições necessárias para a via-

bilidade da abordagem proposta.

A tese apresenta Adaptare - uma plataforma para suportar a adaptação confiável.

A plataforma Adaptare emprega mecanismos estatísticos para caracterizar probabi-

listicamente as condições da rede e, assim, derivar limites confiáveis para variáveis

temporais. A tese descreve detalhadamente a arquitetura, operação e concretização do

Adaptare.

A concretização desta plataforma possibilitou a avaliação e validação do modelo
e arquitetura propostos, incluindo: (i) a verificação da correção dos mecanismos con-
cretizados para monitorização e caracterização da rede; (ii) a validação das hipóteses
consideradas em diferentes cenários e redes; (iii) a análise da complexidade e do tempo
de execução para o cálculo de limites confiáveis; e (iv) a comparação, em termos de
complexidade e confiabilidade, da solução proposta com outras alternativas para adap-
tação utilizadas na literatura.

A tese demonstra a utilidade e aplicabilidade das soluções propostas em sistemas
reais, através do projeto, concretização e avaliação de protocolos adaptativos que utili-
zam o Adaptare como um middleware de suporte à adaptação confiável. A tese aborda,
nomeadamente, dois problemas fundamentais na área de sistemas distribuídos: con-
senso e deteção de falhas.

A partir de um protocolo de consenso desenvolvido para operar em redes sem fio ad
hoc que utiliza um timeout estático, a tese demonstra experimentalmente a necessidade
da utilização de timeouts adaptativos nessas redes para a melhoria de desempenho do
protocolo, e descreve a metodologia seguida para transformar o protocolo considerado
numa solução adaptativa. Nessa solução, o Adaptare é utilizado como um serviço que
fornece timeouts confiáveis.

Finalmente, a tese apresenta um detetor de falhas autónomo e adaptativo deno-
minado Adaptare-FD, orientado à confiabilidade. O Adaptare-FD ajusta timeouts e
períodos de interrogação em tempo de execução, de acordo com as condições da rede
e requisitos de qualidade de serviço especificados pela aplicação cliente. O Adaptare-

FD tem uma arquitetura modular e também utiliza o Adaptare como um middleware
para o cálculo de timeouts.

Assim, esta tese é um trabalho coerente sobre as arquiteturas, modelos e mecanis-
mos que apoiam a concretização de aplicações adaptativas confiáveis, considerando-se
os exemplos de consenso e deteção de falhas adaptativos em ambientes estocásticos
para ilustrar os benefícios fornecidos pela abordagem proposta.

Acknowledgements

Many people helped me during this work, directly or indirectly, and I am

profoundly grateful to all of them.

First of all, my sincerely thanks to my advisor, professor António Casimiro.

Thank you for giving me this opportunity and for believing in my work. I

appreciated all your support, wise advices and guidance. You truly worked

with me, so thank you for everything.

Thanks to all professors and students from the Navigators research group,

I learned a lot from you. In particular I thank professor Paulo Veríssimo,

for his leadership, enthusiasm, and hard work.

Special thanks to my husband Rudra Dixit, for being an endless source of

love, patience (so much patience!), peace, and joy. You are the best person

I ever met, and life wouldn’t be so easy and funny without you.

An enormous thanks to Giuliana Veronese. Thank you so much for taking

care of me in my first (and scary) months in Portugal, and for being the

best friend that I could possibly imagine since then. You are more than a

friend, you are a sister to me.

Thanks to the very good friends that I made during these years: Vini,

Lê, João, Bruno, Marcírio, Pati, André, Pedro, Simão. Thanks for all the

laughs and encouragement!

I also would like to thank to my family, to whom I dedicate this thesis.

Here I repeat what I said in my master thesis, because it is the very truth.

I always did everything that I wanted, and only what I wanted, because I

knew that no matter what, you would always be there for me. I will never

be able to thank you enough for this.

Finally, I gratefully acknowledge the financial support from Fundação da
Faculdade de Ciências da Universidade de Lisboa through the Hidenets
project, and from Fundação para a Ciência e a Tecnologia de Portugal.

À minha família, pelo incentivo e fé.

Contents

1 Introduction 1
1.1 Motivation and objectives . 1

1.2 Contributions . 4

1.3 Structure of the thesis . 5

2 Context and Related Work 9
2.1 Synchrony in distributed systems . 9

2.1.1 Synchronous model . 10

2.1.2 Asynchronous model . 11

2.1.3 Asynchronous model with failure detectors 11

2.1.4 Partially synchronous model 14

2.1.5 Timed asynchronous model 15

2.1.6 Wormholes model . 16

2.1.7 Stochastic model . 17

2.2 Network characterization . 18

2.3 QoS assurance in uncertain environments 20

2.3.1 QoS-oriented systems and architectures 21

2.3.2 QoS monitoring and adaptation 24

2.3.2.1 Adaptive consensus 25

2.3.2.2 Adaptive failure detectors 27

2.4 Summary . 31

3 Adapting for Dependability 33
3.1 Dependability goal . 34

3.2 Assumptions . 35

xiii

CONTENTS

3.3 Environment recognition and adaptation 36

3.4 The adaptation approach . 37

3.5 Securing dependability . 41

3.6 Summary . 44

4 Adaptare 47
4.1 Architecture . 47

4.2 Implementation . 49

4.2.1 Phase detection mechanisms 49

4.2.2 Parameters estimators . 53

4.2.3 Bound estimators . 54

4.2.4 Selection logic . 56

4.3 Adaptare as a service . 56

4.4 Results and evaluation . 57

4.4.1 Analysis of the phase detection mechanisms 58

4.4.2 Validation using real RTT measurements 62

4.4.3 Complexity analysis . 67

4.4.4 Comparing Adaptare to other adaptive solutions 71

4.5 Summary . 76

5 Timeout-based Adaptive Consensus 79
5.1 Motivation . 80

5.2 Consensus protocol . 82

5.3 Impact of network conditions . 84

5.4 Achieving adaptive consensus . 87

5.4.1 Protocol instrumentation . 88

5.4.2 Configuring Adaptare . 89

5.5 Implementation details . 92

5.6 Performance evaluation . 93

5.7 Summary . 97

6 Adaptare-FD 99
6.1 Motivation . 100

6.2 Adaptive failure detection . 102

xiv

CONTENTS

6.2.1 System model and basic algorithm 102
6.2.2 Chen’s failure detector . 104
6.2.3 Other timeout estimation methods 106

6.3 Adaptare-FD . 107
6.4 Why using Adaptare-FD? . 111

6.4.1 Adaptare-FD vs. Chen’s failure detector 111
6.4.2 Adaptare-FD vs. other timeout-based adaptive failure detectors 114

6.5 Experimental evaluation . 114
6.5.1 Environment setup . 115
6.5.2 Failure detectors configuration 116
6.5.3 Evaluation results . 118

6.6 Summary . 125

7 Conclusions and Future Research Directions 127
7.1 Conclusions . 127
7.2 Future research directions . 130

A Critical values for the Goodness-of-Fit tests 133
A.1 Anderson-Darling critical values . 133
A.2 Kolmogorov-Smirnov critical values 139

B Quality of Service of Adaptive Failure Detectors 145

References 151

xv

List of Figures

3.1 Adaptation operation. 39

4.1 Adaptare overview. 48

4.2 Adaptare’s architecture. 49

4.3 GoF distance test operation. 50

4.4 Stability detection. 64

4.5 Improvement of bounds. 65

4.6 Achieved coverage. 66

4.7 Measured execution time. 70

4.8 Comparing Adaptare with different solutions - computed bounds. . . . 73

4.9 Comparing Adaptare with different solutions - achieved coverage. . . 73

4.10 Comparing Adaptare and TCP-RTT bounds, for the same coverage. . 75

5.1 Round execution time in a wired LAN. 86

5.2 Round execution time in a wireless ad hoc network. 87

5.3 Architecture of the adaptive consensus (for n = 4). 88

5.4 Average timeout. 94

5.5 Average number of broadcasts per process. 95

5.6 Average latency (consensus execution time). 96

6.1 Schematic view of Chen’s failure detector. 105

6.2 Adaptare-FD architecture. 108

6.3 Upper bound on the detection time TUD 111

6.4 Simultaneous execution of Adaptare-FD and Chen’s FD. 116

6.5 Average timeouts in experiment E1 (TUD = 10s). 119

xvii

LIST OF FIGURES

6.6 Average mistake recurrence time and average coverage in experiment
E2. 121

6.7 Average mistake recurrence time and average coverage in experiment
E3. 121

6.8 Average mistake duration and total mistake duration in experiment E3. 123

xviii

List of Tables

2.1 Classes of unreliable failure detectors. 13

4.1 Parameters estimators. 54

4.2 Bound estimators for a required coverage C. 55

4.3 Parameters used to generate the synthetic data traces. 59

4.4 Comparing phase detection mechanisms using synthetic data traces. . 60

4.5 Samples statistics for each data source. 63

6.1 Links RTT statistics (ms). 115

6.2 QoS parameters for FDs configuration. 117

A.1 AD critical values for Weibull distribution. 133

A.2 AD critical values for Exponential and Shifted Exponential distributions.134

A.3 AD critical values for Pareto distribution with α = 0.5. 134

A.4 AD critical values for Pareto distribution with α = 1.0. 134

A.5 AD critical values for Pareto distribution with α = 1.5. 135

A.6 AD critical values for Pareto distribution with α = 2.0. 135

A.7 AD critical values for Pareto distribution with α = 2.5. 136

A.8 AD critical values for Pareto distribution with α = 3.0. 136

A.9 AD critical values for Pareto distribution with α = 3.5. 137

A.10 AD critical values for Pareto distribution with α = 4.0. 137

A.11 AD critical values for Uniform distribution. 138

A.12 Standard KS critical values. 139

A.13 KS critical values for Weibull distribution. 140

A.14 KS critical values for Exponential and Shifted Exponential distributions.140

xix

LIST OF TABLES

A.15 KS critical values for Pareto distribution with α = 0.5. 140
A.16 KS critical values for Pareto distribution with α = 1.0. 141
A.17 KS critical values for Pareto distribution with α = 1.5. 141
A.18 KS critical values for Pareto distribution with α = 2.0. 141
A.19 KS critical values for Pareto distribution with α = 2.5. 142
A.20 KS critical values for Pareto distribution with α = 3.0. 142
A.21 KS critical values for Pareto distribution with α = 3.5. 142
A.22 KS critical values for Pareto distribution with α = 4.0. 143

B.1 QoS results for experiment E1 in a LAN. 145
B.2 QoS results for experiment E2 in a LAN. 146
B.3 QoS results for experiment E3 in a LAN. 146
B.4 QoS results for experiment E1 in a high-delay WAN. 147
B.5 QoS results for experiment E2 in a high-delay WAN. 147
B.6 QoS results for experiment E3 in a high-delay WAN. 148
B.7 QoS results for experiment E1 in a low-delay WAN. 148
B.8 QoS results for experiment E2 in a low-delay WAN. 149
B.9 QoS results for experiment E3 in a low-delay WAN. 149

xx

List of Algorithms

1 Adaptare’s algorithm. 68
2 Phase detection mechanism’s algorithm. 68
3 GoF test’s algorithm. 69
4 TCP’s algorithm to compute the retransmission timer. 72
5 Mean-Jac estimation algorithm. 72

6 Static timeout-based k-consensus algorithm. 83
7 Adaptive timeout-based k-consensus algorithm. 90

8 Failure detection algorithm. 103

xxi

Chapter 1

Introduction

Computer systems and applications are becoming increasingly distributed, for exam-

ple, over the Internet. The resulting pervasiveness and ubiquity of computing devices

leads to complex environments (including networks and computational platforms) that

tend to be unpredictable, essentially asynchronous, making it impractical, or even in-

correct, to rely on aprioristic time-related bounds. On the other hand, in several ap-

plication domains (e.g., home and factory automation, interactive services over the

Internet, vehicular applications) there are strong requirements for timely operation and

increased concerns with dependability assurance. Unfortunately, hard real-time guar-

antees cannot be given in such settings, and best-effort soft real-time guarantees will

not be sufficient in some of the application domains mentioned above. One possi-

ble way to cope with the uncertain timeliness of the environment while meeting de-

pendability constraints, consists in ensuring that applications adapt to the available

resources, and do that in a dependable way, that is, they remain correct as a result of

adaptation.

1.1 Motivation and objectives

The scenario in open distributed systems is subject to important factors of change in

the way in which timeliness requirements are handled, face to the uncertainty observed

in complex operational environments. On one hand, traditionally weak models, such

1

1. INTRODUCTION

as asynchronous, are limited to be used in practical systems due to impossibility results

that derive from their lack of notion of time. On the other hand, traditionally strong

models, such as synchronous, do not correctly represent the behavior of complex net-

worked environments. To circumvent these problems, models of partial synchrony

are used in practice, typically enriching the asynchronous model with the necessary

timing/synchrony assumptions to make possible the design and implementation of dis-

tributed systems. However, variations in the network behavior may invalidate these

assumptions, ultimately compromising the system correctness. Clearly, the key issue

here is the lack, or loss thereof, of long term coverage of time-related assumptions.

We propose to overcome this problem by securing coverage stability through de-

pendable adaptation. Therefore, while other works addressing adaptive systems are

mainly concerned with performance, our main concern is dependability, which is mea-

sured in terms of coverage of assumed bounds for time-related variables. Casimiro &

Verissimo (2001) introduced the architectural and functional principles for dependable

QoS adaptation. In essence, their idea lies in two very simple premises:

• Assumed bounds for fundamental variables (e.g., deadlines and timeouts) are not

aprioristic constants, but instead are adapted throughout the execution;

• The adaptation process ensures that, over time, the assumed bounds are such that

those variables remain within these bounds with a known and constant probabil-

ity.

For instance, consider an application or protocol that defines a timeout value based

on the assumed message round-trip delay. This application will adapt the timeout

during the execution with the objective of ensuring that the probability of receiving

timely messages will stay close to some predefined value. Therefore, when message

delays increase or decrease, the timeout will also increase or decrease in the exact

measure of what is needed to ensure the desired stability of the probability value. In

other words, this application will secure a coverage stability property (Verissimo &

Casimiro, 2002).

However, achieving coverage stability is only possible if some limits are imposed

(assumed) on how the environment behaves. If message delays can vary in some ar-

bitrary fashion, then any observation or characterization of the environment will be

2

1.1 Motivation and objectives

useless, in the sense that nothing can be inferred with respect to the future behavior.

Fortunately, this is not the usual case. There may be instantaneous or short-term vari-

ations that are unpredictable and impossible to characterize, but medium to long-term

variations typically follow some pattern, allowing to probabilistically characterize the

current operational state and to derive the bounds that must be used for achieving cov-

erage stability.

In that sense, Casimiro & Verissimo (2001) adopted a very simple and weak model,

assuming just that networks behave stochastically, but the probability distributions that

describe their behavior are unknown. In other words, they assumed that there is an

envelope for the probabilistic behavior, which is known and characterizable, and in-

cludes all the possible probabilistic behaviors. Therefore, bounds are conservatively

selected in order to be correct regardless of specific distributions. This was sufficient

to illustrate the feasibility of the dependable QoS adaptation approach.

In this thesis we defend that it is possible to use a stronger model, with more aggres-

sive assumptions, in order to achieve practical results on the adaptation process, and

thus to develop solutions that can be applied to effectively address real and fundamen-

tal problems of dependable distributed systems. We advance on the work presented in

Casimiro & Verissimo (2001) by leveraging on the assumption that a system alternates

stable periods, during which the environment is probabilistically characterizable, and

transition periods, in which a variation of the environment conditions occurs, and that

the changes between stable and transition periods can be detected. Therefore, if we

can implement mechanisms to distinguish these periods, then it is possible to dynam-

ically compute improved (tighter) time bounds when a stable period is detected, and

conservative but still dependable bounds during transition periods. The relevance of

computing improved bounds lies in the fact that they make the approach for depend-

able adaptation practical. This is the central idea of our work, and it motivates the first

objective of this thesis.

Objective 1: To define a system model and architecture to support dependable adap-

tation of applications operating in stochastic environments, securing coverage stability

of time-related variables.

3

1. INTRODUCTION

Once the system model and architecture are formally specified, it is possible to de-

fine the specific mechanisms used to implement the methodology for dependable adap-

tation, in order to assess the benefits of our approach in practice. The actual implemen-

tation of the selected mechanisms will be useful to evaluate the improvements that can

be achieved by the proposed approach for adaptation. Thus, our second objective is

formulated as follows.

Objective 2: To define and validate the mechanisms for network monitoring and

characterization used to achieve dependable adaptation. These mechanisms will be

implemented into a framework for supporting dependable adaptation of applications

operating in stochastic environments. The evaluation of the proposed model and mech-

anisms includes: (i) verifying the correctness of the defined mechanisms; (ii) validating

our assumptions under different scenarios and networks; (iii) analyzing the overhead

imposed by the implemented framework; and (iv) comparing our solution for adap-

tation with other currently used alternatives, in terms of complexity and achieved de-

pendability.

Finally, it is fundamental to demonstrate the usefulness of our approach and the

applicability of the proposed solutions in real systems. In fact, this is stated by our

third and final objective.

Objective 3: To design, implement and evaluate distributed adaptive protocols that

use the proposed framework as a middleware for dependable adaptation.

1.2 Contributions

The main contributions of this thesis are summarized bellow.

• Definition of a system model (set of assumptions) and methodology for support-

ing dependable adaptation based on continuous network monitoring and proba-

bilistic characterization.

4

1.3 Structure of the thesis

• Proposal and implementation of Adaptare. Adaptare is a framework that em-
ploys statistical mechanisms to probabilistically characterize the network condi-
tions, and to derive dependable bounds for time-related variables, such as mes-
sage delays. In this thesis we describe Adaptare’s architecture, operation, and
implementation.

• Description and analysis of an extensive set of experimental results used to thor-
oughly quantify and evaluate the benefits of the proposed approach and the cor-
rectness of the mechanisms implemented by Adaptare.

• Implementation and evaluation of an adaptive consensus protocol. Starting from
a static timeout-based consensus protocol developed to operate in wireless ad
hoc networks, we first experimentally demonstrate the need for adaptive timeouts
in such dynamic environments in order to improve the algorithm’s performance.
Then we describe our methodology to transform this protocol into an adaptive
solution, using Adaptare as a timeout provisioning service. We quantify the
benefits of timeout adaptation by comparing both versions of the protocol.

• Proposal, implementation and evaluation of Adaptare-FD, an autonomic and
adaptive dependability-oriented failure detector. Adaptare-FD has a modular
architecture and it uses Adaptare as a middleware for timeout computation.
Adaptare-FD adjusts both timeouts and interrogation periods in runtime, accord-
ing to specified QoS parameters and the network conditions.

1.3 Structure of the thesis

The remaining of this thesis is organized as follows.

Chapter 2: Context and Related Work. In this chapter we present the fundamental
concepts and relevant works from the research areas related to this thesis. We divide
the chapter’s content in three main parts. In the first part, we describe traditional mod-
els of synchrony, discuss their strengths and weaknesses, and present the stochastic
model, which is the basis for the model considered in this thesis. The second part
of the chapter presents several works related to network probabilistic characterization.

5

1. INTRODUCTION

The different conclusions from those works motivated our approach for continuous

network monitoring and characterization. In the last part of the chapter we present the

components of QoS architectures and contrast them with the mechanisms proposed in

our methodology for dependable QoS adaptation. We also summarize some related

work with focus on adaptive consensus and failure detection.

Chapter 3: Adapting for Dependability. This chapter introduces our approach for

dependable QoS adaptation. First, we state the objective of adaptation in terms of

achieving a stable coverage of system properties, and discuss our assumptions re-

garding network behavior and application dynamics. Then, we explain in detail our

methodology to achieve dependable adaptation and analyze the necessary conditions

for the correctness of the proposed solution.

Chapter 4: Adaptare. In this chapter we introduce Adaptare, a framework for sup-

porting dependable adaptation of applications operating in stochastic environments.

We describe its modular architecture, and how the implemented mechanisms execute

together for the computation of dependable bounds. We provide implementation de-

tails, including the specification of the API that allows the integration between client

applications and Adaptare. Finally, we present an extensive evaluation, based on syn-

thetic and real traces from different scenarios, which aims at validating our mecha-

nisms and assumptions and characterizing the benefits of using our approach, in com-

parison to the conservative solution followed in Casimiro & Verissimo (2001). The

overhead of Adaptare is assessed both through analytical and empirical studies. We

also compare Adaptare with other well-known approaches for adaptation, identifying

the conditions in which applying our solution would be more appropriate.

Chapter 5: Timeout-based Adaptive Consensus. In this chapter we exemplify how

adaptive protocols can be easily implemented using Adaptare. Following a pragmatic

approach, we take a static timeout-based consensus protocol for wireless ad hoc net-

works introduced in Moniz et al. (2009) and describe our methodology to transform

it into an adaptive consensus protocol, in which timeouts are adjusted according to

Adaptare’s indication. We quantify the benefits of using adaptive timeouts by com-

paring the achieved performance of the adaptive and original versions of this protocol.

6

1.3 Structure of the thesis

We believe that the methodology presented in this chapter is generally applicable for
the design and implementation of other timeout-based adaptive protocols.

Chapter 6: Adaptare-FD. In this chapter we introduce an autonomic and adaptive
failure detector, called Adaptare-FD. Our failure detector adapts both timeouts and
interrogation periods according to QoS parameters specified in its interface. Timeouts
are provided by the Adaptare framework. We present Adaptare-FD architecture, and
evaluate its performance by comparing its operation with other timeout-based adaptive
failure detectors, in a varied set of network conditions. In particular, we analyze the
differences between Adaptare-FD and Chen’s failure detector (Chen et al., 2002), since
they both adapt operational parameters to meet the required QoS level. From this
analysis, it was possible to identify the conditions under which each approach should
be applied, and to conclude that Adaptare-FD is more suitable to systems with high
availability requirements.

Chapter 7: Conclusions and Future Research Directions. This chapter concludes
this thesis, summarizing our main contributions, and identifying interesting open issues
that could be addressed to extend this work in a future research.

7

Chapter 2

Context and Related Work

This chapter provides the context for the work presented in this thesis, including fun-

damental concepts and previous related work. It is organized in three main sections.

Section 2.1 presents the most important models of synchrony proposed in the litera-

ture, and the stochastic model in which our work is based. In Section 2.2 we review

several works that address the problem of probabilistic network characterization. We

show that these works achieved varied results, suggesting that network delays may

be characterized by a wide range of different probability distributions, which moti-

vated our approach for monitoring and runtime characterization of the environment.

Finally, Section 2.3 discusses important concepts related to quality of service (QoS) in

distributed systems. We first present the typical components of QoS architectures, dis-

tinguishing our definition for QoS and the mechanisms that we implement from those

generalized architectures. Finally, we survey related work that defines QoS in terms of

time-related properties and proposes adaptive solutions for fundamental problems in

distributed systems.

2.1 Synchrony in distributed systems

The design of a distributed protocol or algorithm requires the definition of the consid-

ered model for the execution environment. This model specifies what one can expect

from the environment, i.e., the set of assumptions on which the system designer can

9

2. CONTEXT AND RELATED WORK

rely when devising a new protocol. The model may cover different aspects of the

system, such as timing properties and potential faults (Lamport & Lynch, 1990).

The solution proposed in this thesis is focused on monitoring and characterizing

time-related variables, in particular network latencies, in order to drive the adaptation

process of distributed applications. Therefore, we are primarily concerned with time-

liness properties of a given system or network, which are formally specified by the

model of synchrony. In this section we review several models of synchrony adopted in

the design of distributed systems.

2.1.1 Synchronous model

The synchronous model is characterized by the existence of known bounds on com-

munication delays and on relative speeds of different processors. Moreover, the rate of

drift of local clocks is also known and bounded (Verissimo & Rodrigues, 2001).

Building distributed protocols to operate in a synchronous system is relatively sim-

ple, because it is known a priori how long processes have to wait for a given message

to be received or an operation to be completed, before making some decision that de-

pends on that message or operation. For example, if a message is not received within

the known delay, the protocol can correctly assume that either the message was lost, or

it was never sent due to a fault in the sending process.

Raynal (2002) surveys various consensus protocols designed to operate in syn-

chronous systems. Informally, consensus is an agreement problem in which each pro-

cess pi proposes an initial value vi, and all correct processes have to agree on a common

value v, which has to be one of the proposed values.

However, environments such as the Internet, or wireless ad hoc networks, are dy-

namic and intrinsically not synchronous: among other factors, variations on the net-

work load, process load, scheduling policies and routing protocols may affect the tem-

poral behavior of the system. Thus, the synchronous model is not appropriate for the

design of applications and protocols operating in such environments, since assumed

temporal bounds may be violated, compromising the system correctness.

10

2.1 Synchrony in distributed systems

2.1.2 Asynchronous model

In the asynchronous model, communication delays and process speeds are not bounded.

There is no notion of time, which means that nothing can be expected in terms of time-

liness under this model. This is the weakest and safest model of synchrony, since there

are no timing assumptions to be violated. Moreover, a protocol designed to correctly

operate in asynchronous systems will be correct in any system with stronger synchrony

properties.

However, Fischer et al. (1985) have shown that the consensus problem does not

have a deterministic solution in asynchronous systems prone to crash failures - a result

known as the FLP impossibility. This is a very important result, since the solution for

many fundamental problems of distributed systems, such as atomic broadcast, leader

election or clock synchronization, relies on the ability to achieve some form of agree-

ment among a set of processes.

Fortunately, practical distributed systems are not fully asynchronous. In fact, these

systems behave synchronously most of the time, when appropriate upper bounds for

communication delays hold. Moreover, periods of synchrony are in general long

enough to allow the execution of distributed protocols such as consensus. This syn-

chrony is only occasionally disturbed by some external factor. Because of that, it

is possible to assume intermediate models of synchrony. The remaining of this sec-

tion presents some of these models, which are based on augmenting the asynchronous

model with additional synchrony assumptions or components, in order to circumvent

the FLP impossibility result.

2.1.3 Asynchronous model with failure detectors

Failure detectors are distributed oracles that monitor a set of processes and indicate

which processes are suspected of being crashed. In this model, each process has a

failure detector module that monitors other processes in the system and maintains a

dynamic list of suspected processes. They are used in asynchronous systems, and the

necessary synchrony assumption is encapsulated by the failure detector.

Typically, processes are monitored either by responding to periodic queries (pull

style failure detector) or by sending periodic heartbeats (push style failure detector).

11

2. CONTEXT AND RELATED WORK

The responses/heartbeats are received by the monitoring module in each process, and

they indicate that the sending process is alive.

When a response/heartbeat is not received within a given amount of time (called the

failure detector timeout) the monitoring process suspects that the sending (monitored)

process is crashed. Since the system is asynchronous, it is possible that messages are

delayed and arrive after the timeout expiration. In this case the failure detector will

mistakenly suspect a correct process, from the time of timeout expiration until the

reception of a valid message. A received response/heartbeat is valid if it arrives before

the timeout expiration for the reception of the next response/heartbeat. Otherwise,

this response/heartbeat is considered an old message and it is discarded by the failure

detector. When a valid message is received, the sending process is removed from the

suspected list.

Moreover, if the monitored process crashes, the monitor process will only detect

this failure when the timeout for the next expected response/heartbeat from the moni-

tored crashed process expires. Thus, there is a period of time during which the failure

detector will not suspect a crashed process, referred as detection time.

This model was introduced in Chandra & Toueg (1996) with the concept of unre-

liable failure detectors, since they can make mistakes by suspecting correct processes,

or not suspecting crashed processes immediately, due to the uncertainty of the envi-

ronment. Failure detectors are classified according to their completeness and accuracy

properties, where completeness refers to the ability of eventually suspecting all crashed

processes and accuracy restricts the mistakes made by the failure detector. There are

different levels of completeness and accuracy, as follows.

• Strong Completeness. Eventually every process that crashes is permanently sus-

pected by every correct process.

• Weak Completeness. Eventually every process that crashes is permanently sus-

pected by some correct process.

• Strong Accuracy. No process is suspected before it crashes.

• Weak Accuracy. Some correct process is never suspected.

12

2.1 Synchrony in distributed systems

• Eventual Strong Accuracy. There is a time after which correct processes are not

suspected by any correct process.

• Eventual Weak Accuracy. There is a time after which some correct process is

never suspected by any correct process.

Table 2.1 presents the eight classes of failure detectors defined in Chandra & Toueg

(1996), which are derived from the combination of the above properties.

Completeness Accuracy
Strong Weak Eventual Strong Eventual Weak

Strong
P S ♦P ♦S

Perfect Strong Eventually Perfect Eventually Strong

Weak
Q W ♦Q ♦W

Weak Eventually Weak

Table 2.1: Classes of unreliable failure detectors.

The asynchronous model augmented with a failure detector is one of the most

widely used approaches to circumvent the FLP result. Chandra & Toueg (1996) pro-

pose a consensus protocol that uses a ♦S failure detector, assuming an asynchronous

system, processes prone to crash failures, majority of correct processes and reliable

channels. This protocol provides the principles of many other existent consensus algo-

rithms. A ♦S-based consensus protocol is presented in Schiper (1997), based on the

same set of assumptions. It has been proved that♦W is the weakest failure detector for

solving consensus in asynchronous systems subject to crash failures with a majority of

correct processes (Chandra et al., 1996), and that the ♦S and the ♦W failure detectors

are equivalent (Chandra & Toueg, 1996).

Some researches focus on relaxing the assumptions about the environment (for ex-

ample, the assumption that the majority of processes is correct), proposing protocols

based on stronger failure detectors specifications. Mostefaoui & Raynal (2000) define

a family Sx of failure detectors, which includes the class S (x = 1) and satisfies a per-

petual accuracy property, which states that there are x correct processes that are never

suspected to be crashed (1 ≤ x ≤ n − f). The authors propose a uniform consensus

protocol that works with any failure detector of this family. We formally introduce

the consensus problem in Section 2.3.2.1. The agreement property of consensus states

13

2. CONTEXT AND RELATED WORK

that no two correct processes decide differently. In order to prevent the possibility that

a process decides on a different value before crashing, in the uniform consensus this

property is changed to: no two processes (correct or not) decide differently.

Friedman et al. (2004) define a class P f of failure detectors and propose a con-

sensus protocol using failure detectors of class P f × ♦S. Class P f includes all the

failure detectors that satisfy the strong completeness property and a f-accuracy prop-

erty, which states that at any time, no more than n−f−1 alive processes are suspected.

Class P f ×♦S is composed by the failure detectors that satisfy the properties defined

by♦S and P f . The protocol solves the consensus problem in asynchronous distributed

systems prone to f < n crash failures.

More recent works in this research area propose adaptive failure detectors, which

are more suitable to the increasingly dynamic environments in which distributed sys-

tems operate nowadays (Bertier et al., 2002; Chen et al., 2002; Falai & Bondavalli,

2005; Nunes & Jansch-Porto, 2004). We discuss adaptive solutions in Section 2.3. In

particular, adaptive failure detectors are presented in Section 2.3.2.2.

2.1.4 Partially synchronous model

The concept of partial synchrony was introduced in Dwork et al. (1988). The commu-

nication system is defined as partially synchronous in two cases:

• If there is an unknown upper bound ∆ on message delivery time;

• If there is a known upper bound ∆ on message delivery time which holds from

some unknown point on - the so-called global stabilization time (GST).

In theory, this model states that if ∆ is known, message delays are bounded by

∆ from time GST onward, where GST is unknown. This means that after GST, ∆

holds forever, which is a very strong assumption. Dwork et al. (1988) point out that,

in practice, there is an upper bound on the amount of time after GST required for

executing a protocol. Thus, it is only necessary that ∆ holds from GST up to the

required time to execute the protocol.

Based on this model, Dwork et al. (1988) present several consensus protocols for

both cases of partial synchrony and four different fault models: fail-stop, omission,

14

2.1 Synchrony in distributed systems

authenticated byzantine and byzantine. The correctness conditions of these protocols

are separated into safety and termination. The proposed consensus algorithms are

indulgent: they always satisfy the safety conditions, no matter how asynchronously

the system behaves, while termination conditions eventually hold.

2.1.5 Timed asynchronous model

Cristian and Fetzer propose the timed asynchronous distributed system model in Cris-

tian & Fetzer (1999). This model enriches the asynchronous model with the assump-

tion that processes have access to hardware clocks with a constant maximum drift rate.

Hence, it is possible to provide timed services under this model (based on assumed

bounds for communication and processing delays), and detect when the assumed time

bounds are violated. Communication has omission/performance failure semantics, and

processes have crash/performance failure semantics. A performance failure occurs

whenever the upper bound for communication or processing delay is violated. Pro-

cesses can recover from failures and there is no bound on the frequency of failures of

timed services.

