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V Principle components matrix  z Sensor height 

 Y Trajectory matrix   Accent and other symbols  

 Greek Capitals 𝐼 Specifies second group in grouping  

𝚲 Eigenvalues matrix  𝑠 (𝑛) Clean signal 

P Eigenvectors matrix  �̅� Mean wind speed.   

 Lower-case Greek letters  𝑤(𝑛) Wind noise  

λ Eigenvalues  𝑋(𝑡) Time series  
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ABSTRACT  

Wind induced noise in microphone signals is one of the major concerns of outdoor 

acoustic signal acquisition. It affects many field measurement and audio recording scenarios. 

Filtering such noise is known to be difficult due to its broadband and time varying nature. This 

thesis is presented in the context of handling microphone signals acquired outdoor for acoustic 

sensing and environmental noise monitoring or soundscapes sampling. The thesis presents a 

new approach to wind noise problem. Instead of filtering, a separation technique is developed. 

Signals are separated into wanted sounds of specific interest and wind noise based on the 

statistical feature of wind noise. The new technique is based on the Singular Spectrum Analysis 

method which has recently seen many successful paradigms in the separation of biomedical 

signals, e.g., separating heart sound from lung noise. It has also been successfully implemented 

to de-noise signals in various applications.  

The thesis set out with particular emphasis on investigating the factor that determines and 

improves the separability towards obtaining satisfactory results in terms of separating wind 

noise components out from noisy acoustic signals. A systematic approach has been established 

and developed within the framework of singular spectral separation of acoustic signals 

contaminated by wind noise. This approach, which utilises a conceptual framework, has, in its 

final form, three key objectives; grouping, reconstruction and separability. This approach is 

offered through introducing new mathematical models particularly for window length 

optimisation along with new descriptive figures. The research question has therefore been 

addressed considering developing algorithms according to updated requirements from method 

justification to verification and validation of the developed system. This thesis follows suitable 

testing criteria by conducting several experiments and a case-study design, with in-depth 

analysis of the results using visual tools of the method and related techniques.  

For system verification, an empirical study using testing signals that introduces a large 

number of experiments has been conducted. Empirical study with real-world sounds has been 

introduced next in system validation phase after rigorously selecting and preparing the dataset 

which is drawn from two main sources: freefield1010 dataset, internet-based Freesound 

recordings. Results show that microphone wind noise is separable in the singular spectrum 

domain after validating and critically evaluating the developed system objectively. The 

findings indicate the effectiveness of the developed grouping and reconstruction techniques 

with significant improvement in the separability evidenced by w-correlation matrix. The 

developed method might be generalised to other outdoor sound acquisition applications.   
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1 

Introduction 

1.1 Research Context  

Recent and rapidly increasing innovation in acoustic sensing technology and Internet of 

Things (IoT) motivated the use of sound signatures to identify objects, sense the environmental 

variables and capture relevant events. Sound signal acquisition is one of the key stages in 

acoustics and audio engineering. In addition to common scenarios of audio recording; acoustic 

sensing assists daily activities, industrial operations and environmental management in many 

ways, including environmental noise and soundscapes monitoring as well as smart city 

applications. The ever-increasing research activities and demand of acoustic sensing in 

environmental sounds and soundscapes monitoring along with the hugely untapped potentials 

of acoustic sensing for added-value applications have driven the interest of this study. Outdoor 

acoustic sensing is particularly challenging as the transducers, typically microphones, are 

exposed to adverse weather conditions such as wind and rain; these might induce extraordinary 

noises in microphone signals.   

Advanced acoustic sensing and signal processing is now being one of the key elements 

toward developing the field of audio and acoustics, giving birth to new technologies with 

tremendous exploitation potential as even innovations in high-tech are related to sound 

processing (Hancke, Silva and Hancke Jr, 2013). In outdoor data acquisition, there is a variety 

of environmental sound sources that produce different forms of sound as noise. One of the 

concerns is that much of acoustic data gets corrupted by different environmental sound sources 

such as wind and rain. Such noise-like sounds mask the useful content, hence capturing the 

target sound or the event of interest becomes extremely difficult. Improving de-noising 

techniques in order to reduce or remove unwanted sounds that affect target signals in outdoor 

acoustic monitoring still requires in-depth research and investigation.  

Wind noise is a known problem that contaminates microphone signals in many field 

measurement and audio recording scenarios. Wind induced noise from microphone signals 

causes many problems in the subsequent use of acoustic information, however, this is one of 

the major concerns when applying acoustic sensing such as for environmental noise and 

soundscapes monitoring application. Wind noise problem is also an unsolved one in hearing 

aid applications and outdoor audio recordings such as field news broadcasting.  
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Microphone wind noise is a nuisance in audio recorded outdoor media applications. The 

problem can become more severe in acoustic sensing for environmental sounds and 

soundscapes monitoring and even smart environments applications: malfunctions can happen. 

For environmental sound monitoring, microphone wind noise contaminates and alters the 

soundscapes to be monitored, since the microphone noise is not what human listeners normally 

hear in the windy conditions, but the noise induced by the interaction between the wind and 

the microphones. For this reason, the terminology “microphone wind noise” and/or “wind noise 

in microphone signals” are used instead of wind noise in this thesis. This is to highlight that 

the noise of concern is induced by the presence of a microphone in windy conditions and such 

noise appears in the microphone signals. 

In this thesis, a new method to mitigate wind induced noise in microphone signals has 

been developed. Instead of filtering techniques, wind induced noise is statistically separated in 

a singular spectral subspace. This thesis intends to identify whether the Singular Spectrum 

Analysis (SSA) method can mitigate wind noise artefacts to ensure separability for better 

handling microphone signals in outdoor data acquisition. By addressing this issue, this thesis 

explored the ways in which the SSA has been modified and developed to separate wind noise 

components in the eigen-subspace and reconstruct desired signals.  

The SSA decomposes and projects time domain signals into the singular spectrum 

domain via Singular Value Decomposition (SVD), in which meaningful components such as 

trends and oscillatory components can be identified, isolated, re-grouped in a linear fashion, 

and finally time domain signals can be reconstructed. One of the advantages of this method is 

that it has the potential to retain wanted signals with less distortion when comparing with other 

known signal processing techniques. The SSA decomposes a time series into many component 

parts and reconstructs the series considering the meaningful components while leaving the 

noise component behind. Therefore, it is to track the changing spectrum of wind noise by 

considering the subspace corresponding to the higher-order eigenvalues in the singular spectra 

as a noise floor where the noise energy is concentrated. The SSA is a model free and non-

parametric method, meanwhile, the only parameter that can be adjusted is the window length. 

However, along with the window length, grouping and reconstruction techniques are other key 

aspects to consider in the SSA.  

This thesis aimed at identifying whether the SSA can effectively and usefully mitigate 

wind noise artefacts and enable better environmental sounds and soundscapes monitoring. The 

contribution in this study is targeting with systematic investigation and optimisation through 
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modifying and developing grouping and reconstruction techniques to improve the separability 

for enhancing wind noise separation and mitigation. Though, the separability may differ 

depending upon the dataset itself. In this thesis, an incremental methodology has been 

considered by gradually developing the method in terms of grouping and reconstruction 

techniques through performing a wide range of experiments in order to identify the separation 

approach and improve separability.  

After the justification of the method when many experiments have been performed, an 

empirical study using testing signals has therefore been conducted for the verification of the 

developed system. Experiments started in the first phase with the development and 

implementation of the SSA for the separation of a mixture of deterministic signals such as sine 

wave, triangular wave, sweep tones, etc. In this phase, however, the method has been further 

developed to separate white noise and then wind noise from such testing signals.  

Unlike the preceding procedure, in the second phase, the window length has been 

optimised and w-correlation matrix has been used to indicate the separability. Empirical study 

with real-world sounds has been introduced for system testing and validation. In this second 

experimental phase, the previously mentioned key elements in the SSA method have been 

considered in a different way. Therefore, SSA algorithm has been developed in many steps 

according to the technical requirements of developing grouping and reconstruction techniques 

to ensure the separability approach. In the system validation phase, it is to bring together the 

developed system for validation purposes and critical evaluation through adopting suitable 

dataset that links up to the application area of the thesis. The dataset consists of a variety of 

signals of interest such as car sirens, different alarm sounds, and birds’ chirps as examples of 

the desired signals along with real measured wind noise samples.  

1.2 Research Motivation 

Overcoming some existing monitoring problems, specifically those related to excluding 

environmental noises such as wind from soundscapes signals, is an important research topic 

which still requires more investigations. The current complaints received from practitioners 

and researchers are mostly regarding the problem of not being able to obtain clean signals in 

outdoor acoustic soundscapes monitoring. Many existing noise reduction methods and 

algorithms have inherent limitations particularly for single-microphone wind noise reduction 

which will be explained in Chapter 3. However, such conventional algorithms provide 
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insufficient level of noise reduction (Jingdong Chen et al., 2006; Dubbelboer and Houtgast, 

2007; Hu and Loizou, 2007; Nelke et al., 2014). 

As previously mentioned, the implementation of acoustic sensing in outdoor acoustic 

data acquisition still has many limitations and challenges. Most of the recent applications of 

applying acoustic sensing such as soundscapes monitoring are commonly facing many 

problems mostly those caused by the presence of environmental noises. Therefore, the 

influence of the environmental noises on the sensed acoustic data is one of the main problems 

in the area, particularly when the noise sources are time-varying in nature and non-stationary 

such as wind noise. Furthermore, providing a quiet environment at the time of sensing is 

sometimes difficult if not impossible as such environmental noises occur naturally. Yet, this 

makes the effect of such environmental noises on the sensing process an unsolved problem; 

especially the existing methods did not come up with optimal and complete solution due to 

several limitations. This research is motivated by the enormously untapped potentials of 

acoustic sensing for added-value applications. It is also motivated by the recent dramatic 

increase of demand and activities of acoustic sensing in the context of soundscapes monitoring 

application.  

The interest of this study has also been driven by investigating and developing noise 

reduction scheme for the SSA method under a fixed background noisy environment which is 

wind noise and different signals of interest. The research is also motivated to develop a new 

approach based on the SSA capabilities which is the separability instead of filtering. This will 

lead to a significant contribution to knowledge through the development of key elements in the 

method by establishing and developing a systematic approach of the method in the context of 

this thesis. In addition, the main points which increase the motivation of conducting this 

research can be outlined as follows:  

• To get involved in developing methods for cleaning soundscapes signals by reducing 

wind noise as a serious issue of concern addressed by the research community. In this 

context, microphone wind induced noise reduction in particular, is an immensely 

interesting topic as wind noise intensely presents throughout a wide area compared to 

other most common noises and can last for long period during day and night times.  

• As technology emerges and a variety of related supporting disciplines interact towards 

building smart environments with the contribution of acoustic and audio engineering 
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field, this makes the work in this area very exciting and could be collaboratively and 

competitively performed at the meantime.  

• The enormous number of new expected applications, which aimed at improving the 

quality of life for inhabitants in many ways relying on the great advantages of acoustic 

sensing, makes conducting research in this area highly interesting. 

1.3 Research Question, Aim, and Objectives 

Research Question 

Can Singular Spectrum Analysis effectively and usefully mitigate wind noise artefacts to 

ensure separability and enable better environmental soundscapes monitoring?  

This research question has been formulated as the SSA is the proposed solution to the 

problem handled in this thesis. With the above in mind, the main aim of this study can be stated 

as follows:  

Overall Aim  

To identify whether a developed SSA can effectively and usefully mitigate wind noise artefacts 

to ensure separability and enable better environmental soundscapes monitoring.  

Developing a more rigorous understanding of applying acoustic sensing in the context of 

environmental soundscapes monitoring and smart environments is among the desirable goals 

of this thesis since it is spawned from the lack of research in this area. Through developing the 

selected SSA methodology in terms of grouping and reconstruction techniques and the 

completion of the objectives listed below, this aim can be achieved.   

 Measurable Objectives  

The central objective can be stated as follows:  

Deploying an action plan by developing and modifying the SSA methodology to experimentally 

investigate its capabilities as a noise reduction method to be particularly developed for wind 

noise reduction in this thesis. Also, selecting suitable datasets for system verification and 

validation in a step by step manner considering developing key elements and approaches in 

the method. 

1. Developing SSA algorithms for the separation of some testing signals from each other 

and from other types of noise in the system verification phase after justifying the 

method through particularly developing SSA algorithms using different examples.  
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• The method will be particularly developed in this thesis based on simplistic 

grouping technique and window length common calculation practice with no 

optimisation involved in the first phase. 

• The method will be modified and extended via several state-of-the-art 

experimental methods using other types of noise as experiments; e.g., white 

noise before moving to wind noise so as to provide greater flexibility. 

2. Developing experimental procedures to consider the important key aspects in the SSA 

in a different way. 

• The method will make use of window length optimisation approach as well as 

grouping and reconstruction techniques as key aspects in the SSA.   

• System verification, validation and evaluation will be performed by 

implementing the developed method using different wanted sounds from 

selected datasets through experimental and numerical studies. 

3. Instead of filtering, developing and presenting the separation technique.   

• Introduce and develop the separation technique as a new approach based on the 

capabilities of the SSA and the statistical feature of wind noise. 

• Develop SSA algorithms to include this approach to separate noisy signals into 

wanted sounds of specific interest and wind noise.  

• Discuss the separability approach and include certain aspects such as the 

statistical dimension and nearly equal eigenvalues with a specified threshold for 

developing grouping and reconstruction techniques.  

4. Combine the different methodologies, such as SVD, grouping and reconstruction 

techniques as a complete developed SSA system in a specific testing and validation 

platform particularly established for this thesis.  

• Provide an experimental demonstration and outline an experimental procedure 

by considering and adopting suitable datasets that link up to the application area 

contains real-world sounds (e.g., birds’ chirps, car sirens, alarms, etc.).  

• Use of related digital signal processing techniques and objective measures. 

• Use of weighted correlation measure to demonstrate the results. 

5. The verification, validation and critical evaluation of the developed system, (i.e. what 

expected to achieve and how to close the research loop).   
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• Ensure to what extent the developed system works for wind noise reduction 

through giving some comparative results and indicating its advantages and 

limitations.  

• Make use of a specific wind noise dataset to systematically study and ensure the 

separation approach and the generalisability of the results.  

• Show how the developed method can be generalised through linking up to the 

application area of the thesis using different samples from the dataset for critical 

evaluation.  

• Report the results in such a way that they represent the experimental and 

numerical methods using multiple figures, detailed diagrams and tables that 

suitable to the case for systematic analysis and solid discussion.   

1.4 Research Scope 

In outdoor acoustic data acquisition, the environment is extremely uncontrolled, different 

types of noise will be picked up by acoustic sensors (microphones), and hence, the signal of 

interest gets contaminated by unwanted environmental sounds such as wind. In the presence of 

such environmental noise, the real picture of the sound can be immediately lost. Therefore, 

reducing the noise induced by the natural processes to enable long-term outdoor sensing of 

acoustic signals and improving urban soundscape design is a major problem.   

Before establishing the systematic approach that has been developed for the SSA method 

and adopted for the empirical studies, a general layout of the framework of this thesis has been 

paned as presented in Figure 1.1. The focus of this thesis is mainly on wind noise reduction in 

the context of environmental soundscapes monitoring application particularly when developing 

the SSA method for this specific problem. The study sheds the light on some important 

concepts and key research components regarding developing and modifying the proposed 

method towards achieving the main aim of the thesis. This layout presented in the Figure 1.1 

which summarises the problem of wind noise in microphone signals. Figure 1.1 also shows 

some desired signals taken as examples which will be used in the system validation phase as 

real-world sounds.   
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Figure 1.1. A general layout of the framework of the thesis indicating the problem of wind 

induced microphone noise 

The long-term objective is to apply acoustics in smart city and outdoor soundscapes 

monitoring. Prior to that, it is essential to ensure that such acoustic sensing techniques are 

capable for sensing acoustic target data while reducing the effect of unwanted wind noise to 

enable further analysis. It is also important to decide which of the sensed acoustic data is 

considered as target acoustic events or signals of interest, however, this is mainly related to the 

application. Hence, within the context of this thesis, a large number of experiments has been 

carried out using examples of interesting signals from the environment such as birds’ chirps 

and smart city signals such as alarm and sirens sound of ambulance cars or police cars.  

It is worth mentioning that this thesis is not aimed at neither enhancing any of wind noise 

existing filtering methods nor including any comparison between these standards based on 

experimental investigation. Instead, the SSA has been developed and modified for the first time 

for wind noise reduction.   

1.5 Contribution and Significance of the Research 

This thesis attempts to respond to the recent call for research in the field of microphone 

wind induced noise reduction. In the meantime, it attempts to seek novelty through developing 

the SSA method and addressing such serious concern in the context of soundscapes monitoring 



Chapter 1. Introduction  

10 

 

and smart city application. The focus is always on the stage where obtaining clean sensed 

acoustic data is required.  

This thesis has contributed to the understanding of the singular spectral subspace method 

by developing the proposed method in terms of grouping and reconstruction techniques and 

introducing the separability as a new approach. This study makes a major contribution to 

research on grouping and reconstruction techniques by demonstrating the separability approach 

by which wind induced noise is statistically separated from wanted signals in a singular spectral 

subspace.  

 A systematic approach has been developed for the method with regards to all its key 

aspects and adopted in the framework of this thesis for wind noise separation as presented in 

Chapters 5 and 6. The uniqueness of this study exists in developing a novel and promising 

technique as well as giving much interest to a new interesting application area. This is the first 

study to undertake the SSA method to be developed and modified to particularly solve 

microphone wind noise problem. To demonstrate the potential of this approach and its 

suitability for the application, the w-correlation matrix has been used.  

The long-term implications of this study might have an impact on the involvement of 

acoustics regarding smart city paradigm and monitoring applications towards a new aspect 

which is developing interactivity approach.  

The significance of the research can be outlined as follows:  

• This research has contributed to the understanding of the SSA method by expanding 

knowledge in this area and adding to a growing body of literature.   

• This study has contributed to existing knowledge and will have a significant impact on 

the industry if the modified and developed version of the method can be implemented 

in real-world applications.   

• This study has significantly improved acoustic sensing capabilities and helped in 

retaining wanted signals with no reconstruction errors which may lead to better 

enhancement of soundscape monitoring. 

• It will be a sustainable impact if the method can be generalised to be applicable for 

other common outdoor data acquisition problems.  

• It will be significant if the present study can make several noteworthy contributions to 

bioacoustics data analysis and automatic species recognisers as soundscapes signals 

contain various sorts of sounds to include sounds of birds and other kinds of animals. 



Chapter 1. Introduction  

11 

 

• It will be substantial if the study can pave the way for pursuing further investigations 

to handle methods of manipulating acoustic data in the virtual new world objects and 

things that might be helpful for the improvement of urban environment soundscape 

design. This may lead to generalise a new approach for interactive urban environment 

which maybe significant as a long-term objective.  

• As research is still carrying on for improving performance, efficiency and effectiveness 

and enhance functionalities regarding applying acoustic sensing and the improvement 

of sensing capabilities for detecting environmental sound sources and reducing 

environmental noises, this research will be beneficial to academics. 

1.6 Research Methodology Implementation Procedure 

Since the sensed acoustic data needs to be pre-processed to make it valuable for further 

analysis, the focus will be on the de-noising process by developing the SSA algorithm and 

improving certain key aspects in the method. Prior to that, a mixing model is required for 

generating mixed soundtracks for the simulation phases. Existing datasets such as published 

internet-based datasets that contain audio recordings which directly recorded from the field 

have been used. The verification process is extremely important to evaluate the specifications 

laid down during the development process.  

The plan is to start with a simulation phase when adopting the developed systematic 

approach for the SSA in this thesis in a step by step manner. This phase is defined as a system 

verification when different testing signals generated and added together to have been used. 

Also, this phase has been gradually extended to involve white noise and finally wind noise. 

The next simulation phase was more sophisticated with real-world audio recordings and wind 

noise added for testing the developed system. This phase is defined as a system validation when 

realistic samples from another dataset have been used. A purposive sampling strategy has been 

adopted, for example, using realistic samples of field recordings from previous work at the 

University of Salford or internet-based published datasets. The research plan of this thesis is 

basically based on the following strategies. 

• Use of existing datasets and realistic samples. 

• Use of more than one dataset for multi-class problems and validation.  

• Use of audio recording samples of same properties (e.g., length, sampling rate).   

• Use of audio recording samples on interesting smart city sounds.   

• Use of scholarly literature for theoretical and mathematical aspects.  
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• Use of software tools such as MATLAB and other useful tools to build a suitable 

working platform for system verification, testing and validation. 

• Use of simulation and modulation techniques.   

The research plan that has been outlined to implement the developed methodology of this 

research is mainly composed of four tasks; data collection and sample selection, the generation 

of mixed soundtracks to represent noisy data for the simulation phases by mixing desired 

signals with the defined wind noise, developing a systematic approach for the SSA method, 

developing and implementing SSA algorithms based on this approach for noise separation in 

different testing stages and experimental phases, and finally the validation and critical 

evaluation of the developed system and reporting the results as shown in Figure 1.2. However, 

further details will be given throughout the chapters of this thesis.  

 

Figure 1.2. Research methodology implementation 
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To experimentally investigate the developed method, the initial step is to focus on sample 

selection and dataset preparation, however, more details will be given in Chapter 7. The 

proposed data samples are mainly audio recordings samples (real-world sounds). The selected 

samples will be divided into two main categories, testing and validation datasets that contains 

multiple signals of interest is the first category while the second is wind noise samples. The 

next step is to develop the SSA for noise separation as the focus of the research. The research 

question of this study has been addressed considering an incremental methodology through 

developing the SSA algorithms according to updated requirements from one experimental 

phase to another. Also, the research question has been answered through performing many 

experiments using typical testing signals in the system verification phase followed by 

conducting several case studies using realistic samples for the final validation and critical 

evaluation. Figure 1.3 summarises the plan layout and overall strategy.   

 

Figure 1.3. Research plan layout and overall strategy  
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1.7 Thesis Outline 

 

Figure 1.4. A flowchart of the thesis outline  

Chapter

1

• This introductory chapter includes introduction to the thesis, research motivation
and scope, research question, thesis aim and objectives, contribution and
significance of the research, and research plan layout and methodology.

Chapter

2

• A literature survey chapter contains the current state-of-the-art and application
of acoustic sensing concerning outdoor acoustic data acquisition challenges,
acoustic signals, acoustic events and background noise, aspects regarding smart
city real-world sounds and soundscapes monitoring. A comprehensive review of
microphone wind noise, mechanisms of wind induced microphone noise and
features, existing wind noise methodologies, limitations and main concerns.

Chapter

3

• This chapter is concerned with the methodology of this study. It includes
concepts of Singular Spectrum Analysis, typical applications, discussion of the
potentials of the SSA for microphone wind noise reduction and its significance
as a relevant method to wind noise separation. Mathematical formulations and
new models with working examples are also provided in this chapter .

Chapter

4

• This chapter is devoted to establish a framework of singular spectral separation
of acoustic signals contaminated by wind noise .It also includes the theory and
mathematical formulations that have been used to develop SSA algorithms along
with some other details.

Chapter

5

• This chapter includes the development of central aspects (grouping,
reconstruction, and separability) by adopting a systematic approach that has
been established and developed within the framework of the SSA method of
singular spectral separation of acoustic signals contaminated by wind noise.

Chapter

6

• Sample selection and dataset preparation with some other details related to the 
objective measures that have been used for evaluating the developed system. 

Chapter

7

• System verification, an empirical study using testing signals and different types
of noise, white noise and particularly wind noise for their separation from such
testing signals. Results obtained from some selected experiments are presented
in this chapter.

Chapter

8

• System validation, empirical study with real-world sounds and discussions are
introduced in this chapter. This chapter includes results obtained from the
validation phase using some selected experimental case studies along with
results of window length optimisation followed by the critical evaluation using
sound analysis, signal processing techniques, and w-correlation matrix.

Chapter

9

• This chapter is for overall conclusions and discussing suitable areas for future 
work. 
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2 

Literature Survey  

2.1 An Overview   

An investigation into the state-of-the-art of acoustic sensing, acoustic signals, 

background information on acoustic events and background noise, urban environment aspects, 

and some other related concepts are offered in this chapter. The criteria used in analysing and 

comparing literature depends on several aspects such as ideas, specific purpose or objective, 

attitudes, structural design, techniques, theories, operating scenarios and performance, and 

conclusions of authors. Also, practical applications have been briefly considered to 

comprehensively assess the deployment of acoustics in real complementary target urban 

environments.  

 In spite of the considerable research work that has been conducted to automatically 

detect desired sounds and remove unwanted environmental sounds or reduce the harmful effect 

of environmental noises, microphone wind induced problem remains an issue of concern and 

requires more investigation. As previously mentioned, there is a recent call for research 

regarding monitoring problems in outdoor data acquisition for soundscapes monitoring and 

applications of urban environments. For this reason, important aspects regarding the 

application area have been included in this review chapter.  

In this context, this chapter contains key elements regarding acoustic event and 

background noise as well as acoustic sensing challenges in urban environments. It also contains 

several state-of-the-art aspects and applications of acoustic sensing. The focus of the review in 

this chapter is basically on thesis topics and wind induced microphone noise. This chapter 

covers aspects regarding the mechanisms of wind induced microphone noise, wind theory; 

specifications and characteristics. The review also sheds the light on the most common 

principles in environmental noise reduction problem and existing wind noise reduction 

methodologies with their limitations.  

2.2 Acoustic Event and Background Noise   

Acoustics is known as an interdisciplinary field of science which deals with studying and 

analysing of sound waves and their propagation in different mediums, either in closed spaces, 

or in free spaces, or in channels and pipes. A wave that is propagating by means of vibrating 
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mediums such as solids, liquids, or gases is an acoustic wave. The impact of audio and acoustics 

can be seen in many applications as applied in almost all aspects of the society as it is the basis 

of many practical applications and fundamental phenomena (Kuttruff, 2006; Ballou, 2015).  

For human beings, however, hearing is undoubtedly one of the main senses. Basically, 

acoustics relates to the sense of hearing. Therefore, there is no surprise to see the emergence of 

audio and acoustic science to become across several aspects of the modern society such as 

architecture, music, and industrial production, likewise, different species, such as birds for 

instance, use sound and hearing for marking territories or breeding rituals. Sound consists in 

mechanical vibrations within the audio frequency band of human hearing (Müller and Möser, 

2012). An audio frequency is considered as periodic vibrations and the frequency of these 

vibrations is audible to human listeners. Environmental factors and the age can greatly 

influence the standard range of audible frequencies or in other words the range of frequencies 

that can be heard by humans. Frequencies below and above the audible frequency range are 

indicated by the terms infrasound and ultrasound, respectively (Kinsler et al., 1999).  

An acoustic event is timestamps in an audio stream and can be defined as a localised 

region or part of high intensity in a spectrogram. A sound event is also defined as a segment of 

audio that can be consistently labeled and distinguished by human listeners in an acoustic 

environment (Adavanne et al., 2017). One spectrogram may contain several events where some 

of them are considered as calls of interest while the others are not. In environmental acoustic 

research, calls of interest are known as acoustic events. However, events that are not of interest 

are all named as background noise (Zhuang et al., 2010). Background noise should be defined 

clearly because its definition is rather ambiguous. Sounds induced by rainfall, wind, distant 

traffic, and rustling of leaves are examples of continuous background noise. In outdoor data 

acquisition, much of the environmental noise are of different origin. For instance, wind noise, 

rainfall noise, rustling of leaves, etc., all are considered of physical origin; bird vocalisations 

and other animals are noises of biological origin; construction noise, airplane engine noise and 

highway traffic are considered as human generated sounds (Luther and Gentry, 2013). In this 

research, only continuous background noise is assumed through a time interval. 