Fetzer (2003) proposes a new class of failure detectors, called timed-perfect failure

detector class, based on this model. The output value of a timed-perfect failure de-

tector module that monitors a process pi is either crashed (pi is crashed), up (pi is not

crashed) or recovering (pi is recovering from a crash). Timed-perfect failure detectors

are defined by three properties (crash accuracy, up accuracy and recovering accuracy),

and by a finite constant (DD ≥ 0) called detection delay. These properties together

state that a process that is crashed for more than DD time units must be classified as

crashed as long as it stays crashed. Moreover, if the status of a process changes (e.g.,

after it recovers from a crash), the timed-perfect failure detector has DD time units to

correct the classification of this process.

A consensus protocol based on the timed asynchronous distributed system model

is presented in Fetzer & Cristian (1995). In this work, the authors assume that: (i)

systems alternate between periods of “majority-stability”, in which the majority of the

processes is up, timely, and can communicate in a timely manner, and short periods of

instability, and (ii) after an unstable period there is a time interval of some minimum

length in which the system will be stable. The proposed consensus protocol requires

15

2. CONTEXT AND RELATED WORK

that the system is majority stable, and its termination property states that each non-

crashed process decides in a finite number of steps.

2.1.6 Wormholes model

From the observation that systems properties vary not only with time (e.g., the par-

tially synchronous model assumes that the system is asynchronous before GST and

synchronous after GST), but also that system components may provide different prop-

erties, Verissimo (2006) proposes the wormholes model. Basically, this model assumes

that different parts of the system have different properties. Thus, the main difference

between the wormholes model and the other models described so far is that it assumes

that system components are heterogeneous, which allows the design of hybrid dis-

tributed systems. Taking the definition of synchrony assumptions as example, while

the wormholes model may consider that at a given time some components of the sys-

tem are synchronous, while others are asynchronous (heterogeneous model), the other

models of synchrony presented in this chapter make assumptions that refer to the whole

system (homogeneous model).

Verissimo (2006) argues that the existence of synchronous components in the sys-

tem enables the construction and implementation of algorithms to deal with problems

that are not solvable in an asynchronous environment, such as consensus and failure

detection. In this model, the system is divided in two parts: a payload system, where

applications are executed, and a wormhole subsystem. The payload system may as-

sume any set of faults and synchronism degree. Processes executing in the payload

system (payload processes) communicate through payload channels. The wormhole

subsystem has stronger properties than the payload system. If the wormhole processes

(which run in the wormhole subsystem) are able to communicate amongst themselves

through wormhole channels, then the wormhole subsystem is said to be distributed.

Otherwise it will be a wormhole with a local scope. Payload processes interact with

the wormhole using a well-defined interface, to request services which can only be

executed in the wormhole subsystem, due to its stronger properties.

The Timely Computing Base model (TCB) presented in Verissimo et al. (2000)

uses the wormhole approach to address the problem of having “applications with

synchrony requirements running on environments with uncertain timeliness”. In this

16

2.1 Synchrony in distributed systems

model, the system has components that are synchronous enough to perform timed ac-

tions - the TCB modules. The TCB subsystem (a distributed wormhole), composed by

the TCB modules and the control channel, is synchronous. Thus, it is used to provide

services that cannot be executed in the payload asynchronous system, such as timely

execution, duration measurement and timing failure detection.

In particular, the authors propose a perfect timing failure detector (pTFD), defined

by two properties: all timing failures are detected by the TCB in a known bounded

interval from its occurrence (timed strong completeness) and no timely action results

in a timing failure (timed strong accuracy), if they are executed and terminate more

than a known amount of time before the deadline.

2.1.7 Stochastic model

The stochastic model is adopted in Casimiro & Verissimo (2001), and it inspired our

work. This model assumes that fundamental time-related variables, such as message

delays, follow some probability distribution, which may change over time. Therefore,

it is not possible to assume fixed upper bounds (that will always hold) as it is done with

synchronous models, and differently from asynchronous models it is possible to state

bounds that will hold with some probability.

This assumption allows to estimate values for time-related variables with a given

probability. Thus, synchrony guarantees are oriented to an expected coverage, which

is the probability that synchrony assumptions hold. Casimiro & Verissimo (2001) clas-

sify this as a model of partial synchrony. Note that while the traditional partially syn-

chronous model introduced in Dwork et al. (1988) guarantees that communication de-

lays are always bounded by some ∆ after the global stabilization time, in the stochastic

model there is a probability P < 1 that ∆ holds, which is the coverage of the assumed

bound.

Despite adopting a probabilistic model, Casimiro & Verissimo (2001) do not as-

sume any specific probability distribution, proposing mechanisms that are correct for

all distributions. As presented in Chapter 3, we advance on this work by assuming that

particular probability distributions may be assumed over time, which appropriately de-

scribe the stochastic behavior of time-related variables. Given the specific knowledge

17

2. CONTEXT AND RELATED WORK

of the distribution, we can compute more accurate bounds (closer to real observations),

with the same coverage.

2.2 Network characterization

The work presented in this thesis is focused on monitoring and probabilistically char-

acterizing communication delays in order to support the adaptation of distributed ap-

plications in a dependable way. Thus, although synchrony refers to both message and

processing delays, we are concerned with the former. The characterization of commu-

nication delays in IP-based networks is a widely studied subject. In this section, we

provide an overview of several works that address this problem.

One of the simplest statistical approaches to characterize communication delays

in distributed systems is the time series modeling and analysis. No probability dis-

tribution is considered: samples are modeled as a time series, which is defined as “a

set of measurements of a stochastic variable taken sequentially in time” (Bowerman

& O’Connel, 1993). A methodology to model round-trip communication delays as a

time series is presented in Nunes & Jansch-Pôrto (2002).

The approach followed in Jifeng et al. (2004) proposes a multiple model method

to predict the Internet end-to-end delays. This method is based on using different

models for prediction, and combining their results into a single output. In Jifeng et al.

(2004), the model set is composed by different auto regressive models based on time

series built from measured samples. More solutions based on time series modeling

are surveyed in Yang et al. (2004). The limitation of this approach is that in a time

series the samples must be spaced at uniform time intervals, but in many applications

monitoring is not performed with fixed periods. For example, tools that monitor TCP

packets should not model them as a time series, since they are not received at a constant

rate.

As discussed in Section 2.1.7, Casimiro & Verissimo (2001) simply assume that

the environment behaves stochastically, but no assumptions are made about the spe-

cific probability distribution for communication delays. Interestingly, over the last few

years a number of works have addressed the problem of probabilistically characteriz-

ing the delays in IP-based networks using real measured data, allowing to conclude

18

2.2 Network characterization

that empirically observed delays may be characterized by well-known distributions.
Some examples are:

• Markopoulou et al. (2006) analyze packet loss and delays over the Internet. The
work focuses on wide-area backbone networks, representing long-distance com-
munication. The probabilistic characterization of delays shows that the expo-
nential distribution would be a good fit for the observed behavior.

• The study performed in Mukherjee (1992) over different Internet paths con-
cludes that network delays follow a shifted Gamma distribution with shape and
scale parameters changing over time, depending on the network load.

• Piratla et al. (2004) employ several statistical procedures to assess the probability
distributions that best characterize the delays of packets in a data stream, for
different sending rates and packet sizes. In this study, the shifted Gamma and
Beta distributions are indicated as the best fit.

• Elteto & Molnar (1999) analyze round trip delays collected in the Ericsson Cor-
porate Network. The samples were analyzed using the Kolmogorov-Smirnov
test, and the results show that round trip delays can be well approximated by a
truncated normal distribution.

• Zhang & He (2007) model end-to-end delays in wide area networks using sta-
tistical methods. Their tests consider the Pareto, normal and lognormal distribu-
tion. The results show that the Pareto distribution is more appropriate to model
end-to-end delays.

• Hernandez & Phillips (2006) propose a so-called Weibull mixture model, which
is based on the combination of Weibull distributions, to characterize end-to-end
network delays. The model was validated using measurements collected in the
Internet.

Some of these works also recognize that probability distributions may change
over time (Piratla et al., 2004), depending on the load or other sporadic occurrences,
like failures or route changes. Therefore, in order to provide reliable information to
applications in runtime, it becomes necessary to detect changes in the distribution.

19

2. CONTEXT AND RELATED WORK

Fortunately, there is also considerable work and well-known approaches and mecha-

nisms to address this problem. Among others, we can find approaches based on time-

exponentially weighted moving histograms (Menth et al., 2006), on the Kolmogorov-

Smirnov test (Elteto & Molnar, 1999) or the Mann-Kendall test (Chen et al., 2006).

For instance, Elteto & Molnar (1999) apply the Kolmogorov-Smirnov test on round-

trip times to detect changes in a delay process. Between these changes, the process

can be assumed to be stationary with constant delay distribution. This assumption was

confirmed by the trend analysis test.

From the discussion above, we can conclude that: (i) there is not a single proba-

bility distribution that represents end-to-end delays in all distributed systems; and (ii)

even for one specific monitored environment, delays are not stationary and the distri-

bution changes over time.

All these possibilities motivated the design and development of an effectively

generic framework for automatic and dependable adaptation. Our work is built upon

the stochastic model adopted in Casimiro & Verissimo (2001), but we propose mecha-

nisms to identify the probability distribution that best describes the observed network

behavior in order to compute more precise bounds for temporal variables.

In Chapter 4 we introduce Adaptare, a framework specifically characterized by: (i)

modularly accommodating various mechanisms to analyze the environment conditions

and dealing with several probability distributions; (ii) automatically determining the

most suitable methods and the best fitting probability distributions. Note that this

combination allows achieving more accurate characterizations of the environment state

at a given time, and along the timeline, which is a crucial result of our work.

2.3 QoS assurance in uncertain environments

Quality of service (QoS) is a commonly used term in computational systems, which

may have different meanings, depending on the application context. Extensive research

has been done in this area for different contexts, such as multimedia applications, dis-

tributed databases systems, industrial applications and telecommunication systems.

In the context of our work, QoS is defined and measured in terms of coverage

assurance. The concept of coverage of assumptions was introduced in Powell (1992),

20

2.3 QoS assurance in uncertain environments

and it refers to the probability that assumptions on which the system is based when it

is deployed in a real setting will hold. Thus, in our work QoS assurance boils down to

satisfying a required probability value (a coverage) specified by a user. We focus on

securing the coverage of network latency assumptions, by constantly monitoring the

available QoS and providing dependable bounds for network latency according to the

observed conditions, that is, bounds that will be secured with the required coverage.

These bounds are then used in the adaptation of client applications. Because of that,

the adaptation process is said to be dependability-oriented.

The mechanisms that we implement to achieve this goal do not require a fully

fledged QoS infrastructure to operate with. Nevertheless, they can be seen as typical

components found in most QoS architectures, namely for QoS monitoring and QoS

adaptation. Therefore, in the following section we review concepts and work in the

area of QoS-oriented systems and architectures. Then, in Section 2.3.2 we present

several adaptive solutions for different problems and applications where QoS is related

to timeliness properties, as we consider in this thesis.

2.3.1 QoS-oriented systems and architectures

There exist different system architectural approaches to provide end-to-end quality of

service guarantees in distributed systems. Aurrecoechea et al. (1998) present a nice

survey of QoS architectures and introduce a generalized framework that describe their

main components. Although the survey is focused on QoS for distributed multimedia

systems, it describes generic mechanisms for QoS management that can be applied in

a large variety of distributed applications.

A QoS architecture must provide the necessary interfaces for applications to spec-

ify the expected QoS level. Typically, QoS specifications are formalized by service

level agreements (SLA). Examples of QoS parameters that may be specified in mul-

timedia and other applications are throughput rates, delays, jitter, loss rates, among

others. More generic parameters are: level of service, which expresses the required

QoS in qualitative terms (e.g., deterministic or best-effort); QoS management policy,

which determines the actions performed in case of QoS violations; and cost of service,

which specifies the price for the required QoS level.

21

2. CONTEXT AND RELATED WORK

Different mechanisms are employed to guarantee that the required QoS is provided.

The systematization proposed in Aurrecoechea et al. (1998) categorizes these mecha-

nisms as follows:

• QoS provision mechanisms: responsible for static resource management. They

translate QoS specified requirements into low-level system parameters, apply

admission control tests that verify if there are enough available resources to meet

the required QoS, and execute reservation protocols to allocate the necessary

resources.

• QoS control mechanisms: perform dynamic resource management. They en-

compass real-time traffic control tasks, such as flow shaping, flow scheduling,

and flow synchronization.

• QoS management mechanisms: also related to dynamic resource management,

ensuring that the contracted QoS is sustained. QoS management mechanisms are

subdivided into: (i) QoS monitoring, where each system layer monitors the QoS

offered by the lower layer; (ii) QoS maintenance, which compares the current

offered QoS with the contracted one and performs corrective actions, if possible

and necessary; (iii) QoS degradation, which informs the user if the contracted

QoS cannot be maintained; (iv) QoS availability, which allows applications to

specify monitoring intervals for QoS parameters such as delay, loss, and band-

width; and (v) QoS scalability, which defines the adaptation mechanisms to react

to variations in the observed end-to-end QoS.

In this area, several works focus on developing QoS architectures for multimedia

applications executing in dynamic best-effort environments, such as the Internet, when

resource reservation is not possible. For example, the solution proposed in Bhatti

& Knight (1999) analyzes a snapshot of the network conditions (defined by a set of

measured QoS parameters) and defines which application modes are feasible on that

context. Thus, the application can switch to a better operation mode in order to main-

tain the expected QoS level. QoS is specified in terms of possible operation modes

(QoS specification). A so-called QoSEngine translates application modes to low level

network parameters, and vice-versa (QoS provision). These parameters are constantly

22

2.3 QoS assurance in uncertain environments

monitored (QoS control) and the application periodically receives information regard-

ing the QoS offered by the network in terms of feasible modes (QoS management).

A more complex model based on a fuzzy controller for dynamic QoS adaptation is

presented in Koliver et al. (2002). Based on a quality degree metric, and how it is

differently perceived at the sender and receiver sides, system parameters (e.g., bit rate)

are adjusted to meet some expected QoS level, according to the fuzzy controller indi-

cations.

Solutions for QoS assurance developed in the context of a given application tend to

be too specific, requiring the configuration of parameters which are tightly related to

the application semantics. The works described above are two examples of QoS archi-

tectures for multimedia applications, which although effective, are very application-

dependent, and require significant a priori configuration. Designers must specify not

only the parameters to quantify the provided QoS (such as the so-called quality degree

metric in Koliver et al. (2002)), but also their possible ranges, the set of QoS levels,

and the mapping between them. Moreover, these works do not assess the dynamics of

the environment. No attempt is made in order to understand and model the dynamic

behavior of the measured parameters, neither to predict any future states.

A significantly different and more generic way of dealing with QoS in distributed

systems was proposed by Gorender et al. (2007). They define QoS in terms of time-

liness of communication channels, as we do in our work, and propose an adaptive

programming model for fault-tolerant distributed computing, built on top of a QoS-

based system. A component called QoS Provider (QoSP) exposes functions to specify

and further assess the synchrony of all communication channels in the system. Us-

ing the QoSP functions, it is possible to create a communication channel, change and

obtain its QoS (timely/untimely), and obtain the expected delay for a message trans-

fer. Moreover, the QoSP modules monitor all timely channels to check if their QoS

suffered any modification. In the proposed programming model, each process pi has

access to three sets: downi, livei and uncertaini. These sets are made up of processes

identities and can evolve dynamically, according to the observed synchrony. The se-

mantics of these sets is the following: if pj ∈ downi, pi can safely consider pj as being

crashed; if pj ∈ livei, pi is given a hint that it can currently consider pj as not crashed;

and when pj ∈ uncertaini, pi has no information on the current state (crashed or

live) of pj . The sets live and uncertain are maintained by a so-called state detector,

23

2. CONTEXT AND RELATED WORK

according to the information delivered by the QoSP. The down set is maintained by

a failure detector, using the information provided by the QoSP and the state detector.

The authors demonstrate the achievable benefits of using this model by defining a ♦S
consensus protocol that adapts to the current QoS using the sets, and using the majority

assumption only when needed. Thus, while other ♦S consensus protocols require a

majority of correct processes (f < n/2), the proposed protocol allows bypassing this

bound when |uncertaini| < n.

Differently from the solutions described above, our approach does not require an

underlying QoS-oriented infrastructure to operate. On the contrary, it directly builds

on a probabilistic system model to implement the following QoS mechanisms:

• QoS control, which comprises the monitoring and probabilistic characterization

of network delays; and

• QoS management, which provides dependable information about the network

behavior to client applications, driving the adaptation process in order to pre-

serve the required dependability level.

2.3.2 QoS monitoring and adaptation

In the dynamic environments considered in this work, monitoring is of fundamental

importance. In fact, the development of solutions for monitoring and network traffic

analysis is an active research area (Tzagkarakis et al., 2009). Advances in this area are

relevant to support several properties of autonomous systems, like self-organization,

self-adaptation, and other self-* properties (Babaoglu et al., 2005).

Providing QoS guarantees for the communication in spite of the uncertain or prob-

abilistic nature of networks is a problem with a wide scope, which can be addressed

from many different perspectives. In Casimiro & Verissimo (2001), the fundamental

architectural and functional principles for dependable QoS adaptation were introduced,

providing relevant background for our work. In that work the authors analyze why sys-

tems would fail as a result of timing assumptions being violated, as it may happen in

environments with weak synchrony. A relevant effect is decreased coverage of some

time bound, when the number of timing failures goes beyond an assumed limit.

24

2.3 QoS assurance in uncertain environments

In systems in which time bounds must remain fixed, other variables should be
adapted to avoid the decreased coverage of these bounds. For example, in Krishna-
murthy et al. (2001) the idea is to use replication for timing fault tolerance. The num-
ber of used service replicas is dynamically selected to ensure timely responses with a
given probability.

Another approach to deal with decreased coverage of timing assumptions, which
we follow in our work, is to explore the ability of applications to use adaptive time-
related bounds for temporal variables (e.g., communication timeouts). The remaining
of this section focuses on two such cases, or application problems: adaptive consensus
and adaptive failure detection. These are fundamental distributed systems building
blocks, whose implementation can be made adaptive with respect to the timeliness
conditions, in order to sustain some expected QoS level.

2.3.2.1 Adaptive consensus

The consensus problem is formally defined by the following properties (Chandra et al.,
1996):

• Validity: If a correct process decides v, then v was proposed by some process.

• Agreement: no two correct processes decide differently; and

• Termination: All correct processes eventually decide.

As discussed in Section 2.1, this problem has no deterministic solution in fully
asynchronous systems prone to crash failures. Thus, consensus protocols are designed
for system models augmented with some synchrony assumptions, such as partial syn-
chrony or failure detectors. Since the synchrony assumptions may not hold in runtime
(due to lack of assumption coverage), designers efforts are focused on always ensuring
the safety of protocols, even when the network does not present the expected syn-
chrony. Liveness is achieved when the system exhibits the necessary synchrony level.

A typical consensus protocol executes in rounds, where participant processes rely
on a timeout to limit the amount of time they should wait for messages from other
processes. This timeout can be explicitly used in the consensus algorithm, or implicitly
used, when it is encapsulated in a failure detector. The timeout value is derived from

25

2. CONTEXT AND RELATED WORK

the assumed synchrony - the upper bound on message delays - and it is an important

parameter with direct impact on the achieved performance (for example, consensus

latency).

The study presented in Borran et al. (2008) confirms the importance of using ap-

propriate timeouts. The authors evaluate the performance of the Paxos consensus pro-

tocol (Lamport, 1998) extended with a communication layer for wireless ad hoc net-

works, using different timeout values. The evaluation results show that the timeout

value has considerable impact on the consensus latency and throughput. The protocol

is based on a fixed timeout, which must be properly adjusted for a given execution

platform. The authors indicate that adaptive timeouts could be used when message

delays are unknown, but do not point to any concrete solution that could be used for

that purpose.

When the actual timeout value that is suitable for the system is unknown, a usual

approach is to initiate the protocol with a small timeout. Since this value may be

too small, leading to timer expiration, it will be increased every time this happens (or

when the protocol detects that a mistake was made due to the small timeout). The

reason behind this approach is that the timeout will eventually become large enough

to represent an upper bound on message delays, and the protocol will terminate. Ex-

amples of consensus protocols that implement this technique are found in Freiling &

Völzer (2006) and Aguilera et al. (2004). The drawback of this approach is that a small

period of network instability may lead to an excessively large timeout value, possibly

compromising the overall performance of the protocol in subsequent executions.

Sampaio et al. (2003), Sampaio & Brasileiro (2005), and Sampaio et al. (2005)

propose consensus protocols which are adaptive according to system timeliness. The

authors extend the consensus protocol introduced in Chandra & Toueg (1996) with

slowness oracles in order to improve the consensus execution time. Slowness oracles

provide information about the responsiveness of system processes, which is measured

from the round trip delays of messages exchanged during the consensus execution.

Processes send their slowness information within their consensus messages, so their

slowness oracles keep a consistent global view of processes responsiveness. The con-

sensus protocol executes in rounds based on the rotating coordinator paradigm, and

uses a failure detector to encapsulate synchrony assumptions. In Sampaio et al. (2003),

the slowness oracles indicate the best (most responsive) process to be the coordinator

26

2.3 QoS assurance in uncertain environments

of the first round of each consensus execution. The coordinators of the next rounds

follow a round robin schedule on the ordered list of processes. This idea is extended in

Sampaio & Brasileiro (2005) by implementing an adaptive process ordering module.

This module uses the slowness oracle information to determine the order of processes

to be the coordinators for all rounds in the consensus execution. Finally, in Sampaio

et al. (2005) timing information is used not only by the slowness oracle, but also to

set the failure detector timeout. Two failure detector implementations are used: a push

style failure detector (FD-Push), and a pull style failure detector (FD-Pull). The FD-

Push increases its timeout by 1 ms whenever a mistake is detected. In the FD-Pull, if a

process pi receives a response (“I’m alive” message) from a process pj that is currently

in its suspected list, pi computes the round trip delay corresponding to this response,

which is used as the new timeout for pj .

In Chapter 5 we discuss the importance of using adaptive timeouts in distributed

protocols operating in dynamic environments. We present our methodology to create

an adaptive version of a timeout-based consensus protocol designed to operate in wire-

less ad hoc networks, using the Adaptare framework. Our evaluation compares the

performance of the original protocol and its adaptive version, and shows the benefits

of using adaptive timeouts.

2.3.2.2 Adaptive failure detectors

Failure detectors are oracles that provide information about the status of processes in a

distributed system. As explained in Section 2.1.3, processes are constantly monitored

through the exchange of periodic messages (either spontaneously as a heartbeat, or

in response to query messages from monitoring modules). This approach relies on

timeouts in order to determine if processes are alive or crashed: processes are suspected

of being crashed if heartbeats/responses are not received within the timeout. Timeout

selection is hence a fundamental issue in the configuration of failure detectors, with

high impact on the quality of failure detection: a too high timeout compromises the

detection latency, while a too small timeout increases the number of mistakes (false

suspicions).

The first systematic study of the QoS of failure detectors was presented in Chen

et al. (2002), where the authors define a set of QoS metrics, which are independent of

27

2. CONTEXT AND RELATED WORK

failure detector implementations, as follows:

• Detection time (TD): time that elapses from pj’s crash to the time when pi starts

suspecting pj permanently;

• Mistake recurrence time (TMR): time between two consecutive false suspicions;

• Mistake duration (TM): time taken by the failure detector to correct a false sus-

picion.

Those metrics are generally used to measure and compare the overall quality of ser-

vice of failure detectors. Falai & Bondavalli (2005) and Nunes & Jansch-Porto (2004)

perform comparative studies of adaptive failure detectors in which different approaches

for timeout estimation are used, with the objective of improving the provided QoS. In

both works timeouts are derived from an estimator based on a number of observed

delays, and different mechanisms to compute safety margins.

Timeout estimators can vary on their complexity. Some estimators employ simple

methods, like using the delay of the last received message (Falai & Bondavalli, 2005)

or the average delay of the last n received messages (Bertier et al., 2002; Falai &

Bondavalli, 2005; Nunes & Jansch-Porto, 2004), while others rely on more elaborated

approaches, for example, applying an auto regressive model to build a time series from

the last delays, and using this model to predict the delay of the next message (Falai &

Bondavalli, 2005; Nunes & Jansch-Porto, 2004).

Safety margins may be static or dynamic. Static safety margins, as used in Chen

et al. (2002), although simpler, require some a priori analysis of the execution en-

vironment in order to be appropriately defined. The flexibility provided by dynamic

safety margins studied in Bertier et al. (2002), Falai & Bondavalli (2005) and Nunes &

Jansch-Porto (2004) makes them more suitable to network environments susceptible

to frequent changes.

The failure detector presented in Bertier et al. (2002) implements an adaptation

layer to dynamically adjust not only the timeout value, but also the interrogation period

(frequency of monitoring). Timeouts are computed by the average of last n observed

delays, plus a safety margin based in the Jacobson’s algorithm (Jacobson, 1988). The

interrogation period is adapted through an heuristic that considers both network load,

28

2.3 QoS assurance in uncertain environments

network capacities and applications needs. More specifically, two QoS values are an-

alyzed: the required quality, which is the minimum quality of detection (specified in

terms of detection time) required by the application, and the ability quality, which is the

maximum quality of detection that the network can provide (depending on the current

load and available bandwidth). The interrogation period is then computed to secure the

quality of detection speficied by the minimum of those two values.

Fetzer et al. (2001) observe that the monitoring approach implemented by failure

detector modules requires the exchange of control messages which are sent in addition

to regular application messages, wasting network resources. They address this issue

with a so-called “lazy” adaptive failure detection protocol which relies as much as pos-

sible on application messages to monitor other processes: control messages are used

only when no application message is sent to the monitored processes. Every time a

monitored process pj receives either an application message or a control message from

a monitor process pi, it sends a confirmation message back to pi (ack message). If

pi does not receive this ack message within an adaptive timeout, it suspects that pj is

crashed. The protocol is adaptive in the sense that the overhead of control messages

is reduced when the applications activity increases, and the timeout is adjusted in run-

time according to the highest observed round trip delay. The authors point out that (i)

when the system becomes partially synchronous (i.e., there is a time after which com-

munication and processing delays are bounded), the proposed protocol implements an

eventually perfect failure detector, and (ii) using the maximum observed round trip

delay as timeout reduces the number of mistakes. Nevertheless, this approach presents

the same problem observed in some adaptive consensus protocols discussed in the pre-

vious section: the timeout never decreases and a small period of network instability

(with high latencies) may result in a too large timeout being adopted for the rest of the

execution, compromising the detection time of the failure detector thereof.

The adaptive failure detectors presented above share a significant weakness: the

adaptation process is not QoS-driven. Apart from the solution proposed by Fetzer

et al. (2001), the algorithms for timeout estimation require a priori configuration of

operational parameters that are not explicitly related to QoS metrics, but have direct

influence on them. Thus, in order to meet a desired QoS level, some underlying param-

eters must be carefully adjusted for a specific execution environment. Whenever the

network changes or a different QoS is required, these parameters must be reconfigured.

29

2. CONTEXT AND RELATED WORK

Chen et al. (2002) introduce the first QoS-driven failure detector. They assume that

message delays and losses present a probabilistic behavior, and use a configuration

module to compute the timeout and interrogation period based on simple parameters

for the characterization of network delays (loss probability, expected value, and vari-

ance), and QoS metrics given as input. The QoS metrics are: an upper bound on the

detection time (TUD), a lower bound on the average mistake recurrence time (TLMR), and

an upper bound on the average mistake duration (TUM). Although the algorithms and

evaluation presented in Chen et al. (2002) do not contemplate adaptive failure detec-

tors, the authors argue that their failure detector could be made adaptive by periodically

re-executing the configuration steps, which would compute new values for the timeout

and interrogation period based on network parameters estimated from the most recent

heartbeats.

Very recently, a new QoS-driven failure detection approach was introduced in de Sá

& de Araújo Macêdo (2010), which is based on the feedback control theory to compute

and adjust both timeout and interrogation period in runtime, according to measured

delays and required QoS parameters. Timeouts are computed from an estimator that

uses past measured delays, plus a safety margin based on the observed accuracy of

the detection service. The novelty and fundamental difference of the approach with

respect to the state of the art lies in the way the interrogation period is computed. The

solution relies on a feedback control loop mechanism that estimates the relationship

between delays and the interrogation period. Given the good results achieved with this

approach, the authors argue that it is particularly attractive for the implementation of

autonomic systems.

In Chapter 6 we present Adaptare-FD, a dependability-oriented adaptive failure

detector built on top of Adaptare. Adaptare-FD receives as input an upper bound

on the detection time (TUD) and a lower bound on the coverage of failure detection

(CL), and adjusts the timeout and the interrogation period to meet the required QoS

level. We evaluate Adaptare-FD in comparison with an adaptive version of Chen’s

failure detector and with several failure detectors based on different timeout estimators,

proposed in Falai & Bondavalli (2005) and Nunes & Jansch-Porto (2004).

30

2.4 Summary

2.4 Summary

In this chapter we presented an overview of fundamental concepts and of several works
in the relevant research areas.

We revisited several models of synchrony proposed in the literature to represent
timeliness properties in distributed systems. In Chapter 3 we describe in details our
approach for dependable adaptation, which is based and refines the stochastic model
presented in this chapter.

We motivated the need for monitoring mechanisms by reviewing several works
that perform network characterization and achieve very divergent results. Our frame-
work for network characterization and adaptation support, Adaptare, is introduced in
Chapter 4.

Finally, in this thesis we are concerned with dependability guarantees and QoS
adaptation. Quality of service is a term with different meanings in the literature. We
discussed several works that consider QoS in terms of network latencies as we do in our
work, and propose adaptive solutions for different problems. In particular, we focused
on adaptive consensus and failure detector protocols, due to their importance for the
design of distributed systems. Our solutions for these problems, using Adaptare as a
dependable timeout provisioning service, aim at evaluating the benefits of our approach
for dependable adaptation in practical applications. They are presented in Chapters 5
and 6, respectively.

31

Chapter 3

Adapting for Dependability

Distributed protocols executing in uncertain environments, like the Internet or ambi-

ent computing systems, should dynamically adapt to environment changes in order

to preserve Quality of Service (QoS). Furthermore, the adaptation process should be

dependable, if correctness of protocol properties is to be maintained.

In our work we assume that during its lifetime, a system alternates periods where its

temporal behavior is well characterized (stable phases), with transition periods during

which a variation of the environment conditions occurs (transient phases). Our method

is based on the following: if the environment is generically characterized in analytical

terms, and we can detect the alternation of these stable and transient phases, we can

improve the effectiveness and dependability of QoS adaptation.

This chapter discusses the theoretical foundations of our approach for dependable

adaptation, presenting the assumptions and methodology that we propose in this thesis.

In Section 3.1 we define dependable adaptation and describe its objective. Section 3.2

states the assumptions that we made about execution environments and applications.

In Section 3.3 we introduce our approach for dependable adaptation, explaining the

main activities involved in the adaptation process. Section 3.4 presents a more detailed

view of our methodology for adaptation, including its operation and reaction according

to changes in the execution environment. Finally, in Section 3.5 we analyze the neces-

sary conditions for the correctness of our approach, and discuss how the dynamics of

environments and applications may affect the dependability of the adaptation process.

33

3. ADAPTING FOR DEPENDABILITY

3.1 Dependability goal

The fundamental objective of our work is to provide the means for adaptive applica-

tions to behave dependably despite temporal uncertainties in the operating environ-

ment. In these settings, the classical design approach of assuming fixed upper bounds

for temporal variables, such as communication delays, is typically not appropriate.

One possibility is to set very high upper bounds, preventing the occurrence of tim-

ing faults (i.e., preventing assumed bounds to be violated) but possibly compromising

system performance by slowing down the execution. The other option is to set more

aggressive (lower) bounds for performance reasons, which increases the probability of

timing faults and, consequently, may have a negative impact on system correctness.

We argue that in these environments, dependability must be equated through the

ability of the system to secure some bounds while adapting to changing conditions. As

explained in Verissimo & Casimiro (2002), for dependable adaptation to be achieved

it is sufficient to secure a coverage stability property. In concrete terms, this means

that given a system assumption, the effective coverage of this assumption (the proba-

bility that the assumption is satisfied) will stay close to some assumed value during the

system execution, and that difference is bounded.

For example, an assumption could be “the round-trip delay is bounded by TRTT ”.

There is a probability that this assumption will hold during some observation interval

(coverage of the assumption). This coverage will vary due to changes in the environ-

ment conditions (e.g., load variations over time). On the other hand, the application

can adapt the assumed bound TRTT to increase or decrease its coverage. The objective

of dependable adaptation is to select the adequate bound TRTT , so that its effective

coverage will be controlled in some manner.

This means that QoS is no longer expressed as a single value, a time bound to

be satisfied, but as a 〈bound, coverage〉 pair, in which the coverage should remain

constant while the bound may vary as a result of adaptation, to meet the conditions of

the environment. A practical approach, which is the one we adopt in this work, is to

ensure that the observed coverage is always higher than the specified one, while the

bounds for the random variables are as small as possible.

Nevertheless, deciding when and how to adapt depends on how the environment

is assumed to behave and on the concrete approaches for monitoring this behavior.

34

3.2 Assumptions

These issues are addressed in the remaining of this chapter, where we describe what
we expect from the execution environment and from the applications, and how our
methodology for dependable adaptation should operate on the considered model.

3.2 Assumptions

In Chapter 2 we presented the stochastic model, in which the environment is assumed
to behave stochastically. Based on this model, Casimiro & Verissimo (2001) intro-
duce the architectural and functional principles for dependable adaptation. The au-
thors consider that the probability distribution that describe the environment behavior
is unknown, and propose generic mechanisms (valid for all distributions) to support
adaptation. In this thesis we advance on their work by extending the stochastic model
with less conservative assumptions about the environment dynamics, in order to sup-
port improved and still dependable adaptation. We make the following assumptions:

• Interleaved stochastic behavior: We assume that the environment alternates
stable periods, during which it follows some specific probability distribution,
with transition periods, where the distribution is unknown or cannot be charac-
terized. This assumption is supported by the results of many works (Hernandez
& Phillips, 2006; Papagiannaki et al., 2003; Piratla et al., 2004).

• Sufficient stability: We assume that the dynamics of environment changes is
not arbitrarily fast, i.e., there is a minimum duration for stable periods before a
transition period occurs. This is a mandatory assumption for any application that
needs to recognize the state of a dynamic environment.

Additionally, we also need to make assumptions concerning application-level be-
havior and the availability of resources to perform the needed computations in support
of adaptation decisions.

• Sufficient activity: Mechanisms for network monitoring and characterization
are based on the analysis of a set of sequential measures (samples) of the stochas-
tic variable under observation. This set of samples is called history. Thus, we
assume that there is sufficient system activity, allowing enough samples to be

35

3. ADAPTING FOR DEPENDABILITY

obtained in order to fill the history, as required to feed probabilistic recognition
mechanisms. For instance, if message round-trip durations are being observed,
then there will be statistically sufficient and independent message transmissions
to allow characterizing the state of the environment. Obviously, system activity
depends on the application. We believe that this is an acceptable assumption in
most practical interactive and reactive systems.

• Resource availability: The system has the computational resources (processor,
memory, etc.) which are needed to execute the detection and recognition mech-
anisms in a sufficiently fast manner.

Interestingly, it is easy to see that all these assumptions are somehow interdepen-
dent. As with any control framework, for a good quality of control it is necessary to
ensure that the controller system is sufficiently fast with respect to the dynamics of the
controlled system. In our case, the required resources and application activity depend
on the effective dynamics of the environment. A balance between these three aspects
must exist so that it becomes possible to dependably adapt the application.

Fortunately, the systems we want to address usually present intensive interaction
patterns (with the environment or between distributed components) in sufficiently sta-
ble settings, hence meeting the requirements implied by our assumptions: the evalua-
tion presented in Chapter 4 aimed at raising evidence that these requirements indeed
hold in practical settings. Using traces of real systems’ executions we implicitly test
the satisfaction of sufficient activity, sufficient stability and interleaved stochastic be-
havior assumptions. To reason about resource availability, we provide execution mea-
surements in specific computational platforms and conduct a complexity analysis of
the implemented algorithms.

Our methodology for supporting dependable adaptation is described in the next
sections. Then, in Section 3.5 we discuss the required conditions in terms of network
dynamics and applications activity for the correctness of the proposed approach.

3.3 Environment recognition and adaptation

The adaptation process proposed in this thesis is composed by two activities: identifi-
cation of the current environment conditions and QoS adaptation.

36

3.4 The adaptation approach

• Environment recognition: The environment conditions can be inferred by an-
alyzing a real-time data flow representing, for example, the end-to-end message
delays in a network. When the analytical description of the data is not known,
we need to determine the model that best describes the data. Using statistics, the
data may be represented by a cumulative distribution function (CDF), defining
the probability distribution of a real random variable X . We realize that the data
models can be so complex that they cannot be described in terms of simple well-
defined probability distributions. Whenever the model that describes the data is
known, the problem is reduced to estimating parameters of a known model from
the available data.

• QoS adaptation: Once the best fitting distribution (together with its parame-
ters) has been identified, its statistics properties can be exploited to find a pair
〈bound, coverage〉 that will satisfy the coverage objective for the assumed bound
throughout the execution. Compared to the method defined in Casimiro & Veris-
simo (2001), the pair obtained with our approach is better, since the coverage
stability objective can be reached using tighter (and thus lower) bounds during
periods of system stability.

3.4 The adaptation approach

As introduced in Section 3.2, we assume an interleaved stochastic behavior of the en-
vironment, i.e., we consider that the system alternates stable periods, during which the
statistical process that generates the data flow is under control and we can compute
the corresponding distribution using an appropriate number of samples (history), with
transient periods, in which the environment conditions are changing, then the associ-
ated statistical process is actually varying and no fixed distribution can describe its real
behavior.

Our approach for dependable adaptation works as follows. During transient peri-
ods, a conservative approach is adopted, by setting the pair 〈bound, coverage〉 using
the one-sided inequality of probability theory (Allen, 1990), as in Casimiro & Veris-
simo (2001). The computed bound is a conservative value that holds for all distri-
butions. As soon as a stable phase is detected, which is equivalent to being able to

37

3. ADAPTING FOR DEPENDABILITY

identify a probability distribution that describes the analyzed history within some pre-

defined error margin, an improved (lower) bound can be computed according to the

identified distribution. Both conservative and improved bounds are safe from the per-

spective of securing the coverage stability property.

The mechanisms that are used to identify proper probability distributions, and thus

stable phases, are based on mathematical and statistical methods for the analysis of

sample input data. We call them phase detection mechanisms, since they implicitly

indicate if the environment is in a transient or in a stable phase: they test the history of

measured samples against a finite set of probability distributions in order to determine

the best fitting distribution. In reality, even if no distribution is detected, it is still

possible for the system to be stable, but its behavior is described by some distribution

not considered in the mechanisms. However, since we cannot test for all probability

distributions, if the analyzed history does not fit in any of the considered distributions,

the environment is assumed to be in a transient period.

The phase detection mechanisms must be continuously executed, processing new

incoming data, and producing indications of the actual state of the environment. Con-

sequently, time bounds are also continuously produced, and continuously changing,

even if the environment remains in a stable phase. This directly results from small

changes in distribution parameters, steaming from the continuous update of the set of

sample values used in the analysis, which does not necessarily imply a phase change.

In other words, every time a new observation of the stochastic variable is obtained,

the history is updated and a new bound is computed. This means that several bounds

are provided throughout a single phase (either stable or transient), due to variations in

parameters that are derived from the history. In that sense, even when the environment

changes, if this change is smooth enough, it is possible that distributions and their cor-

responding parameters are continuously adjusted according to new incoming samples

in a way that the characterization remains stable.

Figure 3.1 shows how our adaptation process operates with the help of an example

scenario, identified by the following temporal events:

• Before time T0 the environment is stable and improved bounds are computed

according to the detected probability distribution.

38

3.4 The adaptation approach

Bound

Environment

T0 T1 T2 T3 T4 T5 T6

Changing Stable

Unsafe Improved safeConservative safe

“transient environment”

detection time

“stable environment”

detection time

T7

Figure 3.1: Adaptation operation.

• At time T0 the environment starts to change. The current assumed bound, com-
puted for the previous stable period, is no longer safe (we discuss this situation
in detail below).

• At time T1 the phase detection mechanisms detect the transient phase and the
bound is updated to a safe but conservative value as in Casimiro & Verissimo
(2001). This bound varies during the transient phase as new samples are ob-
tained, following the conservative approach.

• At time T2 the environment reaches a new stable phase.

• At time T3 the phase detection mechanisms start identifying the stable phase.
During the stable period, improved bounds (tailored for the corresponding dis-
tribution) can be continuously computed, as new samples from this phase are
collected.

• At time T6 the environment conditions start changing again.

• At time T7 the phase detection mechanisms detect that the environment is chang-
ing and the bound is set to a new conservative safe value, and so on.

Note that there is an alternation of periods during which the bound is unsafe
([T0;T1]), safe but conservative ([T1;T3]), and improved and safe ([T3;T6]). Note
also that the relative lengths of the represented intervals do not reflect reality. The
objective is just to exemplify the alternation of phases, not their durations. Given the
alternation of these phases, the effectiveness of our approach clearly depends on: (i)

39

3. ADAPTING FOR DEPENDABILITY

the “stable environment” detection time, which is the time needed to detect that the

environment has reached a new stable configuration; and (ii) the “transient environ-

ment” detection time, which is the time that it takes to detect that the environment is

changing.

The “stable environment” detection time does not affect the correctness of our ap-

proach: while stability is not detected, the application will rely on a conservative but

safe bound, which means that the system dependability is not compromised. The only

problem caused by a large “stable environment” detection time is that the conservative

bound has a negative impact on the system performance, which could be improved if

a better (improved safe) bound was used.

The “transient environment” detection time is particularly important. During the

unsafe periods, the environment is changing but the bound is tailored for a particular

set of conditions that does not hold anymore. In other words, the “transient environ-

ment” detection time has direct impact on the dependability of adaptation. In real

environments it is not possible to a priori quantify the impact of detection time on the

achievable dependability. However, it is possible to measure the achieved coverage in

order to verify if the requirements are satisfied (which we do in our evaluation in Chap-

ter 4) and, provided that the stated assumptions are met, this impact will be negligible.

If the ratio between the duration of safe periods ([T1;T6]) and unsafe periods ([T0;T1])

is large enough, then the long term assurance of the coverage stability property can be

guaranteed. Therefore, to prevent that the impact of unsafe periods compromises the

dependability of the proposed solution, two conditions must be fulfilled:

• The system must be stable for sufficiently long periods of time. This is precisely

what we state in the sufficient stability assumption (see Section 3.2) and therefore

this may be considered as given by assumption.

• The “transient environment” detection time must be just as small as needed to

ensure the large ratio mentioned above. This is achieved both by construction

(e.g., implementing phase detection mechanisms with fast reaction to variations)

and based on the assumption of sufficient activity (i.e., there will be enough

observation points to ensure a fast detection).

40

3.5 Securing dependability

In summary, the conditions above state that our approach requires sufficient stabil-

ity from networks and sufficient activity from applications, which leads to the follow-

ing question: how much is sufficient? This question is discussed in the next section,

where we assess the necessary conditions to ensure the correctness of the proposed

methodology.

3.5 Securing dependability

Our approach for dependable adaptation relies on assumptions about network stability

and application activity, that we presume to be “sufficient”. Despite being difficult or

even impossible to verify if these assumptions are met in some real system, we believe

that understanding their correlation and influence on the dependability assurance may

help system designers to properly configure their applications, taking full advantage

of the adaptation process. For the analysis presented in this section, we consider the

following:

• A time-related stochastic variable X is monitored. X takes value xi at time ti.

X values are measured and used to fill the history of samples, which is further

analyzed by the phase detection mechanisms.

• At time ti there is an upper bound bi on X , which must hold at least with cov-

erage Cmin (given by the client application). This bound is adjusted in runtime

according to the output of the phase detection mechanisms, in order to secure

the required coverage Cmin.

• The history of samples has a fixed size h. Whenever a new sample xi is mea-

sured, the history is updated by removing the oldest sample and adding the new

one. The updated history is then analyzed by the phase detection mechanisms,

and a new bound bi is computed.

• A timing fault occurs at time ti if X takes a value xi which is higher than the

current (last computed) bound bi−i.

41

3. ADAPTING FOR DEPENDABILITY

• The observed coverage C is then a function of timing faults and the total number

of observations (measured samples of X):

C = 1− number of timing faults
number of measured samples

• We say that the system is dependable in a given observation interval if the

achieved coverage during this time interval is at least as high as the required

coverage:

C ≥ Cmin

Clearly, system dependability depends on the number of timing faults. Thus, it is

fundamental to understand the conditions that lead to these faults. A timing fault may

be caused by two different factors:

1. A bound bi (computed at time ti) is required to hold with coverage Cmin. Thus,

there is a probability P = 1− Cmin that, at time ti+1, X takes a value xi+1 that

is higher than bi, producing a timing fault. Note that this may occur during a

period of system stability: it is only related to the required coverage.

2. If the system starts to change at time ti+i, the current bound bi is no longer safe,

since it was computed for stable conditions that are not verified anymore. Then,

it is possible that X takes a value xi+1 which is higher than bi, causing a timing

fault. In fact, while the phase detection mechanisms are not able to detect that

the system is changing (“transient environment” detection time), the possibility

of timing faults remains.

In the first case, timing faults can be seen as expectable, given the coverage that is

specified by the client application. They are acceptable faults, under the probabilistic

perspective we assume in this work. In order to minimize these faults, the application

should require a higher coverage.

In the second case, timing faults derive from changes in the environment. As we

cannot anticipate when the environment will start to change, those timing faults are

42

3.5 Securing dependability

unavoidable. The best we can do is to minimize the number of those faults by imple-

menting mechanisms with fast reaction to changes. As discussed in the previous sec-

tion, the “transient environment” detection time must be as small as possible. Take as

example a history composed by h samples, all of them collected during a stable phase,

which is detected by the phase detection mechanisms. Then, the environment starts

to change. New observations from this transient period will be periodically collected

and added to the history. This means that during a period of time (until h observations

from the transient phase are obtained) the history will be composed by samples from

both the previous stable and the current transient phases. Since the phase detection

mechanisms are re-executed every time a new sample is added to the history, at some

point, the history will have enough observations from the transient period, so the phase

detection mechanisms will correct the characterization from stable (previous phase)

to transient (current phase). The more observations are required to make this correc-

tion, the longer will be the “transient environment” detection time. Thus, in order to

reduce the number of faults derived from environment changes, it is necessary to mini-

mize the number of observations that must be in the history so that the phase detection

mechanisms are able to detect that a transient period has started.

As timing faults caused by environment changes are unavoidable, the maximum

coverage that can be secured by our approach is limited. Assuming that the phase

detection mechanisms require n observations from a transient period in order to detect

the changing environment and compute a conservative safe bound, the upper bound on

the securable coverage CU is:

CU = 1− number of transient periods× n
number of measured samples

In the best possible solution, one sample from a transient period in the history

would be enough to recognize that the system is no longer stable (n = 1). Interest-

ingly, in our practical experiments presented in the next chapters we could observe that

usually our approach does not produce consecutive timing faults, which suggests that

our phase detection mechanisms are as reactive as possible, detecting transient periods

from a single sample in the history. In terms of real time, the ‘transient environment”

detection time will be dictated by the application activity - the detection will happen

as soon as a new sample is measured.

43

3. ADAPTING FOR DEPENDABILITY

While we realize that it is not possible for the application designer to quantify how

many times the environment will suffer significant changes, we also believe that the

discussion above is relevant to understand how system dependability is affected by the

environment dynamics and applications activity. In a real system, assuming that our

mechanisms are correct, if the coverage is not secured, it means that the environment

is more dynamic than it was expected. In this case, a possible solution would be to

increase the application activity or artificially create activity (despite other negative

effects that could arise). By doing that, the stochastic variable would be sampled more

frequently, improving the achieved coverage. Obviously, there is a limit for the number

of measurements an application can perform in a given period of time. When system

activity cannot be increased and the environment dynamics does not allow to secure

the required coverage, it means that the sufficient stability assumption does not hold,

and thus our solution is not applicable to that environment.

3.6 Summary

In this chapter we addressed the problem of supporting adaptive systems and appli-

cations in stochastic environments, from a dependability perspective: maintaining the

correctness of system properties after adaptation. Therefore, while other works ad-

dressing adaptive systems are mainly concerned with performance, our main concern

is dependability.

The concepts and methodology for dependable adaptation presented in this chapter

constitute the basis of our work. Although it is not possible to know, a priori, if

our assumptions (particularly “sufficient stability” and “sufficient activity”) are met in

real systems, we discussed and analyzed the necessary conditions for the correctness

of our approach. Furthermore, through this analysis we were able to establish the

theoretical upper bound on the securable coverage in terms of environment stability

and application activity.

In the next chapter we introduce and evaluate Adaptare, a framework for supporting

dependable adaptation, which implements the methodology proposed in this chapter.

44

3.6 Summary

Notes

An early version of our methodology for dependable adaptation, containing parts of
the theory presented in this chapter, appeared in “A framework for dependable QoS
adaptation in probabilistic environments”, Dixit, Casimiro, Verissimo, Lollini, and
Bondavalli, “Proceedings of the 23rd ACM Symposium on Applied Computing”, For-
taleza, Brazil, March 2008 (Casimiro et al., 2008).

This theory, in particular the model proposed in this chapter, was described
in “Adaptare: Supporting automatic and dependable adaptation in dynamic envi-
ronments”, to appear in “ACM Transactions on Autonomous and Adaptive Sys-
tems” (Dixit et al., 2011).

45

Chapter 4

Adaptare

In this chapter we present Adaptare - a complete framework that implements the ideas

for automatic and dependable adaptation presented in the previous chapter. The chap-

ter is composed by four main sections. Section 4.1 presents Adaptare’s architecture.

Algorithms and implementation details are discussed in Section 4.2. The API that

allows for Adaptare’s integration with client applications is described in Section 4.3.

The modular design of Adaptare makes it easily extensible, thus it is possible to add

new mechanisms and algorithms according to system requirements. However, our im-

plementation is complete enough to be successfully applied in a variety of systems, as

we demonstrate in Section 4.4. Our evaluation is based on synthetic data flows gener-

ated from probability distributions, as well as on real data traces collected in various

Internet-based environments. We also compare our solution with other approaches for

adaptation and we show that Adaptare, albeit more complex, is very effective, allowing

protocols to adapt to the available resources in a dependable way.

4.1 Architecture

Adaptare is a framework developed to support adaptive systems and applications oper-

ating in stochastic environments, driving the adaptation process according to depend-

ability requirements specified by the client applications.

47

4. ADAPTARE

Bound computation

Adaptare

h
is

to
ry

 s
a
m

p
le

s
Probabilistic characterization

Run-time input data

samples

Dependability related input parameters

history size coverage

Output
New bound

Figure 4.1: Adaptare overview.

Figure 4.1 presents an overview of Adaptare’s operation. Three parameters must
be provided at the framework interface:

• samples: recent measurements of the monitored temporal variable;

• history size h: number of samples that will be analyzed by the framework; and

• coverage: required coverage for the computed bound, which is the probability
that this bound will hold given the current system conditions.

Then, Adaptare performs a probabilistic analysis of the samples in the history, in
order to determine an upper bound on the observed variable with the given coverage.
This upper bound is returned to the client application.

Probabilistic characterization. Adaptare employs a set of statistical methods for
the analysis of input samples in order to determine whether the system is in a stable
period and, if this is true, which probability distribution better describes the current
state.

Bound computation. Once the environment characterization is completed, Adaptare

is able to compute a new dependable upper bound for the observed variable. For sta-
ble phases, this bound is derived from the cumulative distribution function (CDF) of
the identified probability distribution. During transient periods, Adaptare computes a
conservative bound which holds for all distributions.

48

4.2 Implementation

� � � � � � � � 	
 � � � � �
 � � � 	 � � � � � � �

� � �
 � � � � � � �

� � �
 � � � � � � �

� � �
 � � � � � � �

�
 � � � � � � � � � � � 	 �
� � �
 � � � � � �

�	
��

���
���

��
�	�

�

��
��

���
	
�

��

� � � � � � �
�

� � � � � � � 	 � � � 	 � � �

� 	 � � �
� � � � � � � � �
� � � � � � � 	 � �

� � � � � � � � �
� � � � � � � � � �

� ! � � � � � � � � � � � � � � �

� � � � � � �
�

� � � � � � �
"�
 � � � �

� � � � � �

��
��

��
�
�

	�

�	
��

�

� � � � �

��
���

���
���

���
��

�	�
�

� � � � � � �
�� � � � � � �

�

� � � � � � �
�

� � � � � � �
�

Figure 4.2: Adaptare’s architecture.

The scheme depicted in Figure 4.2 shows the architecture of Adaptare. Internally,

the service admits the use of several phase detection mechanisms, as well as several

bound estimators, corresponding to different probability distributions. This openness

creates the possibility of extending the framework with different phase detection mech-

anisms, as well as probability distributions which are found to be more suitable to some

specific environment. Because of these possible multiple phase detection mechanisms,

several bounds may be selectable as candidates to the output value. Therefore, a se-

lection logic must be implemented to choose only one of the available bounds. The

following section addresses the implementation of all these internal mechanisms.

4.2 Implementation

4.2.1 Phase detection mechanisms

We implemented two goodness-of-fit (GoF) tests as phase detection mechanisms: the

Kolmogorov-Smirnov (KS) test and the Anderson-Darling (AD) test. GoF tests are

formal statistical procedures used to assess the underlying distribution of a data set.

A stable period with distribution F is detected when some GoF tests establish the

49

4. ADAPTARE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

CDF F(x)

ECDF F’(x)

distance F(x) to F’(x) < threshold ?

Figure 4.3: GoF distance test operation.

goodness of fit between the postulated distribution F and the evidence contained in

the experimental observations (Trivedi, 2002). Both AD and KS are distance tests

based on the comparison of the cumulative distribution function (CDF) of the assumed

distribution F and the empirical cumulative distribution function (ECDF), which is a

CDF built from the input samples, as shown in Figure 4.3. If the assumed distribution

F is correct, its CDF closely follows the empirical CDF (the “distance” between them

is less than a given threshold).

Each phase detection mechanism performs the following steps:

1. Given a sample of size n, order the sample points to satisfy x1 ≤ x2 ≤ ... ≤ xn;

2. Assume a distribution F with CDF F0(x) (the parameters of the postulated distri-

bution F are previously estimated using the methods described in Section 4.2.2);

3. Compute the method statistic Sm;

4. If Sm ≤ sn;α, the test accepts that the sample points follow the assumed distri-

bution F with significance level α, and a stable phase is detected. Otherwise, a

transient phase is detected. In hypothesis testing, the significance level defines

the probability of rejecting the null hypothesis when it is correct. In the context

50

4.2 Implementation

of Adaptare, the null hypothesis is that the analyzed data follows the assumed

distribution F , thus α is the probability that a stable period is wrongly recog-

nized as a transient one. The value of sn;α is obtained from published tables of

critical values (existing for both KS and AD tests).

The statistic Sm for the KS method is known as Dn, and it is computed as:

Dn = max
x
|F̂n(x)− F0(x)|,

where F̂n(x) is an empirical distribution function built from the history samples:

F̂n(x) =
number of values in the history that are ≤ x

n
.

For the AD method, the statistic is known as A2, and it is calculated as:

A2 = −n− S,

where:

S =
n∑
i=1

(2i− 1)

n
[lnF0(xi) + ln(1− F0(xn+1−i))].

Both algorithms described above assume a probability distribution F and verify if

the given sample points come from this distribution. The significance level used by

Adaptare in both AD and KS tests is α = 0.01, which means that there is a proba-

bility of 1% that a stable phase following one of the considered distributions is not

detected. This is the lowest significance level in the tables of critical values, thus the

confidence on the stability detection provided by Adaptare is as high as possible. We

test five distributions: exponential, shifted exponential, Pareto, Weibull and uniform.

The set of distributions was defined based on other works that address the statistical

characterization of network delays, e.g., Bolot (1993); Downey (2001); Hernandez &

Phillips (2006); Markopoulou et al. (2006); Papagiannaki et al. (2003); Tickoo & Sik-

dar (2004). Note that the framework can be extended to be able to deal with more

distributions, if they are appropriate for the random variable which will be analyzed.

If the phase detection mechanisms do not identify a stable phase with any of the tested

51

4. ADAPTARE

distributions, they assume that the environment is changing and a transient phase is

detected.

The main advantage of the KS test in comparison to the AD test is that the critical

values for the KS statistic are independent of specific distributions: there is a single

table of critical values, which is valid for all distributions. However, the test has some

limitations: it tends to be more sensitive near the center of the distribution than at the

tails, and if the distribution parameters must be estimated from the data to be tested

(which is what we do in our implementation), the results can be compromised (Jain,

1991). Due to this limitation, there are some works that propose different KS critical

values to specific distributions with unknown parameters, which are estimated from

the sample. In our experiments with the KS test we used these modified tables for the

exponential and shifted exponential (Trivedi, 2002), Pareto (Porter et al., 1992) and

Weibull (Evans et al., 1989) distributions. However, the modified KS tables for the

Weibull, exponential and shifted exponential distributions do not have critical values

for a history size higher than 30. Thus, in these cases (h > 30), the standard KS

table (Trivedi, 2002) is used. Regarding the Pareto distribution, the table of critical

values presented in Porter et al. (1992) is limited to a set of shape parameters in the

interval [0.5, 4.0]. If the estimated shape parameter is within this interval, it is rounded

for the closest defined value and the modified table is applied. Otherwise, the standard

KS table is used. The test for the uniform distribution is also performed using the stan-

dard KS table, since, to our knowledge, there is no modified table for this distribution

in the literature.

In the AD test, there is no problem in estimating the distribution parameters from

the sample points. However, this test is only available for a few specific distributions,

since the critical values depend on the assumed distribution and there are published

tables for only a limited number of distributions. AD critical values for the Weibull

distribution can be found in Stephens (1976). For the exponential and shifted expo-

nential distributions, we implemented the modified statistic and used the critical val-

ues proposed in Stephens (1974). Like in the KS test, AD critical values for the Pareto

distribution are limited to shape parameters in the interval [0.5, 4.0]. Considering that

there is no general table of AD critical values (independent of the tested distribution),

if the estimated shape parameter is not in this interval, the AD phase detection mecha-

52

4.2 Implementation

nism does not test the Pareto distribution. Finally, critical values of the AD test for the

uniform distribution are presented in Rahman et al. (2006).

The tables of critical values for both KS and AD tests used in Adaptare are pre-

sented in Appendix A.

For a given input sample, it is possible that a phase detection mechanism identifies

more than one distribution, due to similarities between distributions, and uncertainty

of the statistical methods and parameters estimation. In those cases the mechanisms

return the detected distribution with the lowest statistic value, which means that the

sample data are closer to that distribution.

4.2.2 Parameters estimators

Both KS and AD tests need to estimate distribution parameters in order to execute

their statistical tests. There are various methods, both numerical and graphical, for

estimating the parameters of a probability distribution. From a statistical point of view,

the method of maximum likelihood estimation (MLE) is considered to be one of the

most robust techniques for parameter estimation.

The principle of the MLE method is to select as an estimation of a parameter θ

the value for which the observed sample is most “likely” to occur (Balakrishnan &

Basu, 1995; Trivedi, 2002). We applied this method to estimate exponential, shifted

exponential, Pareto and uniform parameters. For the Weibull distribution, the MLE

method produces equations that are impossible to solve in closed form: they must be

simultaneously solved using iterative algorithms, which have the disadvantage of being

very time-consuming. Since execution time is an important factor in our framework,

we decided to estimate Weibull parameters through linear regression, instead of using

MLE. We implemented the method of least squares, which requires that a straight line

be fit to a set of data points, minimizing the sum of the squares of the y-coordinate

deviations from it (Trivedi, 2002).

Table 4.1 presents the equations for parameters estimation, where {t1, t2, ..., tn} is

the ordered sample history. To estimate Weibull parameters, consider that xi = ln(ti),

yi = ln(− ln(1−F (ti))), and F (xi) = (i−0.3)/(n+0.4) (approximation of the median

rankings). These equations are derived from the Weibull CDF, using the method of

53

4. ADAPTARE

Distribution Parameters estimators

Exponential λ̂ = 1
t̄

Pareto
k̂ = tmin

α̂ = n∑n
i=1 ln

ti
k̂

Shifted Exponential
λ̂ = n (t̄−tmin)

n−1

γ̂ = tmin − γ̂
n

Weibull
γ̂ =

∑n
i=1 xiyi−

∑n
i=1 xi

∑n
i=1 yi

n∑n
i=1 x

2
i−

(
∑n
i=1

xi)
2

n

α̂ = e−
ȳ−γ̂t̄
γ̂

Uniform
â = tmin

b̂ = tmax

Conservative
ˆE(D) =

∑n
i=1 ti
n

ˆV (D) =
∑n
i=1(ti−t̄)2

n−1

Table 4.1: Parameters estimators.

regression on Y. Due to its complexity, we will not present the derivation process in

this document, but a complete explanation can be found in ReliaSoft (2006).

4.2.3 Bound estimators

Depending on the output of the phase detection mechanisms, one of the bounds com-

puted by the implemented bound estimators will be selected as the Adaptare output.

The current implementation has six bound estimators, as shown in Table 4.2: the con-

servative one, which is based on the one-sided inequality of probability theory (Allen,

1990), and provides a conservative bound which holds for all probability distributions;

and estimators for the exponential, shifted exponential, Pareto, Weibull and uniform

54

4.2 Implementation

Distribution CDF Minimum bound t

Exponential FX(t) = 1− e−λt t = 1
λ

ln 1
1−C

Pareto FX(t) = 1− (k
t
)λ t = k

λ√1−C

Shifted Exponential FX(t) = 1− e
(−t+γ)

λ t = γ + λ ln 1
1−C

Weibull FX(t) = 1− e−(t
λ

)γ t = λ γ

√
ln 1

1−C

Uniform FX(t) = t−b
b−a t = C(b− a) + a

Conservative N/A t = E(D) +
√

V (D)
1−C − V (D)

Table 4.2: Bound estimators for a required coverage C.

distributions.

The bound estimators are derived from the distributions’ CDF. We recall that the

CDF represents the probability that the random variable X takes on a value less than

or equal to x (for every real number x):

FX(x) = P (X ≤ x)

Our objective is to ensure that a given bound is safe, i.e., that the real delay will

be less than or equal to the assumed bound, with a certain minimum probability (the

expected coverage). Thus, in the CDF function, X is the observed delay, x is the

assumed bound provided by the framework, and FX(x) is the expected coverage. For

example, the exponential CDF is:

FX(x) = 1− e−λx = C

For a given coverage C, a safe bound for the exponential distribution can be com-

puted by isolating x:

x =
1

λ
ln

1

1− C

55

4. ADAPTARE

4.2.4 Selection logic

As explained in Section 4.2.1, the phase detection mechanisms are individually exe-

cuted and each one indicates the environment condition and returns one distribution

which best characterizes the analyzed history whenever a stable phase is detected. The

selection logic receives these results and is responsible for selecting one of them as the

output of the framework (see Figure 4.2). Since our objective is to produce improved

safe bounds, Adaptare returns the lowest bound to the client application.

4.3 Adaptare as a service

The current implementation of Adaptare is freely available as a library

in http://www.navigators.di.fc.ul.pt/software/Adaptare.jar.

We defined a very simple programming model, in order to facilitate the integration

with client applications. Thus, Adaptare can be easily used as a monitoring service for

supporting dependable adaptation, as a plug-and-play solution. The library encapsu-

lates the framework functionalities, which are provided to client applications through

a well-defined API (Application Programming Interface), as follows:

• static double GetBound(double cov, int h, double[] samples)

For specific cases in which an application needs to use the service only sporadi-

cally, it does not need to register as a client. It should invoke this static method,

providing the required coverage, the history size and the sample points. The

service will calculate a new bound and return it to the application.

• int register()

This method registers the calling application as a service client, returning a

unique identifier (for this service instance) that should be provided by the ap-

plication to perform other operations. Applications are required to implement

a simple interface in order to be registered as a client of this service. This is

an implementation of the Observer design pattern (Gamma et al., 1995), and is

required for the notification of QoS changes.

56

4.4 Results and evaluation

• double getBound(int id, double cov, int h)

This function returns a new bound to be used by the calling application. It re-
ceives as input the application identifier (so the service can determine the sample
points which belong to this application), the expected coverage and the number
of most recent sample points that should be used to compute the new bound.

• void notifyQoSChanges(int id, double minCov, double maxCov, int h, double

bound)

If an application wants to be notified about QoS changes, it should use this non-
blocking function, providing its identifier, the acceptable coverage interval (min-
imum and maximum expected coverage), the history size and the current bound
that is being used. The relation between the history size and the frequency of
sample provision is a responsibility of the application. Whenever the adaptation
service perceives that the coverage of this application is out of the specified in-
terval, it will produce a new secure bound and return to the application by calling
a function from the interface that clients must implement.

• double addSamples(int id, double[] samples)

A registered application can add one or more sample points to its history by call-
ing this function. If the application did not ask to be notified about QoS changes
(by calling the notifyQoSChanges function), this function will just add the sam-
ple points and return −1. Otherwise, the service will verify if the coverage of
the current bound used by this application is within the desired interval. If it is
not, a new secure bound will be produced and sent to the application, and the
service will associate this new bound to this application.

4.4 Results and evaluation

One of the objectives of our work is to show the possibility of having a component
which is able to characterize the current state of the environment and, based on de-
pendability requirements, infer how time-related bounds should be adapted.