Noise is unwanted sound, hence, any acoustic event which is not of interest can simply 

describe noise. Measuring and quantifying the extent to which any given sound annoys any 

given individual is much more difficult (Ballou, 2015). Noise can be also defined as “a 

stochastic signal, emanating from an external source or phenomenon and disturbing the signal 
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of interest” (Sovijarvi et al., 2000, p.604). These definitions lead to understand that the same 

acoustic source can be regarded as either noise or specific event. For instance, this implies if 

one is interested in birds’ sound recognition, then wind and rain are considered as unwanted 

sounds. In fact, background environmental sounds, such as wind and rain, are not of interest in 

most of the applications and often rejected. In this study, wind noise in particular, represents 

the unwanted signal that affects the wanted acoustic event or the signal of interest.  

In describing acoustic events, however, it has been found that acoustics deals with 

multiple steps, which start from the cause of the event to the final effects of sound while passing 

through the generation mechanism and control, transmission or propagation of mechanical 

vibrations, and reception of sound. The steps shown in Figure 2.1 can represent any acoustic 

event where the cause could be natural or volitional. There are various types of transducers that 

can transform energy into sonic energy and produce a sound wave. Sound waves carry energy 

through the propagating medium which later will be transduced to another form of energy in a 

natural or volitional way before the final effect. The presence of individual acoustic events 

characterises audio scenes. A multi-class description of an audio file can be managed by the 

detection of the categories of acoustic events that occur in the file. Acoustic event detection 

deals with processing acoustic signals and transforming them into symbolic descriptions that 

correspond to the perception of the listeners of different acoustic events presented in the signals 

and their sources (Temko et al., 2006; Mesaros et al., 2010).  

 

Figure 2.1. Acoustic event description 

Soundscapes signals are composed of acoustic target of interest and background noise 

such as wind. So far, however, there has been little discussion about developing new 

contemporary methods for wind noise reduction in the scope of cleaning soundscapes signals 

and smart city and monitoring applications. In such applications, wind background noise 

undesirably masks valuable information and harmfully affects the acoustic event or the signal 

of interest, which is varying from one application to another, and makes the annotation of the 

target sound more difficult. If the background noise can be masked or separated, the detection 

of acoustic events of interest will be much easier. Hence, the perceived quality of the captured 
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acoustic data can be improved; subsequent processing and data analysis methods will 

effectively be deployed.  

2.3 Acoustic Sensing in Urban Environments   

In the last few years, research efforts in the field of Wireless Sensor Networks (WSN) 

have shown high potentials for surveillance applications and have paved the way to what is 

called ubiquitous or otherwise known as global sensing and smart cities paradigm that extends 

WSN to more generic Internet-of-Things (IoT) concepts. Applying acoustic sensing in urban 

environments to make cities such smart and probably interactive is considered as a great 

contribution of acoustics in attempting to improve the quality of life in many ways (Mao, Fidan 

and Anderson, 2007; Misra, Reisslein and Xue, 2008; Pham and Cousin, 2013). Edge 

computing and social IoT concepts have been introduced for the development of large-scale 

smart environments (Balakrichenan, Kin-Foo and Souissi, 2011; Cicirelli et al., 2018). 

Outdoor urban environments have been considered in previous literature and some 

researchers have worked on that. Developing and implementing acoustic sensing to collect data 

for outdoor applications, such as monitoring pollution, crowding areas, movement in restricted 

areas or some surveillance type of applications (e.g., route accidents and detection of unusual 

situations) are some of the pioneering applications that impact the daily lives of smart city 

inhabitants (Hancke, Silva and Hancke Jr, 2013; Luzzi et al., 2013). In addition, there are some 

projects that have been recently launched to provide enhanced cyber-physical services when 

deploying acoustic sensing technology, such as traffic estimation and conjunction, detection of 

notable acoustic events in the city (e.g., sirens, accidents), localisation of events using multi-

purpose acoustic devices, looking especially at surveillance type of applications. Also, there 

are some individual sound sources recognitions, environmental sound and noise recognition 

along with a considerable number of event sound and noise classifications. However, the 

existence of some monitoring problems due to the presence of environmental noises has made 

the implementation of acoustic sensing in urban environments for monitoring and smart city 

applications extremely challenging (Sanchez et al., 2014).  

In the context of this thesis, a graphic design that represents some city services, control 

and monitoring setup when acoustic sensing technology is involved is shown in Figure 2.2. 

This architectural design has been produced to be used in many ways as a model that 

incorporates some novel design features. Also, this design indicates microphone wind noise 

problem in terms of the presence of wind and its harmful effect on the sensed or recorded 
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acoustic data. The most interesting aspect in this design is that closer inspection of the main 

idea and research problem of this thesis can be revealed. Therefore, some real-world sounds 

that have been used in the system validation phase, such as police car siren, ambulance siren, 

fire alarm, and birds’ chirps are presented. Figure 2.2 also shows a symbolic representation of 

speech signals in terms of press coverage and reports for example; however, speech is not 

considered in this thesis. 

 

Figure 2.2. An architectural design of acoustic sensing topology in smart city and monitoring 

applications 

Acoustic sensing technology can be applied in outdoor data acquisition for monitoring 

the soundscapes and background noise level as well as controlling the environment in many 

ways for some practical applications. However, controlling the whole urban environment is a 

broad topic and an interdisciplinary approach which go beyond the scope of this study as it 

requires implementation to be performed and consequently appropriate and extensive facilities 

will be needed. Acoustic sensing technology could derive benefits to the inhabitants of the new 

urban environments regarding socio-economic development. Hence, in this chapter, the study 

briefly sheds the light on how acoustic sensing is increasingly becoming important to deliver 

business efficiency and reliability and how it is promised to be widely implemented in many 

smart city applications and soundscapes monitoring.    
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2.3.1 Ubiquitous Computing and New Urban Environments 

New urban environments, which can be considered as smart environments, are physical 

spaces enriched with various communication devices and sensors. Sensors are designed to 

detect different events and capture signals as raw data according to the type of the environment 

to manipulate and process this data by means of certain devices provided with specific software 

tools and signal processing techniques. This is to transform the captured raw data to meaningful 

information accumulated as knowledge to be exchanged among different communication 

devices to provide a variety of services. These services or applications are aiming at supporting 

the users and helping them in their activities. Smart urban environments can be considered as 

an application area of the paradigm of ubiquitous computing that could support collaboration, 

enhance productivity, or even boost creative activities (Komninos, 2009; Cicirelli, Fortino, et 

al., 2017). 

 As stated in (Cook and Das, 2004), Ubiquitous Computing is one of the catching words 

along with Pervasive Computing and the new term Ambient Intelligence. The vision of the 

world has probably been paraphrased because of these terms that share the notion of smart, in 

which smart and intuitively operated devices surround the inhabitants of the smart city helping 

them in organising, structuring, and mastering their everyday life (Weiser, 1991). The 

introduction of these concepts causes major changes which could not leave residential 

environments unaffected. However, such environments border with many ubiquitous 

computing applications such as e-health or smart metering that have to be integrated even into 

the so-called smart home ecosystem (Fysarakis et al., 2018).  

A new paradigm regarding the interaction between a person and his everyday 

surroundings is characterised because of these new concepts. These surroundings are enabled 

by the smart environment to become aware of the goals and needs of humans who interact with 

it. A smart environment is formed by the continuously connected physical world and objects 

with computational elements (Ahmed et al., 2016). In other words, inhabitants’ activities could 

be proactively performed, their goals reached, and their tasks fulfilled in a user-centric manner 

with the assist of such environment where underlying technologies have transparently been 

integrated. The central themes of ubiquitous computing are user adopted behaviour and 

personalisation (Cook and Das, 2007; Fysarakis et al., 2018).   

Ubiquitous computing which is also known as global sensing including acoustic sensing 

is generally referring to technologies where many sensors, communication and mobile devices 
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and networks integrated into everyday artefacts in an environment. Such components interact 

seamlessly and spontaneously with each other and with users in a context-driven manner. 

Based on this vision, a variety of related paradigms have been developed. Each of these 

paradigms is emphasising on certain aspects of ubiquitous computing such as pervasive 

computing, ambient intelligence, and smart environments where acoustic sensing and other 

technologies are applied (Pham and Cousin, 2013; Fysarakis et al., 2018).   

Recently, acoustic sensing technology and sound processing are becoming leading 

research topic regarding developing new urban environments. There is a rising popularity of 

the topic and a growing desire for successful projects in the marketplace (Cook and Das, 2007). 

One trend in smart urban environments is the endeavour to enhance inhabitants’ quality of life 

by investing in Information Technology (IT) solutions. A city that is smart needs to invest in, 

therefore modern communication infrastructures are required. To build a smart urban 

environment, involving a variety of applications, different techniques, architectures, 

algorithms, and protocols have been introduced in some previous studies and research as listed 

in (Cook and Das, 2004). However, sound processing and acoustic sensing technology have 

been involved in recent studies and projects (Sanchez et al., 2014).  

2.3.2 The Key to Success in New Urban Environments 

Designing smart urban environments is a goal that appeals to researchers in a variety of 

disciplines and supporting fields, including pervasive and mobile computing, sensor networks, 

artificial intelligence, robotics, multimedia computing, middleware and agent-based software  

(Cook and Das, 2007; Cicirelli et al., 2018). A tremendous increase in the number of smart city 

projects has been prompted due to the advances in these supporting fields. Smart city solutions 

need to be envisioned from both technical and sociotechnical perspectives to understand the 

impact of the technology on inhabitants’ lives (Eckhoff and Wagner, 2018). According to 

(Schaffers et al., 2011), smart cities are often considered successful when they are able to 

combine and balance factors such as economy, mobility, environment, people, living and 

governance.  

Smart environment is defined as “one that is able to acquire and apply knowledge about 

the environment and also to adapt to its inhabitants in order to improve their experience in that 

environment” (Cook and Das, 2004, p.3). According to (Dey, Abowd and Salber, 2000, p.1) 

“one of the goals of a smart environment is that it supports and enhances the abilities of its 

occupants in executing tasks”. A more user centric definition is stated in (Aarts and 
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Encarnação, 2006, p.322), “Smart environments are physical spaces that are able to react to the 

activities of users, in a way that assists the users in achieving their objectives in this 

environment”. Large-scale smart environments are defined as pervasive and distributed 

dynamic systems that cover a wide geographical area when characterised by a large number of 

interacting devices of heterogeneous nature (Cicirelli, Guerrieri, et al., 2017). In this context, 

agent-based approach has been introduced in (Cicirelli et al., 2018) to leverage Edge 

Computing and social IoT paradigms for the development of large-scale smart environments.  

Through the choices that citizens of new urban environments have and decisions they 

make, their participation along with businesses and other stakeholders is essential in shaping 

their future. The challenge therefore is to redefine the smart city as an environment of 

innovation and empowerment. Hence, the focus will be on the changes and transformations 

towards a smarter city in the sense of shaping a better and more participative, inclusive and 

empowering city, instead of imagining an ideal future (Schaffers et al., 2011). The type of 

experience which individuals wish from their environment varies based on the individuals 

themselves and the type of the environment. Inhabitants may wish the environment to ensure 

safety for them or to reduce the cost of maintaining the environment, also, they may want tasks 

that they typically perform in the environment to be automated. Optimising the resource usage 

(e.g., utility/energy bills or communication bandwidth) could be also another wish (Das and 

Cook, 2005).  

2.4 Outdoor Acoustic Data Acquisition Challenges 

An acoustic wave from the physical standpoint is one that is transmitting and propagating 

as vibrations by means of vibrating a medium like air. Acoustic waveforms are complex by 

nature, however, for humans, these waves contain information that is significant to them 

(Ballou, 2015). A variety of valuable information can be extracted by analysing the data that is 

transmitted as physical waves from the large-scale data production of the real world. As audio 

and acoustics field continues to gather steam, the emergence of gadgets equipped with all kinds 

of sensors to help in improving our daily lives can be clearly seen. 

 Technologies for acoustic processing that handle general sounds including speech 

processing of human voices are promising media processing technologies that together with 

image/video processing are expected to contribute to the solution of various issues and could 

be very helpful in soundscapes monitoring application. In spite of the valuable research work 

and unlike other types of data, image or video for instance, there is still a huge untapped 
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potential for acoustic processing particularly in applying acoustic sensing towards creating new 

urban environments (Luzzi et al., 2013). 

Acoustic sensing technology can be applied outdoor to capture acoustic data for many 

applications, such as bioacoustics data analysis, monitoring pollution, and some other 

pioneering applications (e.g., surveillance type of applications) that impact the daily lives of 

smart city inhabitants (Luzzi et al., 2013). For example, in bioacoustics data analysis, scientists 

who are interested in environment changes monitoring and birds’ calls, which are of interest in 

outdoor sound sensing, will rely on deploying various types of acoustic sensors in the field. 

Distance outdoor microphones could help ecologists record whatever sound they want instead 

of conducting standard surveys. Although such method can bring some advantages over 

classical surveys, such as saving time and efforts, providing continuous recordings, and scaling 

over long period and huge area, however, the data collected will include much of background 

noises that make annotation of bird vocalisations more difficult. Hence, it is to consider 

microphone wind noise as a serious problem that affects the sensed acoustic data in outdoor 

sound acquisition. The effectiveness of bioacoustics data analysis will be increased if 

background noise can be masked or removed (Slabbekoorn, 2013; Grill and Schluter, 2017).  

Improving and developing methods for cleaning soundscapes signals and reducing the 

harmful effect of environmental noises, such as wind noise, on the sensed or recorded acoustic 

data of interest by effectively separating such noises is a great challenge in outdoor data 

acquisition. 

2.4.1 Motivations and Ambitions of Applying Acoustic Sensing  

Using a technology that brings along with new enhanced services and developed 

applications towards the goal of creating smart cities, new solutions that could help in 

overcoming the existing socio-economic and financial problems and producing new products 

is now a great challenge for researchers in the field of acoustics. A technology that could even 

help in minimising potential hazards along with developing functionalities over the existing 

levels is another great challenge. This technology is represented in acoustic sensing technology, 

however, when combining with some other technologies in an interdisciplinary approach, it 

could help in achieving the central long-term aim which is building smart cities and monitoring 

the soundscapes provided that better solutions can be found for the existing problems regarding 

environmental noise reduction.  
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Integrating acoustic sensing with technologies that are emerging and getting developed 

day by day and making efforts to involve acoustic sensing when discarding environmental 

noises, such as wind, are all great ambitions that increase the motivation of conducting this 

research. The area of global sensing and smart cities witnessed a growing importance and a 

number of leading projects have been launched recently in which the objective is to develop 

and test acoustic sensing technologies in a city context (Sanchez et al., 2014; Eckhoff and 

Wagner, 2018). Bringing acoustic sensing to large-scale outdoor wireless sensor networks 

where a large scale deployment of sensors in the city is provided is a big challenge in such 

projects (Pham and Cousin, 2013).  

A smart city with its modern communication and information systems should be the 

perfect place where to exploit the existing technologies and develop awareness on 

environmental problems. The current vision about urban performance for most of cities 

depends mostly on the city’s endowment of hard infrastructure, the (“physical capital”), which 

is decisive for urban competitiveness. Although, particular importance has been increasingly 

given to the availability and quality of knowledge exchange, information communication and 

social infrastructure which stated as (“intellectual and social capital”) are facing many 

challenges (Moreno, Zamora and Skarmeta, 2014).    

Recently, creating smart urban environment using acoustic sensing technology has drawn 

the attention of many researchers. There are several motivations behind involving acoustics in 

the development of smart city projects. However, one of these motivations is to overcome 

current limitations and introducing new methods to improve certain functionalities in this 

important sector. The availability of a huge untapped potential in sound processing and acoustic 

sensing, the advantages of acoustic sensing, the applications developed due to the development 

in certain related technologies such as wireless mobile communication, sensor networks, and 

future internet, all lead to consider the contribution of acoustics in developing smart city 

solution is by no means essential (Sanchez et al., 2014).  

The main idea of deploying acoustic sensing technology is to focus on effectively sensing 

sound signals produced by many sound sources that already exist in the city that considered of 

particular interest for several applications. The captured acoustic signals are composed of 

acoustic events of interest that occurred continually or even continuously in the urban 

environment and other signals considered as background noises. The automatic detection of 

environmental noises, such as wind noise, followed by applying methods to reduce these noises 
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and improve smart city and soundscape monitoring applications remain a great challenge in 

this field.   

According to (Luzzi et al., 2013), reducing noise or protecting a space from a noise 

source at receivers’ level, who are generally inhabitants of a building or a specific area in the 

city, becomes a critical issue in introducing smart cities as an innovative solution for improving 

the quality of life in many ways. However, the involvement of acoustic sensing for more 

effective integration between energy, transport, and communication technologies sectors in 

smart cities becomes important. Along with developing other smart city dimensions, the main 

aim is to enable innovative as an attempt to place cities at the centre of innovation for acquiring 

and applying knowledge and soundscapes monitoring.  

2.4.2 A New Prospective in Acoustic Sensing  

One of the new concepts concerning the deployment of acoustic sensing in urban 

environment according to (Pham and Cousin, 2013) is based on the contribution to the so-

called global sensing or situation-awareness applications as smart environments have emerged 

as an efficient infrastructure. Temperature and luminosity, for instance, were so far the 

traditional scalar physical measures proposed by most of the deployments for several 

environment-related applications. However, the new ideas of involving acoustics in smart city 

paradigm are promising to move a step further towards large-scale "real-life" experimentations 

of acoustic sensing as proposed for supporting high societal value applications.  

New innovative range of services and applications mainly targeting to smart cities and 

even smart buildings are proposed to be delivered which all indicate such importance of 

applying acoustic sensing in urban environments (Pham and Cousin, 2013). For example, 

acoustic source localisation requires real-time simulation work using audio sensing technology 

for wireless sensor networks (Hollosi et al., 2013). In (Kotus, Lopatka and Czyzewski, 2014), 

a method for automatic determination and localisation of sound events in the presence of sound 

reflections through employing acoustic vector sensors for smart surveillance applications is 

presented.  

One of the important operating scenarios while applying acoustic sensing in smart city 

paradigm is the on-demand scenario which is typically intended for users requesting acoustic 

data on well-identified parts of the city. Acoustic data streaming feature can be used for many 

applications, such as surveillance systems, management of emergencies, event detection and 

some other applications as shown in Figure 2.2. Therefore, acoustic capture system has to be 
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developed by providing numerous of efficient and powerful sensors at different density that 

provide a large-scale coverage of the city. Also, the capability of these sensors within the 

environment could help the users when requesting acoustic data from a set of the capture 

system nodes to improve their understanding of the situation (Pham and Cousin, 2013). Such 

nodes are capable to respond in some ways to the enquires coming from the human operator 

through a mechanism known as streaming encoded acoustic data on lower sources devices. 

This means that streaming acoustic data can be realised in a multi-hop manner on such 

infrastructure (Mao, Fidan and Anderson, 2007; Luzzi et al., 2013; Sanchez et al., 2014).  

 In all cases and for whatever type of desired signals or application, removing unwanted 

sounds and reducing environmental background noise to obtain clear target acoustic data is a 

challenge that requires more investigations to improve the existing methods. Therefore, the 

Singular Spectrum Analysis has been proposed in this thesis to be developed for wind noise 

separation as a specific type of environmental noises. The de-noising process takes place in the 

preprocessing phase with regards to the whole system infrastructure and used for this specific 

purpose which is mainly the central focus of this thesis.   

Setting up acoustic sensors which can detect target acoustic events and then trigger other 

specific sensors to track the source of the sound in some applications is the way to collect and 

send Metadata which then can be used to perform actions. In such applications, environmental 

background noises such as wind noise, which has a harmful effect on sensed acoustic data and 

a destructive influence on the target sound, needs to be discarded or reduced. With regards to 

the whole system when involving acoustic sensing technology in such applications, de-noising 

methods can be used in the low-level analysis in the preprocessing stage as shown in Figure 

2.3 (Sanchez et al., 2014).  

 

 

 

 

 

Figure 2.3. A systematic approach of implementing acoustic sensing technology in urban 

environments 
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The whole processes that start from sensing acoustic data using acoustic sensors to 

perform actions are presented in Figure 2.3. However, the focus is only on developing a specific 

method based on the SSA for developing the separation approach particularly for wind noise 

separation with no details provided regarding the other processes as they go beyond the scope 

of this thesis. The main purpose of presenting Figure 2.3 is to show where noise reduction 

methods can be involved with regards to the whole system of deploying acoustic sensing 

technology for smart city applications and soundscapes monitoring.  

Although applying acoustic sensing techniques in new urban environments is very 

promising in terms of delivering a variety of innovative applications, however, some 

monitoring problems are still there. In spite of the considerable work that has been undertaken 

over the last few decades in the field of environmental noise reduction, still there exist 

significant gaps in the literature that impede the further development of wind noise reduction 

methods among other experimentally based broadband noise methodologies towards an 

optimal de-noising solution. Such gaps require more in-depth research and detailed 

investigation because of the limitations of the existing methods as will be discussed later in this 

chapter. For this reason, therefore, the proposed method for the separation of wind noise in this 

thesis is based on developing the novel SSA technique due to its successful paradigm as a de-

noising method in some other applications.  

2.5 The State-Of-The-Art and Applications of Acoustic Sensing  

2.5.1 Acoustic Signals   

In the literature, many state-of-the-art techniques that are based on acoustic signals have 

been applied in many applications. Recently, acoustic signals are used in diagnostic techniques 

of machines in the field of industry and engineering where many rotating machines, such as 

electric motors, are used. Diagnosis of such motors is considered as a normal maintenance 

process (Glowacz et al., 2018). Nowadays, using acoustic signals is an up-to-date method for 

many applications of fault diagnosis and localisation in rotating machines. Therefore, to keep 

up the complex processes of industrial production, timely maintenance and fault identification 

of rotating machines, particularly electric motors, have been made possible by using acoustic 

signals. For example, in (Delgado-Arredondo et al., 2017), a fault detection approach in 

induction motors in steady state operation by analysing acoustic sound and vibration signals 

has been introduced. The Complete Ensemble Empirical Mode Decomposition has been 
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proposed to decompose the detected acoustic signal into several intrinsic mode functions by 

which good fault detectability results have been obtained and more frequencies associated with 

the faults have been identified (Delgado-Arredondo et al., 2017). Also, acoustic signals are 

used for early fault diagnosis such as for automatic bearing fault localisation (Jena and 

Panigrahi, 2015).  

A pattern recognition system was proposed and developed based on acoustic signals for 

automatic damage detection on composite materials where Singular Value Decomposition 

(SVD) method was used to filter acoustic signals (O’Brien et al., 2017). Analysis of using 

acoustic signal processing allows recognition of rotor damages in a DC motor (Głowacz and 

Głowacz, 2017). In practice, acoustic signals have been used in many cases for early diagnosis 

of electric motors such as rotor damages of three-phase induction motor (Glowacz, 2016). A 

description of monitoring acoustic emission-based condition is given in (Caesarendra et al., 

2016). Online monitoring of machines allows for intelligent maintenance with the optimised 

usage of maintenance resources (Glowacz et al., 2018). 

In work environment and industrial conditions where many machines are used, workers 

are exposed to noise levels that often exceed permissible values. At such workplaces, noise is 

defined as any undesirable sound that causes harmful or tiring to human health (Mika and 

Józwik, 2016). The measurement of noise becomes increasingly important to maintain noise 

levels under the permissible values. In (Mika and Józwik, 2016), a method for measuring noise 

in work environment based on the acoustic pressure of noise emitted by CNC machines has 

been developed. Using acoustic holography methods for identifying and monitoring of noise 

sources of CNC machine tools were presented in (Józwik, 2016). 

In most of the applications of fault diagnosis of the motors when using acoustic signals, 

the idea is based on using condenser microphone or a group of microphones simultaneously 

for acoustic signal acquisition considering many factors that affect the fault frequencies such 

as motor speed along with the interferences of the environmental noises as the acoustical 

approach is sensitive to such noises. Importantly, calculating the frequency spectra of acoustic 

signals of the rotating machine, applying feature extraction methods such as correlation and 

wavelet transformation along with data classification methods are required for the complete 

procedure of fault diagnosis (Glowacz et al., 2018).  

Ultrasound characterises the region of acoustical phenomena that involves high 

frequencies which are not accessible to human perception in a band above 20 kHz and 
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continues up into the megahertz, and in industrial settings these acoustic frequencies are 

referred to as “ultrasonic” (Cheeke, 2016). Ultrasonic technology has been used in many 

applications. For instance, in (Duncan, Gaydecki and Burdekin, 1996), a track mounted 

ultrasonic scanning system was developed. Recently, this technology is applicable in many 

advanced industrial applications such as ultrasonic servo control drive (Shafik and Abdalla, 

2013), and the development of a rotary standing wave ultrasonic motor based on piezoelectric 

technique along with many related applications (Shafik, Makombe and Mills, 2013).  

2.5.2 Environmental Sounds 

In this review, it is to particularly focus on the problem of environmental noises in sound 

signal acquisition using acoustic sensing in outdoor conditions. Environmental sounds are such 

a rich source of acoustic data, and at the same time they comprise much background noise (Ma, 

Milner and Smith, 2006). Environmental sounds are highly considered as non-stationary and 

underexploited source of data. Having difficulties in describing such sounds using common 

audio features as well as defining appropriate features for environmental sounds in automatic 

acoustic classification systems is an issue of concern. Several environmental sound sources 

such as wind and rain harmfully affect much of acoustic data of interest, however, these 

environmental sources produce unwanted sounds which considered as noise sources (Chu, 

Narayanan and Kuo, 2008). 

An acoustic environment is a complex sound which made up of a combination of 

different events and every environment has its specific characteristic consistent along with a 

periodic background noise (Ma, Milner and Smith, 2006). In outdoor environmental 

recordings, much of the noise is of different origin. Generally, background noise can be divided 

into natural and artificial noises. Natural noises come from environmental sources such as wind 

and rain. Whereas artificial noises are human generated sounds that come from human 

activities, such as distant traffic, construction noise, airport noise, etc.,  (Kuttruff, 2006).  

 It is quite ambiguous to distinguish between the background noise and the signals of 

interest because background noise in some applications is considered as target signal in other 

applications (Luzzi, 2013). For example, if the aim of bird calls’ classification in an audio 

recording is to find calls that belong to a specific species, therefore other species calls will be 

considered as background noise. Hence, background noise definition is dependent on the area 

of application. For better understanding, wind noise for instance represents background noise 

for ecologists when they are assessing species richness by sampling long outdoor acoustic 
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recordings. Avoiding durations that contain much background noise will help in improving the 

efficiency and quality of audio sampling (Ma, Milner and Smith, 2006). 

The content of audio recordings can be automatically classified into different classes for 

the detection of environmental noises in outdoor data acquisition. Generally, the classification 

of the environmental sounds may include many sounds such as (rain, wind, human speech, 

animal and birds sounds, construction noise, and airport noise, etc.). Spectral and temporal 

entropies have been reported beneficial for detecting bioacoustics activities. Classification is 

based on combining pattern recognition methods with digital signal processing technology for 

audio classification and segmentation when using some machine learning techniques (Karbasi, 

Ahadi and Bahmanian, 2011). According to (Dillon, 2008), further classification of noise might 

be possible, wind noise in particular versus others.  Numerous parameters can be used in such 

classification including spectral shape and rate of modulation across channels.   