In the previous sections we have introduced Adaptare, describing its objectives,
functionalities, implemented methods and algorithms. This section presents a set of

57

4. ADAPTARE

results obtained with this framework, and a systematic evaluation focusing on the fol-
lowing main points:

• Validation of our implementation and demonstration of the correctness of the
phase detection mechanisms by comparing their ability to characterize the cur-
rent conditions of the environment using controlled traces, synthetically pro-
duced;

• Quantification of Adaptare’s achievements by determining the real effectiveness
and improvements obtained, using real RTT (round-trip time) traces;

• Quantification of Adaptare’s overhead through a complexity analysis of the im-
plemented algorithms and measurements of the effective latencies using typical
computing platforms;

• Performance comparison of Adaptare with other well-known solutions for the
problem of dynamically adapting time-related variables.

4.4.1 Analysis of the phase detection mechanisms

In this first part of our evaluation, we tested our framework using synthetic data traces
in order to analyze the correctness of the AD and KS phase detection mechanisms. We
generated 10 traces of 3000 samples, for each one of the five considered distributions
(i.e., a total of 50 traces). The distributions parameters were configured according to
Table 4.3.

Adaptare was executed for each trace using the phase detection mechanisms indi-
vidually. For these executions, we defined the minimum required coverage C = 98%,
and history size h = 30 samples. According to the experiments with real traces pre-
sented in Section 4.4.2, this history size (h = 30) produces the best overall results.
Moreover, the significance level (α) of both phase detections mechanisms, which de-
fines the probability of not detecting a stable phase, was set to α = 0.01. We specified
four metrics to compare the AD and KS goodness-of-fit tests:

• Stability detection: percentage of the samples that were detected as stable
phases;

58

4.4 Results and evaluation

Traces
Exponential Shifted Exp Pareto Weibull Uniform
(λ) (λ, γ) (λ, k) (λ, γ) (a, b)

1 0.8 0.8, 100 1.0, 1.0 1.0, 2.0 10, 20
2 1.6 1.6, 200 1.4, 2.0 1.4, 2.5 20, 40
3 2.4 2.4, 300 1.8, 3.0 1.8, 3.0 30, 60
4 3.2 3.2, 400 2.2, 4.0 2.2, 3.5 50, 100
5 4.0 4.0, 500 2.5, 5.0 2.5, 4.0 70, 140
6 4.8 4.8, 600 2.8, 6.0 2.8, 4.5 80, 160
7 5.6 5.6, 700 3.1, 7.0 3.1, 5.0 100, 200
8 6.4 6.4, 800 3.4, 8.0 3.4, 5.5 200, 400
9 7.2 7.2, 900 3.7, 9.0 3.7, 6.0 300, 600

10 8.0 8.0, 1000 4.0, 10.0 4.0, 6.5 500, 1000

Table 4.3: Parameters used to generate the synthetic data traces.

• Detection correctness: percentage of the samples characterized as stable phases

in which the framework detected the correct distribution. Given that in this phase

of the evaluation we used synthetic traces generated from known distributions,

we are able to quantify the correctness of the mechanisms;

• Coverage: achieved coverage, which corresponds to the number of measured

samples whose value is less than or equal to the computed bound, divided by the

total number of samples;

• Improvement of bounds: improvement obtained by our approach in comparison

with the conservative solution proposed in Casimiro & Verissimo (2001). It

represents the percentage of reduction of the conservative bounds, obtained when

using Adaptare’s bounds.

The above metrics can be analyzed when using synthetic traces generated from

stable and fixed distributions. On the other hand, other metrics that could have been

considered, like “stable environment” and “transient environment” detection times,

would have required synthetic traces with both stable and transient periods. Although

it would have been possible to create several synthetic scenarios with varied dynamics,

they would not cover all the cases. The evaluation would always be partial and it would

not be possible to derive any generic conclusion. For our purposes, it was enough to

perform a basic comparison of the GoF tests in steady situations to conclude that there

59

4. ADAPTARE

Distribution
Stability det. Det. correct. Improvement Coverage

AD KS AD KS AD KS AD KS
Exponential 94.53 93.53 98.64 99.19 20.16 19.90 99.58 99.59
Shifted exp. 98.98 99.07 99.18 63.04 1.98 2.12 99.10 98.96

Pareto 76.26 81.75 72.96 78.41 23.62 27.20 98.33 98.25
Weibull 98.43 97.86 79.88 92.63 32.57 35.35 99.41 99.34
Uniform 55.57 48.39 94.82 70.58 9.60 7.50 100.00 100.00

Table 4.4: Comparing phase detection mechanisms using synthetic data traces.

is not a single best GoF test for all distributions. This is clear from the results in
Table 4.4. The performance of each mechanism depends on its intrinsic features and
on the distributions characteristics.

Regarding the considered metrics, we should note that the detection correctness

metric can only be measured with synthetic traces (since we know the actual distribu-
tion). Because of this, only the other three metrics are used in the evaluation with real
traces, presented in Section 4.4.2.

The most important result to be observed based on the values in Table 4.4 is that
the two main objectives of Adaptare were achieved for all distributions by both mech-
anisms: the bounds were improved (up to 35%) and the minimum required coverage
(98%) was secured. In order to fully understand the presented values, it is necessary to
perform a more detailed analysis, separated by distribution.

In the experiments with exponential traces, both mechanisms reached excellent and
very similar results: they detected stability in more than 90% of the samples, and cor-
rectly characterized almost all of these stable points as exponentially distributed. This
significant rate of exponential detection allowed a reduction of approximately 20% in
the bounds computed by our framework (comparing with the conservative bounds).

Regarding the shifted exponential distribution, almost all points were detected as
belonging to stable phases by the two mechanisms. However, the KS mechanism made
incorrect characterizations (recognizing other distributions instead of the shifted expo-
nential) in more than 35% of these points. There are at least two factors that can
lead to these mistakes: the inherent uncertainty associated with parameters estimation
and the probabilistic mechanisms, and the similarities between the tested distributions
(e.g., every exponential distribution is also a Weibull distribution with λ = 1), which
is interesting in order to verify the precision of the implemented mechanisms, but also

60

4.4 Results and evaluation

increases the possibility of inaccurate detection. Despite all these uncertainties, the

characterization was correct in the majority of the sample points. Another important

observation in the shifted exponential results is that while there was a high rate of sta-

bility detection, the improvement of bounds was not significant (2%), showing that the

bounds produced by Adaptare to the shifted exponential distribution are very close to

the conservative bounds.

The tests with Pareto traces presented the lowest rate of correct detection among

all distributions. This is due to the technical limitation explained in Section 4.2.1: both

mechanisms have Pareto critical values only for a small set of shape parameters. Thus,

besides the uncertainty already present in the parameter estimation, this estimator is

rounded to one of these pre-defined values, compromising the accuracy of the char-

acterization. However, even with this limitation, the improvement of bounds for the

Pareto traces was very significant (about 25% on average).

Both mechanisms presented very good results in the experiments with Weibull

traces. Excellent rate of stability detection (more than 95%), good distribution charac-

terization (80% - 90%) and the best rate of improvement of bounds (up to 35%). These

are the best overall results among the tested distributions.

Finally, the results of the tests using uniform traces show that the stability detec-

tion for this distribution is the more conservative: around 50%. The AD test correctly

characterized these sample points as uniformly distributed in 94.82% of the cases.

However, we did not obtain the same results with the KS test, which is a good example

of the KS limitation: estimating parameters from the sample is not adequate when ap-

plying the standard test, which we do for the uniform distribution, since we did not find

a modified table of KS critical values for it. Consequently, this test failed in detect-

ing the uniform distribution in approximately 30% of the stable points. Nevertheless,

both mechanisms obtained almost 10% of improvement in the produced bounds, while

ensuring a coverage of 100%.

Detecting wrong distributions may lead to a lower coverage, compromising the

dependability of Adaptare. For example, we observed that the bounds produced for

the shifted exponential distribution are very close to the conservative bounds, while

the bounds produced for the Weibull distribution are more aggressive, with improve-

ments of at least 30%. Thus, if a trace that follows a shifted exponential distribution

is wrongly characterized as a Weibull trace, the produced bounds may be lower than

61

4. ADAPTARE

the measured samples, decreasing the coverage. However, our results show that despite

the inherent errors in the characterization (due to similarities between distributions, and

statistical uncertainties on the parameters estimation), Adaptare secures the expected

coverage, i.e., the rate of mistakes is low enough not to compromise the dependability

of our approach.

From these results, we conclude that it is possible to define effective mechanisms to

detect stable and transient phases and, for the stable ones, correctly characterize the

observed probability distribution.

4.4.2 Validation using real RTT measurements

This section presents a set of experiments based on real data, in order to show that

our assumption about the interleaved stochastic behavior is realistic for network de-

lays in different environments, and to demonstrate that Adaptare is able to characterize

these behaviors and provide applications with improved and dependable bounds. We

selected data traces freely available in the Internet, composed by measurements col-

lected in different wired and wireless networks, and extracted RTT traces from them

using the tcptrace tool. These RTT traces have been provided as input to Adaptare

(they constitute the “input samples” of Figure 4.2). Data traces were gathered from the

following sources:

• Inmotion: Traceset of TCP transfers between a car traveling at speeds from 5

mph to 75 mph, and an 802.11b access point. A complete description of the

environment, hardware and software used to generate this traceset can be found

in Gass et al. (2006). We downloaded the tcpdump files from Gass et al. (2005);

• Umass: A collection of wireless traces from the University of Puerto Rico. Con-

tains wireless signal strength measurements over distances of 500 feet and one

mile. For more information, see UMass Trace Repository (2006);

• Dartmouth: Dataset including tcpdump data for 5 years or more, for over 450

access points and several thousand users at Dartmouth College (Kotz et al.,

2004). Experiments details are discussed in Henderson et al. (2004);

62

4.4 Results and evaluation

Statistic (ms) Inmotion Umass Dartmouth LBNL RON
Average interval 4.42 0.39 118.97 19.34 124.45

Minimum interval 0.00 0.00 0.00 0.00 0.00
Maximum interval 2414.91 152.15 17504.08 946.42 1853.09
Standard deviation 26.16 2.06 555.35 40.79 160.66

Table 4.5: Samples statistics for each data source.

• LBNL: Packet traces from two internal network locations at the Lawrence

Berkeley National Laboratory (LBNL) in the USA, giving an overview of inter-

nal enterprise traffic recorded at a medium-sized site. These traces are available

to download in Paxson et al. (2007);

• RON: Traces containing thousands of latency and loss samples taken on the

Resilient Overlay Network (RON) testbed. More information can be found in

Andersen et al. (2001). The dataset is available at RON (2001).

For the tests with real traces, the phase detection mechanisms were executed in

parallel, as illustrated in Figure 4.2. The most important parameter that must be defined

by the framework’s clients is the history size. This parameter states the number of

most recently collected samples that are analyzed for the environment characterization,

which has a direct impact on the achievable results. For this reason, we conducted a

set of experiments with different history sizes for all traces. For these experiments we

have set the required coverage to C = 0.98, and selected four traces from each data

source. The size of these traces varied from 10000 to 50000 samples.

Table 4.5 shows some statistics for the interval between sample points from each

data source. These values indicate the system activity when the traces were collected,

which we assume to be sufficient for the characterization performed by Adaptare (see

“sufficient activity” assumption in Chapter 3). In any case, the results would confirm

if the assumption was correct. We can observe that for each data source, the interval

between samples varies during execution. There is also a significant variation among

data sources: e.g., in the Umass traces the measurements are more frequent (every

0.39 milliseconds on average), while Dartmouth and RON traces present much higher

intervals (more than 100 milliseconds).

63

4. ADAPTARE

0

10

20

30

40

50

60

70

80

90

100

10 30 50 100 140 200

history size (h)

S
ta

b
il
it

y
 d

e
te

c
ti

o
n

 (
%

)

Inmotion Umass Dartmouth LBNL RON

Figure 4.4: Stability detection.

The average results for each data source are presented in Figures 4.4, 4.5, and 4.6.

Average values are representative enough in our evaluation because stability detection

and coverage are measures of the entire trace, not individual samples. To achieve a

more consolidated view, the presented results are averaged over the four values ob-

tained for each of the traces of the given source, which were very similar. Within each

trace we observed significant differences between minimum and maximum bounds

produced by Adaptare over the entire trace. However, the variance is very small and,

for all traces, our experiments shown that a confidence interval of 95% for the com-

puted time bounds deviates from the average at most by 2%, making the average a

proper indicative of the overall results.

Figure 4.4 shows the average stability detection. Each sample in a trace is charac-

terized by Adaptare as either stable or unstable, thus the percentage of stable points in

the total of samples determines the stability detection for a given trace.

The effects of increasing the history size are clear on the obtained values: the larger

the history size is, the lower is the rate of detected stability points. Intuitively, what

happens is that we are dealing with traces from real environments, subject to uncertain

statistical processes, making it increasingly difficult to fit a large set of samples into

one specific distribution. Taking as given that data correlation is good enough for all

64

4.4 Results and evaluation

0

5

10

15

20

25

30

10 30 50 100 140 200

history size (h)

Im
p

ro
v
e
m

e
n

t
o

f
b

o
u

n
d

s
 (

%
)

Inmotion Umass Dartmouth LBNL RON

Figure 4.5: Improvement of bounds.

the considered history sizes (i.e., both the “sufficient stability” and the “sufficient ac-

tivity” assumptions hold), the inability of detecting stable phases when using higher

history sizes is explained by the fact that in real environments the stochastic behavior

is not “pure”, i.e., it does not strictly follow one well-defined probability distribution,

but approximates one or even more distributions. Therefore, fitting a big history into

one specific well-defined distribution becomes impossible, which does not mean the

environment is not stable, but rather that we are looking for “pure” (stable) distribu-

tions, that indeed are not there. On the other hand, fitting a small history into a specific

probability distribution that is close to the real distribution becomes feasible, allowing

the detection of stable phases (that exist in reality, but for approximate distributions).

This is the reason why the selection of an adequate history size has a considerable

impact on the results and is crucial.

Noting that the ability of correctly identifying stable phases is dependent on the

correlation between the samples (they need to be collected within a sufficiently small

interval of time), this result highlights the interdependence between the “sufficient

stability” and the “sufficient activity” assumptions, as discussed in Chapter 3. For

example, the Dartmouth and Inmotion traces have very similar stability detection, de-

spite the significant difference in system activity (while Inmotion traces have samples

65

4. ADAPTARE

0.94

0.95

0.96

0.97

0.98

0.99

1.00

10 30 50 100 140 200

history size (h)

A
c
h

ie
v
e
d

 c
o

v
e
ra

g
e

Inmotion Umass Dartmouth LBNL RON

Figure 4.6: Achieved coverage.

for each 4 milliseconds, Dartmouth samples were collected with an interval of 118

milliseconds on average). This means that the stable phases in the Dartmouth envi-

ronment were large enough to allow more sparse measurements (lower activity), while

still achieving the same results in terms of stability detection that we observed in the

Inmotion traces.

Figure 4.5 shows the improvement of bounds, which quantifies the reduction in the

time bounds obtained when using Adaptare, in comparison with the baseline conser-

vative solution proposed in Casimiro & Verissimo (2001).

The average coverage is presented in Figure 4.6. Each sample in the trace is

matched against the bound assumed at that moment, and if the RTT is higher than

the bound, a timing fault is accounted. The coverage of a given trace is defined by the

proportion of non-faulty samples (those that do not lead to timing faults), over the total

number of samples.

For large history sizes, the outcome of the lower rate of detected stability points

is that the average improvement of bounds is modest (Figure 4.5) – Adaptare com-

putes the conservative bound most of the time. On the other hand, if the history size

is too small, detection mechanisms will tend to incorrectly identify stable periods that

do not correspond to the real environment conditions. This erroneous behavior will

66

4.4 Results and evaluation

lead Adaptare to possibly select lower bounds than it should (depending on the identi-

fied distribution and the actual state of the environment), which may compromise the

dependability of our approach. This effect can be observed in our experiments with

h = 10: in the majority of the traces, they have the highest rate of stability detection

(Figure 4.4) and consequently the best improvement of bounds (Figure 4.5), but the

coverage is not secured (Figure 4.6).

For history sizes h ≥ 30, the required coverage was secured. Recall from the dis-

cussion in Chapter 3 that a timing fault will possibly occur every time the environment

starts to change (alternation from stable to transient phase), affecting the achieved cov-

erage. If the minimum coverage was secured, it means that the number of environment

changes was sufficiently small, as required by the “sufficient stability” assumption, to

allow this coverage.

For all performed experiments, the best results were obtained with a history size

of h = 30, marked by the dotted vertical line in each figure: highest improvement of

bounds, while securing the minimum required coverage.

These results provide sufficient evidence that there are real environments in which

our assumptions hold. In these environments, Adaptare can be successfully applied

in order to make estimations through a probabilistic analysis of historical data and

provide applications with better information related to the environment behavior, while

satisfying the required dependability objective.

4.4.3 Complexity analysis

One essential factor to be considered in our work is the complexity of the implemented

algorithms. Although we are assuming that there are enough resources to perform the

necessary computations, it is important to demonstrate that Adaptare has an acceptable

complexity in order to reach its objectives. This section presents an informal analysis

of the framework complexity and some measures of its execution time.

We show that the current implementation of Adaptare presents a complexity

O(m × d × h log(h)), where m is the number of phase detection mechanisms, d is

the number of considered distributions, and h is the history size. We realize that be-

cause our implementation uses small values of m, d, and h, this asymptotic analysis

does not provide enough information about execution time. Nevertheless, we believe

67

4. ADAPTARE

Algorithm 1: Adaptare’s algorithm.
Input: coverage, history size, measured samples.
Output: New computed bound.

1 for each phase detection mechanism M do
2 Get distribution from M

3 Select one new bound according to the selection logic
4 return new bound

Algorithm 2: Phase detection mechanism’s algorithm.
Input: Measured samples.
Output: Detected distribution.

1 detected distribution← none
2 for each distribution D do
3 Estimate D parameters
4 if samples fit in D (with its parameters) then
5 Update detected distribution according to the mechanism’s logic

6 if detected distribution = none then
7 return transient phase
8 else
9 return detected distribution

it is important to give an intuition of the impact of our algorithms and the influence

of each variable in the framework execution. In any case, the asymptotic analysis is

complemented with real measurements of the Adaptare framework’s performance.

The general framework algorithm is described in Algorithm 1. Assuming that line 2

is a single operation, the complexity of the entire algorithm would be O(m). However,

the execution of a phase detection mechanism (line 2) involves more operations, as

shown in Algorithm 2. For each distribution, the parameters are estimated (line 3) and

the verification if the given samples fit in this distribution is performed (line 4).

Regarding parameters estimation, the exponential distribution has only one param-

eter (λ), which is estimated as the inverse of the sample mean. This estimation has

a complexity that is linear with the history size (O(h)). The shifted exponential pa-

rameters (λ and γ) and the Weibull parameters (α and γ) are estimated using linear

regression, which also has linear complexity with the history size O(h). The k pa-

68

4.4 Results and evaluation

Algorithm 3: GoF test’s algorithm.
Input: Assumed distribution with estimated parameters, measured samples.
Output: If the measures samples fit in the assumed distribution.

1 Sort measured samples
2 Calculate GoF statistic S for assumed distribution D̂
3 Get critical value ch,α
4 if S ≤ ch,α then
5 return true
6 else
7 return false

rameter of the Pareto distribution is estimated as the smallest sample value and the α

parameter is computed using a MLE formula. Both estimations are performed with

complexity O(h). Finally, the uniform parameters a and b are estimated as the mini-

mum and maximum sample values, leading to an O(h) complexity.

For now, we will assume that the conditional test in line 4 corresponds to one

operation. Thus, given that there are d distributions, and estimating the parameters

of each tested distribution takes linear time O(h), the complexity of this algorithm is

O(d × h). In our implementation, the conditional test in line 4 is performed by GoF

tests.

A general algorithm for a GoF test is presented in Algorithm 3. For both mecha-

nisms, in order to calculate the GoF statistic (line 2), it is necessary to sort the input

sample. Our implementation uses a modified mergesort with complexity O(h log(h))

to sort the measured data (line 1). Moreover, the formulas presented in Section 4.2.1

to compute the GoF statistics are calculated in linear time (O(h)). Thus, performing a

Gof test takes h log(h) + h operations, which is reduced to an asymptotic complexity

of O(h log(h)).

After analyzing the complexity of each part of the framework execution, we con-

clude that since each phase detection mechanism M is executed for each distribution

D after estimating their parameters, the execution time of the current implementation

of Adaptare is a function of m × d × (h + h log(h)). Thus, the asymptotic complex-

ity is O(m × d × h log(h)), as previously mentioned. Considering a fixed number of

mechanisms and distributions (currently, m = 2 and d = 5), the actual complexity of

69

4. ADAPTARE

0
.3

7
6
1

1
.0

4
9
0

1
.4

5
9
6

2
.9

3
7
4

4
.0

7
1
1

5
.8

6
3
8

0
.1

2
1
6

0
.3

0
5
3

0
.4

8
7
1

0
.9

2
6
5

1
.2

7
3
0

1
.7

9
0
5

0

1

2

3

4

5

6

7

10 30 50 100 140 200

history size (h)

A
v

e
ra

g
e

 e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

PC Quadcore

Figure 4.7: Measured execution time.

the framework execution is O(h log(h)). It is important to note that this complexity is

imposed by the sort operation required by both mechanisms.

To conclude our analysis, we measured the time that Adaptare takes to compute

a new bound, for different history sizes. These measurements were executed in two

different platforms: (i) a Dell Optiplex GX520 PC, with 2GB of RAM and one 2.8GHz

Pentium 4 processor, and (ii) a 64-bit 2.3GHz quadcore Xeon machine. The initial

point of the measured time interval is when the framework has the history samples

available in a list, while the final point is defined to be immediately after a new bound

is produced. We varied the history size from 10 to 200 and used an Inmotion trace

composed by 8200 points. Adaptare was executed for each new sample point added

to the history, computing approximately 8000 new bounds. Figure 4.7 presents the

average execution times.

The analysis of the execution time can be helpful in order to determine how a

certain application should use the framework. On average, Adaptare takes up to six

milliseconds to analyze the samples and compute a new bound, depending on the his-

tory size and on the execution platform. We believe that these are reasonable values

for many practical applications. Note that these values reflect the user level / applica-

tion perception of the framework execution time, which includes all typical overheads

70

4.4 Results and evaluation

(interference of other tasks, context switches, etc.), usual in multiprocess preemptive

systems.

Nevertheless, when considering embedded applications or other systems with con-

strained resources, these values may be a considerable tradeoff for the improvements

that may be achieved. In these cases, we propose two simple and combinable measures

that a designer can employ in order to reduce the overhead of executing Adaptare. The

first measure consists in executing the framework more sparingly. Ideally, a new bound

would be computed whenever a new sample is added to the history. However, if new

data is added to the history too frequently, it will be wise to execute Adaptare more par-

simoniously, in fixed intervals, or when a reasonable amount of new samples is added

to the history. The second measure consists in disabling the recognition of some prob-

ability distributions, which can be safely done without reducing the performance of

Adaptare when it is known that these distributions are never detected. With this mea-

sure, the execution times in Figure 4.7, which correspond to a fully-fledged framework

testing five different distributions, could be significantly reduced.

4.4.4 Comparing Adaptare to other adaptive solutions

Adaptare was designed to be easily integrated with client applications, driving their

adaptation while guaranteeing the required dependability level. To achieve this,

Adaptare executes complex and costly analysis mechanisms, as discussed in the previ-

ous section. Therefore, it is important to evaluate the relative benefits of Adaptare in

comparison with simpler and cheaper mechanisms.

We selected two simpler approaches to compare with: the RTT estimation algo-

rithm performed by TCP, which has constant execution time (O(1)), and a method

based on the WinMean estimator plus a safety margin, of linear complexity O(h). Re-

call that Adaptare’s execution has a complexity of O(hlog(h)), dictated by the sorting

algorithm executed within the phase detection mechanisms.

The TCP protocol formally defines a simple method for setting the retransmission

timer of each non-acknowledged packet, based on the observed RTTs and their varia-

tions. The algorithm, presented in Algorithm 4, was proposed in Jacobson (1988) and

is formalized in RFC 2988. In this section we refer to it as the TCP-RTT approach.

71

4. ADAPTARE

Algorithm 4: TCP’s algorithm to compute the retransmission timer.
Output: New retransmission timer RTO.

1 k ← 4, α← 1/8, β ← 1/4
2 Wait for ACK of sent message m
3 if ACK is not received within RTO then
4 Retransmit message m
5 RTO ← 2 ·RTO
6 else
7 R← RTT of sent message
8 if R is the first measured RTT then
9 SRTT ← R

10 RTTVAR ← R/2
11 RTO ← SRTT + k · RTTVAR
12 else
13 RTTVAR ← RTTVAR(1− β) + β|SRTT −R|
14 SRTT ← SRTT (1− α) + α ·R
15 RTO ← SRTT + k · RTTVAR

16 return RTO

Algorithm 5: Mean-Jac estimation algorithm.
Input: Measured samples, current safety margin, current estimator.
Output: New estimator.

1 α← 1/4
2 mean← samples average
3 margin← margin+ α(|lastSample− estimator| −margin)
4 estimator ← mean+margin
5 return estimator

The algorithm based on the WinMean estimator plus a safety margin is presented in

Algorithm 5. The WinMean estimator simply computes the average of history samples.

The safety margin is also based on the Jacobson algorithm (Jacobson, 1988). This

approach is applied to adjust failure detectors timeouts in Nunes & Jansch-Porto (2004)

and Falai & Bondavalli (2005), and it will be referred as the Mean-Jac approach.

For the comparative experiments we configured Adaptare with C = 98% and h =

30, considering the positive results previously achieved with this history size. Then,

we applied the real traces from the five different sources as input for the different

72

4.4 Results and evaluation

2
2
9
.4

3

6
0
.6

8

1
4
4
.0

2

1
0
3
.5

3

5
8
4
.7

1

1
9
1
.1

8

1
0
1
.4

4

7
9
.9

5

2
7
7
.1

4

1
2
3
8
.3

3

3
1
3
.4

1

5
7
6
.5

3

2
6
8
.0

7

2
2
4
0
.7

5

4
6
.0

8

0

500

1000

1500

2000

2500

Inmotion Umass Dartmouth LBNL RON

A
v
e
ra

g
e
 b

o
u

n
d

s
 (

m
s
)

Adaptare TCP-RTT Mean-Jac

Figure 4.8: Comparing Adaptare with different solutions - computed bounds.

0
.9

9
4

2

0
.9

9
7

2

0
.9

9
7

8

0
.9

8
1

8 0
.9

9
4

9

0
.9

7
6

3

0
.9

8
2

5

0
.9

3
2

0

0
.9

5
1

5

0
.9

9
2

9

0
.9

8
9

1

0
.9

9
4

2

0
.9

9
9

0

0
.9

9
9

6

0
.9

8
2

5

0.90

0.93

0.95

0.98

1.00

Inmotion Umass Dartmouth LBNL RON

C
o

v
e
ra

g
e

Adaptare TCP-RTT Mean-Jac

Figure 4.9: Comparing Adaptare with different solutions - achieved coverage.

approaches, collecting the bounds produced by all of them, based on the same input.

The results are summarized in Figures 4.8 and 4.9.

When comparing Adaptare with the Mean-Jac method, we verify that Adaptare

provided significantly lower bounds (Mean-Jac bounds are on average 2.5 to 5 times

73

4. ADAPTARE

higher) without any negative impact on the achieved coverage. In fact, in most cases

the coverage provided by Adaptare was even better than the coverage provided by

the Mean-Jac approach. In any case, and for both approaches, the required minimum

coverage was always secured.

The results achieved when applying the TCP-RTT approach were noticeably dif-

ferent from those achieved with the Mean-Jac approach. The TCP-RTT algorithm pro-

vided smaller bounds (reductions roughly ranging between 15% and 50% when com-

paring with Adaptare), clearly indicating that the TCP-RTT method is more “agres-

sive” than Adaptare. The reverse side of the coin is that in terms of coverage, the

results clearly indicate that TCP-RTT approach produces more timing faults than those

produced with Adaptare. In fact, the minimum coverage was not achieved by the TCP-

RTT algorithm in three of the five tested environments. Adaptare satisfies coverage

requirements (achieving comparatively higher coverages) at the cost of slightly higher

timeouts. Furthermore, the results presented in Figure 4.10 show that when the mini-

mum coverage requested to Adaptare is reduced to be leveled with the average cover-

age provided by the TCP-RTT approach, the average timeouts of both approaches will

also become nearly the same. This result indicates that despite being very simple, the

TCP-RTT estimation method is very efficient. However, it is important to stress that,

unlike with Adaptare, in the TCP-RTT approach it is not possible to request a desired

coverage, which is a clear disadvantage under a dependability adaptation perspective.

In order to correctly interpret these results, it is necessary to retain that if the objec-

tive was to merely compute small bounds, then an aggressive method would achieve

that easily. However, if bounds are too small, this will typically have negative effects.

For instance, in the case of the TCP protocol, every timing fault resulting from a badly

dimensioned timeout implies one unnecessary retransmission, and a consequent waste

of network resources. Furthermore, successive timing faults may imply instability of

higher level applications or protocols.

Therefore, for comparison purposes, it is necessary to consider both the achieved

bounds and the achieved coverage, altogether. In general, Adaptare was able to com-

pute relative small bounds and secure the expected dependability level. These results

indicate that Adaptare is indeed able to properly react to environment changes and

compute more effective and dependable bounds than with the other two approaches:

74

4.4 Results and evaluation

1
6
3
.5

7

4
4
.3

9

1
0
6
.8

2

8
2
.4

9

2
9
8
.6

3

1
9
1
.1

8

1
0
1
.4

4

7
9
.9

5

2
7
7
.1

4

4
6
.0

8

0

50

100

150

200

250

300

350

Inmotion Umass Dartmouth LBNL RON

A
v
e
ra

g
e
 b

o
u

n
d

s
 (

m
s
)

Adaptare TCP-RTT

Figure 4.10: Comparing Adaptare and TCP-RTT bounds, for the same coverage.

producing small bounds, while still keeping the number of timing faults within the

accepted limits.

The price to pay for such optimized solution is that it requires more resources, in

terms of storage space and particularly memory operations. The TCP-RTT approach is

based only on the last measured RTT and estimation error, so it does not need any extra

storage. The bound computation is straightforward, requiring a total of 15 arithmetic

operations. In the Mean-Jac approach, the average computation performed by the Win-

Mean estimator requires h arithmetic operations, while the Jacobson safety margin is

calculated in constant time, using 5 arithmetic operations. Thus, this approach exe-

cutes h + 5 operations and requires storage space for keeping the history samples. In

contrast, Adaptare is more complex, due to the number of operations executed by the

phase detection mechanisms to perform the network characterization. Regarding exe-

cution overhead, and as presented in Section 4.4.3, Adaptare imposes overheads in the

millisecond order, while the execution overhead of simple approaches like TCP-RTT

or Mean-Jac is comparably negligible.

Overall, deciding which approach is the better will necessarily depend on the appli-

cation objectives and requirements and on the amount of available resources. Nothing

comes for free, but we have shown that among the three adaptive methods evaluated in

75

4. ADAPTARE

this section, Adaptare is the best solution for adaptive systems, in particular for those

with dependability concerns.

4.5 Summary

In this chapter we introduced Adaptare - a framework for supporting automatic and

dependable adaptation in stochastic environments. We evaluated Adaptare using syn-

thetic data traces generated from specific distributions, and real data traces available

in the Internet, which were collected by different applications, operating in different

environments. Our results attest the correctness of the implemented mechanisms, and

the benefits of using Adaptare, in comparison with other approaches for adaptation.

The fundamental conclusion to derive from the experiments reported in this chap-

ter is that it is possible to define effective mechanisms to detect stable and transient

periods and, for the stable ones, correctly identify the observed probability distribu-

tion. Because of that, Adaptare constitutes a valuable approach to achieve dependable

adaptation and, at the same time, obtain improved time bounds.

The next chapters assess Adaptare’s applicability, by presenting adaptive solutions

for two very relevant problems in distributed systems: consensus and failure detection.

Those solutions were designed based on modular architectures in which Adaptare is

used as a service for timeout provisioning, driving the adaptation process in a depend-

able way.

Notes

A preliminary version of Adaptare was used to support adaptation in the context of

transactional systems. The framework was used as a middleware to support transac-

tions with relaxed temporal requirements. This work appeared in “Using Experimen-

tal Measurements to Assess Dependable Adaptation Support Mechanisms for Timed

Transactions”, Dixit, Casimiro, Laranjeiro, and Vieira, “Workshop on Sharing Field

Data and Experiment Measurements on Resilience of Distributed Computing Systems,

with Proceedings of the 27th IEEE Symposium on Reliable Distributed Systems”,

76

4.5 Summary

Napoli, Italy, October 2008. As we decided to focus on monitoring and characteriza-
tion of network delays, those results are not reported in this thesis. Interested readers
may refer to Dixit et al. (2008).

Most of the content of this chapter has been reported as a FCUL technical report
in “A Probabilistic Framework for Automatic and Dependable Adaptation in Dynamic
Environments”, Dixit, Casimiro, Verissimo, Lollini, and Bondavalli, DI/FCUL TR-
2009-19, January 2010 (Dixit et al., 2009). After some revisions and improvements,
the work “Adaptare: Supporting automatic and dependable adaptation in dynamic en-
vironments” was accepted for publication in the “ACM Transactions on Autonomous
and Adaptive Systems”, in March 2011 (Dixit et al., 2011).

77

Chapter 5

Timeout-based Adaptive Consensus

Algorithms for solving distributed systems problems often use timeouts as a means to

achieve progress. They are designed in a way that safety is always preserved despite

timeouts being too small or too large. A conservatively large static timeout value is

usually selected, such that the overall system performance is acceptable in the normal

case. This approach is good enough for applications that execute in stable environ-

ments, but it may compromise the system’s performance in more dynamic settings,

such as wireless networks. In these cases, it is expected that adaptive solutions that au-

tomatically adjust timeouts according to the observed network conditions will perform

better.

In this chapter we describe a pragmatic approach to transform a static timeout-

based consensus protocol into an adaptive protocol for best performance. The pre-

sented solution performs well despite changes in network conditions and without sac-

rificing safety, thus clearly illustrating the importance and usefulness of adaptation and

autonomic behavior.

In the proposed approach, Adaptare is used to analyze message delays among con-

sensus processes, and to provide timeout values derived from the performed analysis.

As Adaptare was designed to produce dependable values, a distinguishing feature of

this approach is that we have confidence on the assumed timeouts, which is in con-

trast with ad hoc approaches for timeout selection that are found in the literature (see

Chapter 2). Using Adaptare as an independent service also makes it easier to apply

the proposed approach to transform other static protocols into dynamic ones. In this

79

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

sense, our methodology is generally applicable, and this chapter contributes with the

basic principles and guidelines that must be followed for that purpose.

The chapter is organized as follows. The motivation for using adaptive timeouts in

distributed protocols executing in dynamic environments is presented in Section 5.1.

In Section 5.2 we describe the static timeout-based consensus protocol considered in

this chapter. In Section 5.3 we experimentally justify the need for adaptive timeouts by

demonstrating how the execution time of each round of this algorithm degrades as the

number of consensus processes (and consequently the network load) increases. Sec-

tion 5.4 describes our methodology to transform this static timeout-based consensus

protocol into an adaptive solution. Implementation details are given in Section 5.5.

Finally, Section 5.6 presents an experimental evaluation in which we compare the per-

formance of the static and adaptive versions of this consensus protocol in a wireless ad

hoc network.

5.1 Motivation

The consensus problem is a fundamental building block in the design of distributed

systems, as it contributes to the coordination of actions in order to achieve consis-

tent decisions. As discussed in Chapter 2, the FLP impossibility result (Fischer et al.,

1985) states that there is no deterministic solution for the consensus problem in asyn-

chronous systems prone to process crash failures. The typical approach to circumvent

this impossibility is to strengthen the timing assumptions of the system, either implic-

itly through a failure detector, or explicitly through partial synchrony models, so that

processes can resort to some timing information for making progress. This usually

involves setting a timeout and, if the timeout expires, take appropriate measures (e.g.,

marking some process as faulty), instead of waiting indefinitely for messages that may

never arrive.

Timing information, however, is inherently unreliable in asynchronous systems.

Therefore, the design of distributed consensus protocols is usually centered at preserv-

ing safety regardless of the underlying timing behavior, while liveness is achieved on

an eventual basis, when the system exhibits some minimum level of synchrony, as it is

done in Aguilera et al. (2001) and Lamport (1998), for example. This design principle,

80

5.1 Motivation

as sound as it is, relegates the problem of selecting an appropriate timeout to a sec-

ondary plane, because its value has no effect on the safety of the protocol (and liveness

just requires for this value to eventually become sufficiently large). Thus, this problem

is often dismissed as being ‘merely’ an engineering decision, where a fixed timeout

is conservatively selected based on ad hoc approaches or on empirical observations

of the network. However, while in any soundly designed protocol correctness is not

dependent on specific timeout values, performance is. A too small timeout will raise

many false positives (if failure detection is involved) or cause too much contention (if

retransmission is used). A too large timeout will hinder a quick recovery from failures.

Therefore, to reason about performance, a crucial issue is the characterization of

the temporal behavior of the network on which the consensus protocol is executed.

Local Area Networks (LANs) constitute a very favorable environment from a tempo-

ral perspective. Network delays are small (in the order of microseconds), very stable

across different LANs, independent of the communicating nodes, and they are not

much affected by contention. On the other hand, in large-scale networks (WANs) de-

lays are much higher and they strongly depend on the locations of specific end points.

Moreover, delays are not so stable over time, in particular because routes may change

dynamically and global load fluctuations also have some impact on observed delays.

The problem becomes even more relevant when considering the operation in wireless

environments. Network delays are also much larger than in LANs, but in addition

they are strongly exposed to the effects of contention (Acharya et al., 2008; Jardosh

et al., 2005). Varying the number of nodes that actively execute a distributed protocol

and communicate within a single hop distance has a clear impact on observable de-

lays. Consequently, a correct timeout selection, namely involving dynamic adaptation,

becomes more relevant in these environments.

In this chapter we illustrate the kind of improvements that may be achieved by

using adaptive timeouts. We present our pragmatic approach to transform a static

timeout-based consensus protocol for ad hoc wireless networks into an adaptive solu-

tion, using the services provided by the Adaptare framework.

81

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

5.2 Consensus protocol

The consensus protocol introduced in Moniz et al. (2009) solves the k-consensus prob-
lem in wireless ad hoc networks. In the k-consensus problem, each process pi proposes
an initial binary value vi ∈ {0, 1}, and at least k > n

2
of them have to agree on a com-

mon proposed value, where n is the number of participant processes. The remaining
processes are not required to decide, but if they decide, it must be on the same value
decided by the k processes.

The work adopts the communication failure model (Santoro & Widmayer, 1989,
2007). This model does not assume end-to-end reliable delivery mechanisms, and any
failure (either in a process or in a communication link) is manifested as a transmission
fault. For example, a process crash will be perceived as a series of omission faults
with the crashed process as sender. This model is more appropriate to represent the
dynamics of wireless ad hoc networks. However, an impossibility result presented in
Santoro & Widmayer (1989) states that, under the communication failure model, there
is no finite time deterministic algorithm that allows n processes to reach k-agreement,
if more than n− 2 transmission failures occur in a communication step. The protocol
introduced in Moniz et al. (2009) circumvents this impossibility result by employing
randomization to tolerate omission transmission faults. In its randomized version, the
k-consensus problem is formally defined by the following properties:

• Validity. If all processes propose the same value v, then any process that decides,
decides v.

• Agreement. No two correct processes decide differently.

• Termination. At least k processes eventually decide with probability 1.

The protocol, presented in Algorithm 6, executes in rounds. In a round, each pro-
cess pi broadcasts a message containing its identifier i, proposal value vi, phase φi,
and other variables comprising its internal state (line 7). Then it waits for messages
broadcast by the other processes (lines 9-11). When messages for phase φi are received
from the majority of the processes, process pi will make progress by analyzing them,
updating its state (proposal, phase, and/or status) and possibly deciding on some value
or initiating a new round (lines 12-31). However, as assumed in the communication

82

5.2 Consensus protocol

Algorithm 6: Static timeout-based k-consensus algorithm.
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}

1 φi ← 1;
2 vi ← proposali;
3 statusi ← undecided;
4 Vi ← ∅;
5 timeout← 10ms;

6 while true do
7 broadcast(〈i, φi, vi, statusi〉);
8 deadline← curTime() +timeout;
9 while (|{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φi}| ≤ n

2
and curTime() < deadline) do

10 Mi ← receive();
11 Vi ← Vi ∪Mi;

12 while ∃〈∗,φ,v,status〉∈Vi : φ > φi do
13 φi ← φ;
14 vi ← v;
15 statusi ← status;

16 if |{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φi}| > n
2

then

17 if φi mod 2 = 1 then /* odd phase */
18 if ∃v∈{0,1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n

2
then

19 vi ← v;
20 else
21 vi ← ⊥;

22 else /* even phase */
23 if ∃v∈{0,1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n

2
then

24 statusi ← decided;

25 if ∃v∈{0,1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| ≥ 1 then
26 vi ← v;
27 else
28 vi ← coini();

29 φi ← φi + 1;

30 if statusi = decided then
31 decisioni ← vi;

83

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

failure model, some messages that a process is supposed to receive may be lost. This

may delay pi (since it will need to wait for slower messages) or may even prevent

progress to be done (if too many messages are lost). Therefore, in each round, process

pi waits for messages only during a pre-defined amount of time. If not enough mes-

sages are received during this time interval, its state does not change and pi restarts

the round by retransmitting the original message. For implementing the protocol, a

timeout mechanism should be used to bound round durations and trigger retransmis-

sions. This protocol ensures safety regardless of the number of omission faults in each

round, while liveness is guaranteed in rounds where the number of omission faults is

f ≤ dn
2
e(n− k) + k − 2.

Detailed explanations about the algorithm’s execution, as well as correctness

proofs, are beyond the scope of this thesis. Interested readers may refer to Moniz

et al. (2009).

5.3 Impact of network conditions

As mentioned in Section 5.1, caring about the selection of appropriate timeouts is of-

ten dismissed as being ‘merely’ an engineering decision. In fact, the concern is usually

with safety, not much with performance. However, distributed protocols are only use-

ful and significant if they perform reasonable well – safety is fundamental, but may not

be enough. In this section we show that the performance of a distributed protocol can

be seriously affected by varying network conditions, in particular if wireless environ-

ments are considered. This motivates the need for practical solutions to deal with such

variations, based on adapting temporal variables like timeouts, aiming at achieving the

best possible performance under the available conditions.

We performed practical experiments that compare the execution time of a round of

the considered consensus protocol in a local area network (LAN) and in a wireless ad

hoc network. The LAN experiments were performed using a cluster in our laboratory,

while the Emulab testbed (White et al., 2002) was used for wireless experiments. We

measured the duration of each consensus round for varying load conditions. In fact,

the load was simply controlled by increasing the number of processes participating in

the consensus execution. The number of processes was set to 4, 7, 10, 13, and 16.

84

5.3 Impact of network conditions

As we wanted to analyze the impact of increased load in the round execution time,

the static timeout was set to a very large value (1 second). This provides enough

time for all necessary messages to be received and thus gives a precise view of the

round duration, even if it takes a long time. Exceptional cases of rounds in which half

or more messages were lost, blocking the protocol and causing timeout expiration and

retransmission, were not considered in the presented results, since they are not relevant

for the purpose of reasoning about the duration of rounds.

The histograms presented in Figures 5.1 and 5.2 show the distribution of round

execution times in the two networking environments for the different load conditions

corresponding to varying number of processes. The LAN environment is stable in the

sense that a small variation in the number of processes does not affect the execution

time of a round significantly (Figure 5.1(a)). Rounds are almost always completed

in less than 5 milliseconds, allowing the original version of the consensus algorithm,

which uses a fixed timeout of 10 milliseconds, to perform well in this network. In

fact, we observed that a timeout of 600 microseconds would be sufficiently large to

receive all the required messages to complete a round in these very stable conditions,

as presented in Figure 5.1(b).

On the other hand, the execution of consensus rounds in the wireless network (Fig-

ure 5.2) is clearly slower, with latencies one order of magnitude higher than in LANs.

The most important outcome is that the dependency on the number of participating

processes becomes more relevant. While a timeout of 10 milliseconds appears to be

sufficient for consensus among 4, 7 or 10 processes, for 13 or 16 processes the timeout

should be of at least 15 milliseconds to prevent unnecessary retransmissions. It is easy

to conclude that in the wireless setting the selection of the appropriate timeout is a

crucial issue, which would not be the case in LAN environments. We must say that

if a much larger number of processes were used, the contention in the LAN environ-

ment would eventually increase, leading to more visible uncertainty and larger delays.

However, this would be an extreme case, whereas our aim was to observe the behavior

of the network environments in typical scenarios.

It is important to note that in these experiments the consensus protocol was imple-

mented over UDP, which means that the transport layer does not employ any kind of

retransmission mechanism or congestion control. This is in accordance with the com-

munication failure model assumed in Moniz et al. (2009), and implies that retransmis-

85

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

0

0.2

0.4

0.6

0.8

1

[0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,45) [45,50)

Time to finish round (ms)

P
(f

in
is

h
 r

o
u

n
d

)

n=4 n=7 n=10 n=13 n=16

(a) Time in milliseconds.

0

0.2

0.4

0.6

0.8

1

[0,100) [100,200) [200,300) [300,400) [400,500) [500,600)

Time to finish round (us)

P
(f

in
is

h
 r

o
u

n
d

)

n=4 n=7 n=10 n=13 n=16

(b) Time in microseconds.

Figure 5.1: Round execution time in a wired LAN.

86

5.4 Achieving adaptive consensus

0

0.2

0.4

0.6

0.8

1

[0,5) [5,10) [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) [40,45) [45,50)

Time to finish round (ms)

P
(f

in
is

h
 r

o
u

n
d

)

n=4 n=7 n=10 n=13 n=16

Figure 5.2: Round execution time in a wireless ad hoc network.

sions (if necessary) must be handled by the protocol. It is thus the responsibility of

the protocol to select the appropriate timeout values. These must be small enough to

quickly initiate a new round instead of waiting for slow (e.g., due to backoff or waiting

delays of the 802.11 MAC layer) or lost messages, but large enough to avoid unnec-

essary retransmissions and consequent congestion, which would ultimately slow down

the protocol. Moreover, these values should be adapted according to the observed

conditions, that is, the protocol should be adaptive.

5.4 Achieving adaptive consensus

As usual in consensus protocols, the algorithm described in Section 5.2 relies on a

timeout to decide whether messages should be retransmitted and when that should

be done. In this section, we describe our approach to transform it into an adaptive

consensus protocol. Our goal is to improve its performance by dynamically adjusting

timeouts in response to variations on the network delays.

87

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

Adaptare

Node 1

Consensus protocol

Adaptare

Node 2

Consensus protocol

Adaptare

Node 4

Consensus protocol

Adaptare

Node 3

Consensus protocol

Network

Figure 5.3: Architecture of the adaptive consensus (for n = 4).

Figure 5.3 shows the architecture of our solution. Each consensus process has its
own instance of the timeout provisioning service (Adaptare), so that timeout selec-
tion decisions are fully decentralized. Furthermore, the logical separation between the
timeout-based consensus protocol and timeout calculation functions makes it easier to
apply the approach without the need of significant changes on protocol code, as de-
tailed ahead. We believe that this also makes the approach more generic and suitable
to be applied to build adaptive versions of other timeout-based protocols.

5.4.1 Protocol instrumentation

Typically, timeout-based protocols rely on a fixed timeout value that defines an upper
bound on the time that a process should wait for some event. In order to make timeouts
adaptive using Adaptare, it is necessary to:

• Identify the system variable that should be bounded by the timeout;

• Instrument the protocol in order to collect samples of this variable that will be
fed into Adaptare;

• Search for places in the protocol where the timeout is used, adding a call to
Adaptare in order to update the timeout.

88

5.4 Achieving adaptive consensus

In the consensus protocol that we are considering, the timeout defines how long a

process executing phase φi will wait for the reception of messages of this phase from

the majority of the processes, during a round. Therefore, the variable to be monitored

is the time elapsed between the beginning of a phase and the reception of each mes-

sage for that phase. Even those messages that arrive in later rounds should be consid-

ered, otherwise we would have information only about timely messages, compromising

Adaptare’s analysis. It is however necessary to ensure that the latency measurement

corresponding to each received message is done with respect to the beginning of the

adequate phase (which can be an older one).

Given that, we instrumented the consensus protocol as shown in Algorithm 7. We

keep track of the time at which each phase is initiated (lines 5, 17 and 34). When a

new message is received in any round, the algorithm determines the phase to which

the message belongs, calculates the amount of time elapsed since the beginning of that

phase (line 13), and sends this value to Adaptare (line 14). Besides that, we only had

to modify the consensus code so that, before a message is broadcast, a request is made

to Adaptare to obtain the timeout value that should be used in that round (line 7). The

functions getTimeout()(line 7) and addSample() (line 14) are implemented as

UDP messages sent to an adaptation layer, as explained in Section 5.5.

5.4.2 Configuring Adaptare

One fundamental issue in the proposed approach is the correct configuration of

Adaptare, so that dynamically obtained timeout values are appropriate to achieve the

desired performance. In essence, when developing the adaptive solution it is necessary

to understand which are the performance objectives of the application or protocol, and

translate them into a coverage requirement, which must be provided to Adaptare.

Defining the optimal coverage value depends on the specific case in consideration.

For some protocols it might be desirable to select timeout values that will hold most of

the time, with very high probability, while in other cases it might be better to be more

aggressive, using timeouts that may hold only with a smaller probability, in favor of

increased reactivity. Here we explain the reasoning that we followed to determine the

coverage that should be used in the case of the considered adaptive consensus protocol.

89

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

Algorithm 7: Adaptive timeout-based k-consensus algorithm.
Input: Initial binary proposal value proposali ∈ {0, 1}
Output: Binary decision value decisioni ∈ {0, 1}

1 φi ← 1;
2 vi ← proposali;
3 statusi ← undecided;
4 Vi ← ∅;
5 start[φi]← curTime();

6 while true do
7 timeout← getTimeout();
8 broadcast(〈i, φi, vi, statusi〉);
9 deadline← curTime() +timeout;

10 while (|{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φi}| ≤ n
2

and curTime() < deadline) do
11 Mi ← receive();
12 Vi ← Vi ∪Mi;
13 delay ← curTime() −start[phaseOf(Mi)];
14 addSample(delay);

15 while ∃〈∗,φ,v,status〉∈Vi : φ > φi do
16 φi ← φ;
17 start[φi]← curTime();
18 vi ← v;
19 statusi ← status;

20 if |{〈∗, φ, ∗, ∗〉 ∈ Vi : φ = φi}| > n
2

then

21 if φi mod 2 = 1 then /* odd phase */
22 if ∃v∈{0,1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n

2
then

23 vi ← v;
24 else
25 vi ← ⊥;

26 else /* even phase */
27 if ∃v∈{0,1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| > n

2
then

28 statusi ← decided;

29 if ∃v∈{0,1} : |{〈∗, φ, v, ∗〉 ∈ Vi : φ = φi}| ≥ 1 then
30 vi ← v;
31 else
32 vi ← coini();

33 φi ← φi + 1;
34 start[φi]← curTime();

35 if statusi = decided then
36 decisioni ← vi;

90

5.4 Achieving adaptive consensus

During the consensus execution, all processes will be sending and receiving mes-

sages, and will be able to make progress as long as they receive enough messages

during a defined time interval after they initiate a round (by sending a message). They

do not need to receive all the possible messages, just a fraction of them. In fact, they

only need to receive messages from the majority of the processes, that is, more than
n
2
. Given that the total number of messages they could receive in a round is n (one

from each process, including their own), the fraction of required timely messages is

thus b
n
2
c+1

n
. In other words, we can say that the selected timeout must be such that it

allows messages to be timely with a minimum probability (or coverage) given by:

C =
bn

2
c+ 1

n

This defines the coverage value that must be used in the configuration of Adaptare,

which will yield a timeout value that will be sufficiently large to allow progress to be

made for the observed environment conditions.

Note that the timeout might not be always sufficiently large, leading to unnecessary

retransmissions. This is natural when considering stochastic processes, with continu-

ously changing environments. For instance, if at a certain moment there is an increase

in the observed delays, this may lead, in a first moment, to retransmissions caused by

premature timeouts. As a reaction, these increased delays will be fed into Adaptare,

which will also provide increased timeout values to the protocol. This automatic ad-

justment will bring the protocol back to the expected good behavior, in which it will

wait just the necessary amount of time for making progress.

One may be tempted to think that a good solution would be to simply use very large

timeout values, to always allow enough messages to be received, avoiding retransmis-

sions. However, there are two problems in doing that. First, given that messages might

be lost and never arrive, this would affect liveness if half or more of the expected mes-

sages were lost in a round. Second, even if enough messages are received, waiting

for them could delay consensus much more than if a new round was started. In fact,

in Figure 5.2 we observe that some rounds may take a long time, in the order of tens

of milliseconds, to terminate. Using well balanced timeout values, such long lasting

rounds can be avoided, and the overall consensus execution time will be improved.

91

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

5.5 Implementation details

An adaptation layer, which is the interface between the adaptive protocol and

Adaptare, was implemented as a lightweight Java class. This class contains the fol-

lowing two methods:

• The addSample(long) method is used to feed Adaptare with measured de-

lays. The method simply updates Adaptare’s local history by adding the new

sample and removing the oldest one, keeping a constant history size.

• The long getTimeout() method is used to get an updated timeout value.

When called, the method requests a new bound to Adaptare. The desired cov-

erage, C =
bn

2
c+1

n
, is hard coded in the implementation of this method and is

just dependent on the total number of processes, a parameter that is known by

the consensus processes, and which is given on startup. Note that it would be

possible to allow the application to define the required coverage in each call (in

runtime), which could be interesting for applications with varying performance

objectives, or with several functional levels.

In our implementation, the consensus processes communicate with the adap-

tation layer through UDP messages, but other approaches could be used as well.

There are three different types of messages that are exchanged: one feed message

(MSG_NEW_SAMPLE), one request message (MSG_TIMEOUT_REQUEST), and one

response message (MSG_TIMEOUT_REPLY).

Feeding Adaptare. As described in Section 5.4.1, when a consensus process receives

a broadcast message, it identifies the phase to which the message belongs, and com-

putes the elapsed time from the beginning of that phase to the reception of the message.

This value is sent to the adaptation layer in a MSG_NEW_SAMPLE message.

Upon the reception of a MSG_NEW_SAMPLEmessage, the adaptation layer updates

Adaptare’s history of measurements using the addSample(long) method.

92

5.6 Performance evaluation

Getting a new timeout. Before sending a broadcast message, each consensus pro-

cess requests a new timeout value by sending a MSG_TIMEOUT_REQUEST message

to the adaptation layer. This layer triggers Adaptare’s timeout computation by execut-

ing the long getTimeout() method, and replies to the consensus process with a

MSG_TIMEOUT_REPLY message containing the new computed timeout.

5.6 Performance evaluation

We executed a set of experiments in order to quantify the improvements that are

achieved by our adaptive consensus protocol. We compared the performance of the

static version presented in Moniz et al. (2009) and of the adaptive version. In this sec-

tion we present the achieved results in terms of average latency, which is the consensus

execution time (i.e., the amount of time that a consensus process takes to decide), num-

ber of broadcast messages sent by each process per consensus execution, and average

timeout.

The experiments were carried out on the Emulab testbed (White et al., 2002). A

total of 16 nodes were used, each one with the following hardware characteristics:

Pentium III processor, 600 MHz of clock speed, 256 MB of RAM, and 802.11 a/b/g D-

Link DWL-AG530 WLAN interface card. The operating system was the Fedora Core

4 Linux with kernel version 2.6.18.6. The nodes were located on the same physical

cluster and were, at most, a few meters distant from each other. Since the Emulab

environment is not isolated, and our experiments could suffer from the interference of

other nodes outside our control, we executed the experiments in six different days, to

mitigate possible occasional interferences on the global results.

The number of processes participating in the consensus execution was set to 4,

7, 10, 13, and 16. Processes with odd identifiers initially propose the value 1, while

processes with even identifiers propose 0, guaranteeing a divergent initial proposal set.

An experiment comprises 20 consecutive executions of the static and the adaptive

algorithms for a given n. We executed five experiments per day (one of each value of

n, resulting in 100 executions per day of each version of the protocol), during the six

different days. This gives a total of 1200 consensus executions (600 executions of the

static algorithm, plus 600 executions of the adaptive algorithm).

93

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

0

5

10

15

20

25

4 7 10 13 16

number of processes

ti
m

e
o

u
t

(m
s
)

Static Adaptive

Figure 5.4: Average timeout.

The static version of the protocol was configured to use a timeout of 10 millisec-

onds. This value was obtained by running a set of empirical tests with different static

values, being the value that provided the better results on average. The initial timeout

for the adaptive version is also 10 milliseconds, but it is dynamically adjusted accord-

ing to Adaptare outputs. Adaptare was configured to use a history size of h = 30,

since the evaluation presented in Chapter 4 indicated that this value provides the best

results. The required coverage was set to C =
bn

2
c+1

n
, as explained in Section 5.4.2.

Figure 5.4 shows the average timeouts. The lower timeout is the fixed value of

the static algorithm, 10 milliseconds. The adaptive algorithm presents average time-

outs from 12 to 20 milliseconds, depending on the number of processes participating

in the consensus execution. When more processes are participating in the consensus

execution, the contention in the shared medium is increased, affecting the transmission

delays. Thus, timeout values computed by Adaptare increase with the number of con-

sensus processes, since Adaptare analyzes the observed latencies to derive appropriate

timeouts.

94

5.6 Performance evaluation

0

5

10

15

20

25

30

35

4 7 10 13 16

number of processes

b
ro

a
d

c
a
s
ts

Static Adaptive

Figure 5.5: Average number of broadcasts per process.

Analyzing the number of broadcast messages sent by each process (Figure 5.5),

the relation between timeouts and retransmissions is evident. The lower bound for the

number of broadcasts is three, and it is achieved in fault-free executions (no omission

occurs) in which the timeouts are sufficiently large to allow the reception of all re-

quired messages. These results show that in the adaptive consensus, which used higher

timeouts, the number of broadcasts per process was significantly lower, up to 72%

less for the case of 16 processes. This is a clear indication of the benefits that may

be achieved by adapting the timeout. When the consensus protocol is executed by a

higher number of processes, creating more contention and increased transmission de-

lays, the static version uses an inadequate timeout value, whereas the adaptive version

automatically adjusts the timeout to fit the environment conditions. By increasing the

timeout, the adaptive version avoids premature retransmissions and hence prevents the

network load to increase even more and affect negatively the observed network delays,

as well as the consensus latency.

Increasing the timeout also increases the retransmission delay, when a retransmis-

95

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

0

50

100

150

200

250

300

350

400

4 7 10 13 16

number of processes

la
te

n
c
y
 (

m
s
)

Static Adaptive

Figure 5.6: Average latency (consensus execution time).

sion must actually be performed. Ultimately, this delay could impact the consensus ex-

ecution time, which is the fundamental performance indicator perceived by end users.

However, our results show that the overall execution time is nevertheless better for the

adaptive version, which indicates a positive trade-off in favor of the increased time-

outs. In fact, Figure 5.6 shows the latency improvements for the dynamic version,

which were particularly visible for the scenarios with 13 and 16 processes. This also

confirms the experiments in the wireless environment presented in Section 5.3, which

suggested that a timeout of 10 milliseconds would be sufficient for consensus among

up to 10 processes, but too small for more processes. Both static and adaptive versions

of the protocol achieved similar latencies in the scenarios with 4, 7 and 10 processes.

However, in executions with 13 and 16 processes, with the adaptive timeout increased

to 16 and 20 milliseconds (on average), latency improvements were of about 30% and

53%, respectively.

This set of experiments emphasizes the importance of dynamically adjusting time-

related variables of distributed algorithms according to observed changes in the oper-

96

5.7 Summary

ating conditions. The timeout adjustments that took place in the adaptive algorithm

lead to an improvement of the network load up to 72%, and of the latency up to 53%.

We believe that our contribution is relevant both from an engineering and from a

practical perspective. By using Adaptare as a well-defined service for timeout provi-

sioning we have shown that it is possible to easily add adaptive behavior to a previously

static protocol, without the need for significant changes in the code. The practical out-

come is that it becomes possible to improve performance without sacrificing other

properties, namely safety. This is particularly important, as shown, in load-sensitive

wireless environments.

5.7 Summary

In this chapter we addressed a problem that is sometimes disregarded, but that is prac-

tically relevant to improve the runtime performance of distributed algorithms: adapting

timing variables and timeouts according to the actual conditions of the environment.

Following a pragmatic methodology, we described a simple approach to transform

a static timeout-based consensus protocol for wireless ad hoc networks into an adaptive

protocol. A fundamental building block of our solution was the Adaptare framework,

which continuously provided the timeout values that should be used at a given moment

during the protocol’s execution.

The results of the experimental evaluation attested the benefits of using adaptive

protocols in wireless networks. While the static version of the consensus algorithm can

perform well only on the scenarios for which the static timeout has been determined,

the adaptive version is able to adapt to any timeliness conditions.

Notes

An early version of the work presented in this chapter was reported as a FCUL tech-

nical report: “Timeout Adaptive Consensus: Improving Performance through Adap-

tation”, Dixit, Moniz, and Casimiro, DI/FCUL TR-2010-06, November 2010 (Dixit

et al., 2010).

97

5. TIMEOUT-BASED ADAPTIVE CONSENSUS

This subject was also discussed in “From static to dynamic protocols: adapting
timeouts for improved performance”, Casimiro and Dixit, “Proceedings of the I Work-
shop on Autonomic Distributed Systems (WoSIDA’11)”, Campo Grande, Brazil, May
2011 (Casimiro & Dixit, 2011).

Finally, a more complete work with the content of this chapter will appear in
“Timeout-based Adaptive Consensus: Improving Performance through Adaptation”,
Dixit, Moniz, and Casimiro, “Proceedings of the 27th ACM Symposium on Applied
Computing, Trento, Italy, March 2012 (Dixit et al., 2012).

98

Chapter 6

Adaptare-FD

In Chapter 5 we demonstrated the applicability of Adaptare by developing and evalu-

ating an adaptive consensus protocol in which timeout values are adjusted according

to Adaptare’s output. In this chapter we address the problem of failure detection in

distributed systems, as a second example of how Adaptare can be used as a building

block in the design of dependable and adaptive protocols.

In distributed systems and applications, the need to detect the failure of system

components in a fast and accurate way is often a fundamental issue. In order to ensure

the correct operation of the failure detector according to some desired characteristics,

it is necessary to deal with the environment uncertainties, concerning timeliness and

reliability. Additionally, applications should be able to specify their dependability re-

quirements, which should be directly mapped to requirements for failure detection.

One possible way to cope with this problem is to reason in terms of the quality of

service (QoS) of failure detectors, both in their specification and evaluation. In this

chapter we propose a novel dependability-oriented approach for specifying the QoS

of failure detectors, and introduce Adaptare-FD, an autonomic and adaptive failure

detector that executes according to this new specification.

The chapter is organized as follows. Section 6.1 discusses the importance of im-

plementing adaptive failure detectors in order to satisfy QoS requirements for failure

detection in uncertain environments. In Section 6.2 we describe the system model and

introduce the basic algorithm for failure detection considered in this chapter. We also

present the different algorithms for adaptation implemented by the failure detectors

99

6. ADAPTARE-FD

that we later on compare with our approach. Section 6.3 introduces Adaptare-FD,

explaining its interface, architecture, and operation. In Section 6.4 we discuss the ap-

plicability of our failure detector by comparing the dependability aspects of Adaptare-

FD with different approaches. Section 6.5 presents the experimental evaluation of

Adaptare-FD, in which we compare its performance with other timeout-based adap-

tive failure detectors.

6.1 Motivation

The problem of failure detection is interesting and difficult to solve in uncertain en-

vironments, since the quality of service (QoS) of the failure detector will depend on

its ability to correctly characterize the environment state and adapt relevant parameters

for failure detection. Therefore, we selected this problem as the second fundamental

distributed system problem (along with consensus, addressed in Chapter 5) to focus in

this thesis, in order to show the usefulness of Adaptare.

As presented in Chapter 2, Chandra & Toueg (1996) introduced the concept of un-

reliable failure detectors, which are essentially oracles that provide information about

the status (alive or crashed) of system processes. They circumvent the FLP impossibil-

ity result (Fischer et al., 1985) by encapsulating the temporal uncertainties observed in

asynchronous systems, freeing the system designer from the need to deal with them.

However, as shown in Sergent et al. (2001), the actual implementation of the failure

detector is fundamental to the overall system performance.

Two generic performance-related attributes of failure detectors are their speed (how

fast they detect a failure) and their accuracy (how well they avoid making mistakes

by suspecting correct processes). With timeout-based failure detectors, these attributes

depend on the timeout value and on the interrogation period (frequency of monitoring).

Therefore, a fundamental problem in the implementation of failure detectors in

asynchronous and dynamic environments concerns the configuration of their opera-

tional parameters, which involves the need to handle non-functional user-level require-

ments and the ability to characterize the state of the operational environment. Further-

more, this has to be done continuously to handle environment changes.

100

6.1 Motivation

One of the facets of this problem is concerned with how users should specify their

requirements for failure detection, and which metrics should be used for quantifying

performance. In that sense, the work in Chen et al. (2002) introduced a set of metrics

for specifying and evaluating the QoS of failure detectors, abstracting from the specific

implementation approach (see Chapter 2). These metrics are widely used to assess the

QoS of failure detectors.

Moreover, to effectively address dependability concerns and deal with uncertain

and changing environments, the specific solution to predict network delays and es-

timate timeouts becomes crucial. Our interest is thus on adaptive failure detection.