2.5.3 Potential and Challenges of Acoustic Sensing in Real-Life Settings 

Acoustic sensing enables Non-Line-of-Sight (NLOS) sensing because sound can 

propagate around corners and obstacles/barriers. Acoustic sensing is also multipurpose by 

definition, which makes it such a powerful technology because of the amount of information 

that can be extrapolated from the environment. Acoustic sensors can capture all possible 

environmental information, being identified of events made on processing the captured 

information; their sensing capability is on the software level and on the algorithms that identify 

the events. They can be used virtually to sense anything, and they also can be complemented 

with other sensing approaches. Therefore, for added-value applications in new urban 

environments, it is important to be aware of the untapped power of sounds as a relevant data 

source (De Marziani et al., 2009; Hancke, Silva and Hancke Jr, 2013).  

To develop a sustainable and attractive city for its citizens, many challenges need to be 

handled. Environmental conditions have probably the same importance as housing, economy, 

culture, and social challenges that need to be handled for the cities (Riffat, Powell and Aydin, 

2016). Using sound to picture the world in an innovative way and using acoustic sensing to 

collect acoustic data and explore the possibility with several new applications that impact on 

the daily lives of the inhabitants is very promising towards creating new urban environments. 

Despite all of these facts, such applications require great efforts regarding developing new 

noise reduction methods capable to overcome existing problems in outdoor acoustic data 

acquisition which presents an enormous technical challenge. However, in the presence of 
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environmental noises, the separation of such noises in the captured acoustic data in real-life 

soundscapes monitoring for outdoor recordings is very challenging.  

The concept of smart cities has started to develop around the world in order to meet these 

challenges and create new smart, attractive and sustainable cities for its inhabitants (Kelly et 

al., 2014). A smart environment is a small world where different kinds of smart interactive 

networked devices along with sensor-enabled components work continuously and 

collaboratively to improve the experience of its dwellers in order to make their lives more 

comfortable by supporting and enhancing the their abilities in automatically executing tasks 

(Ahmed et al., 2016). The term ‘‘smart’’ or ‘‘intelligent’’ is defined as ‘‘the ability to 

autonomously acquire and apply knowledge’’ while an ‘‘environment’’ refers to the 

surroundings (Cook and Das, 2004, p.3). According to (Cicirelli et al., 2018) in which large-

scale smart environments have been introduced, the main aim of such environments is to 

provide enhanced-cyber services to the users.  

The viability and potential of acoustic sensing in real-life settings can pave the way to 

the enhancement of functionalities and soundscapes design (Luzzi et al., 2013). Using powerful 

acoustic sensors can lead to improved applications and services and a way to build and develop 

large-scale “real-life” experimentations of acoustic sensing for supporting high societal value 

applications and delivering new innovative range of services mainly targeting to smart cities 

(Pham and Cousin, 2013). In doing so, it is required to automate processes, prediction, and 

decision-making capabilities which are based on predefined strategies along with dynamic 

individual preferences of the citizens of smart environments. Also, enabling synchronisation 

of multiple sensors (microphones) to form wireless arrays and create a new topology in device 

communication techniques is needed (Petroulakis, Askoxylakis and Tryfonas, 2012; 

Petroulakis et al., 2013). 

2.6 Wind Induced Microphone Noise  

For many decades, noise reduction algorithms have been developed and applied to 

suppress undesired components of the signal or at least to mitigate the impact of such 

components, which considered as noise, on the signal of interest. The objective of such methods 

is therefore to focus on the component of interest in the signal and make it much clearer for 

further manipulation or applications. Wind noise sensitivity of microphones for outdoor 

recording situations has been a major problem (Elko, 2007). Wind noise is known to have 

strong deleterious effects on the perception of the desired sounds due to its level which can 



Chapter 2. Literature Survey  

 

33 

 

reach up to 85 dB SPL for wind speed of 3 m/s and as high as 100 dB SPL when the speed is 

doubled (6 m/s) (Zakis, 2011; Keshavarzi et al., 2018).  

Generally, all wind noise reduction technologies aimed at reducing all types of wind 

noise in both audible frequency and infrasound bands while taking into consideration 

preserving signal energy to the most possible level. Although there are several noise reduction 

methods which have been applied in many applications, wind continues to be a major source 

of annoying and dissatisfaction as many of these methods do not perform well for all users and 

applications. For example, in hearing aid application, with only around half of hearing aid users 

reported that their hearing aid devices cope well in windy environments (Kochkin, 2010). 

Besides the great deal of research conducted on developing noise reduction methods to improve 

the quality of life for listeners with hearing impairment, a new method that introduces 

emergency warning equipment based on a vibration measurement system has been developed 

(Abulifa et al., 2013).   

For environmental noise level measurement, especially long-term measurement or 

monitoring, microphone wind noise is added to the recorded noise level, giving inaccurate 

results. Wind shields are commonly used on microphones in outdoor sound acquisition to 

prevent the wind from exciting the membrane of the microphone, however, the effectiveness 

is limited, residual microphone wind noise remains problematic (Schmidt, Larsen and Hsiao, 

2007). Moreover, with the fast development and use of small and smart high-technological 

consumer products like in mobile telephony contexts and hearing aids along with the 

introduction of smart city paradigm that based on acoustic sensing technology; every-day 

experience for people around the world has widely increased regardless the weather condition.  

Additionally, in smart environment applications, acoustic sensing technology is supposed 

to be mainly deployed and then made interacted with the installed infrastructure. However, 

effective wind shielding is often difficult to apply to such acoustic sensors likewise with audio 

devices in applications such as hearing aids and mobile telephones (Schmidt, Larsen and Hsiao, 

2007; Zakis and Tan, 2014). For example, the noise created by even a light breeze in the 

microphone of hearing aid is equivalent to the noise generated by a 100 dB SPL sound at the 

input of the hearing aid device (Dillon, 2008). As wind noise continuous to be a major concern 

in outdoor data acquisition applications, continued effort has to be targeted towards advancing 

wind noise reduction algorithms. Therefore, alternative solutions are sought to be addressed 

by the research community in this field to overcome the limitations of existing methods. 
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2.7 Wind Noise Problem in Outdoor Data Acquisition  

In environmental noise and soundscapes monitoring, environmental sounds are such a 

rich source of acoustic data, and at the same time they comprise much background noise which 

hinder the extraction of useful information (Ma, Milner and Smith, 2006). Environmental 

sounds are highly considered as non-stationary and underexploited source of data. Having 

difficulties in describing such sounds using common audio features as well as defining 

appropriate features for environmental sounds in automatic acoustic classification systems is 

an issue of concern. There is a variety of environmental sound sources that produce different 

forms of sound. These environmental sources produce unwanted sounds which considered as 

noise sources (Chu, Narayanan and Kuo, 2008). The strong presence of environmental noises 

such as wind covers useful information and limits the usage of such data source efficiently to 

extract semantic information.  

In the context of environmental noise and soundscapes monitoring, acoustic sensors are 

deployed outdoor, they are exposed to changeable and severe weather in uncontrolled 

conditions, and microphone wind noise becomes a major concern. Signals of interest are often 

corrupted by such environmental noises including wind as well as system-introduced noise like 

channel interference and quantisation. This, in turn, has an adverse effect on the perceived 

quality of the target sensed sound and posing difficulties to properly distinguish the sensed or 

recorded event of interest. Meanwhile, the performance of other processing algorithms such as 

speech or speaker recognition may also be affected (Nemer and Leblanc, 2009).  

Wind noise is a problem in many applications such as smart city and soundscapes 

monitoring as well as for users who enjoy outdoor activities. Not only is wind noise annoying, 

but also it can create distortion by overloading the microphone and masking desired signals. 

Wind noise has been always seen as a nuisance and can be uncomfortable and loud. For 

example, in communication context, conversation becomes sometimes impossible even in only 

slightly windy listening conditions. In adverse acoustic environments, undesired signals like 

acoustic noise can make conversations virtually impossible without implementing 

sophisticated signal processing techniques along with suitably designed electroacoustic 

transducers. In fact, the presence of acoustic noise, such as wind noise, with all kinds of 

acoustic signal transmission in real-world environments is an ubiquitous problem (Teutsch and 

Elko, 2001; Benesty, Souden and Huang, 2012). 
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 Wind noise can be attenuated through acoustic means which are mainly signal 

processing techniques without necessarily relying on methods of the prior art such as 

mechanical windscreens (Elko, 2007). For example, the reduction of the effects of wind noise 

in hearing aids application is based on signal processing techniques in addition to the acoustic 

design modifications. In order to reduce the harmful effect of undesired components of a signal, 

which considered as noise, on the wanted signal, a large number of noise reduction algorithms 

have been developed and implemented for many decades (Korhonen et al., 2017; Keshavarzi 

et al., 2018). Generally, the removal of noise is not an easy task as the problem is manifold, 

many unsolved issues owing to the different environmental sound sources that produce noise 

and particularly microphone wind noise. The reduction of wind noise is therefore a challenging 

task as wind noise consists of highly non-stationary components known as local short-time 

disturbances (Keith Wilson, Keith Wilson and White, 2010; Grimm and Freudenberger, 

2018).Wind noise is highly broadband and non-stationary in time and even sometimes it 

resembles transient noise which makes it hard for an algorithm to estimate the noise from a 

noisy signal (Schmidt, Larsen and Hsiao, 2007).  

A microphone diaphragm of a microphone used in an air flow can be deflected due to the 

pressure variations from low turbulence which exist in environmental wind. As a result of the 

deflection of microphone membrane, wind-induced noise appears in the microphone output 

signal (Morgan and Raspet, 1992; Zakis and Tan, 2014).  Therefore, turbulent airflow over the 

microphone membrane causes wind noise which considered as a particular type of acoustic 

interference that creates an acoustic effect of a relatively high signal level (Nemer and Leblanc, 

2009). Low frequency signal components of high amplitude are generated due to the airflow 

turbulence over the microphone membrane (Bradley et al., 2003). The turbulence generated by 

the interaction of the wind and the microphone along with the fluctuations that occur naturally 

in the wind are the two components of wind noise (Nemer and Leblanc, 2009). Wind noise 

fluctuates rapidly and wind gusts might have very high energy (Schmidt, Larsen and Hsiao, 

2007). The spectrum of the recorded wind noise has been described as a broadband but 

decreasing function of frequency, showing the bulk of the energy in the lower region of the 

spectrum (Schmidt, Larsen and Hsiao, 2007; Nemer and Leblanc, 2009).  

Many attempts were made in the past using various filtering techniques to broadband 

noise suppression. These methods worked to some extent but have intrinsic limitations of 

distorting wanted signals and difficulties in retaining accurate signal energy levels to meet the 

measurement requirements. However, when the wind noise is removed, wanted signals are 
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distorted considerably (Nemer et al., 2013; Nelke et al., 2014; Zakis and Tan, 2014). Distortion 

describes the systematic undesirable change in a signal. However, noise and distortion limit 

the accuracy of the results in signal measurement systems and the capacity of data transmission. 

For event detection or decision making from acoustic signatures, distorted signals cause errors 

or misjudgements, mitigating the reliability, usability or even safety of such systems (Vaseghi, 

2008; Zakis and Tan, 2014).  

 Methods that make use of two or more sensors known as multi-microphone and 

microphone array are relatively considered effective schemes for reducing wind noise as the 

difference in propagation delay between wind and acoustic waves is exploited. In other words, 

the propagation speed of wind is much slower compared to that of acoustic sound waves, and 

thus the multiple microphones receive correlating signals that help in detecting wind noise. In 

an attempt to accomplish a synchronisation, sufficient spatial aperture, simultaneous 

processing and calibration of all sensors in multi-microphone approach, the deployment of the 

microphones may be relatively distant, and this is expensive and technically difficult. However, 

the difficulty and high cost in deploying these complicated setups limit their prevalent usage 

(Brandstein and Ward, 2013; Nemer et al., 2013). Single-microphone wind-noise reduction is 

still an open ended problem and a technical challenge for further extensive research (Nemer et 

al., 2013; Nelke et al., 2014).   

The main concern discussed in this thesis is the destructive impact on the wanted sensed 

signals. Moreover, one of the greatest challenges for the future digital ecosystem is to better 

reduce such unwanted environmental noise in outdoor acoustic monitoring. Hence, improving 

de-noising techniques or developing and implementing new techniques that may lead to better 

solutions and be effective alternatives to the classic methods becomes increasingly important 

against the harmful effect of wind on the perceptual quality of the wanted signals. Linear 

separation in subspace seems to be potential solution to circumvent these problems. While the 

objective of the present study focuses on microphone wind noise reduction in the context of 

environmental noise management and soundscapes monitoring, the current research attempts 

to cover certain important aspects and develops a more rigorous understanding of the SSA 

technique as a proposed method.  

2.8 The Need and Importance of De-noising Techniques  

As society continues to promote applications related to smart city and soundscapes 

monitoring as critical to the overall quality of life, applications that rely on signal processing 
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algorithms for wind noise reduction such as hearing healthcare are also of similar importance. 

Therefore, researchers are increasingly interested in such applications because of their active 

lifestyle as to enjoy outdoor recreation to include different activities for all smart city 

inhabitants including hearing aid population. Along with the concern shown due to wind noise 

effects on the sensed acoustic data in smart city and soundscapes monitoring applications, wind 

noise has been reported as a series problem in hearing aids in which the utilisation of behind-

the-ear (BTE) instruments means that wind noise is of major concern (Kochkin, 2010). 

In signal processing, the separation of one signal from another is a key element and 

important aspect which embraces a variety of interesting applications. The desired signal is not 

observed directly in many applications as for several reasons; it might be distorted and noisy. 

For one reason, the signal gets noisy in digital communication systems for example due to the 

distortion occurs during its propagation form the source to the receiver. As another reason, 

when the resolution of the measuring equipment is limited, and the communication channels 

have non-ideal characteristics. Other reasons like multiple reflections and missing samples, 

echo, and signal fading reverberations could cause signal distortion (Vaseghi, 2008). In smart 

city monitoring, the most common reason is the presence of surrounding environmental noise 

or the interference of other signals in the environment where the signal of interest is observed 

(Hayes, 2009). In windy environments and for hearing aid users for example, wind noise is 

generated as the air passes the hearing device or the aid user’s head as well as other obstacles 

(Dillon, 2008; Kochkin, 2010).  

According to (Loizou, 2007), the ultimate goal of developing and implementing an 

algorithm for noise reduction problem for general applications is to help in significantly 

improving the perceptual quality of the captured acoustic data and intelligibility in case of 

speech enhancement for normal hearing (NH) as well as for hearing-impaired (HI) listeners. 

Research has been elusive for almost three decades regarding this critical issue. As stated by 

(Bentler et al., 2008; Luts et al., 2010), no significant intelligibility benefit has been revealed 

when implementing noise-reduction algorithms in single-microphone applications such as 

wearable hearing aids, although such algorithms are essentially found in hearing aid devices 

for HI listeners to ease of listening. Therefore, based on that, the actual need of developing and 

implementing new contemporary single processing methods for wind noise reduction that 

might come up with better solutions in outdoor data acquisition is now increased in importance. 
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Based on the application area, the desired signal could be an acoustic signal, speech, or 

even a radar signal, or an image in some other applications (Hayes, 2009). The desired signal 

in idealised and simple environments can be restored from the measured data by designing 

certain classical filters such as high-pass, low-pass, or band-pass. However, the best estimate 

of the signal cannot be produced in an optimum way using such filters in most of the cases. 

Therefore, producing the optimum estimate of a signal from a noisy observation or 

measurement was indicated as a problem that requires designing suitable de-noising methods 

or filters to overcome (Hayes, 2009). 

Research has revealed that long-term average wind noise level in even a light breeze of 

3 m/s (10.8km/h or 5.8 knots) is about 80 dB SPL. Wind noise level is limited to almost 115 

dB SPL by saturation in the microphone for wind speed of 12 m/s (43.5 km/h or 23.3 knots). 

Wind noise spectrum is mainly dominated by lower frequencies which roughly less than 500 

Hz. However, it has been shown that at 8 kHz, wind noise level can be greater than 60 dB SPL 

even though the saturation is presented at 12 m/s (Kochkin, 2005, 2010; Zakis, 2011). It can 

be clearly seen that at commonly encountered wind speeds, wind noise is at high levels and 

hence it needs to be suppressed. MarkeTrak data reinforced this fact for hearing aid users as 

indicated in (Kochkin, 2005, 2010), it shows that behind noisy situations, wind noise is the 

second-highest cause of dissatisfaction. 

2.9 Factors Affect Noise Reduction Algorithms Performance  

With general noise reduction algorithms, there are some factors that affect their 

performance and a quite number of reasons behind the lack of perceptual quality improvement 

for sensed acoustic data. According to (Dubbelboer and Houtgast, 2007), there are certainly 

some factors that contribute to the lack of perceptual quality with existing algorithms applied 

for single-microphone noise reduction. But in most cases, it is not entirely clear to what extent 

and how as specific parameter requires to be modified in noise reduction algorithm, so as to 

improve its performance. 

The first reason is identified by (Loizou, 2007), it is related to the inability of accurately 

estimating the background noise spectrum, and such estimation is required for the 

implementation of most algorithms in single-microphone applications. For example, voice-

activity detection or noise tracking algorithms are generally performing well in steady 

background noise (e.g., car environment), while in non-stationary noise environment (e.g., 

multi-talker babble) their performance is rather low. In some applications such as tracking time 
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delay between delayed signals contaminated with noise, it has been shown that the attenuation 

effect is also damaging and for better performance of such tracking algorithms, returned signals 

have to be amplified (ALdwaik and Eldwaik, 2012). 

Introducing distortion by the majority of algorithms is the second reason as stated in (Hu 

and Loizou, 2007), which, in some cases, such algorithms might be more damaging compared 

to the background noise itself. For this reason, according to (Jingdong Chen et al., 2006), many 

algorithms propose minimising target signal distortion (e.g., speech) by constraining the 

amount of noise distortion introduced which cause it to drop below a pre-set value or even 

below the auditory masking threshold. For example, as a special case, a family of algorithms 

related to speech enhancement applications have been described in (Loizou, 2007). However, 

improving speech quality and intelligibility by means of such algorithms can be achieved, but 

to some extent. Imposing some constraints such as across-time spectral constraints helped in 

improving speech quality. Yet, this approach has a main limitation which is not amenable to 

real-time implementation as reported by (Loizou, 2007).   

Additionally, previous algorithms of wind noise detection do not always correctly 

distinguish between wind and non-wind causes of the differences in microphone signal as such 

algorithms generally assume these differences to indicate the presence or the absence of wind 

noise. Consequently, this procedure will lead to inappropriate engagement of wind noise 

reduction schemes. For example, in case of using two microphones for wind noise detection, 

existing algorithms assume that wind noise is indicated by large phase differences between the 

two microphones, whilst its absence is indicated by small phase differences. However, even 

without the presence of wind noise, these differences might exist due to acoustic reflections, 

unmatched microphones, or phase shift caused by microphone spacing. Accordingly, the 

performance of wind noise reduction processing might be affected (Petersen et al., 2008; Zakis 

and Tan, 2014).  

2.10 Wind Noise Theory   

2.10.1 The Physics of Wind   

To introduce wind noise resistant technologies and develop reliable and effective wind 

noise reduction methods, it is important to understand such wind-related noise by reviewing 

the physics of wind. From the physical stand point, global winds are initiated by the spatial 

differences in atmospheric pressure across the surface of the earth due to the uneven heating of 
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the earth by solar radiation and considered as a common element of the diurnal meteorological 

cycle that occurs frequently everywhere in the world (Panofsky and Dutton, 1984; Manwell, 

McGowan and Rogers, 2010).  

Studying the physical characteristics of the “Planetary Boundary Layer” (PBL), which is 

about 1-2 km above the ground and also called “friction layer”, is quite important to understand 

the nature of wind-related noise. The characteristics of this atmospheric boundary layer, which 

is the lowest part of the atmosphere, are influenced by the contact with the surface of the earth. 

Due to surface effects, many physical quantities such as heat, relative humidity, velocity, and 

vertical exchange of momentum can clearly define this layer. Here, these quantities can change 

rapidly in space and time. Furthermore, it contains multiple effects such as aerosols, dust and 

smoke which make it visible from the top. Using acoustic sounders in a range of 1–3 kHz can 

help in detecting the thickness of the PBL layer. At a 10 m height, this thickness can be 

predicted by a linear relationship with the speed of the wind (Koracin and Berkowicz, 1988; 

Manwell, McGowan and Rogers, 2010).  

Atmospheric turbulence plays a vital role in describing the wind which is intimately 

related to its two types; convective and mechanical. As physically defined, convective 

turbulence in the troposphere is a predominant mechanism of mixing and determined by 

thermal instability. The other type, which is the mechanical turbulence, is produced by the 

interaction of the wind with ground-based objects and topography. Turbules are defined as 

“self-similar localised moving eddies” (De Wolf, 1983; McBride et al., 1992; Goedecke and 

Auvermann, 1997). However, turbulence can be modeled with regards to a series of turbules 

with a distribution of sizes (Crocker, 2007).  

Studying the so-called vertical profile of the PBL layer as a working definition in which 

temperature increases with height can lead to define this feature as “inversion” with regards to 

the changes in the temperature between day and night as a function of height. Figure 2.4 shows 

this relationship as the lower PBL or surface layer gets warmed by the solar heating during the 

day at a considerable height denoted by 𝑧𝑖. This height refers to the lowest inversion in which 

gradient changes in the sign of the temperature can be observed. Consequently, this is known 

as one mechanism of driving wind.  Importantly, both mechanical and convective turbulences 

occur at multiple scales to produce wind since the warmer air near the surface is gravitationally 

unstable. Such scales are quite large in some cases since geographical differences affect surface 

heating which cause regional horizontal winds (Walker and Hedlin, 2010).  
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Figure 2.4. Temperature vertical profiles during the night (AB; inversion) when 𝑻𝑵 is the 

night-time temperature. BCD indicates the vertical profile during the day when the inversion occurs 

between CB and 𝑻𝑫 is the day-time temperature (Walker and Hedlin, 2010)   

The mixing or surface layer is defined when smaller scale turbulence takes place. During 

the day, the thickness h of the surface layer is approximately equal to 𝑧𝑖. The air becomes 

gravitationally stable because an inversion often spreads down to the surface at night as 

illustrated in Figure 2.4. Accordingly, wind and turbulence are often less pronounced at night-

time. Though, in the lower portions of the surface layer for a thickness around 100 m or less, 

slight mechanical turbulence still occurs with weak winds on clear nights (Manwell, McGowan 

and Rogers, 2010; Walker and Hedlin, 2010). The variation of horizontal wind speed with 

height above the ground is an important parameter in the characterisation of wind resource. 

This variation of wind speed with height is called the vertical profile of wind speed. Wind 

speed is very much dependent on ground cover variations and local topographical (Manwell, 

McGowan and Rogers, 2010).  

Because of the surface friction, wind speed varies as a function of height. Winds in the 

surface layer increase logarithmically with height and the slowest winds are those at the ground 

level in case of pure mechanical turbulence (Thuillier et al., 1964). In the case of convective 

turbulence, wind speed varies as a function of height as well, but in a much more complex 

scenario. This variation is often described using a power law over a specified height range. In 

both cases, the reduction in wind speed at ground level can be expressed as a function of what 

so-called surface roughness and the length that describes the size of mechanical turbulence. 

The surface roughness is known to be a measure used to indicate how efficiently momentum 

is transferred into the ground from the wind. For instance, craggy mountainous terrains or dense 
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forests have a high surface roughness that can lead to a significant reduction in surface wind 

speed. Wind speed increases significantly above relatively smooth surfaces, basically between 

1 and 3 m height. For example, in light winds of speed (2–5 m/s), a noticeable difference form 

~20 to 40% in the wind speed was recorded between these two indicated heights (Berman and 

Stearns, 1977). 

It is worth noting that basic meteorological data can be used to calculate the potential for 

turbulence. A predictive measurement is required to superimpose the effects of both thermal 

and mechanical forcing as they have considerable influences on the turbulence. Two important 

scaling parameters in the surface layer which are the surface friction velocity u and the Monin-

Obukhov length L were mathematically derived for many decades; details can be found in 

(Monin and Obukhov, 1954). Since z is the height above the ground, the ratio z/L has shown a 

key importance in superimposing the effects of mechanical and thermal forcing. This ratio has 

been used as a measure in characterising the atmospheric stability. However, smaller negative 

values indicate a dominance of mechanical turbulence, whereas, strongly negative values are 

associated with a dominance of convective turbulence. Pure mechanical turbulence is 

theoretically found at zero at the ground level. In the case of slightly positive values, the 

temperature stratification damps the mechanical turbulence in a direct proportion manner. 

Strong damping of turbulence is indicated by strongly positive values (Walker and Hedlin, 

2010).   

2.10.2 Influences of Geographic and Regional Variations on Wind    

Studies of local wind patterns are highly beneficial and have a sustainable impact on 

carefully selecting sites as a strategy for the reduction of wind noise. As previously mentioned, 

the derivation of wind is based on the spatial differences in atmospheric pressure. These spatial 

differences are directly related to two factors that cause changes in temperature; solar heating 

and surface radiation. These differences do not occur at a same scale, but mainly at a variety 

of scales. Therefore, they interfere with each other making certain effects on the observed local 

conditions (Raspet, Webster and Dillion, 2006; Walker and Hedlin, 2010).  

Most of the global circulation patterns can be seen in a general system at a global scale. 

This system drives such global circulation patterns to be eventually modulated by the local and 

regional influences. To be more precise, at a global scale, more solar heating affects the 

equatorial regions, whereas, the poles experience much less of such solar heating. In other 

words, the surface of the earth at the equatorial regions absorb greater amount of solar radiation 
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than at the poles. As a result, the air flows upward and towards the poles because of the 

warming through conduction and convection. In a simple flow model, air rises at the equatorial 

regions and sinks at the poles. At the poles, cooling causes the air to flow down to the surface 

and then back to the equatorial regions. The air flow is fixed in the forward flow and the so-

called Coriolis Effect deflects the flow towards the left and the right in the southern and 

northern hemispheres, respectively. This scenario will lead to three circulation cells in each 

hemisphere, however, the global circulation patterns which eventually modulated by local and 

regional influences are driven by this system (Manwell, McGowan and Rogers, 2010; Walker 

and Hedlin, 2010).  

In the continental interiors, the convection patterns get affected by the regional variations 

in solar heating during the day. Through the conduction property of heat energy, solar heating 

of the surface warms the air. This effect causes the air to ascend, and horizontal pressure 

gradients to form. In fact, air moves from high to low pressure due to the variations in the 

atmospheric pressure created by the spatial variation in heat transfer to the atmosphere of the 

earth. Moreover, the convection property helps in pulling in air from other regions that are 

cooler as the regions beneath cloud cover as shown in Figure 2.5 (Manwell, McGowan and 

Rogers, 2010; Walker and Hedlin, 2010).  

 

Figure 2.5. The influences of regional variations on wind in an intercontinental setting during 

daytimes; a closed convection system based on differences in solar heating at the surface that lead 

to horizontal air temperature and pressure gradients (Walker and Hedlin, 2010)  
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Due to the influences of global circulation patterns, horizontal winds do not usually travel 

in straight lines between high- and low-pressure regions. This explanation idealises a system 

that only works during daytime, however, variation in surface heating or cooling that could 

drive convection and surface winds are not remarkable at night (Panofsky and Dutton, 1984; 

Goedecke and Auvermann, 1997; Walker and Hedlin, 2010). A similar pattern of convection 

during daytime can be seen in coastal environments as illustrated in Figure 2.6. In such coastal 

areas, the surface of the water does not heat up to the level that of the land surface. The reasons 

behind that are the specific heat capacity of the water as well as the continuous mixing of the 

surface water with deeper layers. As a consequence, this leads to a differential air or surface 

heating, horizontal pressure gradient as well as onshore surface winds (Raspet, Webster and 

Dillion, 2006; Walker and Hedlin, 2010). 

Unlike continental interiors, convection systems can be driven at night in coastal 

environments. To explain what happens in this situation, the third property of heat transfer, 

which is the radiation, clearly takes place after the sunset as the heat continues to be radiated 

from the heated land surface. Accordingly, the land surface becomes cooler than the 

surrounding air. On the other hand, the water surface continues to transfer heat to the air while 

it stays at a relatively fixed temperature. The pattern shown in Figure 2.6 is mainly reversed in 

this case, leading to derive offshore surface winds (Walker and Hedlin, 2010). 

 

Figure 2.6. The influences of regional variations on wind in coastal setting during daytimes; 

a closed convection system based on the specific heat capacity of water that leads to differences in 

solar heating and cooling of the surface (Walker and Hedlin, 2010)  
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In addition to the above explained regional systems which are diurnal in nature, seasonal 

influences on wind over continental spatial scales are also exist. The so-called onshore 

“Monsoon” winds are derived during the summer season and can persist diurnally. Mainly, 

these humid winds are diurnally uniform in some sites and times of the year. The derivation of 

these onshore winds is scientifically explained by temperature difference between land surfaces 

and adjacent water surfaces. The average daily temperature of the adjacent water surfaces is 

less than that of the inner continental land surface. During the winter season, the situation is 

totally reversed and therefore dry offshore winds dominate the region (Panofsky and Dutton, 

1984; Koracin and Berkowicz, 1988; Miles, Wyngaard and Otte, 2004). 

The surface of the earth varies considerably with land masses and large oceans. However, 

these different surfaces affect the flow of air because of the absorption of solar radiation, 

variations in pressure fields, and the amount of moisture. The movement of air is affected by 

the circulation of oceans which act as a large sink of energy. Hence, these effects lead to 

differential pressures which have influences on global winds as well as many of persistent 

regional winds. Wind patterns are also affected by mountains which are natural obstacles to 

winds driven by global convection systems. Importantly, mountains also act as sources of heat 

throughout daytimes. The slopes of the mountains get heated by the solar heating making the 

air flows up and above the mountain up to the height of the surface layer where it is deflected. 

Instead of heat sources, at night, mountains become heat sinks, however, the convection pattern 

is reversed. In case of valleys, a circulation system is generated with vertical return flow above 

the axis of the valley when heating both its adjacent slopes (Manwell, McGowan and Rogers, 

2010; Walker and Hedlin, 2010).  

2.10.3 Turbulence Spreading     

There have been numerous verifications of “Taylor’s frozen turbulence hypothesis” 

which is of considerable significance to wind-noise theory. This hypothesis stated that, in a 

stationary anemometer or microphone, time-varying signals are supposed to result from a 

spatially varying field that is frozen at a velocity equals to the convection velocity in time 

moving across the anemometer. In other words, turbulences and their related observables are 

spatially fixed time-invariant anomalies. The turbulent structures move, under certain 

conditions, as frozen entities transported by the mean wind. Hence, the spatial pattern of 

turbulence is derived from its temporal description (Schlipf et al., 2010; Walker and Hedlin, 

2010; Higgins et al., 2012).  
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Many studies have been conducted to verify and test this concept by comparing 

measurements on aircrafts with those taken from towers (Panofsky and Mazzola, 1971; Kaimal 

et al., 1982). McDonald et al. (2010) conducted a study to test this concept, the obtained results 

were not totally valid Taylor’s hypothesis in all turbulence cases. Their results thereby suggest 

that turbulences with short-wavelength structures move with the mean wind, whereas, 

turbulences with large-scale structures move at their own velocities. These results provided a 

striking contrast to Taylor’s hypothesis. Even though such results showed that turbulences are 

not indefinitely time invariant, Taylor’s hypothesis is generally considered to be valid at higher 

frequencies. Studies revealed that turbulences decline with the distance travelled by an amount 

that is proportional to their length scale. Smaller turbulences decay faster compared to larger 

ones over shorter distances travelled (Schlipf et al., 2010; Walker and Hedlin, 2010; Higgins 

et al., 2012). 

In time/distance space, Douglas Shields (2005) described in his study wind noise 

measurements using a three-axis array of low-frequency sensors. The study aimed at 

investigating the correlation as a function of sensor separation based on recording signals from 

individual sensors. The procedure applied was based on locating one string of microphones on 

the ground along the wind direction while the other is perpendicular to it. It has been reported 

that expressing the sensor separation in wave numbers was extremely convenient to reduce the 

dependence upon wind speed. Therefore, wind velocity was decomposed to its two 

components; convection component, which is known as mean component, and fluctuating 

component. Interesting observations have been made after calculating the cross-correlation 

between the reference sensor, which was located at the intersection of the two strings, with the 

other sensors at greater distances in the downwind and crosswind directions. What is relevant 

to this review is that what observed by downwind sensors was observed by reference sensor 

some time later, however, with time/distance, the correlation is gradually reduced (Douglas 

Shields, 2005; Walker and Hedlin, 2010).  

2.10.4 Turbulence Scales and Noise Spectra 

For more than seven decades, turbulence velocity spectra have been divided into 

frequency ranges that are related to three spatial scales of turbulence. The large scales are 

associated with low frequencies and known as source region, the second is inertial subrange 

which is known as intermediate scales and associated with intermediate frequencies, and the 

small scales associated with high frequencies and identified as dissipation region. The large 
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scales comprise large eddies characterised by length scales from about tens of meters to some 

kilometres. This range is defined by spectral characteristics which are not isotropic. In addition 

to the wind, these spectral characteristics depend on many variables including the height of the 

surface layer and surface roughness (Raspet, Webster and Dillion, 2006; Walker and Hedlin, 

2010). 

Energy-containing eddies are produced from the source region that contains big eddies 

due to the mixing process within the PBL layer. These big eddies are fragmented into smaller 

eddies without energy dissipation. With no dissipation appears in the mixing process, the 

isotropic inertial subrange is defined with eddy length scales less than the height above the 

surface and larger than the so-called Kolmogorov microscale. This scale is known to be the 

smallest scale of turbulence as defined in Equation (2.1) (Shih and Lumley, 1993). Continued 

mixing brings about smaller eddies that are even smaller than Kolmogorov microscale by 

which the isotropic dissipation range is defined. In this dissipation range, molecular mixing 

dissipates energy in the surface layer over a length scale on the order of millimetres (Walker 

and Hedlin, 2010).  

                                                𝜂 = (
𝑣3

𝜀
)
1 4⁄

                                              (2.1)       

where v is the kinematic (or molecular) viscosity and ε is the dissipation rate of turbulence 

kinetic energy into heat.  

Wind generates acoustic energy; however, the interaction of wind with ground-based 

objects due to the ground topography can cause a radiation in the acoustic energy. For example, 

at large scales in the case of infrasound at lower frequency band 0.01–0.1 Hz, when wind 

interacts with mountain peaks; infrasound is radiated and can travel to large continental 

distances (Larson et al., 2010). Also turbulent storm systems can radiate infrasound (Bowman 

and Bedard, 2010). Wind can also generate infrasound in an indirect manner. To explain that, 

when winds increase, the size of the ocean swells and this causes higher surf and in turn more 

energetic surf infrasound as well as interaction of intersecting swells patterns (Garcés et al., 

2004; Arrowsmith and Hedlin, 2005).  

It is worth mentioning that wind noise in the infrasound band mainly relates to the source 

region and the inertial subrange. However, it is essential in all cases to identify these ranges in 

the spectra of recorded wind noise in order to fully understand what type of wind noise is being 

recorded which eventually helps in designing or selecting the optimum wind noise filtering or 
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separation method. Regarding the frequency that separates the source region on the low side 

from the inertial subrange on the high side in the case of stationary sensor and for wind speed 

fluctuations in the downwind direction, a simple and important mathematical formulation as 

defined in Equation (2.2) has been given in (Panofsky and Dutton, 1984).  

                                           
𝑓𝑧

𝑢
> 1,                                              (2.2) 

where f is the frequency, z is the sensor height, and �̅� is the mean wind speed.   

Figure 2.7 shows this relationship which has been practically examined and demonstrated 

in (Panofsky and Dutton, 1984) using 10 logarithmically spaced wind speeds. As previously 

mentioned, the internal subrange is defined with intermediate frequencies, therefore it can be 

seen from Figure 2.7 that at a fixed wind speed and as the sensor height increases, the inertial 

subrange moves to lower frequencies. The sources region is defined with lower frequencies, 

however, for a fixed sensor height and as the wind speed increases, the sources region moves 

to higher frequencies. When the sensor is precisely located at the ground level, the inertial 

subrange becomes undefined, and the source region contains the entire infrasound spectrum. 

The International Monitoring System (IMS) arrays typically have sensor heights ranging from 

5 to 40 cm and wind speeds that extend up to 5 m/s. Hence, for any recorded pressure or given 

spectra, it is expected to find this boundary above approximately 0.2 Hz. For instance, the 

boundary is above ~3 Hz for wind speeds of at least 1 m/s (Walker and Hedlin, 2010). 

 

Figure 2.7. Frequency boundaries that separate the source region at the low side from the 

inertial subrange at the high side as a function of sensor height and wind speed for wind velocity 

spectra (Walker and Hedlin, 2010) 
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2.10.5 The Nature and Spectral Character of Wind Noise  

In outdoor activities, microphones are subject to wind noise. For example, in hearing aid 

application when wind blows and hits an obstacle, such as the head of the user, the pinna, or 

the hearing aid device itself, turbulence is generated which inherently contains marked pressure 

fluctuations. Consequently, the microphone converts these fluctuations to sound which is an 

audible wind induced noise dominated by low- and mid-frequency components. Extremely 

high SPLs at the microphone input can be produced even at moderate wind speeds, however, 

this might be sufficient to overload the microphone (Dillon, 2008).  

In audible frequency band, wind noise is a specific type of acoustic interference caused 

by the turbulent airflow over the microphone casing and diaphragm, however, such interaction 

generates an acoustic effect of a relatively high signal level (Nemer and Leblanc, 2009). In 

other words, wind turbulences around the microphone inlets make the air fluctuate and in turn 

this causes the vibration of microphone membranes that eventually create wind noise. For 

example, in systems using two or more inlet ports for sound, local air turbulence around the 

inlet openings generate wind noise. Due to this noise, uncorrelated sound signals will be 

received at the microphones. (Petersen et al., 2008). Wind noise is bursty with gusts, broadband 

and non-stationary in nature with high amplitude that might go above the nominal amplitude 

of the wanted signal. Therefore, it is often irritating and leads to listener tiredness and user 

dissatisfaction (Schmidt, Larsen and Hsiao, 2007; Nemer et al., 2013).  

Air flow can be categorised into two categories as either laminar or turbulent. The first 

category describes the case when the air flows smoothly across a surface with no obstruction 

as a laminar flow field. When the air flows across any obstacle or resistance, it generates 

turbulence known as turbulent flow. For example, as previously mentioned in the case of 

hearing aid devices, turbulence can be created from the deflection of the air from the pinna or 

the end of microphone port which considered as an obstacle. These turbulences are referred to 

wind noise when they picked up by a microphone. Generally, wind noise represents a particular 

class of interference as it is created by turbulences in air stream on the microphone membrane 

or around the edges of a recording device leading to a non-stationary and fast changing noise 

signal (Dillon, 2008; Nelke et al., 2014).  
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2.10.5.1 Wind noise components and spectral character  

Numerous published work have been conducted to study the spectral character of wind 

noise such as in (Bradley et al., 2003; Nemer and Leblanc, 2009) in which it has been shown 

that wind noise consists of two components. 

• Fluctuations and flow turbulences occurring naturally in the wind. 

• The interaction between the wind and the microphone generates turbulence that causes 

wind noise.  

Both components have a significant impact on describing the effect of wind noise in 

many applications. Importantly, the second component has a dominant influence on wind-

sensor interaction cases for handheld and ear-held devices such as in practical telephony 

contexts. In such applications, the effect of wind noise is very pronounced due to the additional 

significant turbulence which can be generated by the presence of users’ hand and face (Nemer 

and Leblanc, 2009). 

Generally, the spectrum of the recorded wind noise is shown as a decreasing function of 

frequency, however, in the lower spectrum, the bulk of the energy is concentrated. Research 

has also shown that the amplitude and bandwidth are function of wind speed and direction 

along with sensor or handset design. According to (Nemer and Leblanc, 2009), when wind 

noise is recorded at a 45º angle and relatively light breeze with different speeds ranging from 

2mph (1m/s or 3.2km/h) to 8mph (3.6m/s or 13km/h), the power spectrum of wind noise can 

be seen as shown in Figure 2.8.  

 

Figure 2.8. Wind noise spectrum at various speeds (Nemer and Leblanc, 2009)  
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Figure 2.8 shows an example of the spectral envelopes of wind noise generated by wind 

travelling at different speeds as indicated in the graph in which the x-axis represents the 

frequency and y-axis represents the logarithmic power magnitude. Since wind noise is non-

stationary broad-band signal, most of the energy is in the low frequency range as shown in 

Figure 2.8 (Schmidt, Larsen and Hsiao, 2007; Nemer et al., 2013).  

The long-term average of wind noise spectrum varies mainly with the type of the acoustic 

sensor or the style of hearing aid device in case of hearing aid application. In addition to this 

factor, wind speed and azimuth or incident angle also affect wind noise spectrum (Chung, 2004; 

Dillon, 2008). However, wind noise severity depends greatly on these factors. Wind noise level 

is directly proportional with the velocity of air turbulence that flows across the microphone. 

Basically, in the low frequencies range, the microphone can be driven to the saturation due to 

air turbulences created by the strong winds and result in severe distortion. Wind noise is 

predominantly described in lower frequency; however, it diminishes at higher frequencies. The 

change of loudness growth contour can be indicated by minimal audible pressure curves to 

show that such loudness growth is more significant in high frequencies than in low frequencies. 

This concept may bear out the perception of the contribution of higher wind speed as it is more 

to higher frequencies (Raspet, Webster and Dillion, 2006). 

2.10.5.2 Effects on wind noise level  

 As research has emerged in the past decades regarding wind noise problem in outdoor 

data acquisition, the research community has addressed certain important aspects that have 

influences on wind noise level. Such noise creates distortion and affects the desired signal as 

for example with respect to effects on speech understanding. Among these aspects is wind 

speed as discussed in (Grancharov et al., 2008) as well as working memory, listening effort, 

and cognition (Pichora‐Fuller, Schneider and Daneman, 1995; Arlinger et al., 2009).  

• Wind speed 

The effect of wind speed on the noise level as previously shown in Figure 2.8, however, 

wind speed itself can be affected in two ways, either by an external breeze moving across the 

microphone or the movement at certain speed of the user carrying microphone (e.g., hearing 

aid users). The Beaufort Wind Scale, which ranges from 0-12, has interpreted various wind 

speeds. This scale is given in a table indicating the range or also called Beaufort number, wind 

speed, along with description and effects on land and sea. It is considered important as to 
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provide the kind of wind or description of the situation in defined terminologies with regards 

to different wind speeds and the effects that can be observed (Rudner and Lunner, 2014; 

Korhonen et al., 2017).  

• Working memory and listening effort 

Working memory for humans, however, handles their memory and attention, and 

deciphers various processing schemes for listening understanding (Rönnberg et al., 2013). 

Research has shown that listening in high annoyance conditions preoccupies and limits 

working memory capacity, and consequently reducing capacity for listening understanding and 

increasing communication difficulties (Meister et al., 2013). It is said that Effortless Hearing 

is always critical amongst listeners when listening in noisy environments such as in windy 

condition which is seen as an adverse listening condition. Accordingly, listening understanding 

under such condition presumes higher working memory. For listeners with hearing impairment, 

the situation becomes even worst particularly those who experience reduced cognitive 

capability. In the field of cognitive neuroscience and for speech understanding as a particular 

case, effects of wind noise have been explored (Wagenmakers, Farrell and Ratcliff, 2004; 

Rudner and Lunner, 2014).  

Listeners’ working memory is involved to a large degree in speech processing. However, 

listening in any adverse condition such as in the presence of wind noise can quickly consume 

this memory as its capacity is limited. Therefore, advancements in noise reduction algorithms 

are supposed to eventually divert additional working memory towards better understanding 

while listening in windy conditions. Based on the advancements in digital platforms that allow 

innovative noise reduction algorithms to emerge, designers of such digital noise suppression 

algorithms have taken into account reducing listening effort as an ambitious goal to optimise 

the understanding of the wanted signal (e.g., speech understanding) (Chung, 2004; Korhonen 

et al., 2017).  

The working memory capacity has a key importance in language processing, however, 

when processing speech in noise, additional working memory is consumed as stated in 

(Rönnberg et al., 2013). Hence, if noise reduction algorithms can help in easing listening in 

noisy environments, this would permit additional working memory capacity as well as 

improved language processing ability.  
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• Annoyance 

Turbulent noise is commonly perceived as unacceptable and annoying when it goes 

beyond subjective tolerance levels as it leads to listener’s dissatisfaction and harmfully impacts 

the proper understanding of desired signals. Annoyance and acceptable noise level have been 

investigated with respect to ease of listening (Chung, 2004; Korhonen et al., 2017). As 

indicated in (Connolly et al., 2013), a poor acoustic environment can negatively affect 

listeners’ understanding and learning. Besides the annoyance even in case of intermittent noise, 

certain critical factors in the analysis for the ease of hearing such as the sensitivity to the noise 

and its consequences have been specified. difficult acoustical conditions can even lead to a 

significant effect on individuals’ behaviour based on the analysis provided in (Connolly et al., 

2013).   

There are two important linked concepts with regards to acceptable noise factor which 

are the understanding of the wanted signal (e.g., speech understanding) and listening comfort. 

Research has revealed that listening for understanding is highly associated with individuals’ 

working memory and cognition (Rudner and Lunner, 2014). For this reason, listening for 

understanding requires a higher working memory capacity compared to comfort listening. 

Therefore, the combination between the two scenarios becomes important in order to bridge 

them without sacrificing either.  

2.10.6 Types of Wind Noise in Inertial Subrange and Source Region  

This section is to hold discussions on several types of interactions between turbulences 

among each other and in specific cases for pressure anomalies advected across the sensor along 

with wind-sensor interaction that all identify wind noise types, typically in the inertial subrange 

and source region. There are four types of wind-related noise discussed in the following sub-

sections. More detailed discussions of this can be found in (Douglas Shields, 2005; Raspet, 

Webster and Dillion, 2006). 

2.10.6.1 Wind-sensor interactions  

Pressure energy is a result of the conversion of kinetic energy when an object deflects 

the wind. The so-called “stagnation pressure” is the pressure at the head of a body that is in 

front of the wind and is known to be the maximum pressure obtained as a result of the deflection 

of the wind. Fluctuating stagnation pressure on pressure-sensing surfaces is caused by 

fluctuating wind velocity. Turbulence–sensor interaction mainly characterises sensor 
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interference which leads to identify the first type of wind noise (Raspet, Webster and Dillion, 

2006; Walker and Hedlin, 2010).    

According to (Raspet, Webster and Dillion, 2006), the stagnation pressure depends on 

the bluffness and geometry of the sensor as these effects are seen to be easier to determine 

empirically than theoretically. Using recorded wind-velocity spectra in the inertial subrange to 

predict stagnation pressure as well as the upper limit of recorded infrasound wind noise has 

been suggested in (Raspet, Webster and Dillion, 2006). With regards to inertial subrange, the 

power density spectrum of wind velocity in the downwind direction has been shown in (Walker 

and Hedlin, 2010).  

                                                  𝑉11(𝑘1) = 𝑎2𝜀
2 3⁄ 𝑘1

−5 3⁄
,                                            (2.3) 

where 𝑘1 is the wave number in wind direction assuming Taylor’s hypothesis, 𝜀 is the 

dissipation rate of turbulence into heat, 𝑎2 is a constant. 

According to the recent observations made about power law indicated in Equation (2.3), 

it has been proved that it accurately describes the velocity spectra in the inertial subrange 

(Douglas Shields, 2005; Raspet, Webster and Dillion, 2006). As a function of the frequency f, 

and the mean wind speed �̅�, the wave number 𝑘1 is given as in Equation (2.4).  

                                                            𝑘1 =
2𝜋𝑓

𝑢
,                                                          (2.4) 

The mathematical formulation regarding the derivation of some important equations for 

the stagnation pressure density spectrum in the inertial subrange can be found in (Raspet, 

Webster and Dillion, 2006). 

Since predicting stagnation pressure eliminates the necessity for a reference pressure 

sensor, this procedure is potentially advantageous and helpful in testing of wind noise reduction 

methods. Importantly, when using the equations derived and explained in the above-mentioned 

study in the inertial subrange, it is required to use a research-grade anemometer that is capable 

of output sampling rates. The commonly used sampling rates for microphones are at least 20 

Hz. Many of the existing IMS anemometers are not capable of such relatively high output rates. 

To derive new equations that are valid in the source range, the extension of the turbulence–

sensor interaction theory into the source range has been considered in (Raspet, Webster and 

Dillion, 2006). In the inertial subrange, Raspet et al. (2006) verified that the predictions from 

the equation derived for the source range match with those from equations that previously 

introduced in the inertial subrange.  
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2.10.6.2 Advection of pressure anomalies across the sensor   

1- Turbulence–Turbulence Interaction  

Sensor interference discussed in the previous section is mainly characterised by 

turbulence–sensor interaction leading to the first type of wind noise. However, in the absence 

of such sensor interference and as predicted by Taylor’s hypothesis, pressure differences which 

develop in turbulent flow may be advected with the mean wind speed across a sensor. This 

advection, which refers to the transport of certain properties of the atmosphere, will lead to 

another type of wind noise (Walker and Hedlin, 2010). As discussed in the literature, there are 

two possible sources of these advected pressure differences. Such sources of advected pressure 

anomalies are described based on a review of published identifications and measurements of 

different pressure fluctuations sources from a turbulent jet and in the case of no interferences 

from noise related with wind-sensor interaction (George, Beuther and Arndt, 1984). 

The interaction between turbulences can generate pressure anomalies. In (Miles, 

Wyngaard and Otte, 2004), the authors describe that above some threshold sensor height, this 

“turbulence–turbulence interaction” is shown to be a dominant source of turbulence-induced 

pressure in the inertial subrange. As indicated in (Walker and Hedlin, 2010), some previous 

studies used dimensional analysis to derive mathematical formulation that shows the pressure 

power spectral density for turbulence–turbulence interaction, whereas (Hill and Wilczak, 1995) 

used analytical techniques to derive the same pressure power law. Though, for cases where the 

atmosphere is thermally stable and stratified (strongly positive ratio z/L) and when using “Large 

Eddy Simulation”, Miles et al. (2004) found that this law needs further evaluation. 

More recently, Raspet et al. (2006) derived two equations that permit the prediction of 

the turbulence–turbulence pressure spectrum in the inertial subrange from the velocity 

spectrum based on a previous study. The velocity and pressure power density have been 

calculated by Miles et al. (2004) from a large eddy simulation to fit their statistics and synthetic 

data from their simulations as well as for scaling laws based on some previous research work. 

The mathematical equations derived in the literature discussed above in this section are only 

valid in the inertial subrange. However, the theory has been extended to the source region to 

obtain an equation that fits the case as detailed in (Raspet, Yu and Webster, 2008). 

2- Turbulence–Mean Shear Interaction 

Near the ground region, where the vertical gradient of the average horizontal wind 

velocity acts as impedance, turbulences create another source of pressure fluctuation called 
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“turbulence–mean shear interaction”. An empirical equation has also been developed by Raspet 

et al. (2006) to be valid in both source region and inertial subrange.  It has been shown in 

(Raspet, Webster and Dillion, 2006) that the turbulence–mean shear interaction spectrum 

increases to the peak just before the transition to the inertial subrange where it significantly 

decays.   

3- Correlation Distance of Turbulence 

The type of wind noise discussed in here is identified in the low frequency range 

according to the study conducted by Douglas Shields (2005) who expanded his research upon 

previous results. The author examined pressure and wind data from multiple piezoelectric 

microphones on the ground at three field sites and located perpendicular and parallel to the 

dominant wind direction. To perform his experiments and develop a model for the narrow 

frequency band correlation of measured pressure as a function of sensor separation in 

downwind and crosswind directions, a frequency range (0.2–2.0 Hz) has been selected. The 

correlations are defined as the cross-correlations at zero lag time while the applied equations 

have no bearing on Taylor’s hypothesis; however, they only describe the spatial structure of 

turbulence throughout a snapshot in time.  

The results obtained in (Douglas Shields, 2005) showed that the spatial characteristics of 

the turbulence have a self-similar appearance in the relation between measured pressure 

correlation coefficients as a function of distance in wavelengths. In other words, the 

relationship between the spatial coherence length and the size of the turbulences is linearly 

proportional over a wide range of length scales. It is worth mentioning that the difference in 

the coherence length of wind noise between downwind and crosswind directions at specific 

wind speed and central frequency in the selected range is quite noticeable. Basically, it is a 

function of the central frequency and wind speed. The coherence length is always greater in 

the crosswind direction than in downwind direction with a periodicity to the correlation shown 

in the downwind direction (Raspet, Webster and Dillion, 2006; Walker and Hedlin, 2010). 

The results obtained in (Douglas Shields, 2005) confirm the slightly frequency-

dependent as there is an exponential decline in the correlation in all directions, nevertheless 

that there is an additional periodic factor oscillates about the zero axis in the downwind 

direction. As a prediction based on such results, which typically serves low-frequency sound 

applications, the spatial averaging of infrasound is along a line that is parallel to the wind 

direction and can help in considerably attenuating wind noise associated with the above-
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mentioned wind noise types. Specially, for frequencies where coherence length is less than the 

sensor separation as explained above, notable reduction in wind noise for both crosswind and 

downwind directions can be obtained provided that the sensor separation is not so large as to 

exclude the negative portion in the correlation function. Another frequency range (0.5–5.0 Hz) 

was also examined in (Douglas Shields, 2005) by which notable wind noise reduction was 

obtained in the downwind direction for a sensor spacing in 4–8 m/s wind speed range when 

wind speed was recorded at 3 m height.  

2.10.6.3 Differentiating between wind noise types  

To design wind-noise reduction technologies that supposed to be adequately and 

effectively implemented with regards to the application, it is very helpful to understand the 

type of the recorded wind noise that one is attempting to reduce. Therefore, studying the 

different spectra regarding the previously mentioned wind noise types becomes increasingly 

important to distinguish between these types and to meet certain requirements in developing 

wind noise reduction methods. Going through detailed mathematical formulations that 

distinctly predict different spectra with unique slopes might be a principle objective towards 

achieving wind noise reduction aim (Walker and Hedlin, 2010).   