Building on the basic Push and Pull styles of algorithm structuring, some works fo-

cus on algorithmic techniques to improve performance (Fetzer et al., 2001), others on

the provision of adequate interfaces to support the varying requirements of applica-

tions (Hayashibara et al., 2004; Satzger et al., 2007), others on methods for detect-

ing environment changes and adapting parameters accordingly (Bertier et al., 2002;

Chen et al., 2002; Falai & Bondavalli, 2005; Nunes & Jansch-Porto, 2004), and oth-

ers on algorithms to secure some required QoS level (Chen et al., 2002; de Sá &

de Araújo Macêdo, 2010). The work presented in Chen et al. (2002) is particularly

relevant to our purposes, since it is the most closely related work in the literature. It

presents the first systematic study of the QoS of failure detectors, and proposes a failure

detector (here referred as Chen’s FD) that receives QoS requirements as input param-

eters and implements methods based on probability theory to compute interrogation

periods and timeouts.

We show that our solution for dependable adaptation is useful in practice by intro-

ducing a new dependability-oriented approach for the specification of the failure detec-

tor QoS, and proposing a new failure detector, named Adaptare-FD. More specifically,

our approach is said to be dependability-oriented since it allows QoS to be specified

by means of the required coverage for failure detection. Adaptare-FD follows this new

specification, and is thus able to exploit the mechanisms implemented in Adaptare.

We evaluate and discuss the relative merits of Adaptare-FD, based on a comparative

analysis with other approaches. In particular, we focus on the comparison with Chen’s

approach (Chen et al., 2002), to reveal subtle differences that are not easily observed

in a fast glance, and highlight the tradeoffs in choosing one of those solutions.

101

6. ADAPTARE-FD

6.2 Adaptive failure detection

6.2.1 System model and basic algorithm

In order to understand the operation of the failure detectors evaluated in this chap-
ter (including Adaptare-FD), it is important to specify the considered system model,
which states the assumptions that are made regarding communication and process fail-
ures. We consider a distributed system with a finite set of processes Π = {p, q, ..., z}.
Processes are interconnected through unreliable channels, which can loose messages
or discard corrupted messages. Communication delays are probabilistic, following the
stochastic model presented in Chapter 2. In fact, these assumptions are compatible
with the ones stated in Chapter 3, on which Adaptare was designed. An environment
satisfying the latter will also satisfy the assumptions stated here. Regarding processes,
we assume that they only fail by crashing, but otherwise behave correctly.

We consider a pull-style crash failure detection model where a process p monitors
a process q, by periodically sending it “are you alive?” query messages. Process
q responds to every received “are you alive?” message with a corresponding “I’m

alive” message. Depending on the reception instants of q’s responses, the output of
the failure detector may be T (trust), or S (suspect). Since we adopt a pull-style failure
detector model, no assumptions about synchronized clocks are needed.

Algorithm 8 shows the basic algorithm that is typically used in pull-style failure
detectors, and that we consider in this chapter. The algorithm executes as follows.

• The monitoring process p is initially configured to suspect that the monitored
process q is crashed, since it knows nothing about q (line 2).

• At times σi = σi−1 + ηi−1, p sends an “are you alive?” query message mqi to q,
and updates its ηi (interrogation period) and δi (timeout) values (lines 7-10). ηi
specifies how long p will wait to send the next query message (σi+1 = σi + ηi),
and δi defines the timeout for receiving the response for mqi.

• A response mi for query message mqi is expected to be received between σi

(time at which mqi was sent) and τi = σi + δi (timeout expiration for receiving
mi). Thus, if p does not receive the response message mi for query message mqi
or a subsequent response message mj (j > i) by τi, p suspects q (lines 11-13).

102

6.2 Adaptive failure detection

Algorithm 8: Failure detection algorithm.
Output: T (trust) or S (suspect)

1 Process p (monitoring process)
// Initialization

2 output← S
3 RTTs← ∅
4 σ0 ← currentT ime
5 η0 ← compute_η(RTTs)
6 δ0 ← compute_δ(RTTs)

// Send query messages
7 foreach i ≥ 1, at time σi = σi−1 + ηi−1 do
8 Send “are you alive?” message mqi to q
9 ηi ← compute_η(RTTs)

10 δi ← compute_δ(RTTs)

// Check timeout expiration
11 foreach i ≥ 1, at time τi = σi + δi do
12 if did not receive message mj with j ≥ i then
13 output← S

// Receive responses
14 foreach “I’m alive” message mj received at time t do
15 rttj ← compute_rtt(mj)
16 RTTs← RTTs ∪ rttj
17 if j ≥ i and t ∈ [τi, τi+1) then
18 output← T

19 Process q (monitored process)
20 foreach “are you alive?” message mqi received from p do
21 send ”I’m alive” message mi to p

• When p receives a response messagemj at time t, it computesmj’s RTT, i.e., the
elapsed time from σj (time at which the query message mqj was sent) to t (lines
14-16). Process p keeps a set of RTT values, used to compute η and δ values.

• If p receives a response message mj at time t ∈ [τi, τi+1) and j ≥ i, then p trusts
q is alive. If j < i, then mj is an old message and it should be discarded. If
j = i, then the response for mqi is late (t ≥ τi), but q is alive. If j > i, then mj

103

6. ADAPTARE-FD

timeout has not expired yet (t < τj), and p can trust q is alive (lines 14,17-18).

• The monitored process q responds to every received query message mqi with an
“I’m alive” response messagemi, sent to the monitoring process p (lines 20-21).

The main distinguishing factor between the different adaptive failure detector ap-
proaches lies in the solutions used for computing the interrogation period, η, and the
timeout, δ. These two parameters are dynamically adjusted during the execution, de-
pending on the required QoS (usually defined in a static way during initialization) and
on the observed behavior of the communication environment (which may change).
Therefore, the functions compute_η(RTTs) and compute_δ(RTTs) encapsulate the
configuration procedures that take place during initialization, and every time a query
message is sent. In that way, their values will vary according to the delays observed
on the reception of response messages, which are kept in the RTTs set. The different
approaches for adaptation to which we compare our proposal are presented next.

6.2.2 Chen’s failure detector

Chen et al. (2002) propose a failure detector in which the parameters are configured
to meet some required QoS level, specified by three metrics: an upper bound on the
detection time (TUD), a lower bound on the average mistake recurrence time (TLMR), and
an upper bound on the average mistake duration (TUM). This failure detector implements
a push-style algorithm, in which monitored processes send periodic heartbeats to the
monitoring process spontaneously, instead of responding to query messages.

Figure 6.1 (from Chen et al. (2002)) presents a schematic view of Chen’s FD.
QoS requirements are given as input parameters. The estimator module predicts the
message behavior, described by the message loss probability pL, and by the expected
value (E(D)) and variance (V (D)) of message delays.

Finally, the configurator module uses all this information to compute the interroga-
tion period and timeout values. The authors describe several configuration procedures,
which depend on different assumptions that may be made about the system in which
the failure detector is used. Although the algorithms and evaluation presented in Chen
et al. (2002) do not contemplate adaptive failure detectors, the authors pointed out that
their failure detector could be made adaptive by periodically re-executing the estimator

104

6.2 Adaptive failure detection

Estimator of the probabilistic
behavior of message delays

Configurator

Chen’s failure detector

QoS requirements

TD
U, TMR

L, TM
U

δη

pL E(D) V(D)

Figure 6.1: Schematic view of Chen’s failure detector.

and configurator modules, computing new values for η and δ, based on pL, E(D) and

V (D) estimated from the most recent heartbeats.

We implemented a fully adaptive version of this failure detector with slight mod-

ifications in order to use the pull-style algorithm presented in Algorithm 8. From the

different configuration procedures proposed in Chen et al. (2002), we adopted the one

that assumes unknown message behavior and synchronized clocks. Note that we do

not make any assumption about clock synchronization, but since we implemented a

pull-style failure detector, both sending and receiving times are measured on the same

process, thus we can safely use this procedure.

The configuration procedure to compute the interrogation period η and timeout δ

performs the following steps (from Chen et al. (2002)):

• Compute:

γ =
(1− pL)(TUD − E(D))2

V (D) + (TUD − E(D))2
,

and let:

ηmax = min(γ′TUM , T
U
D − E(D)).

If ηmax = 0, then output “QoS cannot be achieved” and stop.

• Let:

105

6. ADAPTARE-FD

f(η) = η ·
d(TUD−E(D))/ηe−1∏

j=1

V (D) + (TUD − E(D)− jη)2

V (D) + pL(TUD − E(D)− jη)2
.

Find the largest η ≤ ηmax such that f(η) ≥ TLMR.

• Set δ = TUD − η and output η and δ.

This procedure, which we present here for self-containment, is based on the prob-

ability theory, and assumes that TUD > E(D). The values of pL, E(D), and V (D) are

estimated based on measured RTTs of past messages. Interested readers may refer to

Chen et al. (2002) for further information.

6.2.3 Other timeout estimation methods

Most of the timeout-based adaptive failure detectors described in the literature are

based on fixed interrogation periods, and a common approach to estimate timeouts:

the use of an estimator, plus a safety margin (Bertier et al., 2002; Falai & Bondavalli,

2005; Nunes & Jansch-Porto, 2004).

The failure detectors used in our comparative evaluation that follow this approach

combine two different estimators with two methods to compute dynamic safety mar-

gins. The estimators are defined as follows, where rtti is the measured RTT at time i,

and ˆrtti is an estimation for rtti.

• WinMean(n): Computes the average of the delays of the last n received mes-

sages.

r̂ttt+1 =

∑t
i=t−n rtti

n

• Lpf(β): A simplified ARIMA (AutoRegressive Integrated Moving Average) es-

timator, in which the estimated value is the exponential smoothing of the obser-

vations (Falai & Bondavalli, 2005). The parameter β represents the importance

of the error in the last estimation.

106

6.3 Adaptare-FD

r̂ttt+1 = r̂ttt + β(rttt − r̂ttt)

The considered approaches to compute dynamic safety margins were proposed in
Nunes & Jansch-Porto (2004), and also used in Falai & Bondavalli (2005). They are:

• Cib(n,γ): Assumes that the predictor correctly models the communication de-
lays, and the estimator is a linear function. In the equation, γ corresponds to the
confidence level in the standard Normal distribution function, σ̂ is the estimator
of the standard deviation and r̄tt is the mean of the last n observed delays.

Cibt+1 = γσ̂

√
1 +

1

n
+

(rttt − r̄tt)2∑t
i=t−n(rtti − r̄tt)2

• Jac(φ,α): Based on the Jacobson estimation method (Jacobson, 1988), considers
the error on the last estimation to adapt its value. α is a smoothing constant
which defines the speed of the reaction to error variation (Nunes & Jansch-Porto,
2004), and φ is a multiplier factor that defines how conservative the margin will
be.

Jact+1 = φ(Jact + α(|rttt − r̂ttt| − Jact))

6.3 Adaptare-FD

In this section we introduce Adaptare-FD, a dependability-oriented adaptive failure
detector. Adaptare-FD is based on a novel approach for specifying the required QoS
for failure detection, and is built upon Adaptare, which is used as an underlying service
for timeout computation.

The architecture of Adaptare-FD is illustrated in Figure 6.2. The fundamental
idea behind our approach is to achieve a failure detector that dynamically adapts to
changing network conditions and is easily configured, by specifying an upper bound on
the detection time (TUD , as with Chen’s FD) and the minimum coverage (CL) for failure
detection (i.e., a lower bound on the probability that the failure detector output - trust

107

6. ADAPTARE-FD

CL, TD
U

δδδδ

h

ηηηη, δδδδRTT

Adaptare framework

Adaptare-FD

engine

Adaptare-FD

configurator

RTTs, C

pL

pC

Figure 6.2: Adaptare-FD architecture.

or suspect - will be correct). By specifying the required confidence on a fundamental

assumption we achieve a dependable approach for failure detection. Moreover, the

definition of those two parameters at the failure detector interface allows controlling

both speed and accuracy of Adaptare-FD.

The timeout δi is adapted in runtime, according to Adaptare’s output. The random

variable to be monitored is the elapsed time from sending each query message mqi
(“are you alive?”) to receiving the corresponding response mi (“I’m alive”), i.e., the

round trip delay (RTT). Thus, on the reception of a response message, Adaptare-FD

measures the RTT and provides this information to Adaptare.

The coverage value specified at Adaptare-FD’s interface (CL) is the coverage per-

ceived by end users (applications that use the failure detection service). Thus, it defines

a threshold for the total number of mistakes (false suspicions) that the failure detector

is allowed to make. Clearly, if we want to limit the number of mistakes, we need to

understand the conditions that lead to them. Based on that, it will be possible to define

how Adaptare can be used to deal with those mistakes, and in particular what is the

coverage value that must be requested to Adaptare. We distinguish the following three

causes of failure detection mistakes:

• Message losses: considering the failure detection algorithm presented in Algo-

rithm 8 and that the timeout is typically lower than the interrogation period (as

we discuss ahead), every lost message will cause a failure detection mistake: if

the message is lost, the timeout will expire and Adaptare-FD will suspect that a

108

6.3 Adaptare-FD

correct process is crashed until the reception of the next response message. This

happens with probability pL.

• Incorrect timeout: as explained in Chapter 3, the bounds provided by Adaptare

when the environment starts to change (initiating a transient phase) are not safe

until this change is detected (usually after a sample from the transient phase is

measured and a new bound is computed). In this case, unsafe timeouts might not

be large enough, possibly causing a false suspicion: Adaptare-FD will suspect a

correct process between the timeout expiration and the reception of the response

message. This occurs with probability pC , which is the “environment change”

probability.

• Late message: even when timeouts computed by Adaptare are correct (given the

required coverage), some messages might arrive after the timeout. In these cases,

Adaptare-FD will be in a mistaken state between the timeout expiration and the

reception of the response message. This happens with probability 1− C, where

C is the coverage requested to Adaptare.

Given all the above, it follows that in order to ensure the coverage for failure de-

tection requested by the user, we need to deal with pL and pC . In a network subject

to losses and stability changes, the final observed coverage of failure detection (CFD)

will be:

CFD = (1− pL)× (1− pC)× C,

The intuition is the following: the failure detector will not make mistakes when

there are no message losses, the environment is stable and message delays are within

the considered timeouts. Therefore, the probability of not making mistakes (observed

coverage of failure detection, CFD) is the product of 1− pL (no message loss), 1− pC
(probability that the environment is stable) and C (probability that message delays are

within selected timeouts).

Consequently, in order to bound the observed coverage CFD according to the re-

quested coverage CL, provided at the failure detector interface, the coverage to be

requested to Adaptare is:

109

6. ADAPTARE-FD

C =
CL

(1− pL)× (1− pC)

It remains to explain how pL and pC are obtained. We could simply postulate ar-

bitrary values for these probabilities. However, a better strategy is to calculate them

dynamically, which can be done based on the monitoring data. Therefore, in our solu-

tion we have Adaptare-FD estimating pL and pC in runtime. Since each message has a

sequence number, losses are easily detected. pL is estimated as the number of missing

responses, divided by the highest sequence number received so far. This method is

suggested in Chen et al. (2002), and it was also used in our adaptive implementation

of Chen’s FD.

Regarding pC , Adaptare-FD uses a counter to keep track of the number of times the

environment changes from stable to transient, which is an information obtained from

Adaptare. Then, pC is estimated by the number of observed changes divided by the

number of computed timeouts.

As with Chen’s FD, there are conditions under which the requested QoS cannot be

secured by Adaptare-FD. Namely, if the coverage C derived from the equation above

is higher than 1, this means that the environment is too unstable to allow satisfying

the required coverage (CL). In other words, pL or pC (or both) are too high, possibly

leading to more mistakes than accepted by the client application. In this case, in a best

effort attempt, Adaptare-FD requires a very high coverage to Adaptare in order to get

a high timeout and avoid extra mistakes, but still the minimum coverage may not be

achieved.

The interrogation period η is computed by the configurator module, according to

the timeout δ received from Adaptare and the requested upper bound on the detection

time TUD . As shown in Figure 6.3, the detection time is bounded by:

TUD = η + δ

Thus, in order to secure the required TUD , whenever a new timeout value is provided

by Adaptare, the interrogation period is adjusted to:

ηi = TUD − δi

110

6.4 Why using Adaptare-FD?

p

q

Are
you

alive?

I’m alive.

crash

t1

t2

t3 t4 t5 t6

η

t7

δ

Are
you

alive?

suspect q

TD

TD
U = η + δ

η

δ

Figure 6.3: Upper bound on the detection time TUD .

Note that the interrogation period cannot be made too small, to ensure that the
overhead of failure detection does not become relevant. In particular, it is physically
impossible to satisfy TUD if TUD ≤ δi. In practice, we consider that it is reasonable to
assume that TUD will be at least twice the timeout, therefore ensuring that the interro-
gation period will be larger than the timeout (which is the reason why a lost message
will always lead to a timing failure).

6.4 Why using Adaptare-FD?

6.4.1 Adaptare-FD vs. Chen’s failure detector

In asynchronous systems with process crashes any timeout-based failure detector im-
plementation is unreliable. Mistakes will eventually occur from time to time, when
assumptions about communication delays, which are used for setting timeouts, are vi-
olated. When specifying the QoS of a failure detector it is thus necessary to limit these
mistakes in some manner.

This is achieved with Chen’s FD by defining a lower bound on the mistake recur-
rence time (TLMR). However, this single (safety) condition is not sufficient to specify

111

6. ADAPTARE-FD

a useful failure detector – a trivial implementation would just produce an output ev-

ery TLMR time units. At least one liveness condition is necessary in addition. Thus,

the authors propose the specification of upper bounds on the detection time (TUD) and

on the average mistake duration (TUM). Then, the failure detector configurator module

computes the necessary interrogation period to secure these bounds, and thus liveness

is achieved.

Adaptare-FD limits its number of mistakes by requiring a lower bound on the

probability of providing a correct output (CL), which together with other parame-

ters (namely the message loss and environment change probabilities) will define the

minimum coverage for the assumed round trip transmission delays. Adaptare-FD also

requires an upper bound on the detection time (TUD), like Chen’s FD. The interrogation

period is derived from the timeouts computed by Adaptare, and the specified TUD .

By taking the coverage of the failure detector output as a QoS parameter, Adaptare-

FD is a good approach when the designer knows how dependable it wants the failure

detector to be. For instance, if a high coverage, close to one, is specified (e.g., CL =

0.999), this implies that Adaptare-FD will tend to use high timeouts to avoid false

positives and achieve the specified probability. Additionally, the interrogation period

is limited by the given upper bound on the detection time TUD , securing detection speed

and leading to a very accurate failure detector. On the other hand, a coverage close

to zero will lead to very small timeout values and hence more mistakes, which means

poor overall accuracy. The maximum achievable coverage is, however, limited by pL
and pC , as explained earlier.

In functional terms, with Adaptare-FD the timeout is dynamically adjusted to al-

ways be the lowest possible, given the environment conditions and the required cover-

age. Moreover, the interrogation period is the highest possible, given the required TUD
and the computed timeout. Consequently, the average detection time and the network

utilization are optimized.

One relevant difference between Adaptare-FD and Chen’s FD is related to the way

in which they deal with the message loss probability pL and the environment change

probability pC . Since in Adaptare-FD timeouts are set to the lowest possible values,

they are in general lower than the interrogation period, as already mentioned. Because

of that, every message loss will result in a mistake. Furthermore, when the environment

changes, the current timeout may not hold to the new conditions, which can also be

112

6.4 Why using Adaptare-FD?

the cause of mistakes. The approach followed by Adaptare-FD to address this problem

is to increase the coverage requested to Adaptare in order to minimize the occurrence

of mistakes in the “normal” conditions, in the necessary measure to compensate the

false suspicions generated by losses or environment changes. However, if the required

coverage for failure detection is already high, this procedure may fail. In the case

of Chen’s FD, message loss is compensated by reducing the interrogation period in

such a way that several heartbeats can be sent within one single timeout duration.

However, this may increase the overhead of failure detection significantly, making it

impractical. Additionally, the approach followed by Chen to deal with pL requires

some extra assumptions to be made (e.g., they assume that no consecutive message

losses occur), and these assumptions may not always hold. In these cases, the QoS

provided by the failure detector may not satisfy the requirements. In particular, the

TM requirement may not be satisfied. Our approach is flexible in this respect, since

we do not impose a restriction on TM , and thus we do not need to make any additional

assumption.

Regarding dependability, Chen’s approach requires the specification of upper

bounds on TMR and TM , which is an alternative way of achieving a dependable fail-

ure detector. This has implications on the configuration process. While Adaptare-FD

optimizes timeouts, and then sets the necessary interrogation period to satisfy TUD ,

Chen’s approach first computes the interrogation period, then configures the timeout

(δ = TUD − η). Since in Chen’s FD interrogation periods usually end up being small to

deal with message loss and to achieve the required QoS, timeouts tend to be higher than

the interrogation periods. Therefore, the price to pay for dealing with message loss is

that no effort is made to select lower timeouts, implying that the average detection time

is not optimized.

Interestingly, we note that uncertainty, when higher than expected, causes prob-

lems to both approaches, for different reasons. In the case of Adaptare-FD, it affects

pC (more environment changes) and pL (more message losses), preventing a high cov-

erage to be achieved. With Chen’s FD, it affects pL (and the probability that consec-

utive losses occur), leading to reduced periods and to possible violations of the TUM
requirement.

113

6. ADAPTARE-FD

6.4.2 Adaptare-FD vs. other timeout-based adaptive failure detec-

tors

Except for Chen’s FD, all timeout-based adaptive failure detectors considered in our

evaluation combine some estimator with a safety margin in order to compute timeouts.

Comparing to them, a striking advantage of using Adaptare-FD is the possibility

of specifying the desired coverage as a dependability requirement, which serves to

automatically and dynamically configure the failure detector. In contrast, with other

solutions the required QoS level can only be achieved if some underlying parameters

are carefully adjusted. This can only be done based on observed execution results,

following a typical trial and error approach in order to tune the failure detector param-

eters for that specific environment and QoS demand. Whenever the network changes,

or when the client application requires a new dependability level, it will be necessary

to fine tune the failure detector again, for the new conditions.

Another distinguishing feature is that Adaptare-FD optimizes network utilization

by adjusting the interrogation period to the highest possible value with respect to the

required TUD and the current timeout. The considered failure detectors based on esti-

mators and safety margins adopt a fixed interrogation period, which must be manually

configured by the system designer.

The remaining differences between Adaptare-FD and the other timeout-based

adaptive failure detectors follow from the mechanisms that are used to compute the

timeout values. In the next section we provide experimental evaluation results that al-

low comparing the different approaches, based on typical metrics for the QoS of failure

detectors.

6.5 Experimental evaluation

In this section we describe the performed experiments and discuss the evaluation re-

sults in terms of achieved QoS, comparing Adaptare-FD with other timeout-based

adaptive failure detectors. We give special emphasis to the comparison with Chen’s

FD, which is more similar to Adaptare-FD in the sense that it takes QoS input param-

eters, and adapts both timeout and interrogation period.

114

6.5 Experimental evaluation

6.5.1 Environment setup

The experiments were performed in the PlanetLab environment (PlanetLab Consor-

tium, 2004), which is a platform widely used by the research community as a test bed

for distributed applications. We selected six geographically distributed nodes from

PlanetLab, grouped in three pairs of linked nodes with different characteristics, in or-

der to simulate distributed failure detection services operating in distinct networks.

The first link is composed by two nodes in a local area network (LAN), located in

the same institution in Portugal. The second link contains two nodes in the USA which

are 900km apart, representing a low-delay wide area network (low-delay WAN). Fi-

nally, the third link represents an intercontinental high-delay wide area network (high-

delay WAN), with one node in the USA, and the other node in Australia. Interestingly,

the intercontinental WAN presented a more stable behavior (in terms of delays varia-

tion) than the low-delay WAN composed by nodes in the USA. Table 6.1 shows RTT

statistics for the selected links.

Link AVG STD MIN MAX
LAN 0.41 0.97 0 295

Low-delay WAN 23.30 52.50 17 7279
High-delay WAN 226.75 6.62 226 1994

Table 6.1: Links RTT statistics (ms).

Figure 6.4 illustrates the operation of nodes in our experiments. Each link con-

nects two nodes. The first node executes two monitoring processes: one of them runs

Adaptare-FD’s algorithm, and the other runs Chen’s algorithm. The second node exe-

cutes two monitored processes: one replies to query messages from Adaptare-FD, and

the other replies to query messages from Chen’s FD.

The remaining adaptive failure detectors, which use static interrogation periods,

were evaluated offline using the RTT traces collected by Adaptare-FD during the exe-

cution of the experiments. Thus, we simulate their execution as if they used the same

interrogation periods of Adaptare-FD. We believe that this methodology is valid for the

evaluation that we perform, given that the interrogation period has no influence on the

achieved coverage, and consequently on the dependability of the solution. We realize

that in the cases in which the failure detectors based on estimators and safety margins

115

6. ADAPTARE-FD

Adaptare-FD
monitor

Chen’s FD
monitor

Adaptare-FD
monitored

Chen’s FD
monitored

Network

Are you alive?

I’m alive

Are you alive?

I’m alive

Node 1

Node 2

Figure 6.4: Simultaneous execution of Adaptare-FD and Chen’s FD.

compute higher timeouts than Adaptare-FD, using the same interrogation periods that

were computed by Adaptare-FD, the required TUD will not be satisfied. However, as

we see later, higher timeouts are computed by only two of the twelve evaluated failure

detectors. Note that if these failure detectors used smaller periods, they would at most

secure TUD (as Adaptare-FD does), but increasing the network load, which means that

no improvement would be achieved in comparison with Adaptare-FD. As we will see,

in practice there is no impact of using non-fixed interrogation periods, at least in a way

that could influence the conclusions in benefit of Adaptare. Our evaluation is focused

on demonstrating that the main limitation of these solutions lies on their inability of au-

tomatically adjusting operational parameters according to the network conditions and

required QoS, which is independent of specific interrogation periods.

6.5.2 Failure detectors configuration

To compare Adaptare-FD and Chen’s FD, we set three experiments with varying levels

of QoS requirements, as follows.

• Experiment E1 represents a failure detection service operating in a system re-

quiring high availability. Failures must be detected within at most 10 seconds

116

6.5 Experimental evaluation

(TUD = 10s), and in order to have such a fast detection, the system accepts a false

positives rate of 10% (CL = 0.9).

• Experiment E2 represents a system in which accuracy is the primary concern,

instead of availability. Mistakes must be avoided, for example due to high re-

covery costs. Thus, the failure detector may present no more than 1% of false

positives (CL = 0.99), and in case of failures, a detection time of up to 40 sec-

onds is acceptable (TUD = 40s).

• Experiment E3 allows to analyze how the evaluated failure detectors would per-

form in a system requiring even higher accuracy (CL = 0.999), and also a rea-

sonable fast detection time (TUD = 25s).

Table 6.2 presents the QoS parameters for both Adaptare-FD and Chen’s FD, in

each experiment. Chen’s parameters were set according to Adaptare-FD parameters.

Adaptare-FD’s timeouts will be as tight as possible, in the order of milliseconds. Thus,

the interrogation period, which is computed as η = TUD − δ, will be close to TUD . Take

experiment E1 as an example: a coverage of 90% means that the system accepts up

to one mistake every ten observations. Since the interrogation period will be close to

10 seconds, Adaptare-FD may present approximately one mistake per 100 seconds.

Thus, we set the upper bound for the average mistake recurrence time TUMR required

by Chen’s FD to 100 seconds. We followed this same reasoning to set the TUMR for

experiments E2 and E3.

QoS CL TUD TLMR TUM
Experiment E1 0.9 10s 100s 10s
Experiment E2 0.99 40s 1h 40s
Experiment E3 0.999 25s 6h 25s

Table 6.2: QoS parameters for FDs configuration.

Chen’s FD also requires an upper bound for the mistake duration, which we set to

be the same as TUD . Our reasoning is that in the worst case, a mistake will be caused

by a message loss, and it will be corrected upon the reception of the response for the

next query. Thus, a very conservative upper bound for the mistake duration would be

the interrogation period plus the timeout, which is the definition of TUD .

117

6. ADAPTARE-FD

Usually, Chen’s FD is very conservative on setting interrogation periods. The con-

figuration procedure presented in Section 6.2.2 allows a minimum period of 1 millisec-

ond. In practice, this value is too small, and it has two negative impacts: the network

is overloaded, and processes receive more messages than they can process, exhausting

the system memory. In situations like this, PlanetLab automatically kills the running

experiments. In fact, we had this problem in our first experiments. Because of that,

we set a minimum interrogation period of 500 milliseconds, which was sufficient to

execute our experiments in PlanetLab. If the configuration procedure of Chen’s FD

would yield a value lower than 500 milliseconds, we would use this minimum instead.

Clearly, this can have an impact on the results, but the limitation would be felt in a real

system anyway.

Finally, Adaptare was configured to use a history size h = 30, as suggested by the

results presented in Chapter 4.

The remaining failure detectors in this evaluation compute timeouts using a simple

estimator, plus some safety margin, as presented in Section 6.4.2. By combining the

WinMean (n = 30) and Lpf (β = 0.125) predictors with three different levels of Cib

and Jacobson’s safety margins (high, med and low), we defined 12 different timeout-

based adaptive failure detectors. The safety margin parameters were configured as

proposed in Falai & Bondavalli (2005): 3.31, 2.586, and 1.648 for Cib’s γ parameter;

and 4, 2, and 1 for Jac’s φ parameter.

6.5.3 Evaluation results

In this section we analyze the QoS achieved by the evaluated adaptive failure detec-

tors, focusing on the results in which the differences between them are more evident.

The analysis of these results shows that the characteristics and limitations of each so-

lution, discussed in Section 6.4, were verified in practice. The complete set of results

is presented in Appendix B.

Securing TUD . Figure 6.5 shows the average timeout values of each implemented

failure detector in experiment E1. As previously explained, for the pull-style failure

detector algorithm considered in this work, the detection time is bounded by the sum

of the timeout δ and the interrogation period η. Observing these results, we classified

118

6.5 Experimental evaluation

2
.3

7

1
.1

6

1
0
.8

9

1
2
.7

9

2
.8

4

2
.0

0

2
.1

5

2
.8

7

2
.0

0

2
.1

4

1
.0

1

1
.0

4

1
.0

1

1
.0

4

2
3
0
.2

4

9
4
8
9
.7

7

1
0
2
4
4
.2

8

1
5
2
8
0
.4

9

2
3
0
.5

0

2
2
8
.8

7

2
2
9
.6

5

2
3
0
.3

7

2
2
8
.7

4

2
2
9
.5

3

2
2
7
.3

9

2
2
7
.8

3

2
2
7
.2

3

2
2
7
.5

8

4
3
.4

7

1
7
4
5
.6

2 1
1
6
9
7
.4

6

1
5
2
6
7
.1

3

4
2
.6

7

3
1
.1

8

3
7
.6

6

4
2
.4

9

3
1
.0

3

3
7
.5

0

2
0
.7

6

2
2
.5

9

2
0
.5

9

2
2
.2

8

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Ada
pt

ar
e-

FD

C
he

n'
s

FD

Lp
fJ

ac
H
ig
h

W
in
M

ea
nJ

ac
H
ig

h

Lp
fC

ib
H
ig
h

Lp
fC

ib
Lo

w

Lp
fC

ib
M

ed

W
in
M

ea
nC

ib
H
ig
h

W
in
M

ea
nC

ib
Lo

w

W
in
M

ea
nC

ib
M

ed

Lp
fJ

ac
Lo

w

Lp
fJ

ac
M

ed

W
in
M

ea
nJ

ac
Lo

w

W
in
M

ea
nJ

ac
M

ed

T
im

e
o

u
t

(m
s

)

lo
g

 s
c

a
le

LAN High-delay WAN Low-delay WAN

Conservative FDs

Balanced FDs Agressive FDs

Figure 6.5: Average timeouts in experiment E1 (TUD = 10s).

the failure detectors based on estimators and safety margins into three groups: the

conservative group comprises two failure detectors that had timeouts much higher (at

least one order of magnitude) than the others; the aggressive group includes the four

failure detectors which presented the lowest average timeouts; and the remaining six

failure detectors constitute the so-called balanced group.

Both Adaptare-FD and Chen’s FD secure the required TUD by construction, ensur-

ing that η + δ = TUD . As the remaining failure detectors used the same interrogation

periods as Adaptare-FD, all failure detectors in the balanced and aggressive groups

secured the required TUD . In contrast, the conservative failure detectors exceeded the

specified TUD in all experiments, due to their higher timeouts.