Recent studies like (Douglas Shields, 2005; Raspet, Webster and Dillion, 2006) have 

been conducted to study the contribution to wind noise in the inertial subrange and the source 

range for turbulence–sensor, turbulence–turbulence, and turbulence–mean shear interaction 

wind noise types considering important key aspects such as the type of the acoustic sensor and 

its height above the ground. For example, a method for the attenuation of wind noise using 

spherical microphone wind screens with different size and at different height has been 

introduced in (Raspet, Webster and Dillion, 2006). Results show that in the inertial subrange 

and at a height of 1 m using 0.6 and 1.0 m spherical microphone wind screens size, wind noise 

was attenuated to the same level as that predicted by turbulence–turbulence interaction 

indicating that larger size would not provide further improvement. 

Basically, Raspet et al. (2006) used a prediction methodology to compare between wind 

noises predicted by the indicated types with those measured by a variety of acoustic sensors. 

Therefore, the authors showed comparison results in a single diagram when using a diversity 

of sensors with different sizes and exterior shapes to record pressure spectra. As shown in 

Figure 2.9, the used sensors were; bare B&K 1/2-inch microphone (A), piezoelectric sensor 

(B), microphone in a 0.18 m windscreen (C), and microphone in a 0.90 m windscreen (D). The 
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aim was to compare power spectral densities of wind-noise pressure with six predictions of 

wind-noise pressure spectra based on the results of other studies. These predictions are for 

turbulence-sensor interaction (1, 2) (Raspet, Webster and Dillion, 2006), turbulence-turbulence 

interaction (Batchelor, 1951) (3)  and (Miles, Wyngaard and Otte, 2004) (4), self-noise for the 

0.18 m windscreen and self-noise for the 0.90 m windscreen (5, 6), respectively (Raspet, 

Webster and Dillion, 2006). The six predicted spectra are plotted as depicted in Figure 2.9 to 

be compared with the measured recordings using the four above indicated sensors (A-D). 

  

Figure 2.9. Recordings and predictions of power spectral densities of wind-noise pressure 

comparison. Recordings from four different sensors (A–D) are compared with predictions of wind-

noise pressure spectra (1–6) (Walker and Hedlin, 2010) 

Without going through deep details, such comparison indicates an important aspect 

which is that predicted spectrums can serve as an upper limit on the expected wind noise in 

some cases and this might help in identifying proper wind noise reduction method. For 

example, the spectrum of the bare microphone (A) is justly close in amplitude and slope to that 

predicted by the turbulence–sensor interaction (1, 2). There is a strong correlation between the 

measured recordings using the 0.9 m windshield sensor (D) with predicted wind noise by 

turbulence–turbulence interaction. Figure 2.9 also illustrated that the recorded pressure spectra 

using piezoelectric sensors (B) is about 20dB higher than that predicted by turbulence–

turbulence interaction (3, 4) (Raspet, Webster and Dillion, 2006; Walker and Hedlin, 2010).  

If such predictions are accurate, this indicates that the wind noise recorded by Douglas 

Shields (2005) is not caused by the advection of pressure anomalies across the microphone.  
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Douglas Shields (2005) put forward some arguments as the spectra obtained by both 

piezoelectric sensors and B&K were similar because both sensors were collected and inserted 

in a Quad Disk enclosure by which the pressure, which is independent of wind speed and 

direction, can be measured (Nishiyama and Bedard, 1991). These clarifications suggest that 

piezoelectric sensors used in (Douglas Shields, 2005) were not measuring turbulence–sensor 

noise. In other words, they are not greatly influenced by wind–sensor interaction. The author 

also provided details regarding the frequency band of the pressure data recorded in various 

winds. 

It has been shown that Quad Disk should be insensitive to turbulence–sensor interaction 

through the developed technique that has been presented in (Wyngaard, Siegel and Wilczak, 

1994) and used to predict the effect of velocity variations on pressure measurements. The 

turbulence–turbulence predictions showed a good fit with the recordings using windscreen 

microphones. Based on that, Raspet et al. (2006) interpreted the results to indicate that 

piezoelectric sensors are dominated by fluctuations of a smaller stagnation pressure and seen 

as quite aerodynamic sensors.  

2.11 Wind Noise Reduction Methodologies  

Microphones are quite often used in different outdoor data acquisition scenarios such as 

recording, sensing of acoustic data for monitoring purposes, and even for communication such 

as in mobile communication devices and this might happen in extreme acoustical 

environments. Wind noise which is picked up the microphone during such scenarios is an 

annoying factor. During the past, a considerable deal of research work has been conducted to 

develop methods that designed for wind noise reduction. A review of literature is provided in 

this section with regards to the methods applied for wind noise problem along with brief 

discussion of their relevance and limitations. However, no comparison will be made between 

these methods as such comparison requires experimental investigation and implementation 

which goes beyond the scope of this thesis.  

To deal with microphone wind noises that interfere with the signals of interest, large 

numbers of standards or common approaches ranging from fixed, optimal to adaptive filtering 

have been applied to mitigate wind noise in microphone signals. Due to the broadband and 

time varying nature of microphone wind noises, such general noise suppression algorithms 

show some but limited effectiveness (Schmidt, Larsen and Hsiao, 2007). Microphone wind 

noise leads to listener fatigue as it is often annoying. It is impulsive and non-stationary in nature 
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with high amplitude that may exceed the nominal amplitude of the signal of interest. Due to 

that, conventional noise reduction schemes, such as spectral subtraction or statistical-based 

estimators, cannot effectively attenuate wind noise (Schmidt, Larsen and Hsiao, 2007; King 

and Atlas, 2008). Thus, special detection and processing might be required to better reduce the 

effect of wind noise when using such methods (Nemer and Leblanc, 2009).  

Additionally, traditional remedy for wind noise compromises the quality of the sensed 

acoustic data. Wiener filter method for example, which is arguably one of the most well-

established random noise optimal removal filters used for removing noise from a signal when 

the signal of interest and the noise have different frequency characteristics, shows some but 

limited performance (Hänsler and Schmidt, 2005). Wiener filter method has been widely used 

in speech enhancement applications. The method is mainly based on assuming that the second 

order statistics of the signal and noise processes are known. Hence, it works by attenuating 

frequencies where the noise is expected to be the most dominant. Wiener method assumes 

stationary signals, which might give inappropriate approximation for speech and wind noise 

when considering speech as the signal of interest (Dietrich and Utschick, 2005; Vaseghi, 2008).   

Among the classic noise reduction methods that have been used for decades, spectral 

subtraction has been used for wind noise reduction (Boll, 1979). This method is essentially 

based on subtracting an estimate of the noise magnitude spectrum from the noisy signal 

magnitude spectrum. As a complete process and by using the phase of the original noisy signal, 

the method transforms the estimated noise magnitude spectrum back to the time domain. Using 

Voice Activity Detection (VAD), the noise estimate is mostly obtained during the silence 

period or speech pauses, similarly to Wiener method which also assumes that the noise is 

stationary. Therefore, the method is unable to obtain new noise estimates during speech or, 

generally, as long as the signal of interest is there (Boll, 1979). Wiener filtering and spectral 

subtraction methods are commonly used for noise reduction in single channel applications 

(Hänsler and Schmidt, 2005; Vary and Martin, 2006).  

Adaptive versions have been developed for both methods which helped in relaxing the 

assumption of stationarity (Srinivasan, Samuelsson and and Kleijn, 2003), that is the noise can 

be estimated during the presence of the signal of interest. Besides the fact that they are robust 

and easy to implement, these methods have been comprehensively studied and generalised 

through many years which is considered one of their main advantages. An advanced method 

uses a hybrid model built around neural networks to quantify speech intelligibility was 
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developed by (Li and Cox, 2007). The authors indicated that the model offered more promise 

in terms of circumventing the use of artificial testing signals, reducing measurement channels 

and facilitating in situ assessment of speech intelligibility. 

The approach of modelling the sources in the noisy signal independently has been 

involved in more recent methods in order to use these models to find the best estimate of the 

signal of interest and noise signal. However, individual signals can be separated by using binary 

masking as explained in (Cermak et al., 2007). Based on this approach, many models have 

been introduced, such as Gaussian Mixture Models (Ding et al., 2005), Hidden Markov Models 

(Roweis, 2001), Non-negative Sparse Coding (Schmidt, Larsen and Hsiao, 2007) and Vector 

Quantization (Ellis and Weiss, 2006). For speech signals cleaning, this approach often models 

an individual speaker rather than speaker independent. 

Some methods have been used to attenuate the effect of wind noise when speech is the 

wanted signal such as comb filters. Such methods are based on reinforcing the harmonic nature 

of speech signals depending on accurate pitch estimation, which is difficult to achieve in noisy 

environments (King and Atlas, 2008). Always with regards to speech quality improvement in 

the presence of wind noise, post-filters have also been used in model-based speech coders 

(Juin-Hwey Chen and Gersho, 1995). In such filters, it is to emphasise the formant frequencies 

and deemphasise the spectral portion where noise contributes the most to the observed 

distortion (Nemer and Leblanc, 2009). Based on adapting the emphasis parameters, an 

extension of the conventional post-filter has been proposed in (Grancharov et al., 2008). A 

time-domain adaptive post-filter was proposed in (Nemer and Leblanc, 2009) to reduce wind 

noise in corrupted speech. This filter is based on tracking the changing envelop spectrum of 

wind noise similarly to other post-filters except it deemphasises the wind ‘resonance’. LPC 

(Linear Predictive Coefficients) analysis was used in the method explained in (Nemer and 

Leblanc, 2009) to distinguish between frames contain the most of speech energy and wind-

only frames. 

As quality and intelligibility of speech signals when superposed by wind noise can be 

greatly degraded, many methods have focused on wind noise reduction from speech signals in 

many applications such as with mobile devices (Nelke et al., 2014). In such applications, which 

mostly equipped with a single microphone, wind screen cannot be offered; however, it is 

required to develop systems capable to reduce the effects of wind noise by using signal 

processing techniques. The accurate estimation of the noise Power Spectral Density (PSD) is 
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seen as a crucial part of such systems as indicated in (Nelke et al., 2014). Based on this concept, 

many single microphone methods have been introduced for the estimation of noise PSD from 

noisy speech signals (Martin, 2001; Hendriks, Heusdens and Jensen, 2010; Gerkmann and 

Hendriks, 2011). Authors in (Nelke et al., 2014) investigated the algorithms used in these 

methods and came up with a conclusion that the assumption of considering noise signal as 

slower varying over time than the speech signal is not true for wind noise signals. According 

to (Nelke et al., 2014), due to inaccurate estimates of noise PSD, such conventional algorithms 

provide insufficient level of noise reduction. 

Exploiting the spectral characteristics of the wanted signal (e.g., speech) and noise in 

order to estimate the wind noise PSD is the applied approach in (Nelke et al., 2014). Nelke et 

al. (2014) considered the magnitude spectrum towards higher frequencies of wind noise and 

the harmonic structure of the wanted speech signal. Methods that provide an estimate of wind 

noise PSD are introduced in (Kuroiwa et al., 2006; Hofmann et al., 2012). Methods that dealing 

with wind noise reduction in single microphone signals can be found in (Kuroiwa et al., 2006; 

King and Atlas, 2008; Nemer and Leblanc, 2009; Hofmann et al., 2012) in which the concept 

relies on directly modifying  noisy input signals. 

In adverse listening conditions and for speech understanding in hearing aid applications 

for example, research has focused on the development of noise reduction algorithms. In such 

application, dual microphone technologies have been introduced using innovative designs 

which brought notable progress in noise reduction including wind noise and helped in 

enhancing overall speech perception in the presence of background noise. The coherence of 

dual microphone recording has also been exploited to develop methods that seen to be efficient 

as indicated in (Nelke et al., 2014). In an exemplary hearing aid application, an algorithm that 

performs a statistical analysis of the microphone signals is presented in (Zakis and Tan, 2014). 

This algorithm is substantially more robust against non-wind causes differences, and therefore 

against false wind noise detection.  

Although behind-the-ear (BTE) instruments for instance helped in thriving multi-

microphone technology, however, its inherent microphone placement is susceptible to wind 

noise at the input of the microphone which is considered a downside of such instruments. 

Random turbulence at the end of the microphone port creates wind noise which leads to user 

dissatisfaction in spite of reporting such instruments as the preferred style for hearing care 

professionals and widely acceptable in recent years (Chung, 2004). This indicates that wind 
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noise still seen as a major problem in outdoor data acquisition in many applications. According 

to (Dillon, 2008), amplifying 100 dB SPL of unpleasant noise by a hearing aid is not worse 

than using two hearing aids to amplify this noise. For windy situations, it is not surprising that 

hearing impaired users do not rate bilateral hearing aids than unilateral as it is possible for the 

user to minimise wind noise at the microphone of the hearing aid device by orienting the head, 

however, achieving this is often impossible for two hearing aids at once. Therefore, this 

indicates that a substantial problem remains.  

Microphone wind induced noise has been a problem in audio systems that comprise 

microphone arrays or directional microphones as it is generated at even low wind speeds. 

Typically, microphones are shielded using thick fuzzy materials or acoustically transparent 

foam. Placing mechanical windscreens in front of microphones sound inlet opening could not 

lead to optimal solution. In fact, this may result in reducing the overall performance of the 

microphone. The problem of wind noise is well known in hearing aid application with 

directional microphones and DSP systems that generate an output with directionality (Elko, 

2007; Petersen et al., 2008).  

To filter out the noise in the case of multichannel with more microphones available, the 

correlation between the desired signals in the microphones can be used. Such approach has 

been used in methods that are computationally expensive like Independent Component 

Analysis (Knaak, Araki and Makino, 2007), directivity based applications like Beamforming 

(Dmochowski and Goubran, 2007), and also a combination between the two as in (Qiongfeng 

and Aboulnasr, 2007). Methods utilising two or more microphones are considered the most 

efficient and effective techniques for reducing wind noise as they are based on exploiting the 

difference in propagation delay between the acoustic signals and the wind. Such methods are 

computationally considered prohibitive as well as their complicated setups are difficult to 

deploy which limit their usage (Marshall, 1984; Brandstein and Ward, 2013). Multichannel 

approaches show further improvement with regards to speech quality. A frequency domain 

criterion has been developed for speech distortion based on multichannel Wiener filtering 

method (Doclo et al., 2007). Also, for speech enhancement, distributed microphones approach 

has been used to develop the so-called blind-matched filtering (Stenzel and Freudenberger, 

2012).  

Regarding the low frequency band, most of the up-to-date techniques have focused on 

reducing the previously mentioned types (turbulence–sensor, turbulence–turbulence, and 
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turbulence–mean shear interaction). As discussed earlier, these types of wind noise depend on 

the length scales of the turbules. It has been seen that the coherence of turbules differs as a 

function of turbules’ size and the distance traveled (Walker and Hedlin, 2010). Acoustic signals 

propagate at much faster velocities than wind with approximately 100 times, and might remain 

coherent at considerable separations of certain kilometers (Douglas Shields, 2005; Walker and 

Hedlin, 2010). Most of wind noise reduction techniques are essentially based on acoustic 

signals and the contrasting spatial coherence lengths of turbules. Also, such methods can be 

grouped into four categories; wind-sensor isolation strategies, acoustic integration filters, 

digital filtering with dense microphone arrays, and instantaneous integration sensors (Walker 

and Hedlin, 2010). 

For such low frequency band, there are several filters of mechanical nature that have been 

developed using low-frequency microphones (micro-barometers). Among these filters is 

Daniels filter for wind noise reduction, details can be found in (Daniels, 1952, 1959; Walker 

and Hedlin, 2010). Certain developments to Daniels wind filter have been made with regards 

to study more isotropic pipe configurations such as circular pipes (Burridge, 2010; Grover, 

2010). Daniels wind filter is the basis of designing and developing other filters such as rosette 

filter which is considered as a standard wind-noise filter used at IMS array sites. This filter was 

designed by Alcoverro in the late 1990s, details can be found in (Alcoverro and Le Pichon, 

2005; Walker and Hedlin, 2010). Microporous hoses are also designed upon the basis of 

Daniels wind filter; however, their configurations may vary from linear to circular porous 

hoses. Many studies have been conducted to test this filter under several conditions considering 

various configurations of porous hoses in some empirical tests where it has fared well (Herrin 

et al., 2001; Howard, Dillion and Shields, 2007). The optical fibre infrasound sensor is also 

used to reduce wind noise by directly measuring the integrated pressure change along a path in 

a different manner compared to the above mentioned filters although it gives similar results to 

the rosette filter; details can be found in (Zumberge et al., 2003; Walker et al., 2008).  

A system known as “distributed sensor” or “adaptive processing with a dense array” has 

recently been developed. This system is based on extracting the signal of interest in post-

processing by recording all the traces or using on-the-fly algorithms to reduce wind noise 

through weighted-averaging or filtering schemes that adapt to the changes in wind conditions, 

producing a single trace as an output. More details of this can be found in (Dillion, Howard 

and Shields, 2007; Walker and Hedlin, 2010). Instead of averaging over several sensing 

surfaces, a new approach that permits to isolate the sensor from the advected turbules has been 
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introduced. It is a completely different approach to wind-noise reduction which has been 

developed by introducing porous media filters and wind barriers that share similarities with 

each other, since they attempt to isolate the sensors from the wind. Details can be found in 

(Attenborough, 1983; Attenborough et al., 1986; Sabatier et al., 1986; Hedlin and Raspet, 

2003; Shams, Zuckerwar and Sealey, 2005; Christie and Campus, 2010).  

2.12 Research Problem Statement and Proposed Solution   

The purpose of this review was to view gaps in the literature concerning wind noise 

sensitivity of microphones which is always seen as a major problem for outdoor applications. 

In this study, different criteria have been used to review the literature from the related studies 

within the past forty years and see why wind induced in microphone signals is an issue of 

concern for outdoor acoustic data acquisition applications as well as how methods to 

circumvent this problem have developed and why further developments are still required.  

It is clear from the research reviewed that single-microphone wind noise is still a 

technical challenge and even dual microphone and multi-microphone or microphone array 

technologies are still facing problems concerning wind noise and having several limitations. 

Along with this, it is also clear that the field of applying acoustic sensing in outdoor 

applications, such as soundscapes monitoring and smart environments, just regarding the 

environmental noise removal is varied and continues to be studied and analysed in order to 

most benefit society at large. Wind noise sensitivity of microphones is still being debated, 

though, and continues to be problematic in outdoor applications as concluded from the different 

studies indicated in this literature review. This field is very important as at its centre is a concern 

with exploiting to the maximum of the untapped power of sound for added-value applications 

and helping users in many ways. Helping users become aware of the new smart environments 

and getting them to see the importance in developing new applications and overcoming many 

existing problems is also extremely important in the current society. 

For environmental noise level measurement, especially long-term measurement or 

monitoring, microphone wind noise is added to the recorded noise level, giving inaccurate 

results, residual microphone wind noise remains problematic. However, many standards or 

common approaches have been applied to reduce wind noise in microphone signals as 

discussed in this chapter. What is of interest in this review is the signal processing standards 

that have been developed and applied to broadband wind noise suppression in audible 

frequency band. However, due to the broadband and time varying nature of microphone wind 
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noise these methods show some but limited effectiveness particularly for single-microphone 

which is the problem addressed in this thesis.  

There have been much research and discussion conducted on wind noise problem 

including theories, procedures, advantages and limitations of the existing methods that have 

been proposed to reduce the harmful effect of wind noise based on different approaches through 

developing many signal processing techniques. However, none of these methods can be 

considered as an optimal solution as the problem is still there. These methods worked to some 

extent but have intrinsic limitations of distinguishing and separating wind noise components 

and difficulties in retaining accurate signal energy levels to meet the measurement 

requirements.  

The main aim is to evaluate possible outcomes from this literature to reveal the 

limitations of the existing methods and indicate wind noise issue for outdoor applications and 

recording situations that eventually led to state the problem addressed in this thesis. 

Determining the expected outcomes of this literature was based on the results and reasons that 

indicate the existence of the problem as well as taking into consideration the recommendation 

for future work from the previous studies. More research and testing are therefore required to 

gain a better understanding of the nature of the problem after pointing out the major limitations 

of the existing methods as of not properly identifying wind noise components. Based on the 

key aspects discussed and the major limitations revealed in this review, the problem addressed 

in this thesis has been stated according to the following.   

• Soundscapes signals are composed of acoustic target of interest and background noise 

(wind) which harmfully affects acoustic signals of interest.  

• Although there are many existing methods, but single-microphone wind noise reduction 

is still a technical challenge and an open-ended problem for further extensive research.  

• Wind induced microphone noise is also unsolved problem in hearing aid applications 

and outdoor audio recording such as the field of news broadcasting. 

The literature has been comprehensively reviewed in this chapter regarding the problem 

of microphone wind induced noise including the application area and related concepts, wind 

noise theory and spectral character, and the methodologies and common approaches. This 

review included most of existing wind noise suppression methods which have been discussed 

earlier in this chapter. The review outcomes have been summarised and given in tables in the 
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Appendix A. In these tables, wind noise reduction methods are categorised into different groups 

that share similar characteristics, theory, approach and application, however, only examples 

were given. Also, these tables illustrate the main advantages and limitations of each category 

in an easy way to refer to when needed. Not all noise reductions methods have been mentioned 

in the summary, however, only those which have been implemented for wind noise even for 

specific purposes such as speech enhancement. 

With the above in mind, microphone wind noise reduction problem in outdoor 

applications requires alternative solutions. Contemporary and powerful signal processing 

methods are sought to address the wind noise issues and can yield better results. The focus of 

this study is on the separation of microphone wind induced noise through acoustic means, 

however, methods of the prior art, such as mechanical windscreens, are not of interest. Linear 

separation in subspace seems to be potential solution to circumvent microphone wind noise 

problem. The proposed solution in this study is therefore based on developing a new separation 

signal processing technique based on Singular Spectrum Analysis. 

The review outcome eventually led to suggest modifying and developing the existing 

SSA method which might be a solution to particularly wind noise problem and, of course, there 

are several reasons behind this selection. The SSA has been considered a non-parametric 

technique that works with arbitrary statistical processes, either stationary or non-stationary, 

linear or nonlinear, Gaussian or non-Gaussian (Hassani, 2010). The method is non-parametric 

which makes no prior assumptions about the data, however, this gives a great advantage for 

the SSA over traditional methods of time series analysis. Due to its potential capabilities, the 

SSA method has been developed, modified, and adopted to solve many problems as evidenced 

by its implementation in a wide range of applications which increases the motivation of its 

selection in this study. For example, the SSA has been recently seen many successful 

paradigms in the separation of biomedical signals (e.g., separating heart sound from lung 

noise). It has also been successfully implemented to de-noise signals in many various 

applications. 

In recent years, traditional methods applied for time series analysis such as power spectra 

have been augmented by new methods. As an alternative to traditional digital filtering 

approaches, the SSA has been presented in many applications. The SSA has been introduced 

in a wide range of applications as a de-noising and raw signal smoothing method. It is mainly 

based on principles of multivariate statistics (Alonso, Castillo and Pintado, 2005). Basically, a 
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number of additive time series can be obtained by decomposing the original time series to 

identify which of the new produced additive time series is part of the modulated signal, and 

which is part of random noise (Hassani, 2010). However, the separation approach has been 

introduced, and this encourages the idea of further developing this approach instead of filtering 

and working on the separability for wind noise components in this research as one of the key 

concepts. 

A great deal of research work has been conducted on the SSA to consider it as a de-

noising method (Hassani, Dionisio and Ghodsi, 2010). The SSA has also been applied for 

extracting information from noisy dataset for biomedical engineering and other applications 

(Ghodsi et al., 2009). The method has been employed and shown its capabilities for noise 

reduction for longitudinal measurements (Hassani et al., 2009). The superiority of the SSA 

over other methods in biomechanical analysis was clearly demonstrated by several examples 

presented in (Alonso, Castillo and Pintado, 2005). With the above in mind, there is always a 

possibility to modify and develop the SSA in terms of its key aspects to the problem addressed 

in this thesis.  

2.13 Summary  

Improving signal processing methods to clean soundscapes singles and reduce the 

harmful effect of wind noise on the target acoustic events in outdoor data acquisition is an issue 

of concern that requires further systematic studies and research. The reduction or separation of 

such broadband noise from desired sounds is a vital issue to be addressed for the future design 

regarding soundscape monitoring and smart city applications. Therefore, high importance 

should be given to environmental noise reduction while developing functionalities in the future 

design of acoustic and audio monitoring solutions. In this chapter, many related key concepts 

and technical issues with regards to the application area of this study have been discussed. 

Enabling a wide range of applications and enhanced services with high social and 

technological value require more intelligent usage of the audio modality (Hollosi et al., 2013). 

To lead to success, system designers should be aware of all potential limitations in 

implementing acoustic sensing for audio monitoring in smart cities applications. Consequently, 

it is important that such solutions focus on outstanding events and environmental noise control 

and monitoring as well as providing attractive and fascinating applications to support high 

societal value applications and deliver new innovative range of services rather than storing 

audio data and voices of the inhabitants of smart environments.  
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Additionally, in this review, topics like wind noise problem in outdoor data acquisition, 

the importance of de-noising approach in signal processing, wind noise specifications and 

characteristics, and existing wind noise reduction methodologies have been reviewed. Also, 

wind noise theory and details including the physics and mechanism of the wind, a description 

of wind noise nature and spectrum in audible frequency band, and wind noise types induced 

by turbulence interaction in inertial subrange and source region specifying low frequency band 

are reviewed and presented in this chapter. 

From this review, microphone wind noise has been mentioned as a serious problem in 

many applications for users who enjoy outdoor activities for normal hearing as well as for 

hearing-impaired listeners. Wind noise is annoying and can create distortion by overloading 

the microphone and masking desired signals. In this review, it has been shown that at 

commonly encountered wind speeds, wind noise is at high levels and hence it needs to be 

suppressed. It has been reported that for hearing aid users as indicated in (Kochkin, 2005, 

2010), wind noise is the second-highest cause of dissatisfaction behind noisy situations. As 

discussed in this literature review, microphone wind-induced noise is still an issue of concern; 

however, as previously discussed, existing methods have many limitations. Single-microphone 

wind-noise removal is still a technical challenge for further extensive research and open-ended 

problem. A review outcome that led to propose modifying and developing the SSA method is 

also given in this chapter.  
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3 

Singular Spectrum Analysis  

3.1 Introduction to Singular Spectrum Analysis Technique 

In the recent years, Singular Spectrum Analysis (SSA), which is seen as a powerful 

technique, has been developed in the field of time series analysis. The SSA is a novel method 

that can be used to solve many problems in different fields such as in signal processing. This 

chapter introduces a thorough treatment of the SSA method in the context of wind noise 

separation with the author’s own contribution towards establishing a systematic approach of 

the method in the framework of wind noise separation by developing a profound understanding 

of the separation concept and focusing on certain key elements throughout this chapter and the 

next two chapters.  

As stated in (Elsner and Tsonis, 2013), the singular spectrum term came from the spectral 

(eigenvalue) decomposition of a given matrix A into its set (spectrum) of eigenvalues. These 

eigenvalues, denoted by λ, are specific numbers that make the matrix 𝐀 − λ𝐈 singular when the 

determinant of this matrix is equal to zero. Singular spectrum analysis is the analysis of time 

series using the singular spectrum. Spectral decomposition of matrices has many applications 

to problems in the natural and related sciences and is fundamental to much theory of linear 

algebra.  

The widespread use of the SSA as a method for time series analysis is relatively recent. 

However, from applications of dynamical systems theory which is also called chaos theory, its 

usage has been emerged to a large extent. As indicated in (Elsner and Tsonis, 2013), the SSA 

was first used in biological oceanography by Colebrook in 1978 and was introduced into 

dynamical systems theory by Fraedrich in1986 and Broomhead and King  in 1986 as well. The 

SSA is namely a linear approach that becomes attractive in the analysis and prediction of time 

series. The SSA method has a growing strength over classical spectral methods due to the data-

adaptive nature of its basic functions which makes the approach even suitable for analysis of 

some nonlinear dynamics.  