Despite of ensuring that η + δ = TUD , Adaptare-FD and Chen’s FD differ on how

these parameters are configured. In Section 6.4.1 we discussed that while Adaptare-FD

computes the lowest possible timeouts, and then set the interrogation periods accord-

ingly, Chen’s FD computes small interrogation periods to cope with message losses,

and then set timeouts considering the required TUD and the computed interrogation pe-

riods. Because of that, Chen’s FD may produce too small interrogation periods, over-

loading the network. For example, in experiment E1, Chen’s FD presented an average

timeout of 9.489 seconds in the high-delay WAN test scenario (Figure 6.5). Given that

TUD = 10s, the average interrogation period was of 511 milliseconds, which suggests

that the minimum interrogation period (500ms) was used several times. In fact, we

analyzed Chen’s FD results for this experiment, and approximately 70% of the inter-

119

6. ADAPTARE-FD

rogation periods were set to the minimum value. In order to verify what would be the

values computed by Chen’s FD if we did not stipulate a minimum value, we applied

the Chen’s algorithm to compute the interrogation period in the collected traces, of-

fline. The result was an interrogation period of 191 milliseconds on average, which we

consider to be too small to be used in a practical failure detector. We realize that this of-

fline analysis does not represent a real execution, since more frequent messages could

possibly interfer in the message loss probability and in the measured RTTs. Anyway,

the message loss probability would likely increase, which would lead to even lower pe-

riods, thus increasing the problem. We believe that this clearly illustrates the limitation

of Chen’s approach, which we discussed in Section 6.4.1.

Additionally, it is important to observe that TUD specifies an upper bound on the de-

tection time, but lower timeouts will produce better detection times on average. Also,

lower timeouts imply higher interrogation periods (for Adaptare-FD and Chen’s FD),

which is a desirable feature as it minimizes the network load imposed by the failure

detection service.

The graphs presented in the remaining of this section show the results of five failure

detectors: Adaptare-FD, Chen’s FD, and the best failure detector of each group (con-

servative, aggressive, balanced). This approach allows cleaner but still representative

graphics, since that failure detectors in the same group achieved very similar results.

We recall that the full set of results is presented Appendix B.

Securing TLMR and CL. The average mistake recurrence time (TMR) and coverage

(C) results follow the expected trend: failure detectors with higher timeouts make less

mistakes, thus they achieve better TMR and C values. In fact, all failure detectors

secured the required TLMR and CL in experiment E1 for all the considered scenarios.

In experiment E2, the balanced failure detectors did not secure the required coverage

in the low-delay WAN environment tests, and the aggressive failure detectors failed in

securing both TLMR and CL, in the low-delay WAN and high-delay WAN scenarios, as

shown in Figure 6.6.

Nevertheless, the differences between the evaluated failure detectors are more ev-

ident when a higher QoS level is required, as in experiment E3 (Figure 6.7): only

Chen’s FD and the conservative LpfJacHigh failure detector (the two failure detectors

with higher average timeouts) could secure the expected TLMR and CL in all networks.

120

6.5 Experimental evaluation
8

.6
4

E
+

0
7

8
.6

4
E

+
0

7

8
.6

4
E

+
0

7

3
.7

6
E

+
0

7

6
.2

7
E

+
0

6

3
.7

6
E

+
0

7

8
.6

4
E

+
0

7

8
.6

4
E

+
0

7

2
.5

1
E

+
0

7

1
.9

8
E

+
0

6

3
.7

2
E

+
0

6

8
.6

4
E

+
0

7

8
.6

4
E

+
0

7

3
.7

6
E

+
0

6

6
.4

9
E

+
0

5

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

Adaptare-FD Chen's FD LpfJacHigh LpfCibHigh LpfJacMed

T
M

R
 (

m
s

)
-

lo
g

 s
c

a
le

LAN High-delay WAN Low-delay WAN

(a) TMR results (TL
MR = 1h = 3.6E + 06ms).

0
.9

9
9

5

1
.0

0
0

0

0
.9

9
9

5

0
.9

9
8

4

0
.9

9
3

0

0
.9

9
8

4

1
.0

0
0

0

1
.0

0
0

0

0
.9

9
7

9

0
.9

7
9

1

0
.9

9
1

6

0
.9

9
9

7

1
.0

0
0

0

0
.9

8
8

7

0
.9

3
6

9

0

0.2

0.4

0.6

0.8

1

Adaptare-FD Chen's FD LpfJacHigh LpfCibHigh LpfJacMed

C
o

v
e

ra
g

e

LAN High-delay WAN Low-delay WAN

(b) C results (CL = 0.99).

Figure 6.6: Average mistake recurrence time and average coverage in experiment E2.

8
.6

4
E

+
0

7

8
.6

4
E

+
0

7

8
.6

4
E

+
0

7

1
.8

9
E

+
0

7

1
.8

5
E

+
0

6

2
.5

3
E

+
0

7

4
.8

0
E

+
0

7

3
.1

6
E

+
0

7

4
.7

4
E

+
0

6

8
.4

6
E

+
0

5

9
.8

3
E

+
0

6

8
.6

4
E

+
0

7

8
.6

4
E

+
0

7

5
.7

2
E

+
0

5

2
.9

1
E

+
0

5

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

Adaptare-FD Chen's FD LpfJacHigh LpfCibHigh LpfJacMed

T
M

R
 (

m
s

)
lo

g
 s

c
a

le

LAN High-delay WAN Low-delay WAN

(a) TMR results (TL
MR = 6h = 2.16E + 07ms).

1
.0

0
0

0

1
.0

0
0

0

1
.0

0
0

0

0
.9

9
8

4

0
.9

8
6

2

0
.9

9
9

6

0
.9

9
9

8

0
.9

9
9

0

0
.9

9
4

9

0
.9

7
2

4

0
.9

9
3

6

0
.9

9
9

8

1
.0

0
0

0

0
.9

5
7

7

0
.9

1
7

1

0

0.2

0.4

0.6

0.8

1

Adaptare-FD Chen's FD LpfJacHigh LpfCibHigh LpfJacMed

C
o

v
e

ra
g

e

LAN High-delay WAN Low-delay WAN

(b) C results (CL = 0.999).

Figure 6.7: Average mistake recurrence time and average coverage in experiment E3.

As discussed in Section 6.4, the approach followed by Adaptare-FD tries to coun-

terbalance mistakes from losses and environment changes by requesting higher accu-

racy requirements (coverage) to Adaptare, in order to decrease the amount of mistakes.

If accuracy requirements are already high (like in experiment E3), there is no slack for

applying this compensation: mathematically, the computed coverage to be required

to Adaptare will be higher than 1. In this situation, Adaptare-FD requests Adaptare a

timeout with very high coverage (in our experiments,C = 0.9999), in an effort to avoid

more mistakes. However, the required coverage, as high as it is, cannot be guaranteed.

This was observed in the results of experiment E3 in the low-delay WAN:

Adaptare-FD did not achieve the expected coverage. This low-delay WAN link was the

one exhibiting higher variations in the network delays, leading to a computed pC that

121

6. ADAPTARE-FD

could not be compensated, considering the high required coverage CL = 0.999. Note

that Chen’s approach is based on the conservative one-sided inequality to compute its

parameters, thus it should not be affected by environment changes as Adaptare-FD.

This is also reflected in the average timeouts for this experiment, which are lower in

the case of Adaptare-FD (1.126 seconds), comparing with Chen’s FD (6.831 seconds).

In this particular case, the general strategy of choosing small timeouts becomes too

aggressive, since the environment is not sufficiently stable. Note that in a real deploy-

ment, and since Adaptare-FD is able to detect that it cannot guarantee the requested

coverage (CL is too high for the observed pC), it would be possible to provide an in-

dication to the client application, letting it know that the requirements could possibly

not be met.

Concerning the failure detectors based on estimators and safety margins, none of

them achieved the expected TLMR and CL in experiment E3, whatever the considered

network environment (with the exception of the conservative LpfJacHigh failure de-

tector, as already mentioned). This result illustrates the main weakness of these failure

detectors: because they are statically configured for a given environment, they can-

not automatically adapt to variations in the environment conditions. Given a specific

configuration, they may work fine for some set of QoS requirements and some en-

vironment. However, to achieve different QoS levels or the same QoS in a different

environment, they must be reconfigured, and the mapping from the desired QoS into

their operational parameters values is not obvious, requiring adjustments through a fine

tuning process.

Securing TUM . Although not considered in the configuration of Adaptare-FD, the up-

per bound on the average mistake duration (TUM) is one of Chen’s FD input parameters,

and represents an important metric for evaluating the performance of failure detectors.

We observed in our experiments that the longest mistake durations are due to con-

secutive message losses, corresponding to extreme situations. All failure detectors do

these mistakes. However, the failure detectors with lower timeouts also make mistakes

due to late messages (messages that arrive after the timeout), which have relatively

small durations, since they are corrected as soon as these messages arrive. Because

of that, the average mistake duration is reduced. Failure detectors with higher time-

outs do not produce false positives due to incorrect timeouts, their mistakes are almost

122

6.5 Experimental evaluation
0 0 0 1 2

2
2

7
9

1

5
9

7
8

2

5
3

5
2

7

1
4

4
0

0

3
5

3
8

3
0

1
3

1

0 4
1

3
4

0

10000

20000

30000

40000

50000

60000

Adaptare-FD Chen's FD LpfJacHigh LpfCibHigh LpfJacMed

T
M

 (
m

s
)

LAN High-delay WAN Low-delay WAN

(a) TM results (TU
M = 25s).

0 0 0 7 7
8

3
1

9
0

7
7

1
1

9
5

6
3

2
1

4
1

0
7

3
0

2
3

9
4

3
9

9
8

4
0

3
5

1
4

1
3

1

0 6
8

9
0

1
1

1
5

1

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Adaptare-FD Chen's FD LpfJacHigh LpfCibHigh LpfJacMed

T
T

M
 (

m
s

)

BR High-delay WAN Low-delay WAN

(b) TTM results.

Figure 6.8: Average mistake duration and total mistake duration in experiment E3.

exclusively derived from message losses. Consequently, they present higher average
mistake durations. This effect becomes evident when we analyze the total mistake
duration (TTM), which represents the sum of the durations of all mistakes. For ex-
ample, this can be observed in the TM and TTM results for experiment E3, shown in
Figure 6.8: as expected, higher average timeouts result in higher TM and lower TTM .

As discussed in Section 6.4.1, Chen’s FD considers the message loss probability in
the configuration of its parameters in order to satisfy the required TUM , but it assumes
that no consecutive messages are lost. When this assumption fails, the observed TM
may be higher than the specified upper bound. This occurred in the high-delay WAN
results of experiment E3 shown in Figure 6.8(a), where the assumption of no consecu-
tive losses was violated twice. In fact, both Chen’s FD and LpfJacHigh failure detector
did not achieve the required TUM in this experiment. However, for the LpfJacHigh

failure detector, this result is a consequence of using the same interrogation periods
as Adaptare-FD. If smaller interrogation periods were used, it would be possible to
secure TUM .

Performance limits. Adaptare-FD performance is limited, in particular, by the
smallest implementable interrogation period. In practice, the limit is imposed by the
Adaptare framework for the time it takes to recompute the timeout on every new input
sample. Since the evaluation presented in Chapter 4 indicates that in a standard Pen-
tium 4 PC the framework takes 1 millisecond on average to perform this job (for a set
of 30 samples), the approach seems practically realizable.

123

6. ADAPTARE-FD

Discussion. The results presented in this section illustrate the advantages of using

QoS-driven failure detectors such as Adaptare-FD and Chen’s FD, rather than other

simpler adaptive approaches. While QoS-driven solutions automatically adjust their

fundamental parameters according to variations in the observed network conditions,

the remaining failure detectors require the reconfiguration of operational parameters

when they are used in different networks and/or need to satisfy different QoS demands.

Nevertheless, the conclusion to derive from our experimental results is that there

is no perfect solution. Choosing between Adaptare-FD and Chen’s FD depends on

the requirements of applications that will use the failure detector service. Comparing

the results obtained by these two failure detectors in the evaluated scenarios, we can

observe that:

• Adaptare-FD computed lower timeouts and higher interrogation periods, which

results in less network utilization and best average detection times;

• The conservative interrogation periods produced by Chen’s FD may be pro-

hibitive in practice, since they cause a too high network consumption. This

situation was observed in experiment E1, for the high-delay WAN scenario;

• Due to its higher timeouts, Chen’s FD secured the required TLMR and CL in all

experiments and environments;

• Adaptare-FD did not achieve the required TLMR and CL when the QoS require-

ments were too high to accommodate the mistakes from environment changes.

This was observed in the low-delay WAN environment, for experiment E3;

• Due to consecutive losses which are not considered in its operation, Chen’s FD

did not secure the required TUM in the high-delay WAN environment, for experi-

ment E3.

We believe that because of its lower timeouts, Adaptare-FD is more suitable to

systems with high availability requirements, where failures should be detected as soon

as possible. The tradeoff is that more mistakes will be made. Nevertheless, our results

shown that even using timeouts much lower than Chen’s, there was only one scenario

in which Adaptare could not deliver the required failure detection accuracy.

124

6.6 Summary

6.6 Summary

In this chapter we presented Adaptare-FD, a dependability-oriented adaptive failure
detector built upon Adaptare. In our approach, the QoS for failure detection is specified
in terms of minimum required coverage (accuracy parameter) and maximum detection
time (speed parameter).

We compared Adaptare-FD with the well-known approach of Chen et al. (2002),
emphasizing the expected impacts of the different configuration approaches on the
QoS metrics. We discussed their strengths and weaknesses, contributing to a better
understanding of the appropriate uses for both failure detectors.

Our practical evaluation focused in comparing Adaptare-FD with Chen’s FD and a
set of different timeout-based adaptive failure detectors using the same pull-style algo-
rithm for failure detection. Our results highlight the tradeoffs in choosing Adaptare-FD

over Chen’s FD. Moreover, the results from the comparison with other adaptive failure
detectors indicate the main advantage of our solution: it is fully adaptive, even when
the stochastic behavior of the environment or the QoS requirements change. While
Adaptare-FD is like a plug-and-play solution, the remaining approaches require some
a priori configuration, where static parameters are defined according to the expected
performance. They are thus unable to dependably adapt to significant changes on the
QoS demand or on the network behavior.

Notes

In our first approach for designing an adaptive failure detector using Adaptare, the
failure detector QoS was specified in a different way. Adaptare-FD received as input
two accuracy related parameters: the lower bound on the observed coverageCL and the
lower bound on the average mistake recurrence time TLMR. The interrogation period,
fixed for the entire execution, was derived from those values: η = TLMR(1 − CL).
Timeouts were adjusted in runtime according to Adaptare’s output. We compared
that failure detector with the same timeout-based adaptive failure detectors considered
in this chapter, except Chen’s FD, since we were focusing on approaches with fixed
interrogation periods. The results of this previous work appeared in “Adaptare-FD: A
dependability-oriented adaptive failure detector”, Dixit and Casimiro, “Proceedings of

125

6. ADAPTARE-FD

the 29th IEEE Symposium on Reliable Distributed Systems”, Delhi, India, November
2010 (Dixit & Casimiro, 2010).

Despite the promising results presented in that work, we decided to make the def-
inition of liveness requirements more explicit, through TUD , and develop an improved
version of Adaptare-FD, which was presented in this chapter. In fact, we improved the
previous results in the following four directions:

• In this new specification, Adaptare-FD takes one accuracy-related and one
speed-related input parameter, allowing the control of both characteristics of
failure detection, while this was not explicit in the previous version.

• In this improved version of Adaptare-FD both timeout and interrogation period
are adaptive, while in the previous version the period was fixed. Using adaptive
periods allows to bound the speed of failure detection according to the requested
QoS.

• The evaluation presented in Dixit & Casimiro (2010) revealed that the occur-
rence of message losses or significant variations in the network conditions com-
promised the accuracy of Adaptare-FD. Therefore, in this new specification
Adaptare-FD takes into account the occurrence of those phenomena in the com-
putation of the coverage required to Adaptare, in order to provide improved ac-
curacy.

• We performed a new set of practical experiments comparing Adaptare-FD to
Chen’s failure detector (Chen et al., 2002), which is the most closely related
work in the literature, and was not considered in Dixit & Casimiro (2010).

Currently, we are preparing a journal paper based on the contents of this chapter to
be submitted to the IEEE Transactions on Parallel and Distributed Systems.

126

Chapter 7

Conclusions and Future Research

Directions

7.1 Conclusions

This thesis investigated the problem of supporting adaptive systems and applications

operating in stochastic environments, from a dependability perspective. The goal was

to provide the adequate support to develop dependable adaptive applications whose

assumed bounds for temporal variables are adapted in order to ensure that these bounds

are secured with a desired and known probability, or coverage.

The model considered in this thesis assumed that the environment behaves stochas-

tically and can be characterized by known probabilistic distributions, which remain

stable for sufficiently long periods of time. Furthermore, it was assumed that a system

alternates stable periods, during which the environment can be probabilistically charac-

terized, and transition periods, during which a variation of the environment conditions

occurs. The proposed approach for dependable adaptation allowed to dynamically de-

termine improved bounds for temporal variables when a stable phase is detected, while

it provided conservative but still dependable bounds during transient phases.

The thesis introduced a framework for supporting automatic and dependable adap-

tation, called Adaptare. The implemented framework is composed by two phase detec-

tion mechanisms based on statistical tests, which try to characterize the monitored en-

127

7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

vironment using five different probability distributions. However, Adaptare is a generic

and open framework that may be extended by adding other mechanisms and/or consid-

ering additional distributions, depending on the needs.

This thesis is fundamentally concerned with dependability objectives. Therefore,

Adaptare was developed to take dependability-related criteria (the required coverage

of an assumption) as input and provide information to support adaptation (the concrete

bound that must be assumed). Moreover, the benefits of the approach were also evalu-

ated from a dependability perspective, measuring the effectively achieved coverage in

addition to the improvements in terms of bounds produced by the framework.

The methodology used to evaluate Adaptare was based on experiments with syn-

thetic data traces generated from specific distributions, and real data traces available

in the Internet, which were collected by different applications, operating in different

environments. The experiments with synthetic traces were useful to validate the cor-

rectness of the implemented phase detection mechanisms, while the results using real

data traces proved that with Adaptare it is possible to compute bounds in the order

of 10% to 25% lower than the bounds produced by the baseline stochastic (and con-

servative) approach originally proposed in Casimiro & Verissimo (2001), securing the

required coverage in all cases. Adaptare was also compared with simpler solutions for

adaptation, in order to evaluate the relative performance benefits. The costs incurred

by Adaptare to provide these benefits were also addressed in the thesis. A complexity

analysis and measurements of the execution overhead of Adaptare were performed,

allowing to conclude that the incurred costs present an acceptable tradeoff for systems

and applications that require some level of dependability assurance.

These results are very relevant in practical systems, in the measure that achieving a

dependable behavior will become an increasing requirement of autonomous and adap-

tive applications. Without adequate support, these applications may end up relying on

mechanisms that use mere heuristics, sometimes compromising application correct-

ness. In order to illustrate the usefulness of our approach with concrete examples, the

thesis presented two cases in which we successfully applied Adaptare. The problems

of consensus and failure detection were investigated, due to their major importance for

the design of distributed and reliable systems.

First, the thesis presented an adaptive version of a randomized consensus algorithm

for wireless ad hoc networks, using Adaptare. In the studied algorithm the timeout

128

7.1 Conclusions

was used to decide whether, and when, a broadcast message must be retransmitted.

The original static version of the protocol used a fixed timeout, which had to be set at

deployment time, requiring some previous knowledge, or measurements, of the oper-

ational environment. In the adaptive consensus this timeout was adjusted in runtime,

based on Adaptare’s indications.

The concrete performance improvements were measured in terms of the consen-

sus execution time (latency) and network utilization (load). In particular, the results

highlighted the impact of a varying number of participating processes on the observed

performance. While the static protocol version exhibits significant performance degra-

dation even with a small increase in the number of processes, in the dynamic version

the network load generated by each process remains essentially constant, and the exe-

cution time only increases linearly, instead of exponentially.

Finally, in the second application studied in this thesis, Adaptare was used for

failure detection purposes. The thesis introduced Adaptare-FD, an adaptive failure de-

tector that was built over Adaptare. A novel approach was proposed for configuring

the required QoS for the failure detector, in which applications specify the minimum

required coverage for failure detection, and an upper bound on the detection time.

Adaptare-FD follows this specification, taking into account the message loss prob-

ability, the environment change probability, and the required QoS in order to adapt

timeouts and interrogation periods.

The performed evaluation compared Adaptare-FD with an adaptive version of the

well-known approach proposed in Chen et al. (2002). The obtained results allowed to

identify the tradeoffs of using each solution. While Adaptare-FD favours the speed

of detection and can thus be more appropriate for systems with high availability re-

quirements, Chen’s FD tends to use higher timeouts, which favours accuracy metrics.

The down sides of both approaches are revealed when the environment is too unstable.

With Adaptare-FD the achievable coverage becomes more limited, while Chen’s FD

tends to increase the network load significantly (thus worsening instability) and may

not be able to secure the lower limits of the average mistake duration metric. Regard-

ing the comparison with other timeout-based adaptive failure detectors, Adaptare has

the advantage of automatically adapting to variations in the expected QoS level, while

the remaining failure detectors depend on the configuration of operational parameters

to be used in different networks and/or for different QoS demands.

129

7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

These results illustrated the benefits of using more elaborated adaptation solutions,

as the approach for dependable adaptation proposed in this thesis, in order to improve

system’s dependability.

Given the above, we believe that the objectives of the thesis, stated in Chapter 1,

were successfully accomplished. In Chapter 3 we defined our set of assumptions, the

considered system model, and methodology for dependable adaptation, as required by

our first objective. The second objective was met in Chapter 4, with the definition and

validation of probabilistic mechanisms for supporting adaptive applications, as well as

a complete evaluation of the implemented framework, considering different scenarios

and networks. Chapters 5 and 6 presented practical applications of Adaptare, reaching

our third and final objective. Thus, we conclude that the thesis definitely contributes to

supporting automatic adaptation of time-sensitive applications operating in stochastic

environments, whilst safeguarding correctness.

7.2 Future research directions

The research work presented in this thesis can certainly be improved and extended in

several different ways. Here we present some open issues that could be addressed in

the near future.

• In Chapter 4 we analyzed the overhead of Adaptare, in comparison with simpler

approaches for adaptation. One interesting research direction is to investigate the

possibility of using alternative mechanisms from the probability theory, in order

to improve Adaptare’s overhead in terms of complexity and execution time.

• The approach for dependable adaptation proposed in this thesis, as well as the

current implementation of Adaptare, are based on the “sufficient stability” and

“sufficient activity” assumptions. This means that environment changes are not

monitored in order to verify if the required coverage can be secured. This issue

was externally handled by Adaptare-FD. Despite of the impossibility of predict-

ing the exact instants in which environment changes may occur, it is possible to

assume that the environment change probability in a given instant can be esti-

mated from past observed probabilities of change, as it is done in Adaptare-FD.

130

7.2 Future research directions

If this probability is known, we can adjust the overall required coverage to cir-

cumvent the timing faults generated by these changes, and/or indicate to appli-

cations when the required dependability level cannot be secured. We believe this

is a useful feature to be added to Adaptare.

• Currently, mapping application requirements into Adaptare’s parameters

(namely, the minimum coverage) is a task performed by the system/application

designer. In some cases, this mapping can be quite simple, like it is in the con-

sensus protocol addressed in this thesis. In other cases, deriving the appropriate

coverage to meet applications requirements can be extremely challenging. It is

possible that the coverage is not directly related to some application require-

ment but, instead, results from the balance of several dependent factors that have

impact on performance. For instance, if the objective is to achieve a good perfor-

mance in terms of execution time, and if the protocol has an associated recovery

time whenever a timeout expires, then there must be a balance between the time

the protocol is delayed until it takes some appropriate action (triggered by a

timeout, when a fault occurs) and the time it wastes performing useless recovery

actions (when no fault occurs and the timeout expires). In this case, the cover-

age requirement that will lead to an appropriate timeout must be derived from

a cost/benefit function that quantifies the value of changing the current cover-

age/timeout to new values. Such cost/benefit function, defined by the system

designer, is essential to express whether changing the coverage/timeout is favor-

able to the protocol. We believe that addressing this issue would be an important

added value to Adaptare. In principle, this is an optimization problem: the appli-

cation would specify its cost/benefit function, and Adaptare would search for the

most appropriate pair of required coverage and resulting timeout, which maxi-

mizes the achievable gains.

• With respect to failure detection, it would be interesting to verify the possibility

of using the best out of Chen’s approach and Adaptare-FD through a configura-

tion method that more explicitly takes into account the message loss probability,

and still does not lead to too small interrogation periods.

131

7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

• Finally, Adaptare-FD’s evaluation could be enriched by comparing it with more
recent approaches for autonomic failure detection, namely the solution based on
the feedback control theory proposed in de Sá & de Araújo Macêdo (2010).

132

Appendix A

Critical values for the Goodness-of-Fit

tests

A.1 Anderson-Darling critical values

History size h Significance level α Critical value sn;α

10 0.10 0.599
10 0.05 0.712
10 0.01 0.976
30 0.10 0.615
30 0.05 0.73
30 0.01 1.001
50 0.10 0.619
50 0.05 0.736
50 0.01 1.009

Table A.1: AD critical values for Weibull distribution.

133

A. CRITICAL VALUES FOR THE GOODNESS-OF-FIT TESTS

History size h Significance level α Critical value sn;α

any 0.15 0.922
any 0.10 1.078
any 0.05 1.341
any 0.01 1.957

Table A.2: AD critical values for Exponential and Shifted Exponential distributions.

History size h Significance level α Critical value sn;α

10 0.15 0.875
10 0.10 1.031
10 0.05 1.311
10 0.01 1.872
30 0.15 0.756
30 0.10 0.862
30 0.05 1.07
30 0.01 1.631
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.3: AD critical values for Pareto distribution with α = 0.5.

History size h Significance level α Critical value sn;α

10 0.15 0.646
10 0.10 0.726
10 0.05 0.886
10 0.01 1.303
30 0.15 0.665
30 0.10 0.756
30 0.05 0.913
30 0.01 0.1337
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.4: AD critical values for Pareto distribution with α = 1.0.

134

A.1 Anderson-Darling critical values

History size h Significance level α Critical value sn;α

10 0.15 0.594
10 0.10 0.675
10 0.05 0.808
10 0.01 1.102
30 0.15 0.679
30 0.10 0.777
30 0.05 0.952
30 0.01 1.361
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.5: AD critical values for Pareto distribution with α = 1.5.

History size h Significance level α Critical value sn;α

10 0.15 0.589
10 0.10 0.655
10 0.05 0.783
10 0.01 1.113
30 0.15 0.665
30 0.10 0.768
30 0.05 0.947
30 0.01 1.368
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.6: AD critical values for Pareto distribution with α = 2.0.

135

A. CRITICAL VALUES FOR THE GOODNESS-OF-FIT TESTS

History size h Significance level α Critical value sn;α

10 0.15 0.588
10 0.10 0.654
10 0.05 0.788
10 0.01 1.1
30 0.15 0.678
30 0.10 0.774
30 0.05 0.96
30 0.01 1.401
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.7: AD critical values for Pareto distribution with α = 2.5.

History size h Significance level α Critical value sn;α

10 0.15 0.601
10 0.10 0.678
10 0.05 0.805
10 0.01 1.147
30 0.15 0.688
30 0.10 0.776
30 0.05 0.937
30 0.01 1.413
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.8: AD critical values for Pareto distribution with α = 3.0.

136

A.1 Anderson-Darling critical values

History size h Significance level α Critical value sn;α

10 0.15 0.597
10 0.10 0.677
10 0.05 0.818
10 0.01 1.169
30 0.15 0.708
30 0.10 0.822
30 0.05 0.999
30 0.01 1.5
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.9: AD critical values for Pareto distribution with α = 3.5.

History size h Significance level α Critical value sn;α

10 0.15 0.61
10 0.10 0.691
10 0.05 0.835
10 0.01 1.2
30 0.15 0.69
30 0.10 0.791
30 0.05 0.99
30 0.01 1.475
50 0.15 0.62397
50 0.10 0.70945
50 0.05 0.8455
50 0.01 1.91943

Table A.10: AD critical values for Pareto distribution with α = 4.0.

137

A. CRITICAL VALUES FOR THE GOODNESS-OF-FIT TESTS

History size h Significance level α Critical value sn;α

10 0.25 12.419
10 0.15 16.277
10 0.10 19.518
10 0.05 25.121
10 0.025 30.990
10 0.01 39.083
30 0.25 12.457
30 0.15 16.210
30 0.10 19.313
30 0.05 25.130
30 0.025 31.111
30 0.01 39.673
50 0.25 1.2425
50 0.15 1.6163
50 0.10 1.9277
50 0.05 2.4941
50 0.025 3.0933
50 0.01 3.9200

100 0.25 1.2399
100 0.15 1.6235
100 0.10 1.9325
100 0.05 2.4901
100 0.025 3.0655
100 0.01 3.8319

> 100 0.25 1.2480
> 100 0.15 1.6100
> 100 0.10 1.9330
> 100 0.05 2.4920
> 100 0.025 3.0700
> 100 0.01 3.8800

Table A.11: AD critical values for Uniform distribution.

138

A.2 Kolmogorov-Smirnov critical values

A.2 Kolmogorov-Smirnov critical values

History size h Significance level α Critical value sn;α

10 0.20 0.3226
10 0.10 0.3687
10 0.05 0.4093
10 0.01 0.4889
30 0.20 0.1903
30 0.10 0.2176
30 0.05 0.2417
30 0.01 0.2899
50 0.20 0.149
50 0.10 0.17
50 0.05 0.189
50 0.01 0.226

100 0.20 0.106
100 0.10 0.121
100 0.05 0.134
100 0.01 0.161
140 0.20 0.089
140 0.10 0.102
140 0.05 0.114
140 0.01 0.136
200 0.20 0.075
200 0.10 0.086
200 0.05 0.095
200 0.01 0.114

Table A.12: Standard KS critical values.

139

A. CRITICAL VALUES FOR THE GOODNESS-OF-FIT TESTS

History size h Significance level α Critical value sn;α

10 0.15 0.721
10 0.10 0.759
10 0.05 0.822
10 0.01 0.949
30 0.15 0.745
30 0.10 0.789
30 0.05 0.854
30 0.01 0.98

Table A.13: KS critical values for Weibull distribution.

History size h Significance level α Critical value sn;α

10 0.15 0.277
10 0.10 0.295
10 0.05 0.325
10 0.01 0.38
30 0.15 0.164
30 0.10 0.174
30 0.05 0.192
30 0.01 0.226

Table A.14: KS critical values for Exponential and Shifted Exponential distributions.

History size h Significance level α Critical value sn;α

10 0.15 0.268
10 0.10 0.284
10 0.05 0.308
10 0.01 0.348
30 0.15 0.149
30 0.10 0.159
30 0.05 0.173
30 0.01 0.204

Table A.15: KS critical values for Pareto distribution with α = 0.5.

140

A.2 Kolmogorov-Smirnov critical values

History size h Significance level α Critical value sn;α

10 0.15 0.23
10 0.10 0.241
10 0.05 0.257
10 0.01 0.297
30 0.15 0.138
30 0.10 0.145
30 0.05 0.156
30 0.01 0.18

Table A.16: KS critical values for Pareto distribution with α = 1.0.

History size h Significance level α Critical value sn;α

10 0.15 0.226
10 0.10 0.236
10 0.05 0.254
10 0.01 0.29
30 0.15 0.142
30 0.10 0.149
30 0.05 0.162
30 0.01 0.187

Table A.17: KS critical values for Pareto distribution with α = 1.5.

History size h Significance level α Critical value sn;α

10 0.15 0.228
10 0.10 0.239
10 0.05 0.258
10 0.01 0.3
30 0.15 0.142
30 0.10 0.151
30 0.05 0.165
30 0.01 0.189

Table A.18: KS critical values for Pareto distribution with α = 2.0.

141

A. CRITICAL VALUES FOR THE GOODNESS-OF-FIT TESTS

History size h Significance level α Critical value sn;α

10 0.15 0.232
10 0.10 0.245
10 0.05 0.265
10 0.01 0.308
30 0.15 0.145
30 0.10 0.153
30 0.05 0.167
30 0.01 0.196

Table A.19: KS critical values for Pareto distribution with α = 2.5.

History size h Significance level α Critical value sn;α

10 0.15 0.236
10 0.10 0.251
10 0.05 0.272
10 0.01 0.314
30 0.15 0.146
30 0.10 0.155
30 0.05 0.169
30 0.01 0.199

Table A.20: KS critical values for Pareto distribution with α = 3.0.

History size h Significance level α Critical value sn;α

10 0.15 0.239
10 0.10 0.253
10 0.05 0.277
10 0.01 0.322
30 0.15 0.15
30 0.10 0.161
30 0.05 0.175
30 0.01 0.207

Table A.21: KS critical values for Pareto distribution with α = 3.5.

142

A.2 Kolmogorov-Smirnov critical values

History size h Significance level α Critical value sn;α

10 0.15 0.242
10 0.10 0.258
10 0.05 0.282
10 0.01 0.239
30 0.15 0.149
30 0.10 0.159
30 0.05 0.174
30 0.01 0.207

Table A.22: KS critical values for Pareto distribution with α = 4.0.

143

Appendix B

Quality of Service of Adaptive Failure

Detectors

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 2.37 99.74 4.08E+06 1.41 31

Chen’s FD 1.16 99.20 1.28E+06 1.37 93
LpfJacHigh 10.89 99.97 8.56E+07 1.00 2

WinMeanJacHigh 12.79 99.96 4.28E+07 1.34 4
LpfCibHigh 2.84 99.85 7.14E+06 1.16 15
LpfCibLow 2.00 99.97 3.17E+06 1.39 39
LpfCibMed 2.15 99.69 3.43E+06 1.38 36

WinMeanCibHigh 2.87 99.85 7.17E+06 1.15 15
WinMeanCibLow 2.00 99.66 3.06E+06 1.34 39
WinMeanCibMed 2.14 99.70 3.57E+06 1.40 35

LpfJacLow 1.01 99.05 1.07E+06 1.47 119
LpfJacMed 1.04 99.07 1.09E+06 1.47 116

WinMeanJacLow 1.00 99.04 1.05E+06 1.48 121
WinMeanJacMed 1.04 99.07 1.09E+06 1.49 118

Table B.1: QoS results for experiment E1 in a LAN.

145

B. QUALITY OF SERVICE OF ADAPTIVE FAILURE DETECTORS

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 9.39 99.94 8.64E+07 98.00 98

Chen’s FD 16.39 100.00 8.64E+07 0.00 0
LpfJacHigh 157.03 99.94 8.64E+07 98.00 98

WinMeanJacHigh 156.41 99.94 8.64E+07 99.00 99
LpfCibHigh 4.00 99.84 3.76E+07 35.00 105
LpfCibLow 2.56 99.67 1.50E+07 18.33 110
LpfCibMed 2.99 99.67 1.50E+07 18.33 110

WinMeanCibHigh 4.03 99.84 3.76E+07 35.00 105
WinMeanCibLow 2.56 99.67 1.50E+07 18.33 110
WinMeanCibMed 3.01 99.67 1.50E+07 18.33 110

LpfJacLow 1.10 99.19 5.37E+06 8.33 125
LpfJacMed 1.22 99.29 6.26E+06 9.46 123

WinMeanJacLow 1.10 99.19 5.37E+06 8.33 125
WinMeanJacMed 1.24 99.24 5.78E+06 8.86 124

Table B.2: QoS results for experiment E2 in a LAN.

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 18.52 100.00 8.64E+07 0.00 0

Chen’s FD 14.76 100.00 8.64E+07 0.00 0
LpfJacHigh 5.35 100.00 8.64E+07 0.00 0

WinMeanJacHigh 5.96 100.00 8.64E+07 0.00 0
LpfCibHigh 2.95 99.84 1.89E+07 1.16 7
LpfCibLow 2.02 99.44 4.73E+06 1.24 26
LpfCibMed 2.26 99.55 5.91E+06 1.23 21

WinMeanCibHigh 2.97 99.87 2.37E+07 1.20 6
WinMeanCibLow 2.01 99.44 4.73E+06 1.24 26
WinMeanCibMed 2.26 99.60 6.76E+06 1.24 19

LpfJacLow 1.02 98.54 1.75E+06 1.47 81
LpfJacMed 1.07 98.61 1.85E+06 1.50 78

WinMeanJacLow 1.01 98.53 1.75E+06 1.47 81
WinMeanJacMed 1.08 98.64 1.89E+06 1.51 77

Table B.3: QoS results for experiment E3 in a LAN.

146

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 230.24 99.80 5.36E+06 34.88 593

Chen’s FD 9489.76 100.00 8.64E+07 0.00 0
LpfJacHigh 10244.28 100.00 8.64E+07 0.00 0

WinMeanJacHigh 15280.49 100.00 8.64E+07 0.00 0
LpfCibHigh 230.50 99.80 5.36E+06 34.70 590
LpfCibLow 228.87 99.45 1.82E+06 13.33 640
LpfCibMed 229.65 99.67 3.06E+06 21.03 610

WinMeanCibHigh 230.37 99.80 5.36E+06 34.70 590
WinMeanCibLow 228.73 99.43 1.75E+06 12.92 646
WinMeanCibMed 229.53 99.67 3.06E+06 21.03 610

LpfJacLow 227.39 97.67 4.23E+05 4.18 853
LpfJacMed 227.83 98.01 4.96E+05 4.64 808

WinMeanJacLow 227.23 97.64 4.18E+05 4.15 855
WinMeanJacMed 227.58 97.98 4.87E+05 4.61 816

Table B.4: QoS results for experiment E1 in a high-delay WAN.

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 235.32 99.84 3.76E+07 30.33 91

Chen’s FD 37365.22 100.00 8.64E+07 0.00 0
LpfJacHigh 5125.48 100.00 8.64E+07 0.00 0

WinMeanJacHigh 6368.58 100.00 8.64E+07 0.00 0
LpfCibHigh 230.06 99.78 2.51E+07 27.75 111
LpfCibLow 228.87 99.46 8.36E+06 12.00 120
LpfCibMed 229.41 99.52 9.40E+06 13.11 118

WinMeanCibHigh 229.46 99.78 2.51E+07 27.75 111
WinMeanCibLow 228.25 99.46 8.36E+06 12.00 120
WinMeanCibMed 228.80 99.57 1.07E+07 14.62 117

LpfJacLow 227.99 97.64 1.75E+06 3.70 163
LpfJacMed 228.72 97.90 1.98E+06 4.05 158

WinMeanJacLow 227.19 97.47 1.64E+06 3.53 166
WinMeanJacMed 227.53 97.74 1.83E+06 3.81 160

Table B.5: QoS results for experiment E2 in a high-delay WAN.

147

B. QUALITY OF SERVICE OF ADAPTIVE FAILURE DETECTORS

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 3454.96 99.96 2.53E+07 22791.21 319077

Chen’s FD 21044.46 99.98 4.80E+07 59781.50 119563
LpfJacHigh 48523.84 99.90 3.16E+07 53526.75 214107

WinMeanJacHigh 82683.13 99.78 1.18E+07 25348.22 228134
LpfCibHigh 2005.14 99.49 4.74E+06 14399.71 302394
LpfCibLow 1264.12 98.97 2.31E+06 7937.57 333378
LpfCibMed 1682.26 99.24 3.16E+06 9948.74 308401

WinMeanCibHigh 1917.18 99.46 4.51E+06 13761.45 302752
WinMeanCibLow 1176.16 98.76 1.89E+06 7020.51 358046
WinMeanCibMed 1594.31 99.22 3.06E+06 9818.87 314204

LpfJacLow 633.79 97.00 7.76E+05 3473.39 427228
LpfJacMed 722.38 97.24 8.45E+05 3538.41 399840

WinMeanJacLow 567.36 95.97 5.66E+05 3079.24 508074
WinMeanJacMed 686.63 96.34 6.37E+05 3102.53 465380

Table B.6: QoS results for experiment E3 in a high-delay WAN.

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 43.47 98.52 6.83E+05 76.42 9706

Chen’s FD 1745.62 99.99 8.64E+07 913.00 913
LpfJacHigh 11697.46 100.00 8.64E+07 0.00 0

WinMeanJacHigh 15267.13 100.00 8.64E+07 0.00 0
LpfCibHigh 42.67 98.52 6.83E+05 75.73 9620
LpfCibLow 31.18 97.03 3.39E+05 39.32 10000
LpfCibMed 37.66 98.09 5.28E+05 59.58 9770

WinMeanCibHigh 42.49 98.49 6.67E+05 74.18 9640
WinMeanCibLow 31.03 97.01 3.36E+05 39.17 10100
WinMeanCibMed 37.50 98.08 5.25E+05 59.36 9800

LpfJacLow 20.76 93.32 1.50E+05 18.80 10800
LpfJacMed 22.59 94.25 1.74E+05 21.40 10600

WinMeanJacLow 20.59 93.49 1.54E+05 19.30 10800
WinMeanJacMed 22.28 94.36 1.77E+05 21.76 10600

Table B.7: QoS results for experiment E1 in a low-delay WAN.

148

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 46.11 99.16 3.72E+06 30.48 701

Chen’s FD 5036.28 99.97 8.64E+07 45.00 45
LpfJacHigh 6582.20 100.00 8.64E+07 0.00 0

WinMeanJacHigh 6291.85 100.00 8.64E+07 0.00 0
LpfCibHigh 29.07 98.87 3.76E+06 33.67 707
LpfCibLow 24.41 97.19 1.48E+06 14.83 771
LpfCibMed 27.04 98.22 2.35E+06 22.12 730

WinMeanCibHigh 28.22 98.76 3.42E+06 30.87 710
WinMeanCibLow 23.57 96.98 1.37E+06 13.86 776
WinMeanCibMed 26.20 98.16 2.28E+06 21.59 734

LpfJacLow 20.47 93.25 6.07E+05 7.54 943
LpfJacMed 21.80 93.69 6.49E+05 7.75 907

WinMeanJacLow 19.43 93.20 6.02E+05 7.47 941
WinMeanJacMed 20.18 93.79 6.60E+05 7.91 910

Table B.8: QoS results for experiment E2 in a low-delay WAN.

Failure detector δ (ms) C (%) TMR (ms) TM (ms) TTM (ms)
Adaptare-FD 1126.96 99.36 9.83E+06 30.29 3514

Chen’s FD 6831.27 99.98 8.64E+07 131.00 131
LpfJacHigh 127711.83 100.00 8.64E+07 0.00 0

WinMeanJacHigh 222502.17 100.00 8.64E+07 0.00 0
LpfCibHigh 66.41 95.77 5.72E+05 41.26 6890
LpfCibLow 44.23 94.19 4.16E+05 38.70 8862
LpfCibMed 56.75 95.34 5.19E+05 41.42 7621

WinMeanCibHigh 66.03 95.69 5.62E+05 40.63 6907
WinMeanCibLow 46.86 94.02 4.04E+05 37.78 8917
WinMeanCibMed 56.35 95.18 5.02E+05 40.26 7649

LpfJacLow 24.43 90.45 2.53E+05 31.40 11837
LpfJacMed 28.41 91.71 2.91E+05 34.10 11151

WinMeanJacLow 23.94 90.93 2.66E+05 33.05 11833
WinMeanJacMed 27.64 92.12 3.06E+05 35.77 11123

Table B.9: QoS results for experiment E3 in a low-delay WAN.

149

References

ACHARYA, P., SHARMA, A., BELDING, E., ALMEROTH, K. & PAPAGIANNAKI, K.
(2008). Congestion-aware rate adaptation in wireless networks: A measurement-
driven approach. In Proceedings of the 5th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 1 –9. 81

AGUILERA, M.K., DELPORTE-GALLET, C., FAUCONNIER, H. & TOUEG, S.
(2001). Stable leader election. In Proceedings of the 15th International Conference

on Distributed Computing, 108–122. 80

AGUILERA, M.K., DELPORTE-GALLET, C., FAUCONNIER, H. & TOUEG, S.
(2004). Communication-efficient leader election and consensus with limited link
synchrony. In Proceedings of the 23rd Annual ACM symposium on Principles of

Distributed Computing, 328–337. 26

ALLEN, A.O. (1990). Probability, statistics, and queueing theory with computer sci-

ence applications. Academic Press Professional, Inc., San Diego, CA, USA. 37,
54

ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, F. & MORRIS, R. (2001). Re-
silient overlay networks. SIGOPS Operating Systems Review, 35(5):131–145. 63

AURRECOECHEA, C., CAMPBELL, A.T. & HAUW, L. (1998). A survey of QoS ar-
chitectures. Multimedia Systems, 6(3):138–151. 21, 22

BABAOGLU, Ö., JELASITY, M., MONTRESOR, A., FETZER, C., LEONARDI, S.,
VAN MOORSEL, A.P.A. & VAN STEEN, M., eds. (2005). Self-star Properties in

Complex Information Systems, Conceptual and Practical Foundations, vol. 3460 of
Lecture Notes in Computer Science, Springer. 24

151

REFERENCES

BALAKRISHNAN, N. & BASU, A.P. (1995). The exponential distribution: Theory,

methods and applications. CRC Press, USA. 53

BERTIER, M., MARIN, O. & SENS, P. (2002). Implementation and performance eval-
uation of an adaptable failure detector. In Proceedings of the 32nd Annual IEEE/I-

FIP International Conference on Dependable Systems and Networks, 354–363. 14,
28, 101, 106

BHATTI, S.N. & KNIGHT, G. (1999). Enabling QoS adaptation decisions for internet
applications. Computer Networks, 31(7):669–692. 22

BOLOT, J.C. (1993). Characterizing end-to-end packet delay and loss in the internet.
Journal of High Speed Networks, 2:305–323. 51

BORRAN, F., PRAKASH, R. & SCHIPER, A. (2008). Extending Paxos/LastVoting
with an adequate communication layer for wireless ad hoc networks. In Proceedings

of the 27th IEEE Symposium on Reliable Distributed Systems, 227–236. 26

BOWERMAN, B.L. & O’CONNEL, R.T. (1993). Forecasting and Time Series: an

Applied Approach. Duxbury Press, Belmont, CA, USA. 18

CASIMIRO, A. & DIXIT, M. (2011). From static to dynamic protocols: adapting time-
outs for improved performance. In Proceedings of the 1st Workshop on Autonomic

Distributed Systems, 17–20. 98

CASIMIRO, A. & VERISSIMO, P. (2001). Using the Timely Computing Base for de-
pendable QoS adaptation. In Proceedings of the 20th IEEE Symposium on Reliable

Distributed Systems, 208–217. vi, vii, 2, 3, 6, 17, 18, 20, 24, 35, 37, 39, 59, 66, 128

CASIMIRO, A., LOLLINI, P., DIXIT, M., BONDAVALLI, A. & VERÍSSIMO, P. (2008).
A framework for dependable QoS adaptation in probabilistic environments. In Pro-

ceedings of the 23rd ACM symposium on Applied Computing, 2192–2196. 45

CHANDRA, T. & TOUEG, S. (1996). Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267. 12, 13, 26, 100

CHANDRA, T.D., HADZILACOS, V. & TOUEG, S. (1996). The weakest failure detec-
tor for solving consensus. Journal of the ACM, 43(4):685–722. 13, 25

152

REFERENCES

CHEN, K.T., JIANG, J.W., HUANG, P., CHU, H.H., LEI, C.L. & CHEN, W.C.

(2006). Identifying MMORPG bots: a traffic analysis approach. In Proceedings of

the 3rd ACM SIGCHI International Conference on Advances in Computer Enter-

tainment Technology. 20

CHEN, W., TOUEG, S. & AGUILERA, M.K. (2002). On the quality of service of

failure detectors. IEEE Transactions on Computers, 51(1):13–32. 7, 14, 27, 28, 29,

30, 101, 104, 105, 106, 110, 125, 126, 129

CRISTIAN, F. & FETZER, C. (1999). The timed asynchronous distributed system

model. IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657. 15

DE SÁ, A.S. & DE ARAÚJO MACÊDO, R.J. (2010). QoS self-configuring failure de-

tectors for distributed systems. In Proceedings of the 10th IFIP International Con-

ference on Distributed Applications and Interoperable Systems, 126–140. 30, 101,

132

DIXIT, M. & CASIMIRO, A. (2010). Adaptare-FD: A dependability-oriented adaptive

failure detector. In Proceedings of the 29th IEEE Symposium on Reliable Distributed

Systems, 141–147. 126

DIXIT, M., CASIMIRO, A., LARANJEIRO, N. & VIEIRA, M. (2008). Using ex-

perimental measurements to assess dependable adaptation support mechanisms for

timed transactions. In Workshop on Sharing Field Data and Experiment Measure-

ments on Resilience of Distributed Computing Systems, with the 27th IEEE Sympo-

sium on Reliable Distributed Systems. 77

DIXIT, M., CASIMIRO, A., LOLLINI, P., BONDAVALLI, A. & VERISSIMO, P. (2009).

A probabilistic framework for automatic and dependable adaptation in dynamic en-

vironments. Tech Report TR-09-19, Department of Informatics, University of Lis-

boa. 77

DIXIT, M., MONIZ, H. & CASIMIRO, A. (2010). Timeout adaptive consensus: Im-

proving performance through adaptation. Tech Report TR-2010-06, Department of

Informatics, University of Lisboa. 97

153

REFERENCES

DIXIT, M., CASIMIRO, A., LOLLINI, P., BONDAVALLI, A. & VERISSIMO, P. (2011).

Adaptare: Supporting automatic and dependable adaptation in dynamic environ-

ments. ACM Transactions on Autonomous and Adaptive Systems, (to appear). 45,

77

DIXIT, M., MONIZ, H. & CASIMIRO, A. (2012). Timeout-based adaptive consen-

sus: Improving performance through adaptation. In Proceedings of the 27rd ACM

Symposium on Applied Computing (to appear). 98

DOWNEY, A.B. (2001). Evidence for long-tailed distributions in the internet. In Pro-

ceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, 229–241.

51

DWORK, C., LYNCH, N. & STOCKMEYER, L. (1988). Consensus in the presence of

partial synchrony. Journal of the ACM, 35(2):288–323. 14, 17

ELTETO, T. & MOLNAR, S. (1999). On the distribution of round-trip delays in TCP/IP

networks. In Proceedings of the 24th Annual IEEE Conference on Local Computer

Networks, 172–181. 19, 20

EVANS, J.W., JOHNSON, R.A. & GREEN, D.W. (1989). Two- and three-parameter

weibull goodness-of-fit tests. FPL-RP-493, Forest Products Laboratory Research Pa-

per. 52

FALAI, L. & BONDAVALLI, A. (2005). Experimental evaluation of the QoS of failure

detectors on wide area network. In Proceedings of the 35th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks, 624–633. 14, 28, 30,

72, 101, 106, 107, 118

FETZER, C. (2003). Perfect failure detection in timed asynchronous systems. IEEE

Transactions on Computers, 52(2):99–112. 15

FETZER, C. & CRISTIAN, F. (1995). On the possibility of consensus in asynchronous

systems. In Proceedings of the 1st Pacific Rim International Symposium on Fault-

Tolerant Systems, 86–91. 15

154

REFERENCES

FETZER, C., RAYNAL, M. & TRONEL, F. (2001). An adaptive failure detection proto-

col. In Proceedings of the 7th Pacific Rim International Symposium on Dependable

Computing, 146–153. 29, 101

FISCHER, M.J., LYNCH, N.A. & PATERSON, M.S. (1985). Impossibility of dis-

tributed consensus with one faulty process. Journal of the ACM, 32(2):374–382.

11, 80, 100

FREILING, F.C. & VÖLZER, H. (2006). Illustrating the impossibility of crash-

tolerant consensus in asynchronous systems. SIGOPS Operating Systems Review,

40(2):105–109. 26

FRIEDMAN, R., MOSTEFAOUI, A. & RAYNAL, M. (2004). A weakest failure

detector-based asynchronous consensus protocol for f < n. Information Processing

Letter, 90(1):39–46. 14

GAMMA, E., HELM, R., JOHNSON, R. & VLISSIDES, J. (1995). Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Boston MA 02116

USA. 56

GASS, R., SCOTT, J. & DIOT, C. (2005). CRAWDAD trace set cambridge/inmo-

tion/tcp (v. 2005-10-01). http://crawdad.cs.dartmouth.edu/cambridge/inmotion/tcp.

62

GASS, R., SCOTT, J. & DIOT, C. (2006). Measurements of in-motion 802.11 net-

working. In Proceedings of the 7th IEEE Workshop on Mobile Computing Systems

& Applications, 69–74. 62

GORENDER, S., MACEDO, R.J.D.A. & RAYNAL, M. (2007). An adaptive program-

ming model for fault-tolerant distributed computing. IEEE Transactions on Depend-

able and Secure Computing, 4(1):18–31. 23

HAYASHIBARA, N., DÉFAGO, X., YARED, R. & KATAYAMA, T. (2004). The F ac-

crual failure detector. In Proceedings of the 23rd IEEE Symposium on Reliable Dis-

tributed Systems, 66–78. 101

155

REFERENCES

HENDERSON, T., KOTZ, D. & ABYZOV, I. (2004). The changing usage of a mature

campus-wide wireless network. In Proceedings of the 10th Annual International

Conference on Mobile Computing and Networking, 187–201. 62

HERNANDEZ, J. & PHILLIPS, I. (2006). Weibull mixture model to characterise

end-to-end internet delay at coarse time-scales. IEE Proceedings Communications,

153(2):295–304. 19, 35, 51

JACOBSON, V. (1988). Congestion avoidance and control. SIGCOMM Computers

Communication Review, 18(4):314–329. 28, 71, 72, 107

JAIN, R. (1991). The Art of Computer Systems Performance Analysis. John Wiley and

Sons, New York, USA. 52

JARDOSH, A.P., RAMACHANDRAN, K.N., ALMEROTH, K.C. & BELDING-ROYER,

E.M. (2005). Understanding congestion in IEEE 802.11b wireless networks. In Pro-

ceedings of the 5th ACM SIGCOMM Conference on Internet Measurement, 25–25.

81

JIFENG, M.Y., YANG, M., RU, J., RONG, X., HUIMIN, L. & BASHI, C.A. (2004).

Predicting internet end-to-end delay: A multiple-model approach. In Proceedings of

36th IEEE Southeastern Symposium on Systems Theory, 210–214. 18

KOLIVER, C., NAHRSTEDT, K., FARINES, J.M., FRAGA, J.D.S. & SANDRI, S.A.

(2002). Specification, mapping and control for QoS adaptation. Real-Time Systems,

23(1):143–174. 23

KOTZ, D., HENDERSON, T. & ABYZOV, I. (2004). CRAWDAD trace set dartmouth/-

campus/tcpdump (v. 2004-11-09). http://crawdad.cs.dartmouth.edu/dartmouth/

campus/tcpdump. 62

KRISHNAMURTHY, S., SANDERS, W.H. & CUKIER, M. (2001). A dynamic replica

selection algorithm for tolerating timing faults. In Proceedings of the 31st Annual

IEEE/IFIP International Conference on Dependable Systems and Networks, 107–

116. 25

156

REFERENCES

LAMPORT, L. (1998). The part-time parliament. ACM Transactions on Computer Sys-

tems, 16(2):133–169. 26, 80

LAMPORT, L. & LYNCH, N. (1990). Handbook of theoretical computer science (vol.

b). chap. Distributed computing: models and methods, 1157–1199, MIT Press,

Cambridge, MA, USA. 10

MARKOPOULOU, A., TOBAGI, F.A. & KARAM, M.J. (2006). Loss and delay mea-

surements of internet backbones. Computer Communications, 29(10):1590–1604.

19, 51

MENTH, M., MILBRANDT, J. & JUNKER, J. (2006). Time-exponentially weighted

moving histograms (TEWMH) for application in adaptive systems. In Proceedings

of the 49th Global Telecommunications Conference, 1–6. 20

MONIZ, H., NEVES, N.F., CORREIA, M. & VERISSIMO, P. (2009). Randomization

can be a healer: consensus with dynamic omission failures. In Proceedings of the

23rd International Conference on Distributed Computing, 63–77. 6, 82, 84, 85, 93

MOSTEFAOUI, A. & RAYNAL, M. (2000). Consensus based on failure detectors with

a perpetual accuracy property. In Proceedings of the 14th International Symposium

on Parallel and Distributed Processing, 514–519. 13

MUKHERJEE, A. (1992). On the dynamics and significance of low frequency compo-

nents of internet load. Internetworking: Research and Experience, 5:163–205. 19

NUNES, R.C. & JANSCH-PÔRTO, I. (2002). Modeling communication delays in dis-

tributed systems using time series. In Proceedings of the 21st IEEE Symposium on

Reliable Distributed Systems, 268–273. 18

NUNES, R.C. & JANSCH-PORTO, I. (2004). QoS of timeout-based self-tuned failure

detectors: The effects of the communication delay predictor and the safety margin.

In Proceedings of the 34th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks, 753–761. 14, 28, 30, 72, 101, 106, 107

157

REFERENCES

PAPAGIANNAKI, K., MOON, S., FRALEIGH, C., THIRAN, P. & DIOT, C. (2003).
Measurement and analysis of single-hop delay on an IP backbone network. IEEE

Journal on Selected Areas in Communications. Special Issue on Internet and WWW

Measurement, Mapping, and Modeling, 21(6):908–921. 35, 51

PAXSON, V., PANG, R., ALLMAN, M., BENNETT, M., LEE, J. &
TIERNEY, B. (2007). lbl-internal.20041004-1303.port001.dump.anon
(package). http://imdc.datcat.org/package/1-507R-8=lbl-internal.20041004-
1303.port001.dump.anon. 63

PIRATLA, N., JAYASUMANA, A. & SMITH, H. (2004). Overcoming the effects of
correlation in packet delay measurements using inter-packet gaps. In Proceedings of

the 12th IEEE International Conference on Networks, 233–238. 19, 35

PLANETLAB CONSORTIUM (2004). PlanetLab). Web page: http://www.planet-
lab.org. 115

PORTER, I., J.E., COLEMAN, J. & MOORE, A. (1992). Modified KS, AD, and C-vM
tests for the Pareto distribution with unknown location and scale parameters. IEEE

Transactions on Reliability, 41(1):112–117. 52

POWELL, D. (1992). Failure mode assumptions and assumption coverage. In Digest of

Papers, The 22nd International Symposium on Fault-Tolerant Computing, 386–395.
20

RAHMAN, M., PEARSON, L.M. & HEIEN, H.C. (2006). A modified Anderson-
Darling test for uniformity. Bulletin of the Malaysian Mathematical Sciences So-

ciety, 29(1):11–16. 53

RAYNAL, M. (2002). Consensus in synchronous systems: A concise guided tour. In
Proceedings of the 8th Pacific Rim International Symposium on Dependable Com-

puting, 221–228. 10

RELIASOFT (2006). Using rank regression on Y to calculate the
parameters of the Weibull distribution - ReliaSoft Corporation.
http://www.weibull.com/LifeDataWeb/estimation_of_the_weibull_parameter.htm.
54

158

REFERENCES

RON, M. (2001). RON - Resilient Overlay Networks. http://nms.csail.mit.edu/ron. 63

SAMPAIO, L. & BRASILEIRO, F. (2005). Adaptive indulgent consensus. In Proceed-

ings of the 35th Annual IEEE/IFIP International Conference on Dependable Sys-

tems and Networks, 422–431. 26, 27

SAMPAIO, L., BRASILEIRO, F., CIRNE, W. & FIGUEIREDO, J. (2003). How bad

are wrong suspicions? Towards adaptive distributed protocols. In Proceedings of

the 33rd Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, 551–560. 26

SAMPAIO, L.A.V., BRASILEIRO, F., NUNES, R.C. & JANSCH-PÃ´RTO, I. (2005).

Efficient and robust adaptive consensus services based on oracles. Journal of the

Brazilian Computer Society, 10:33–43. 26, 27

SANTORO, N. & WIDMAYER, P. (1989). Time is not a healer. In Proceedings of the

6th Annual Symposium on Theoretical Aspects of Computer Science, 304–313. 82

SANTORO, N. & WIDMAYER, P. (2007). Agreement in synchronous networks with

ubiquitous faults. Theoretical Computer Science, 384(2):232–249. 82

SATZGER, B., PIETZOWSKI, A., TRUMLER, W. & UNGERER, T. (2007). A new

adaptive accrual failure detector for dependable distributed systems. In Proceedings

of the 22nd ACM Symposium on Applied Computing, 551–555. 101

SCHIPER, A. (1997). Early consensus in an asynchronous system with a weak failure

detector. Journal of Distributed Computing, 10(3):149–157. 13

SERGENT, N., DÉFAGO, X. & SCHIPER, A. (2001). Impact of a failure detection

mechanism on the performance of consensus. In Proceedings of the 7th Pacific Rim

International Symposium on Dependable Computing, 137–145. 100

STEPHENS, M.A. (1974). Edf statistics for goodness of fit and some comparisons.

Journal of the American Statistical Association, 69(347):730–737. 52

STEPHENS, M.A. (1976). Asymptotic results for goodness-of-fit statistics with un-

known parameters. Annals of Statistics, 4:357–369. 52

159

REFERENCES

TICKOO, O. & SIKDAR, B. (2004). Queueing analysis and delay mitigation in IEEE

802.11 random access MAC based wireless networks. In Proceedings of the 23rd

Annual Joint Conference of the IEEE Computer and Communications Societies,

vol. 2, 1404–1413. 51

TRIVEDI, K.S. (2002). Probability and Statistics with Reliability, Queuing and Com-

puter Science Applications. John Wiley and Sons, New York, USA. 50, 52, 53

TZAGKARAKIS, G., PAPADOPOULI, M. & TSAKALIDES, P. (2009). Trend forecast-

ing based on singular spectrum analysis of traffic workload in a large-scale wireless

LAN. Performance Evaluation, 66(3):173–190. 24

UMASS TRACE REPOSITORY (2006). UPRM wireless traces.

http://traces.cs.umass.edu/index.php/Network. 62

VERISSIMO, P. (2006). Travelling through wormholes: a new look at distributed sys-

tems models. SIGACT News, 37(1):66–81. 16

VERISSIMO, P. & CASIMIRO, A. (2002). The Timely Computing Base model and

architecture. Transactions on Computers - Special Issue on Asynchronous Real-Time

Systems, 51(8):916–930. vi, 2, 34

VERISSIMO, P. & RODRIGUES, L. (2001). Distributed Systems for System Architects.

Kluwer Academic Publishers, Norwell, MA, USA. 10

VERISSIMO, P., CASIMIRO, A. & FETZER, C. (2000). The Timely Computing Base:

Timely actions in the presence of uncertain timeliness. In Proceedings of the 30th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks,

533–542. 16

WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD, S., NEWBOLD,

M., HIBLER, M., BARB, C. & JOGLEKAR, A. (2002). An integrated experimental

environment for distributed systems and networks. In Proceedings of the 5th Sym-

posium on Operating Systems Design and Implementation, 255–270, Boston, MA,

USA. 84, 93

160

REFERENCES

YANG, M., LI, X.R., CHEN, H. & RAO, N.S.V. (2004). Predicting internet end-to-
end delay: an overview. In Proceedings of the 36th IEEE Southeastern Symposium

on Systems Theory, 210–214. 18

ZHANG, W. & HE, J. (2007). Statistical modeling and correlation analysis of end-
to-end delay in wide area networks. In Proceedings of the 8th ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking, and Par-

allel/Distributed Computing, vol. 3, 968–973. 19

161

	1 Introduction
	1.1 Motivation and objectives
	1.2 Contributions
	1.3 Structure of the thesis

	2 Context and Related Work
	2.1 Synchrony in distributed systems
	2.1.1 Synchronous model
	2.1.2 Asynchronous model
	2.1.3 Asynchronous model with failure detectors
	2.1.4 Partially synchronous model
	2.1.5 Timed asynchronous model
	2.1.6 Wormholes model
	2.1.7 Stochastic model

	2.2 Network characterization
	2.3 QoS assurance in uncertain environments
	2.3.1 QoS-oriented systems and architectures
	2.3.2 QoS monitoring and adaptation
	2.3.2.1 Adaptive consensus
	2.3.2.2 Adaptive failure detectors

	2.4 Summary

	3 Adapting for Dependability
	3.1 Dependability goal
	3.2 Assumptions
	3.3 Environment recognition and adaptation
	3.4 The adaptation approach
	3.5 Securing dependability
	3.6 Summary

	4 Adaptare
	4.1 Architecture
	4.2 Implementation
	4.2.1 Phase detection mechanisms
	4.2.2 Parameters estimators
	4.2.3 Bound estimators
	4.2.4 Selection logic

	4.3 Adaptare as a service
	4.4 Results and evaluation
	4.4.1 Analysis of the phase detection mechanisms
	4.4.2 Validation using real RTT measurements
	4.4.3 Complexity analysis
	4.4.4 Comparing Adaptare to other adaptive solutions

	4.5 Summary

	5 Timeout-based Adaptive Consensus
	5.1 Motivation
	5.2 Consensus protocol
	5.3 Impact of network conditions
	5.4 Achieving adaptive consensus
	5.4.1 Protocol instrumentation
	5.4.2 Configuring Adaptare

	5.5 Implementation details
	5.6 Performance evaluation
	5.7 Summary

	6 Adaptare-FD
	6.1 Motivation
	6.2 Adaptive failure detection
	6.2.1 System model and basic algorithm
	6.2.2 Chen's failure detector
	6.2.3 Other timeout estimation methods

	6.3 Adaptare-FD
	6.4 Why using Adaptare-FD?
	6.4.1 Adaptare-FD vs. Chen's failure detector
	6.4.2 Adaptare-FD vs. other timeout-based adaptive failure detectors

	6.5 Experimental evaluation
	6.5.1 Environment setup
	6.5.2 Failure detectors configuration
	6.5.3 Evaluation results

	6.6 Summary

	7 Conclusions and Future Research Directions
	7.1 Conclusions
	7.2 Future research directions

	A Critical values for the Goodness-of-Fit tests
	A.1 Anderson-Darling critical values
	A.2 Kolmogorov-Smirnov critical values

	B Quality of Service of Adaptive Failure Detectors
	References