The SSA has a capability to provide useful insights into a range of systems and can be 

used to make predictions even when data amounts are modest. Throughout scientific research, 

a physical system can be described and characterised by means of measured time series. 

Consecutively, adequate descriptions can lead to useful forecasts of the behaviour in the future. 
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However, Information can be extracted from short and noisy time series based on the design 

of the SSA and therefore provide insight into the dynamics of the underlying system that 

generated the series. These dynamics could be unknown or only partially known (Ghil et al., 

2002). 

The SSA has been applied in a wide range of possible application areas which diverse 

from mathematics, physics, and engineering to economics and financial mathematics. Also, the 

SSA is considered as a promising technique in some other application areas that may include 

meteorology, oceanology, social sciences, market research and medicine. Not only is the SSA 

limited to these application areas, but it also seems to be a promising method for noise 

reduction and even any seemingly complex time series could provide another example of a 

successful application of the SSA (Vautard, Yiou and Ghil, 1992; Hassani, 2010).  

Decomposing the time series and then reconstructing the original series are the two 

complementary stages of the basis SSA method. The main concept in studying the properties 

of the SSA is how well different components can be separated from each other. It is often 

observed in series with complex structure the lack of approximate separability. For such 

complex series and series with special structure, there are many ways of modifying the SSA 

leading to different versions like SSA with single and double centring, Toeplitz SSA, and 

sequential SSA (Moore and Grinsted, 2006; Golyandina and Shlemov, 2015). By the presence 

of noise, the ability to extract valuable information from time-varying signals is limited. Since 

many decades, methods of noise reduction are a subject of widespread interest in several fields 

and applications such as physical systems, communication, experimental measurement and 

signal processing (Kostelich and Yorke, 1988).  

To the best of the author’s knowledge based on reviewing the literature, which increases 

the motivation of selecting this method, the SSA has not been used for wind noise reduction 

although it has generally been shown as a useful tool for noise reduction in some applications. 

This is the first study to undertake the SSA for further development in this context.  

3.2 Applications of the SSA  

The SSA is an innovative nonparametric technique and model-free method for time series 

analysis, namely classical time series analysis, multivariate statistics, dynamical systems and 

signal processing. It is basically a mixture of mathematical and statistical analyses (Elsner and 

Tsonis, 2013; Yang et al., 2016). A large and growing body of literature has investigated the 
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application of the SSA in many disciplines. A comprehensive review on applying this 

technique, such as in digital signal processing, in oceanographic research and in environmental 

systems for air pollution studies has been given in many previous studies such as in (Fukuda, 

2007; Hassani et al., 2009; Chu, Lin and Wang, 2013; Golyandina and Shlemov, 2015).  

The SSA is generally applicable for many practical problems such as the study of 

classical time series, dynamical systems and signal processing along with multivariate statistics 

and multivariate geometry. It is also an effective method for the extraction of seasonality 

components, extraction of periodicities with varying amplitudes, finding trends of different 

resolution, smoothing, simultaneous extraction of complex trends and periodicities, finding 

structure in short time series, etc., (Hassani, 2010; García Plaza and Núñez López, 2017; Xu, 

Zhao and Lin, 2017). 

The basic capabilities of the SSA can lead to solve all these problems. Additionally, the 

method has many crucial extensions such as the multivariate version which permits the 

simultaneous expansion of several time series. Also, several forecasting procedures for time 

series can be examined by the SSA method (Launonen and Holmström, 2017; Rodrigues and 

Mahmoudvand, 2017). For change-point detection in time series, the same ideas are used as 

stated in (Moskvina and Zhigljavsky, 2003). The SSA has been employed for traffic load in 

large-scale WLAN infrastructure. However, it has been found that using a small number of 

leading principle components, the time records of traffic load at a given access point has a 

small intrinsic dimension and can be accurately modeled (Tzagkarakis, Papadopouli and 

Tsakalides, 2009). 

According to (Kostelich and Yorke, 1988), generally the time series, in many cases, can 

be viewed as a dynamical system. The procedure described in (Kostelich and Yorke, 1988), 

was for reducing noise levels in some experimental time series related to dynamical systems. 

The authors described a noise-reduction method based on the principle of the SSA that works 

by taking numerous nearby points in phase space (corresponding to broadly varying times in 

the original signals) in order to find a local approximation of the dynamics. 

As a method of prediction and forecasting specially for real-time records that usually 

have a complex structure, the SSA shows potential capabilities since it is non-parametric which 

makes no prior assumptions about the data. Ghil et al. (2002) reported the capability of the 

SSA as a useful method for extracting target components in climate prediction. In the SSA-

based methods, some statistical and probabilistic concepts are employed. The SSA relies on 
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the bootstrapping to obtain the so-called confidence intervals for the predictions and forecasts 

(Patterson et al., 2011; Hansen and Noguchi, 2017; Mahmoudvand, Konstantinides and 

Rodrigues, 2017). 

Environmental systems are often considered as non-linear and ill-structured domains, and 

also involve multidisciplinary factors such as global and local ecological and socio-economic 

factors (Fukuda, 2007; Yang et al., 2016). Therefore, Fukuda (2007) indicated that before 

investigating the dataset of interest and applying a process of knowledge discovery in databases 

(data mining), which found to be a useful tool in such systems, another tool should be used to 

reduce the noise because environmental dataset whether it is climate or pollution is commonly 

noisy and skewed. According to that, a primary step which is reducing the noise has to be taken, 

even though defining the noise component from such a noisy structure can be difficult. Hence, 

the SSA has been used for this purpose (Maddirala and Shaik, 2016; Traore et al., 2017).  

A great deal of research work has been conducted on the SSA to consider it as a de-

noising method (Elsner and Tsonis, 2013; Jiang and Xie, 2016; Qiao et al., 2017). The SSA 

has also been applied for extracting information from noisy dataset for biomedical engineering 

and other applications (Ghodsi et al., 2009). It has been recently seen many successful 

paradigms in the separation of biomedical signals, e.g., separating heart sound from lung noise 

and many other applications (Ghodsi et al., 2009). In (Ghaderi, Mohseni and Sanei, 2011), the 

authors set up the SSA in a commonly used diagnostic method using respiratory data to 

improve the pulmonary auscultation through separating and localising heart sounds. Using the 

same concepts, Sebastian and Rathnakara (2013) identify several advantages of the SSA in 

their study through introducing a method of selecting adaptive Eigen triples that correspond to 

heart sounds. Sanei et al. (2011) applied the SSA to detect a murmur from heart sound by 

working on the statistical properties of their data decomposed using the SSA. Always in the 

same area of application, the SSA was deployed to eliminate environmental sound in signals 

composed of heart sound signals by using eigenvalues spectra to select effective principal 

components based on the dominant eigenvalues produced by the SVD (Zeng, Ma and Dong, 

2014). 

The SSA has been implemented for extracting the rhythms of the brain of 

electroencephalography (EEG) (Tomé et al., 2010; Hu et al., 2017). In (Enshaeifar et al., 2016), 

the SSA has been deployed for the decomposition of EEG data in sleeping analysis and a 

method for classifying sleeping into five levels based on this decomposition has been 
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introduced. Always in this field, the SSA has been implemented in (Mohammadi et al., 2016) 

to optimise the efficiency of time and frequency domain analysis of sleep EEG. In the latter 

study, a new approach was proposed to automatically identify certain important factors related 

to brain waves from sleep EEG signals such as sleep spindles, brain waves and K-complexes. 

In another application, the method was used to discriminate the sound of walking into three 

groups which namely are walking upstairs, downstairs, and walking level (Jarchi and Yang, 

2013). To examine this issue, Jarchi and Yang, (2013) used a triaxial sensor accelerometer 

placed on the ear to record the sound of walking. Furthermore, the SSA has been implemented 

for the detection of Parkinson’s tremor from electromyograms (EMG) signals (Eftaxias et al., 

2015). 

The SSA method has been employed and shown its capabilities for noise reduction for 

longitudinal measurements and surface roughness monitoring (Hassani et al., 2009; García 

Plaza and Núñez López, 2017). It has also been implemented for structural damage detection 

(Lakshmi, Rao and Gopalakrishnan, 2017). The superiority of the SSA over other methods in 

biomechanical analysis was clearly demonstrated by several examples presented in (Alonso, 

Castillo and Pintado, 2005). Regarding potential classification accuracy and detecting weak 

position fluctuations, the SSA shows a great improvement and outperforms other popular 

methods such as Empirical Mode Decomposition (EMD) (Jiang and Xie, 2016; Qiao et al., 

2017; Xu, Zhao and Lin, 2017).  

As highlighted by (Harmouche et al., 2017), the SSA has been used as a non-stationary 

signal decomposition tool. It has been shown that the decomposed structures of the SSA can 

be applied to data mining techniques for image segmentation. Therefore, in (Traore et al., 

2017), the method has been used for de-noising and structure analysis as an application to 

acoustic emission signals produced from nuclear safety system. Moreover, the SSA was used 

in image processing for analysing the effect of the movement disability of a patient on their 

grasp as to determine the treatment type (Lee et al., 2013). The SSA was also used to remove 

noise components in hyperspectral imaging for feature extraction (Zabalza et al., 2014). The 

authors showed that the ability of the distinction of the features has been improved.  

The SSA has been used for data pre-processing for further data mining application by 

removing noisy structures from climate and pollution dataset as in (Fukuda, 2007). In the latter 

study, the author reported that using the SSA provides two crucial benefits. Firstly, the SSA 

helped in identifying noise in the structures as the method decomposes the noisy time series 
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into a number of additive components for separating out high and low frequency signals from 

the original time series which later grouped and reconstructed to form a new time series. 

Secondly, the decomposed structures improve the results of the tree construction algorithm. 

Using the same concepts, the SSA was used to separate low frequency components from high 

frequency ones as in (Harris and Yuan, 2010; Mert and Milnikov, 2011).  

Applying the SSA as a de-noising method is to identify which components can 

potentially be noise. However, according to the method introduced in (Fukuda, 2007), it has 

been suggested that such components should be examined on the classification accuracy. For 

instance, adding insignificant components which are generally high frequency components to 

the main structures which commonly low frequency can lower or have no influence on the 

classification accuracy. However, removing significant components, including some high 

frequencies, may lower the classification accuracy as well, which suggests that these 

components are unlikely to be noise. Improving separability has therefore been considered as 

a key element in the SSA using non-orthogonal decompositions of time series and independent 

component analysis as in (Hassani, Mahmoudvand and Zokaei, 2011; Golyandina and 

Shlemov, 2013; Golyandina and Lomtev, 2016). 

The procedure of using the SSA as a noise reduction method is mainly depends on 

common steps regardless the type of dataset. As stated in (Fukuda, 2007), the SSA is 

specifically used in pre-processing phase for data mining approach which later required 

decision tree classifier to be applied on climate attributes to predict three carbon monoxide 

(CO) levels (high, medium, and low). The method relies on the classification accuracy to assess 

the improvement and effectiveness of applying the SSA in the pre-processing phase. In the 

study carried out by Fukuda (2007), the SSA was introduced as a noise reduction method for 

data pre-processing manner to later apply data mining technique and a decision classifier. 

Investigating noisy climate time series by using the SSA posited the way of forming a number 

of additive components to separate out noise from such time series. According to the specific 

purpose of the study in (Fukuda, 2007) which is the prediction of the different air pollution 

levels of CO, these components are used further to construct decision trees. 

One of the most significant current discussions in the SSA application as stated in 

(Hassani, Dionisio and Ghodsi, 2010; Maddirala and Shaik, 2016) is that the signals obtained 

by the SSA decomposition differ from those obtained by filtering out frequency bands with the 

Fourier Transform for instance. However, the reason behind that is because such signals are 
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generated from eigenvectors which are not purely related to the frequency. Such characteristic 

gives the SSA a significant advantage which is the ability of adding or removing the additive 

components either low or high frequencies for certain applications such as decision tree 

construction. 

Based on the literature, the SSA has been compared to many classical methods and 

algorithms used for time series analysis to show its potential capabilities and application areas 

(Hassani, Heravi and Zhigljavsky, 2009). As mentioned in (Hassani, 2010), in economic 

applications, the multivariate SSA has been put in application compared to an econometric 

model known as vector auto-regression (VAR) as well as for automatic methods of 

identification within the SSA framework and for recent work in the SSA new developments. 

Furthermore, the SSA was considered as a useful technique that could compete with more 

standard methods in even the area of nonlinear time series analysis (Vautard and Ghil, 1989; 

Jiang and Xie, 2016).  

As mentioned previously, a considerable amount of literature has been published on 

developing and implementing the SSA in several fields and applications. In this review, 

however, it is important to discuss the methods of developing the SSA for noise reduction and 

data pre-processing in different studies rather than details of other specific application areas. A 

number of research works has been conducted on the SSA to consider it as a filtering method 

as in (Hassani, Dionisio and Ghodsi, 2010). The method has also been applied for extracting 

the noise information to therefore be used as a biomedical diagnostic test (Ghodsi et al., 2009). 

According to (Hassani et al., 2009), the SSA can be employed and shown its capabilities for 

noise reduction for longitudinal measurements. 

The SSA has been introduced in a wide range of applications as a de-noising and raw 

signal smoothing method such as analysing and de-noising acoustic emission signals 

(Harmouche et al., 2017; Traore et al., 2017) and smoothing of raw kinematic signals (Alonso, 

Castillo and Pintado, 2005). Basically, a number of additive time series can be obtained by 

decomposing the original time series to identify which of the new produced additive time series 

can be part of the modulated signal and which be part of random noise (Alonso, Castillo and 

Pintado, 2005). It has been showed in (Fukuda, 2007), that using the SSA for data pre-

processing is a helpful procedure that encourages improving the results of any time series for 

data mining. The SSA has been known as a two-step point-symmetric de-nosing method of 

time series. Noiseless signals can be obtained with minimum loss of data (Qiao et al., 2017). 
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The SSA is considered as a suitable data pre-processing tool for data mining to make it 

more effective on noisy time series. According to the method introduced in (Fukuda, 2007) for 

a decision tree classifier for a noisy data, the SSA has also been explored as a noise reduction 

approach. The SSA can provide groups of additive components varying from low frequency to 

high frequency by decomposing the noisy time series. The method explained in (Fukuda, 2007) 

was to decompose climate data using the SSA and then to construct decision trees for the 

prediction of air pollution levels specifically the percentage of carbon monoxide when applying 

data mining approach. In the study conducted by (Alonso, Castillo and Pintado, 2005), 

biomechanical analysis was the application area where motion capture systems were used. Such 

systems introduce different systematic errors that appear in recorded displacement signals in 

the form of noise. Due to the unacceptable level of amplification of such noise when 

differentiating displacements in order to obtain velocities and accelerations, the SSA was used 

to smooth the displacement signal and reduce the noise introduced by the experimental system. 

As another application area of implementing the SSA and still for noise reduction 

application is the field of seismic records. An interesting work has been carried out by (Oropeza 

and Sacchi, 2011) where a rank reduction algorithm that permits simultaneous reconstruction 

and random noise attenuation of seismic records was presented. Rank reduction has been 

proposed as a method to mitigate noise and recover missing traces. The proposed technique in 

(Oropeza and Sacchi, 2011) was mainly based on multivariate singular spectrum analysis 

(MSSA) and required organising spatial data into a block Hankel matrix at a given temporal 

frequency. In ideal conditions according to their proposed method, the matrix is of rank k, 

where k is the number of plane waves in the window of analysis. Notably, the rank of the block 

Hankel matrix of the data increases due to additive noise and missing samples. The proposed 

algorithm was an iterative one that resembles seismic data reconstruction with the method of 

projection onto convex sets along with the adaptation of randomised Singular Value 

Decomposition in order to accelerate the rank reduction stage of the algorithm. 

The method presented in (Oropeza and Sacchi, 2011) was mainly based on applying 

MSSA reconstruction using synthetic examples and a field dataset where the purpose of 

synthetic examples was to assess of the method in two reconstruction scenarios: data 

contaminated with noise and a noise-free case. Using MSSA reconstruction method is to 

complete missing offsets as well as increase the signal-to-noise ratio of the seismic volume. 

Furthermore, Oropeza and Sacchi (2011) concluded that for both types of data they used, 

extremely low reconstructions errors were found that eventually led to an optimal recovery.  
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3.3 Rational and Justification of Selecting the SSA 

In recent years, traditional methods applied for time series analysis such as power spectra 

have been augmented by new methods. As an alternative to traditional digital filtering methods, 

the use of singular spectrum analysis has been presented in many applications. The SSA has 

been introduced in a wide range of application as a de-noising and raw signal smoothing 

method. It is a novel non-parametric technique which is mainly based on principles of 

multivariate statistics (Alonso, Castillo and Pintado, 2005). Since the SSA is a nonparametric 

method, it works with arbitrary statistical processes such as linear or nonlinear, stationary or 

non-stationary, and Gaussian or non-Gaussian, however, these advantages increase the 

motivation of its use in different applications (Hassani, 2010).  

The SSA decomposes a time series into its singular spectral domain components which 

are physically meaningful with regards to oscillatory components and trends and then 

reconstructs the series by leaving the random noise component behind. However, these 

fundamentals can be seen as great advantages to be exploited for developing the method for 

noise reduction applications (Hassani, 2010; Jiang and Xie, 2016; Wang, Liu and Dong, 2016). 

Furthermore and unlike many other methods, the SSA works well even for small sample sizes 

making it possible to quickly update the coordinator rotation to varying signals block by block 

in relatively small blocks (Hassani et al., 2009; Hassani, Soofi and Zhigljavsky, 2010; 

Golyandina and Shlemov, 2015). Therefore, selecting the SSA to be investigated and 

developed for wind noise reduction in this study is basically motivated by its proven industrial 

applications and potential capabilities.  

In principle, the SSA is a linear analysis and prediction method (Vautard, Yiou and Ghil, 

1992). The SSA is mainly based on the data-adaptive character of the eigenelements which is 

the sense in which the method can use concepts from and can be useful even in nonlinear 

dynamics. This concept gives the SSA superiority over classical spectral methods. Therefore, 

the SSA can act as a data-adaptive filter, however, background noise can be removed and the 

leading statistically significant signals can be retained (Vautard, Yiou and Ghil, 1992; Gámiz-

Fortis et al., 2002). As stated in (Fukuda, 2007),  using the SSA for data pre-processing is a 

helpful procedure that encourages improving the results of any time series for data mining, and 

many future environmental studies can probably adapt such studied approaches. Also, the 

superiority of the SSA over other methods in biomechanical analysis was clearly demonstrated 

by several examples presented in (Alonso, Castillo and Pintado, 2005).  



Chapter 3. Singular Spectrum Analysis  

 

80 

 

The SSA has been successfully implemented to solve many problems based on its 

capabilities. When compared with other time series analysis methods, it shows certain 

superiority, potentials and broader application areas and competes with more standard methods 

in time series analysis (Hassani, Heravi and Zhigljavsky, 2009; Chu, Lin and Wang, 2013; 

Golyandina and Shlemov, 2015; García Plaza and Núñez López, 2017). For example, the 

method has superiority over classical techniques when it is used as a method of prediction and 

forecasting particularly for real time series that usually has a complex structure. As previously 

mentioned, the SSA is essentially a linear and prediction technique (Vautard, Yiou and Ghil, 

1992). However, it also works with arbitrary statistical processes and non-parametric method 

which makes no prior assumptions about the data. Given that the dynamics of real time records 

typically go through structural changes during the time period under consideration and for 

prediction applications, one needs to ensure that the prediction method is not sensitive to the 

dynamical variations (Hassani, 2010).  

As mentioned by (Kostelich and Yorke, 1988), the traditional noise reduction methods 

such as Wiener and Kalman filters are not applicable in case of reducing noise levels in certain 

experimental time series related to dynamical systems. Instead, developing the SSA and using 

local approximation of the dynamics collectively can lead to produce a new time series and 

make its dynamics more consistent with those on phase space attractor but slightly altered.  

3.4 Time Series Analysis Using the SSA  

The SSA is known as a method that is basically based on statistical approaches and 

elementary linear algebra. It is a general approach to time series analysis and can be used for a 

wide range of applications such as de-noising, forecasting, change-point detection, trend or 

quasi-periodic component detection and extraction. When applying the SSA to a time series 

analysis, it provides a representation in the so-called Eigen domain in terms of eigenvalues and 

eigenvectors of a matrix constructed out of the given time series (trajectory matrix) 

(Alexandrov, 2009). A set of orthonormal vectors can be produced from the decomposition of 

the covariance matrix when applying the SVD method. However, these eigenvectors are also 

known as the left singular vectors of the trajectory matrix and often called in SSA literature 

‘‘empirical orthogonal functions’’ or simply EOFs and considered as axis of new coordinate 

system (Golyandina, Nekrutkin and Zhigljavsky, 2001; Sanei and Hassani, 2015). EOFs 

method is also known as Principle Component Analysis (PCA) in geophysical fields 

(Bjornsson and Venegas, 1997). 
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In principal, the idea of SSA is to embed a time series 𝑋(𝑡) into multi-dimensional 

Euclidean space and find a subspace corresponding to the sought-for component as a first stage. 

The second stage is to reconstruct a time series component corresponding to this subspace. To 

catch a clear glimpse for better understanding and characterising the underlying regular 

dynamical behaviour which is the signature of the dynamical system under study, the univariate 

case, which indicates a single time series, is considered. The SSA method can be applied to a 

single series or jointly to several records and hence in the former, it is referred to as univariate 

SSA and in the latter as multivariate SSA or MSSA (Launonen and Holmström, 2017; 

Rodrigues and Mahmoudvand, 2017). Since the concern in the context of this research is only 

with single channel signals, therefore only the univariate SSA has been considered.  

Time records are defined as data vectors sampled over time in order and often at regular 

intervals and distinguished from randomly sampled data that form the basis of many other data 

analyses. They represent the time-evolution of a dynamic process and contain data points that 

are indexed, listed, or graphed. The linear ordering of time series gives them a distinctive place 

in data analysis with a specialised set of techniques (Elsner and Tsonis, 2013; Golyandina and 

Shlemov, 2015). To develop the SSA for the specific problem addressed in this study, it is 

important at first to handle with the method considering different key concepts through 

providing obvious explanation using several working examples. Therefore, the time series 

shown in Figure 3.1 has been selected as working example to be used throughout this chapter.   

 

Figure 3.1. A time series sampled from a sinus function with Gaussian noise added 

In this example, a uniformly sampled time series {𝑋(t): t = 1,2,3… . . 𝑁𝑡} in which the 

data points are sampled over time at given regular time intervals has been considered. Since 

the number of data points or the length of the time series is denoted by 𝑁𝑡 , therefore from the 
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time series given in this example, it can be clearly see that there are 20 data points  (𝑁𝑡 =

20) and hence they are represented by  𝑥1,  𝑥2 ……… . . 𝑥20   as graphed in Figure 3.1. 

This example was taken for a variety of reasons. The most influential factor was that the 

main aspects of the SSA method can be better illustrated with examples drawn from practical 

and academic exercises which should have a real impact on the way the SSA works. Another 

reason was the relevance and importance of selecting a time series that is representative with 

regards to identifying its data points and short enough to suitably select a small window length. 

Consequently, this will have a significant impact on the size of the vector in which the data 

points are presented along with the size of the produced matrices to make them as small as 

possible. However, small matrices can be easily handled and manipulated regarding the 

numerical values and can also provide better explanations in all cases. 

The selected time series also provided an opportunity to consider the main properties of 

the method as it has been indicated in the previous literature that the SSA works with arbitrary 

statistical processes such as linear or nonlinear, stationary or non-stationary, and Gaussian or 

non-Gaussian (Hassani, 2010). However, since the method has been particularly modified and 

developed to solve microphone wind induced noise as a non-stationary broadband noise, it has 

been developed in the system verification phase to be tested with a stationary noise (white 

noise). Also, this example can assess and reinforce at the mean time the understanding of these 

advantages since the time series represents a noisy series sampled from a sinus function with a 

defined period and a Gaussian noise added. 

In addition to the multiple tests and case studies presented in the coming chapters with 

particular emphasis on the problem addressed in this thesis, this example can provide 

theoretical explanation using numerical values based on an experimental case like this. 

However, this case will be later used in Chapter 5 for the justification of the developed method 

before moving to system verification using different typical signal testing examples and system 

validation with real-world sounds for microphone wind noise problem.  

3.5 Fundamental Concepts in the SSA Method  

The idea of the SSA basically relies on the decomposition of a time series into oscillatory 

components and noise in the context of this thesis. The method is mainly based on statistical 

approaches and elementary linear algebra (Elsner and Tsonis, 2013; Harmouche et al., 2017). 

The aim is to decompose the original time series into a small number of independent and 
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interpretable components such as a slowly varying trend, oscillatory components (harmonics), 

and a structure less noise (Ghil et al., 2002; Hassani, 2010; Golyandina and Korobeynikov, 

2014). The SSA method consists of two complementary stages which are:  

1-Decomposition: this stage is related to the decomposition of the time series. 

2-Reconstruction: in this stage, it is to reconstruct the original time series using estimated 

trend and harmonic components.  

Each of these two stages consists of multiple steps. At the decomposition stage, the time 

series is decomposed into mutually orthogonal components after computing the covariance 

matrix from constructed trajectory matrix. The covariance matrix is needed to compute the 

eigenvalues and their associated eigenvectors. In the reconstruction stage or also known as 

estimation stage, the original series is reconstructed by selecting those components that reduce 

the noise in the series (Patterson et al., 2011). Therefore, the decomposition of a time series 

and the reconstruction of desired additive components while separating out the undesired wind 

noise components are mainly the two main aspects to be considered in the SSA algorithms.  

3.6 Theoretical and Mathematical Approaches  

There are mainly several steps to go through to understand the SSA technique that can 

be applied in many applications including noise reduction problem. However, before going 

through that, it is important to be aware of how the data points that describe any given time 

series can be stored and how the so-called embedded time series or trajectory matrix can be 

created.  

Time series can be stored in a vector denoted by x for example whose entries are the data 

points that describe the time series as a sequence of discrete-time data (Vautard and Ghil, 1989; 

Ghil et al., 2002; Hassani, 2007; Elsner and Tsonis, 2013). Such a vector is an introductory 

element to the method because it includes the essential information about the given time series; 

in fact, it represents the original time series. The other processes and steps which lead to a 

complete SSA approach are mainly based on this vector.   

3.6.1 Embedding Process  

3.6.1.1 Vector representation  

A systematic understanding of how to indicate a vector that represents the data points 

which describe any given time series is an initial step in the embedding process. Generally, a 

vector denoted by x for instance which includes  𝑁𝑡 entries can define the time series as in 
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Equation (3.1). These entries are the data points that describe the time series under study at 

regular intervals. The given time series in this example has 20 data points and hence it can 

simply be represented as a column vector as shown in the vector equation (3.1). 

                         𝐱 =  [

𝑥1

𝑥2

⋮
𝑥𝑁𝑡

]                 𝑖𝑓 𝑁𝑡 = 20 𝑡ℎ𝑒𝑛             𝐱 =  [

𝑥1

𝑥2

⋮
𝑥20

],                             (3.1) 

This column vector could also be seen as a matrix of dimension 𝑁𝑡 × 1 which shows the 

original time series at zero lag, that is when there is no delay 𝑘 = 0. Essentially, when 𝑘 = 0 

this leads to 𝑋(𝑡 + 𝑘) = 𝑋(𝑡), where 𝑋(𝑡) is the original time series and 𝑘 is the lag or “delay 

shift”. At a given embedding dimension (window length 𝑚), the lag 𝑘 can therefore be 

expressed in the range from 0 to 𝑚 − 1 in a 1 lag shifted version as follows:   

                                       𝑘 = 0,1…… ,𝑚 − 1,                                                            (3.2) 

Hence, the window size 𝑚 should be clearly specified to obtain the lag k which is needed 

to create a new matrix according to delay coordinates called in the SSA jargon “embedded time 

series” or trajectory matrix. It is worth mentioning that the window length is also called 

embedding dimension that represents the number of time-series elements in each snapshot as 

stated in (Elsner and Tsonis, 2013).  

The whole procedure of the SSA method depends upon the selection of the window 

length which is the sole parameter in the embedding step. This parameter is very important 

because it plays a vital role for reconstructing noise free series from a noisy series of length 𝑁𝑡. 

The selection of the window length depends on the given data and the aim of the analysis. The 

improper selection of 𝑚 may imply an inferior decomposition (Rukhin, 2002; Hassani, 

Mahmoudvand and Zokaei, 2011; Yang et al., 2016).  

3.6.1.2 Trajectory matrix  

The so-called covariance matrix, which will be used later for computing eigenvalues and 

eigenvectors, can be computed by first creating a matrix denoted by Y and called “embedded 

time series” or trajectory matrix. This trajectory matrix contains the data points that represent 

the original time series in the first column, and a lag 1 shifted version of that time series in the 

second column, and so on. For more clarification, the column vector shown in Equation (3.1) 

is 𝑋(𝑡) when 𝑘 = 0. As explained in (Claessen and Groth, 2002), according to delay 

coordinates, a total number of vectors equals 𝑚 and each of size  𝑁𝑡 × 1 can be obtained when 
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the delay is considered in the last rows and supplemented by 0s. These vectors are similar in 

size to the first column vector but with a 1 lag shift at 𝑘 = 1, 𝑘 = 2, up to 𝑘 =  𝑚 − 1. This 

mathematically means that from all these vectors a matrix of dimension  𝑁𝑡 × 𝑚 can be created. 

However, in this matrix the vector x at 𝑘 = 0, which represents the original time series 𝑋(𝑡), 

is the first column and 𝑋(𝑡 + 𝑘) when 𝑘 =  𝑚 − 1 is the last column. This assumption is given 

when the last rows are supplemented by 0s based on the delay. 

To simplify, when considering the time series example given in Figure 3.1 with  𝑁𝑡= 20 

data points and assuming that the embedding dimension (window length) 𝑚 = 4 for example, 

therefore, only lags of 𝑘 = 0, 1, 2 and 3 will be considered according to Equation (3.2). As a 

result, a trajectory matrix Y of size 𝑁𝑡 × 𝑚 or 20 × 4 will be constructed as in Equation (3.4). 

For more clarification, the representation of the time series 𝑋(𝑡) when assuming the window 

length 𝑚 = 4 given as an example in this section can be shown in Figure 3.2. 

 

Figure 3.2. Representation of the time series of the example given in Figure 3.1 when 

considering window length (m=4) to construct the trajectory matrix  

According to (Elsner and Tsonis, 2013), the coordinates of the phase space can be defined 

by using lagged copies of a single time series. The coordinates of the phase space will 

approximate the dynamics of the system from which the time record was sampled, and the 

number of lags is called the embedding dimension. For the purpose of the SSA, this procedure, 

which referred to a method of delay as it uses lagged (or delayed) copies of segments of a time 

series, takes a univariate time record and makes it a multivariate set of observations (Chu, Lin 

and Wang, 2013; Yang et al., 2016).  

The trajectory matrix Y corresponds to a sliding window of length m that moves along 

the time series 𝑋(𝑡). As illustrated in Figure 3.2, considering that the window length in this 

example  𝑚 = 4 with an overlap equals 𝑚 − 1 and values of 𝑘 =  0, 1, 2 and 3 according to 
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Equation (3.2). The trajectory matrix can also be seen as a single time series of the delay 

coordinates that shape the structure of the matrix at all values of 𝑘 in this example which are 

(𝑋(𝑡) , 𝑋(𝑡 + 1), 𝑋(𝑡 + 2), 𝑋(𝑡 + 3).     

Two important properties of the trajectory matrix are mentioned in (Golyandina and 

Korobeynikov, 2014). The first is that both the rows and columns of the trajectory matrix Y 

are subseries of the original series. The second is that Y has equal elements on anti-diagonals 

which make the trajectory matrix a Hankel matrix. In other words, all the elements along the 

diagonal 𝑖 +  𝑗 =  𝑐𝑜𝑛𝑠𝑡 are equal. A Hankel matrix is defined as a matrix in which each 

ascending skew-diagonal from left to right is constant. 

Since the sliding window has an overlap equals 𝑚 − 1 as shown in Figure 3.2, therefore 

the number of rows of the trajectory matrix Y which can be filled with the values of 𝑋(𝑡) 

denoted by 𝑁 can be calculated according to the following equation. 

               𝑁 =  𝑁𝑡 − (𝑚 − 1)  =  𝑁𝑡 − 𝑚 + 1,                                        (3.3) 

where 𝑁𝑡 is the number of data points, 𝑚 is the window size, and 𝑚 − 1 is the overlap. 

Hence, in this case the trajectory matrix of dimension 𝑁𝑡 × 𝑚  can be seen as follows:  

           Y= 

[
 
 
 
 
 
 
 
 
𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑥1 𝑥2 𝑥3 𝑥4

𝑥2 𝑥3 𝑥4 𝑥5

𝑥3 𝑥4 𝑥5 𝑥6

⋮ ⋮ ⋮ ⋮
𝑥17 𝑥18 𝑥19 𝑥20

𝑥18 𝑥19 𝑥20 0
𝑥19 𝑥20 0 0
𝑥20 0 0 0 ]

 
 
 
 
 
 
 
 

𝑅𝑜𝑤 1 
𝑅𝑜𝑤 2 
𝑅𝑜𝑤 3  

⋮
                  𝑅𝑜𝑤 𝑁𝑡 − 𝑚 + 1 

𝑅𝑜𝑤 18
𝑅𝑜𝑤 19 
𝑅𝑜𝑤 20 

                   (3.4) 

In Equation (3.4), only (𝑁𝑡 − 𝑚 + 1) rows, which equal to 17 rows in this example, can 

be filled with values of 𝑋(t) and the last three rows are supplemented by 0s. 

As explained in (Elsner and Tsonis, 2013), snapshots of the record for the same example 

explained above when considering only number of rows of the trajectory matrix Y which can 

be filled with the values of 𝑋(𝑡) according to Equation (3.3) are given as follows: 

𝐯1
𝑇 = ( 𝑥1,  𝑥2, 𝑥3, 𝑥4)  

𝐯2
𝑇 = ( 𝑥2,  𝑥3, 𝑥4, 𝑥5) 

Up to 𝐯17
𝑇 = ( 𝑥17,  𝑥18, 𝑥19, 𝑥20)  

Y can be obtained by arranging the snapshots in row vectors as in Equation (3.5).  
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                                         𝐘 =  

[
 
 
 
𝐯1

𝑇

𝐯2
𝑇

⋮
𝐯𝑁

𝑇]
 
 
 
,                                              (3.5) 

The constructed matrix Y is called the trajectory matrix and it includes the complete 

record of patterns that have occurred within a window of length 𝑚. For the example given in 

this section, Y can be shown as in Equation (3.6).  

                𝐘 = 1/√𝑁 

[
 
 
 
 
𝑥1 𝑥2 𝑥3 𝑥4

𝑥2 𝑥3 𝑥4 𝑥5

𝑥3 𝑥4 𝑥5 𝑥6

⋮ ⋮ ⋮ ⋮
𝑥17 𝑥18 𝑥19 𝑥20]

 
 
 
 

,                                         (3.6) 

         where √𝑁 is the convenient normalisation.  

To generalise, if 𝑋(𝑡) is a given time series where 𝑡 = 1,2,3… . . 𝑁𝑡, the augmented or 

trajectory matrix Y will be constructed as in Equation (3.7).  

                                𝑥𝑖𝑗 =  𝑥𝑖+𝑗−1,                                                (3.7) 

where 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑚. The arrangement of entries 𝑥𝑖𝑗 of the trajectory matrix 

depends on the lag, bearing in mind that the trajectory matrix has dimensions 𝑁 𝑏𝑦 𝑚. The 

trajectory matrix Y and its transpose 𝐘𝑇 are linear maps between the spaces 𝑅𝑚 and 𝑅𝑁 (Chu, 

Lin and Wang, 2013).  

3.6.2 Covariance Matrix  

3.6.2.1 Covariance definition and characteristics  

Constructing what is called the variance-covariance matrix or can simply be named as 

covariance matrix as in SSA jargon is the first objective when the SSA is developed and used 

as a suitable technique for a specific purpose such as smoothing, extraction of seasonality 

components, and noise reduction applications (Ghil et al., 2002).  

The covariance matrix is essentially a matrix that shows the covariance between the 

values 𝑋(𝑡) and 𝑋(𝑡 + 𝑘) which is mainly the covariance between lagged (or “delayed”) values 

of the original time series 𝑋(𝑡). The covariance in probability theory and statistics is defined 

as a measure of the joint variability of two random variables change. The covariance could be 

positive or negative where the sign shows the tendency in the linear relationship between the 

variables. Hence, the idea is basically based on computing the covariance between the values 
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𝑋(𝑡) and 𝑋(𝑡 + 𝑘) , where 𝑘 is a lag (or “delay”). In other words, all the entries in the first 

column of the trajectory matrix indicate the values of the original time series at lag 0, and the 

other columns with a lag 1 shift. Therefore, when computing the covariance, it is mainly 

between the entries that appear in each row of the trajectory matrix (Vautard and Ghil, 1989; 

Vautard, Yiou and Ghil, 1992; Golyandina, Nekrutkin and Zhigljavsky, 2001).  

From the definition above, if the covariance at lag k is positive, then the values 𝑋(𝑡) and 

𝑋(𝑡 + 𝑘) tend to vary together. For instance, from the original time series shown in Figure 3.1 

and the first row in the trajectory matrix in Equation (3.4) that contains 4 entries in this 

example, it seems that the covariance is negative for 𝑘 = 1 and 𝑘 = 2, that is 𝑥2  and  𝑥3 values, 

and positive when lag 𝑘 = 3, the value 𝑥4. However, 𝑥1 is representing the original data point 

at 0 delay and thus the covariance is computed with respect to the other entries in this first row, 

and similarly for 𝑥2 with respect to the other entries in the second row and likewise for the 

other rows (Elsner and Tsonis, 2013).  

3.6.2.2 Covariance matrix computation   

According to (Vautard, Yiou and Ghil, 1992; Ghil et al., 2002), there are two methods of 

computing the covariance matrix which denoted by C. The first method of computing the 

covariance, which referred to as correlation in engineering, is by computing a vector x of size 

𝑚 based on the data available in the trajectory matrix, where 𝑚 is the window length. Given 

that 𝑚 = 4 in the time series example used in this chapter where only lags of 𝑘 = 0,1,2 and 3 

are considered, then the produced vector x will contain only 4 entries according to the window 

size that can be generally expressed in the following form.  

                          𝐱 = [𝑎 𝑏 𝑐 𝑑],                                                (3.8) 

The covariance between 𝑋(𝑡) and 𝑋(𝑡 + 𝑘) with 𝑘 = 0, . . , 𝑚 − 1 is represented in this 

vector which means that these values are at lags 𝑘 = 0,1,2 and 3 consecutively. Since x is 

defined in such a way that it has variance 1, therefore the covariance at lag 0 equals 1. As a 

consequence of the choice of the signal, the covariance is either positive or negative as 

explained earlier. The values represented in this vector will be used to construct the covariance 

matrix by constructing a diagonal-constant matrix which is also known as Toeplitz matrix. The 

covariance matrix C is generally in the following form assuming that the vector x given in this 

example contains 4 entries.  
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                               𝐂 =  [

𝑎 𝑏 𝑐 𝑑

𝑏 𝑎 𝑏 𝑐

𝑐 𝑏 𝑎 𝑏

𝑑 𝑐 𝑏 𝑎

],                                        (3.9) 

It is worth mentioning that there are some built-in MATLAB functions that can be used 

to facilitate calculating the vector x and the covariance matrix (e.g., “cov”). As stated in (Ghil 

et al., 2002), the covariance matrix C of dimension 𝑚 × 𝑚, which can be estimated directly 

from the data, is considered as a Toeplitz matrix with constant diagonals. The entries 𝑐𝑖𝑗 of this 

matrix depend only on the lag |i −  j| according to the following equation. 

                                             𝑐𝑖𝑗 =
1

 𝑁𝑡 − |i −  j|
∑ 𝑋(𝑡)𝑋(𝑡 + |i −  j|)

 𝑁𝑡−|i − j|

𝑡=1

,                         (3.10) 

where 𝑁𝑡 represents the number of data points, the entries 𝑐𝑖𝑗 when |i −  j| = 0 for i =  j 

are the entries across the main diagonal, that is, their values are typically close to 1.  

The Second method to compute C is based on the trajectory matrix and its transpose. The 

covariance matrix can be computed form the trajectory matrix Y using a specific function in 

MATLAB. The variances of each column are represented in the main diagonal of the 

covariance matrix C. If 𝑁𝑡 is large and much greater than 𝑚, these values are practically 

identical and very close to 1. It is worth mentioning that the remaining three values in the first 

row in the given example are the covariance between the values in the first column and those 

in the second, third, and fourth column, respectively. The variances that have been identified 

therefore assist in the understanding of computing the covariance matrix considering that the 

values in the other rows indicate the covariance between the columns as well (Elsner and 

Tsonis, 2013).  

The symmetry of the covariance matrix is apparent from Equation (3.9) which shows a 

typical covariance matrix. However, the expected Toeplitz structure, in which all the values on 

the sub-diagonals should be identical and the main diagonal contains 1s, cannot practically 

obtained in every case because it mainly depends on some factors. The Toeplitz structure of 

matrix C can be determined by the length of the time series and the window length. The 

plausible explanation of not obtaining the expected Toeplitz structure lies in the ratio 𝑁𝑡 𝑚⁄ . In 

other words, due to the shortness of the time series and high window size, the covariance matrix 

does not entirely have the expected Toeplitz structure (Claessen and Groth, 2002).  



Chapter 3. Singular Spectrum Analysis  

 

90 

 

As stated in (Elsner and Tsonis, 2013), the lagged-covariance matrix C can be computed 

as the product of the trajectory matrix and its transpose 𝐂 = 𝐘𝑇𝐘. Examining the trajectory 

matrix for repeating patterns that represent oscillations in the original time record or 

investigating the patterns that appear in the covariance matrix will lead to find that the elements 

of the covariance matrix are proportional to the linear correlations between all pairs of the 

patterns appearing in the m-window used to construct Y. Hence the covariance matrix can be 

represented as in Equation (3.11) (Elsner and Tsonis, 2013; Yang et al., 2016).  

                           𝐂 =
1

√𝑁
 𝐘𝑇  

1

√𝑁
𝐘 =  

1

𝑁
 𝐘𝑇𝐘 ,                                      (3.11)                                                                                        

Matrix C is the lagged-covariance matrix of the snapshots from the original time record 

and a square matrix of dimension 𝑚 by 𝑚. However, its elements are all real numbers and  

𝑐𝑖𝑗 = 𝑐𝑗𝑖 for all 𝑖 and 𝑗, so it is symmetric, that is, 𝐂 = 𝐂𝑇. As a general mathematical 

representation, the matrix C can be written as in Equation (3.12) (Elsner and Tsonis, 2013; 

Harmouche et al., 2017). 

                                                                 𝐂 =
1

𝑁
 ∑  𝑌𝑖𝑌𝑖

𝑇 ,                                                             

𝑁

𝑖=1

(3.12) 

3.6.3 Eigenvalues and Eigenvectors  

Eigenvalues and their associated eigenvectors are useful in many circumstances; 

however, it is quite important to simplify a matrix by preserving its eigenvalues. In this step 

applying the SVD method to the covariance matrix obtained from either of the two methods 

explained earlier is required to compute the eigenvalues λ's and eigenvectors 𝐞's. Specific 

MATLAB functions are offered to facilitate the computation process as will be seen later, but 

before that some mathematical descriptions are sequentially provided in this section.  

3.6.3.1 Finding the eigenmodes 

Finding the so-called eigenmodes (eigenvalues and eigenvectors) is based on the 

fundamental question of eigenvector decomposition. In general, this question is for what values 

is the matrix 𝐀 − λ𝐈 singular? In this equation A is a given matrix, λ represents the eigenvalues, 

and 𝐈 is the identity matrix. Such question of singularity regarding matrices can be answered 

with determinants (Chu, Lin and Wang, 2013; Elsner and Tsonis, 2013). Using determinants, 

however, the fundamental question which just has been asked can be reduced to; for what 

values of λ is the determinant of the matrix 𝐀 − λ𝐈 equals to zero? or as in Equation (3.13). 
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                                         det(𝐀 − λ𝐈) = 0,                                     (3.13) 

This is called the characteristic equation for the matrix A where λ's that make the matrix 

𝐀 − λ𝐈 singular are called eigenvalues (Elsner and Tsonis, 2013). The eigenvalues of this 

matrix can therefore be computed by solving the characteristic equation. For each of these 

special values there are a corresponding set of vectors associated with these values called the 

eigenvectors of A and should satisfy the equation below.  

                                           (𝐀 − λ𝐈)𝐗 = 𝟎,                                    (3.14) 

Equation (3.14), in which 𝐗 represents a set of eigenvectors 𝐗𝑛 correspond to the 

eigenvalues λ′𝑠, can be written as: 

                                          𝐀𝐗 = λ𝐗,                                            (3.15) 

When representing the eigenvectors geometrically, they can be considered as the axis of 

a new coordinate system. Hence, any scalar multiple of these eigenvectors is also an 

eigenvector of matrix A (Golyandina and Shlemov, 2015). To simplify, all eigenvectors of the 

form 𝐶𝐗𝑛 (C  is scalar) will form an eigenspace spanned by 𝐗𝑛 which means that the eigenspace 

is one-dimensional and is spanned by 𝐗𝑛. In this case, only the scale of the eigenvectors is 

changing while their direction remains unchanged. 

The interpretation of eigenvalues and their associated eigenvectors mainly depends on 

the situation in which matrix A arises. The process of decomposition can be simplified as 

matrix A is usually symmetric with real coefficients. The eigenvalues and their associated  

eigenvectors can be seen as a way to express the variability of a set of data (Vautard, Yiou and 

Ghil, 1992). It is beneficial to mention some properties of eigenvalues and eigenvectors of an 

arbitrary matrix A before proceeding to the special case of the eigenvalues and eigenvectors of 

real, symmetric matrices. The trace of an 𝑛 by 𝑛 matrix A is given by the sum of the 𝑛 diagonal 

entries which equals the sum of the n eigenvalues of A as shown in Equation (3.16).  

                        λ𝟏 + λ𝟐 + ⋯+ λ𝒏 = 𝑎11 + 𝑎𝟐𝟐 + ⋯+ 𝑎𝒏𝒏 ,                 (3.16)      

It is worth mentioning that performing SVD of the trajectory matrix produces a matrix S 

with entries 𝑠𝑖 and each is equal to the square root of the eigenvalues of matrix C (√𝜆𝑖).  The 

so-called singular spectrum is the stem-plot of these values against their index i (Clifford, 

2005). The magnitudes of the eigenvalues are used in grouping step to divide the obtained 

elementary matrices into groups (Maddirala and Shaik, 2016).  
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3.6.3.2 Diagonal form of a matrix  

Assume that A is an 𝑛 by 𝑛 matrix with 𝑛 linearly independent eigenvectors (𝐞𝑖), 𝑖 =

1, 𝑛, hence a matrix E whose columns are the eigenvectors of A can be constructed in a form 

that satisfies the following equation:  

                                           𝐄−1𝐀𝐄 = 𝚲,                                        (3.17)      

The product on the left side of Equation (3.17) is called the diagonal form of the matrix 

A and therefore 𝚲 is a diagonal matrix whose nonnegative entries are the eigenvalues of A. It 

is worth mentioning that the eigenvectors of matrix A should be linearly independent to make 

it diagonalisable in this way. Also matrix E is not unique because the eigenvectors can always 

be multiplied by a constant scalar preserving their nature as eigenvectors (Elsner and Tsonis, 

2013). To conclude, E is a matrix whose columns are the eigenvectors of A and 𝚲 is a diagonal 

matrix whose nonnegative entries are the eigenvalues of A. 

A working example using numerical values can lead to a better understanding. To verify 

Equation (3.17), the eigenvalues λ′𝑠 and their associated eigenvectors can be computed by 

assuming A as a square matrix as follows:    

 A = [
3 4

−1 −2
] 

Using Equation (3.13) and when solving for λ, the eigenvalues λ1 = −1 and λ2 = 2 

have been obtained. Also, their associated eigenvectors can be computed using Equation (3.14) 

when solving for 𝐗 , however, the following eigenvectors 𝐗1 = [
1

−1
], 𝐗2 = [

−4
1

] have been 

obtained, and therefore E can be formed as E = [
1 −4

−1 1
].  

To verify, matrix product can be performed for the diagonal form of the matrix A 

according to Equation (3.17) using MATLAB to obtain 𝚲 = [
−1.0000 0.0001

0 2.0001
], where the 

entries in the main diagonal represent the eigenvalues that exactly identical to those that have 

been computed using Equation (3.13). 

3.6.3.3 Spectral decomposition  

If our interest is of the eigenvalues and eigenvectors of real and symmetric matrices, then 

assuming A is a real symmetric matrix where 𝐀 = 𝐀𝑇. Now, in this case, every eigenvalue of 

A is also real and if all eigenvalues are distinct, then their corresponding eigenvectors are 
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orthogonal. For more clarifications, if 𝐗𝑖′𝑠 are the eigenvectors, then 𝐗𝑖
𝑇𝐗𝑗 = 0 for all 𝑖 ≠ 𝑗.  

Normalising these eigenvectors can be performed as follows:  

𝐞𝑖 = 
𝐗𝑖

‖𝐗𝑖‖
, 

where  ‖𝐗𝑖‖ = √𝐗2
𝑖1 + 𝐗2

𝑖2 + ⋯+ 𝐗2
𝑖𝑛 

According to the above clarification, a set of orthonormal (orthogonal and normalised) 

eigenvectors can therefore be produced. Therefore, such vectors are orthogonal when 𝐞𝑖
𝑇𝐞𝑗 =

0 for all 𝑖 ≠ 𝑗 and normalised when 𝐞𝑖
𝑇𝐞𝑗 = 1 for 𝑖 = 𝑗.   

A real, symmetric matrix A can be diagonalised by an orthogonal matrix E whose 

columns are the orthonormal eigenvectors of A. Now, the orthonormal eigenvectors of A can 

be placed as columns of an orthogonal matrix E in order to diagonalise A (Hassani, 2007). It 

is important now to state a principal theorem when there is a diagonalisable matrix E whose 

columns are orthonormal of a real and symmetric matrix A as follows:   

  𝐄𝑇𝐄 = 𝐈 , and therefore  𝐄𝑇 = 𝐄−1 

Hence, Equation (3.17)  𝐄−1𝐀𝐄 = 𝚲 can be written as follows:  

                                         𝐀 = 𝐄𝚲𝐄𝑇 ,                                           (3.18)      

From Equation (3.18) the so-called spectral decomposition of A can be obtained  

                          𝐀 = λ1 𝐞1𝐞1
𝑇 + λ2𝐞2𝐞2

𝑇 + ⋯+ λ𝑛 𝐞𝑛𝐞𝑛
𝑇 ,                        (3.19)      

The spectral decomposition, which is fundamental to linear algebra, plays a vital role in 

the singular spectrum analysis method for time series analysis. For a give matrix A as in this 

demonstration, spectral decomposition expresses this matrix as a summation of the one-

dimensional projections 𝐞𝑖𝐞𝑖
𝑇 (Elsner and Tsonis, 2013). 

3.6.3.4 The singular spectrum  

In this section, it is to move from general to specific by considering that our symmetric 

matrix of interest is the covariance matrix C instead of the arbitrary real symmetric matrix A 

given for explanation in the above sections. Recall from Equation (3.18), since C is real and 

symmetric, there is a diagonalisable matrix E whose columns are orthonormal and a diagonal 

matrix 𝚲 such that 

                                           𝐂 = 𝐄𝚲𝐄𝑇,                                         (3.20)      



Chapter 3. Singular Spectrum Analysis  

 

94 

 

Since 𝐄𝑇𝐄 = 𝐈, and to reform Equation (3.20) in an easy way to handle, it is possible to 

multiply it from the right by 𝐄 according to matrix multiplication rules, then Equation (3.20) 

can be rewritten as below in a form that called the spectral decomposition of C. 

𝐂𝐄 = 𝐄𝚲, (3.21) 

Recall from the previous explanation that the eigenvalues of C are the nonnegative 

entries of the diagonal matrix 𝚲. Also, it has been mentioned that the lagged-covariance matrix 

C can be computed as the product of the trajectory matrix and its transpose 𝐂 = 𝐘𝑇𝐘. However, 

replacing this form of C in the Equation (3.21), a new form can be found and further simplified 

as follows:  

                                     𝐘𝑇𝐘𝐄 = 𝐄𝚲                                       

Simplifying the above form by multiplying both sides from the left by 𝐄𝑇 

                                     𝐄𝑇𝐘𝑇𝐘𝐄 = 𝐄𝑇𝐄𝚲                                 

Since 𝐄𝑇𝐄 = 𝐈, then 𝐄𝑇𝐘𝑇𝐘𝐄 = 𝚲.  To simplify more 

                                            (𝐘𝐄)𝑇(𝐘𝐄) = 𝚲,                                  (3.22)      

The matrix 𝐘𝐄 is the trajectory matrix projected onto the basis E and since E is composed 

of orthogonal vectors called the singular vectors of Y. Therefore, the components of Y aligned 

along the basis E are uncorrelated. In fact, the eigenvectors of C are the singular vectors of Y. 

The diagonal matrix 𝚲 consists of ordered values arranged in a descending order of magnitude. 

The square roots of the eigenvalues of the matrix C are called the singular values of Y. In short, 

these ordered singular values are referred to collectively as the singular spectrum (Hassani, 

Soofi and Zhigljavsky, 2010; Elsner and Tsonis, 2013; Golyandina and Shlemov, 2015). From 

the singular value decomposition, the trajectory matrix Y can be written as follows: 

                                           𝐘 = 𝐔𝐒𝐄𝑇,                                         (3.23)      

where U and E are left and right singular vectors of Y, and S is a diagonal matrix of 

singular values.  

From the definition of the covariance matrix 𝐂 = 𝐘𝑇𝐘 and by substituting Equation 

(3.23) in this form of the covariance matrix, the decomposition of C can be shown as follows: 

         𝐂 = 𝐘𝑇𝐘 = (𝐔𝐒𝐄𝑇)𝑇(𝐔𝐒𝐄𝑇) = 𝐄𝐒𝐔𝑇𝐔𝐒𝐄𝑇  

Since 𝐔𝑇𝐔 = 𝐈, then 𝐂 = 𝐄𝐒2𝐄𝑇                                    
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For the decomposition being unique, it follows that 𝐒2 =  𝚲. In short, the right singular 

vectors of Y are the eigenvectors of C and the left singular vectors of Y are the eigenvectors 

of the matrix 𝐘𝐘𝑇 (Chu, Lin and Wang, 2013; Golyandina and Shlemov, 2015). As a 

demonstration, the following example using numerical values is provided.   

Assume the time series example given in the beginning of this chapter as previously 

shown in Figure 3.1 and suppose to take only the first 6 values as indicated in the table below. 

To simplify, the window length is assumed to be 𝑚 = 3.  

t 1 2 3 4 5 6 

𝒙𝒕 1.014 ˗ 0.711 - 0.39 1.57 0.044 ˗ 1.166 

From the above given data,  𝑁𝑡= 6 and then 𝑁 =  𝑁𝑡 − 𝑚 + 1= 4, and by solving with 

Matlab, the following matrices have been found  

     Y =  [

1.0140    −0.7110 −0.3900
−0.7110 −0.3900 1.5700
−0.3900 1.5700 0.0440
1.5700  0.0440 −1.1660

] 

𝐂 =
1

√N
 𝐘𝑇  

1

√N
𝐘 =  

1

N
 𝐘𝑇𝐘   

     C =  [
     1.0377     −0.2467 −0.8399 
−0.2467 0.7811  −0.0793

  −0.8399    −0.0793 0.9946
] 

A built-in MATLAB function [P, D]=eig (C) can be used to compute the eigenvectors 

presented in the matrix P (RHO) and the eigenvalues  λ𝑛  (Lambda) presented in matrix D. 

       P =[
 0.7221  0.1439  0.6767 
 0.1139 −0.9401  0.3214
  0.6823 0.3092   0.6624

]  

      D =[
1.8702  0  0 

 0 0.8450   0 
 0  0 0.0982

] 

The spectral decomposition of C yields the eigenvalues as in matrix D and the 

eigenvectors in matrix P considering that the 𝑖𝑡ℎ  column of P is the eigenvector corresponding 

to the eigenvalue in the 𝑖𝑡ℎ column of D. Importantly, the number of eigenvalues is equal to 

the window size, in turn the number of the associated eigenvectors that matrix P contains. 

Consequently, this makes matrix P a square matrix of size 𝑚 𝑏𝑦 𝑚.  
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The amplitude of each eigenvector will be comparable to the amplitudes of all other 

eigenvectors with the normalisation used in the calculation of the trajectory matrix. The first 

eigenvectors represent a high-frequency oscillation if successive elements of the eigenvectors 

over time are considered, while the others capture the lower-frequency components of the time 

series (Elsner and Tsonis, 2013).  

Since 𝐂 = 𝐄𝚲𝐄𝑇, therefore this equation can be verified using matrix multiplication as 

by definition 𝐄 = 𝐏 and  𝚲 = 𝐃. The singular spectrum of the trajectory matrix Y consists of 

the square roots of the eigenvalues of matrix C that are given in matrix 𝚲 or 𝐃. These square 

roots are called the singular values of Y with the singular vectors being identical to the 

eigenvectors 𝐞1, 𝐞2 and 𝐞3 in the given working example which are aligned in matrix 𝐄 or 𝐏. 

It is worth mentioning that the desired and undesired subspaces that represent the signal of 

interest and unwanted components, respectively, can be identified from the pattern of the 

eigenvalues (Sanei and Hassani, 2015).  

3.6.4 Principle Components  

The eigenvectors of matrix C, which are measured at different lags, indicate the temporal 

covariance of the time series. Also, they can be used to compute the principal components 𝑣𝑘′𝑠 

by projecting the original time series onto the new coordinate system represented by these 

eigenvectors. In other words, it is simply a matrix multiplication process where the principal 

components matrix V results from multiplying the trajectory matrix Y by matrix P that contains 

the eigenvectors of C. The kth PC can be defined as the orthogonal projection coefficient of the 

original time record onto the kth  EOF (Vautard, Yiou and Ghil, 1992). This process can be 

given as follow:  

                                         𝑣𝑖
𝑘 = ∑ 𝑥𝑖+𝑗−1𝑒𝑗

𝑘
𝑚

𝑗=1
,                             (3.24)      

where 𝑣𝑖
𝑘 represents the principle components arranged in columns 𝑘 and rows i for 

[𝑖 = 1,2…𝑁] as each element of V results from multiplying a row of Y by a column of P. 

 𝑥𝑖+𝑗−1 represents the incremental elements in the rows of Y, 𝑒𝑗
𝑘 represents the jth component 

of the kth eigenvector in matrix P (Hassani, 2010; Golyandina and Shlemov, 2015). 

For each value of 𝑖 the summation will stop when 𝑗 = 𝑚, and this repetitive procedure 

ends when 𝑖 = 𝑁. The new produced matrix V will have a number of rows 𝑖 equals to 𝑁 and a 
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number of columns 𝑗 equals to 𝑚 or simply of size 𝑁 by 𝑚. Considering the example provided 

in the previous section where 𝑁 = 4,𝑚 = 3, Equation (3.24) can be demonstrated as follows:   

            𝐕 = 𝐘 × 𝐏 = [

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

𝑥41 𝑥42 𝑥43

] × [

𝑒1
1 𝑒1

2 𝑒1
3

𝑒2
1 𝑒2

2 𝑒2
3

𝑒3
1 𝑒3

2 𝑒3
3

] =

[
 
 
 
 
𝑣1

1 𝑣1
2 𝑣1

3

𝑣2
1 𝑣2

2 𝑣2
3

𝑣3
1 𝑣3

2 𝑣3
3

𝑣4
1 𝑣4

2 𝑣4
3]
 
 
 
 

,             (3.25)     

It is worth mentioning that the principal components are again time series and of the same 

length as the embedded time series introduced in the trajectory matrix and ordered in the same 

way as the eigenvectors. However, this indicates that the first column is the first principle 

component PC1, the second column is the second principle component PC2 and so on. The 

principle components are different from the embedded time series Y as a different coordinate 

system is chosen to plot each point. With MATLAB the principle components PCs are 

computed by a matrix product: 𝐕 = 𝐘 × 𝐏 as mentioned above.  

The columns of V do not correspond to different time lags as in the trajectory matrix Y. 

Rather, in the SSA, the principle components matrix is introduced as the projection of the 

embedded time series onto the eigenvectors. The original values of Y have been projected in a 

new coordinate system for gathering the variance in the PCs (Elsner and Tsonis, 2013). As 

previously mentioned, the eigenvectors, which are needed to compute the principle components 

as they represent the axis of projection, can be simply obtained using the covariance matrix 

𝐂 = 
1

𝑁
 𝐘𝑇𝐘 . The eigenvectors are presented in an 𝑚 × 𝑚 matrix that corresponds to a number 

of eigenvalues of C presented along the main diagonal of the eigenvalue’s matrix. Determining 

the eigenvalues in this way is by performing the singular value decomposition method. To give 

a full picture, the example provided in the previous section with numerical values is used for 

such clarification, however, with MATLAB, matrix V has been computed as follows:  

 𝐕 = 𝐘 × 𝐏 =   [

−1.0793   0.6937 0.1993 
1.5403 0.7497 0.4336
0.4905 −1.5184 0.2699

−1.9243 −0.1760 0.3041

] 

The covariance matrix of the principle components matrix = 
1

𝑁
 𝐕𝑇𝐕. Since 𝑁 = 4 in the 

given example, the matrix of eigenvalues has been computed results in the following matrix.   

[
1.8702   −0.0000 −0.0000
−0.0000 0.8450 −0.0000
−0.0000 −0.0000 0.0982

] 
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In this matrix, the diagonal contains the eigenvalues, and the off-diagonal elements are 

all zeros. By computing the variance-covariance matrix of the matrix V, two important aspects 

can be demonstrated. The first is that the variance of each PC equals to the eigenvalue of the 

corresponding eigenvector. The second is that, at lag zero, no covariance can be obtained 

between the PCs. When the normalisation is used, the variance of each principal component is 

λ1 seeing that the amplitudes increase with the increase in 𝑘. It is possible to isolate and probe 

each principal component independently from the remainder of the time series. An approximate 

geometric visualisation of a possible underlying attractor can be provided by the principal 

components if the embedding dimension (window length) is high enough (Ghil et al., 2002). 

To get back to the original time series, it is required to convolve the principal components with 

their associated eigenvectors.  

After decomposing the original time record and generating the so-called elementary 

matrices of the trajectory matrix when considering 𝐂 = 𝐘𝐘𝑇, the singular vectors can be used 

to compute the principal components of the time series. However, for more clarification, the 

principle components matrix will be defined in terms of the transpose of the trajectory matrix, 

matrix S that represents the square roots of the eigenvalues presented in matrix 𝚲, and the 

eigenvectors matrix, producing the collection (√𝜆𝑖𝑒𝑖𝑣𝑖) which is called the 𝑖𝑡ℎ eigentriple of 

the SVD. More details will be given in the next chapters when explaining the frame work of 

singular spectral separation established for acoustic signals contaminated by wind noise.   

3.6.5 Reconstruction of the Time Series  

The principal components represent a projection in a different coordinate system as their 

interpretation is different from that of 𝑋(𝑡). Therefore, they cannot be compared to the time 

series 𝑋(𝑡). Now, however, it is possible to return from the Eigen domain to the time domain 

by projecting the PCs back onto the eigenvectors. Using such projection therefore can help in 

obtaining time series in the original coordinates referred to the “Reconstructed Components” 

RCs, as in the SSA literature. Each of the obtained time series in the reconstruction step 

corresponds to one of the PCs. The RCs that resemble the desired signals are the ones with 

higher variance which are mainly the reconstructed components correspond to the low-order 

eigenvalues in the desired subspace. In other words, the RCs that correspond to the most 

dominant principle components associated with dominant eigenvalues are the ones that can be 

used to reconstruct the signal of interest (Elsner and Tsonis, 2013).  
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The grouping of SVD components used for reconstruction are quite important in this 

stage as the selected eigenvectors associated with the most dominant eigenvalues have 

absolutely a great influence on the output time series. The magnitudes of eigenvalues can be 

used for estimating the signal subspace (Maddirala and Shaik, 2016). Signals of interest are 

located in the lower subspace, while noise components arise in the higher subspace 

(Mohammadi et al., 2016). It is significant, however, to choose the group I of indices of the 

eigenvectors based on the standard SSA recommendations to avoid missing part of the signal 

or adding part of the noise (Hassani, 2010; Golyandina and Shlemov, 2015).    

Among the reconstruction techniques is to reconstruct a new matrix denoted by Z in a 

similar way of constructing the embedded time series or the trajectory matrix Y, but with two 

main differences. The first is that 𝑋(𝑡), of course, will no longer be used in this stage to 

construct Z; instead, the principal components will be used. The second is that time delay runs 

in the opposite direction. Matrix Z can be constructed for each principal component. Returning 

to the example given at the beginning of this chapter and used throughout the different sections 

to build up a detailed and clear picture of the method developed for wind noise separation and 

provide further demonstration. Matrix Z can be constructed as follows: 

                                 𝐙 =  

[
 
 
 
 
 
𝑣1

1 0 0 0

𝑣2
1 𝑣1

1 0 0

𝑣3
1 𝑣2

1 𝑣1
1 0

𝑣4
1 𝑣3

1 𝑣2
1 𝑣1

1

⋮ ⋮ ⋮ ⋮

𝑣20
1 𝑣19

1 𝑣18
1 𝑣17

1 ]
 
 
 
 
 

,                            (3.26)      

The opposite direction of the time delay compared to the trajectory matrix Y is depicted 

in Equation (4.26). In this illustration, only one principle component is used. Also, it can be 

seen that the first column of Z is simply PC1 (the first column in matrix V). The other columns 

of Z are PC1 at different time delay ranging from 𝑡1 to 𝑡3 in opposite direction compared to 

matrix Y and always preserving the same window length for the coordination of matrix 

dimensions. In a similar way to matrix Y, zeros have been put in where data is not available 

(Claessen and Groth, 2002).  

It is worth mentioning that the dimensions of the used matrices should match to enable 

matrix multiplication considering that the selected window length plays a vital role in deciding 

the size of the different matrices as well as the way of computing the covariance matrix. 
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According to (Ghil et al., 2002), the part of a time series that is associated with a single or 

several EOFs can be reconstructed by combining the associated PCs as follows:  

                              𝑅𝐶𝒦(𝑡) =
1

𝑚
∑  

𝑘∈𝒦

∑ 𝑣(𝑡 − 𝑗 + 1)𝑒𝑘(𝑗),                                                    (3.27)

𝑈𝒦

𝑗=𝐿𝑡

 

where 𝒦 is a set of eigenvectors on which the reconstruction is based, 𝑚 is the 

normalisation factor which is the window size, 𝑈𝒦 and 𝐿𝑡 are the upper and lower bound of 

summation which may differ from the central part of the time series and its end point as stated 

in (Vautard and Ghil, 1991), 𝑣(𝑡 − 𝑗 + 1) are rows entries of Z, 𝑒𝑘(𝑗) are columns entries of 

P.  

With MATLAB, the RCs can be computed in an operation that analogous to Equation 

(3.27).  Generally, the first reconstructed components are of interest because they represent the 

oscillatory components that can be obtained by recovering the time series when returning from 

Eigen domain to time domain. Therefore, the first reconstructed component RC1 for example 

can be obtained in a similar way as above but by multiplying matrix Z by the first eigenvector 

only of matrix 𝐏 and considering the normalisation factor 𝑚 which can be specified in 

MATLAB operations (Hassani, Mahmoudvand and Zokaei, 2011; Chu, Lin and Wang, 2013; 

Golyandina and Korobeynikov, 2014).  

The reconstructed components RCs can be computed by inverting the projection using 

the principle components 𝐏𝐂 = 𝐘 × 𝐑𝐇𝐎 onto the eigenvectors transpose matrix as in the 

operation; 𝐑𝐂 = 𝐘 × 𝐑𝐇𝐎 × 𝐑𝐇𝐎𝑇. All the RCs can be put together into a single matrix 

denoted by RC in which the columns are the reconstructed components. This can be 

accomplished by constructing matrix Z for the other PCs in a similar way as above and 

projecting the new matrix on the eigenvector’s matrix. However, this procedure depends on 

the selection of the eigenvectors associated to other eigenvalues that might be seen as dominant 

ones. In this way, a set of RCs will be produced to form the matrix RC. Such RCs are related 

to specific and selected principle components that corresponds to the eigenvector associated to 

dominant eigenvalues as explained in the given example. To complete the transformation back 

to one-dimensional time domain vector that describes a specific signal component, the so-

called diagonal averaging approach, which will be explained in the next chapter, has been 

adopted.  
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In addition, in this thesis, it is to develop the SSA method based on its two 

complementary stages which are decomposition of a given noisy time series and the 

reconstruction of the signal of interest to further improve the method to separate wind noise 

components and reconstruct the desired signal free of noise. In other words, this can be 

achieved by developing grouping and reconstruction techniques to improve the separability 

approach and separating wind noise components out from the signal. However, details about 

grouping and reconstruction techniques to improve separability will be explained in the next 

chapters. 

3.7 Summary  

Contemporary and powerful signal processing methods are sought to address the wind 

noise issues and might yield better results, e.g., (Schmidt, Larsen and Hsiao, 2007). Therefore, 

the SSA method has been selected for further development particularly for microphone wind 

noise problem and proposed to be the main method in this study as justified in this chapter. 

Also, so far, no attention has been devoted concerning specifying wind noise reduction in the 

context of environmental noise and soundscapes monitoring and design using novel and 

powerful techniques such as the SSA. This leads to consider this study the first to undertake 

developing the SSA for wind noise problem in an interesting application area of outdoor data 

acquisition.  

The SSA has been developed and implemented to overcome many practical problems 

including noise reduction in which the method shows potential capabilities. Many aspects 

regarding time series analysis have been covered in this chapter with working examples. Also, 

several important theoretical and mathematical approaches have been adopted to handle with 

the method for further development as a noise separation method, particularly for microphone 

wind noise problem. This includes explanation of the different steps involved in its two 

complementary stages.  

The SSA utilises a representation of data in a statistical domain which called Eigen 

domain rather than a time or frequency domain. However, instead of using a set of axes that 

represent discrete frequencies such as in Fourier Transform, data is projected onto a new set of 

axes that fulfil some statistical criterion. This statistical technique depends on the structure of 

the data being analysed, whereas, in Fourier-based techniques, Fourier components onto which 

a data segment is projected are fixed. Therefore, in the SSA, data is projected onto axis that 

might change according to the change of the structure of the data over time (Clifford, 2005).  
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One of the most important discussions in the SSA is that the signals obtained by the SSA 

decomposition are generated from eigenvectors which are not purely related to the frequency 

when compared to those obtained by filtering out frequency bands with the Fourier Transform 

for example (Fukuda, 2007). This property gives the SSA an obvious and key advantage which 

is the ability of adding or removing the produced additive components either low or high 

frequencies based on the applied grouping criterion and reconstruction techniques to therefore 

improve the separability approach. To demonstrate what have previously mentioned in this 

chapter with useful clarifications, a framework has been established regarding singular spectral 

separation of acoustic signals contaminated by wind noise in the next chapters. 
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4 

Singular Spectral Separation of Acoustic Signals 

Contaminated by Wind Noise 

4.1 Overview 

The SSA is introduced in a wide range of applications as a de-noising and raw signal 

smoothing method such as analysing and de-noising acoustic emission signals (Harmouche et 

al., 2017; Traore et al., 2017). Basically, a number of additive components can be obtained by 

decomposing the original time series to identify which of the new produced additive subseries 

be part of the modulated signal and which be part of random noise (Alonso, Castillo and 

Pintado, 2005). It is showed in (Fukuda, 2007; Saito et al., 2011), that using the SSA for data 

pre-processing is a helpful procedure that encourages improving the results of any time series 

for data mining and signal discrimination.  

The idea of the SSA is based on the decomposition of a time series into several subseries, 

so that each subseries can be identified into different groups as; oscillatory components, a trend 

or noise. The SSA is a model free and non-parametric method consists of two complementary 

stages (decomposition and reconstruction) as shown in Figure 4.1. The method is mainly based 

on statistical approaches and many operations of the SSA algorithm are elementary linear 

algebra (Claessen and Groth, 2002; Chu, Lin and Wang, 2013; Yang et al., 2016; Launonen 

and Holmström, 2017).  

 

          Figure 4.1. The two complementary stages of the SSA method  

Decomposition

Transformation of the given record
from one-dimensional time series to
multi-dimensional into a Hankel
trajectory matrix

Performing SVD of the constructed
trajectory matrix and covariance matrix
construction to obtain eigenvalues and
eigenvectors

Reconstruction

Computing the principle components
and selecting dominant features by
grouping SVD additive components

Original time series reconstruction by
using the selected features
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The SSA has been successfully implemented to solve many problems based on its 

capabilities. When compared with other time series analysis methods, it shows certain 

superiority, potentials, and broader application areas and competes with more standard methods 

in the area of time series analysis (Hassani, Heravi and Zhigljavsky, 2009; Chu, Lin and Wang, 

2013; García Plaza and Núñez López, 2017). The SSA has been known as a two-step point-

symmetric de-nosing method of time series. Noiseless signals can be obtained with minimum 

loss of data (Jiang and Xie, 2016; Yang et al., 2016; Qiao et al., 2017).  

In this study, a framework of singular spectrum separation of acoustic signals 

contaminated by wind noise has been established. Within this framework, as systematic 

approach has been adopted to effectively develop a wind noise separation method based on the 

singular spectrum analysis through its two complementary stages which are composed of 

multiple steps. In the developed SSA algorithms, it is to focus on wind noise components to be 

separated out from the signal and reconstruct the desired signals as described in the subsequent 

sections. It is to consider developing the method towards achieving the aim of the study through 

developing grouping and reconstruction techniques as key elements to improve the separability 

which will be explained in the next chapter. 

4.2  Key Concepts and Useful Insights in the SSA Method  

The key element in the de-nosing process is to remove the noise without losing a 

significant portion of the signal and this can be accomplished with the SSA. The SSA can 

provide an important concept from the time series analysis known as statistical dimension. The 

statistical dimension of the process from which the time series was taken is defined as the 

number of eigenvalues before the noise floor. This concept develops the use of the SSA as a 

de-noising technique (Elsner and Tsonis, 2013; Yang et al., 2016). In this thesis, the main 

aspect in studying the properties of the SSA is the separability which describes how well 

different components can be separated from each other. If the dataset is separable, it is then to 

focus on how to apply a proper grouping criteria after identifying and optimising suitable 

window size (Hassani, 2010; Golyandina and Shlemov, 2015; Golyandina and Lomtev, 2016).  

In the SSA method there are some useful insights to be observed. A harmonic component 

commonly produces two eigentriples with close singular values; however, a pure noise series 

typically produces a gradually decreasing sequence of singular values. Furthermore, checking 

breaks in the eigenvalue spectra is also another useful insight. This can be accomplished by 
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using visual SSA tools in the eigenvalue spectra. In other words, checking breaks is to ensure 

the availability of eigentriples with nearly equal and close singular values when specifying a 

threshold of such equality. Large breaks among the eigenvalues pairs in the eigenvalue spectra 

cannot lead to produce a harmonic component (Hassani, 2007; Chu, Lin and Wang, 2013; Yang 

et al., 2016). 

In addition to the perception of the typical shape of the eigenvalue’s spectra, the analysis 

using w-correlation matrix is used to distinguish between frames containing mostly the energy 

of the wanted signal and wind-only frames (in the case of this study) presented in the higher 

subspace of the singular spectra.  

4.3  The Established Procedure of the SSA Method 

From the SSA theory, the spectral (eigenvalue) decomposition of a given matrix A, for 

example, into a set (spectrum) of eigenvalues and eigenvectors provided a clear theoretical and 

scientific understanding of the term “singular spectrum” which came from such spectral 

decomposition. Also, these eigenvalues are specific numbers that make matrix 𝐀 − λ𝐈 singular 

when the determinant of this matrix is equal to zero. In this mathematical illustration, matrix I 

is the identity matrix and λ′s are the eigenvalues. Singular spectrum analysis, per se, is, the 

analysis of time series using the singular spectrum. Therefore, as previously mentioned, the 

time series under investigation needs to be embedded in a so-called trajectory matrix as a first 

step (Elsner and Tsonis, 2013; Golyandina and Korobeynikov, 2014).  

The representation of the data in the SSA method is in a statistical domain which is called 

Eigen domain rather than a time or frequency domain. However, in the SSA, data is projected 

onto a new set of axes that fulfil some statistical criterion and might change according to the 

change of the structure of the data over time (Clifford, 2005; Golyandina and Shlemov, 2015). 

In principal, the idea of the SSA on which the developed SSA algorithms are based, is to 

embed a time series 𝑋(t) into multi-dimensional Euclidean space and find a subspace 

corresponding to the sought-for component as a first stage. At the first decomposition stage, 

the time series is decomposed into mutually orthogonal components after computing the 

covariance matrix from the embedded time series or the constructed trajectory matrix. The 

trajectory matrix is obtained from the real observations of the time series and decomposed into 

elementary matrices or also called additive components using SVD  method (Chu, Lin and 

Wang, 2013; Golyandina and Shlemov, 2015; Harmouche et al., 2017). The SVD method is 
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also used to determine the principal components of a multi-dimensional signal (Clifford, 2005). 

The aim is to decompose the original time series or the time signal captured by sensors into a 

small number of independent and interpretable components such as a slowly varying trend, 

oscillatory components (harmonics), and a structure less noise (Ghil et al., 2002; García Plaza 

and Núñez López, 2017). Figure 4.2 illustrates a descriptive procedure of the SSA method. 

 

Figure 4.2. A descriptive procedure of the SSA method 

Once the SSA decomposes noisy signals in the eigen-subspaces, it selects and groups the 

principle components according to their contributions to noise and wanted signals in the 

singular spectrum domain. However, this requires a suitable grouping technique to separate 

noise components that located in the undesired subspace from the signal of interest in the 

desired subspace (Sanei and Hassani, 2015). Eventually, the second stage is to reconstruct a 

time series component corresponding to this subspace (Chu, Lin and Wang, 2013; Golyandina 

and Shlemov, 2015). The second stage entails the reconstruction of the signal into an additive 

set of independent time record (García Plaza and Núñez López, 2017). The SSA reconstructs 

the wanted components back to the time domain resulting in the separation of noise and wanted 

signals. The reconstruction of the original time series is accomplished by using estimated trend 

and harmonic components (Ghil et al., 2002). The time series is reconstructed by selecting 

those components that reduce the noise in the series (Patterson et al., 2011).    
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4.4  Mathematical Formulation and Algorithm Description  

Time series can be stored in a vector denoted by x for example whose entries are the data 

points that describe the time series as a sequence of discrete-time data (Claessen and Groth, 

2002). Such vector is an introductory element to many further steps as it includes the required 

information about the time series. The SSA method is basically consists of main four aspects 

(Jiang and Xie, 2016; Maddirala and Shaik, 2016; Xu, Zhao and Lin, 2017). Figure 4.3 shows 

these aspects.   

 

Figure 4.3. Main aspects in the SSA method 

The SSA algorithm involves the decomposition of a time series and reconstruction of a 

desired additive component as the two main stages with multiple steps as illustrated in the 

Figure 4.3. These steps mainly describe the SSA algorithm and will be explained in more 

details while considering many important mathematical aspects in the next subsections. 

4.4.1 Signal Decomposition Stage  

4.4.1.1 Step one: Embedding in a vector space  

In practice, the SSA is nonparametric spectral method based on embedding a given time 

series {𝑋(𝑡): 𝑡 = 1,… ,𝑁𝑡} in a vector space. The vector x, whose entries 𝑁𝑡 are the data points 

of a time series, can clearly define and describe this time series at regular intervals (Chu, Lin 

and Wang, 2013; Golyandina and Shlemov, 2015; García Plaza and Núñez López, 2017). When 

considering a real-valued time series 𝑋(𝑡) = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁𝑡
) of length 𝑁𝑡 and 𝑥1, 𝑥2, … , 𝑥𝑁𝑡

 

data points, therefore, the given time series can simply be presented as a column vector as 

shown in Equation (4.1). 

𝐱𝑇 = (𝑥1, 𝑥2 …… . 𝑥𝑁𝑡
), (4.1) 

      Data Trajectory Matrix       Sum of 1-Rank Matrices 

Grouped Matrices Signals Reconstruction 

3. Grouping 

Collection of time 

series array 

Embedding in a 

vector space 

Elementary matrices, 

additive components 

Grouping of SVD 

components 

Separability &   

unwanted source removing 

       4. Reconstruction 

        2. Decomposition 1. Embedding 
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This column vector shows the original time series before considering a 1 lag shifted 

version at a given window length 𝑚 as the time record can be presented in the vector space. 

Hence, this vector represents the time series at zero lag (i.e. when there is no delay, 𝑘 = 0). 

According to that, the window length 𝑚 should be suitably identified to obtain the lag 𝑘 which 

is needed to construct a new matrix according to delay coordinates. In the SSA jargon, this 

matrix is called “embedded time series” or trajectory matrix and denoted by Y as previously 

mentioned. The window length is also called embedding dimension and it represents the 

number of time-series’ elements in each snapshot (Chu, Lin and Wang, 2013; Elsner and 

Tsonis, 2013; Golyandina and Shlemov, 2015; García Plaza and Núñez López, 2017). 

The whole procedure of the SSA method depends upon the best selection of this parameter 

as well as the grouping criterion. These two key aspects are very important to develop the 

concept of reconstructing noise free series from noisy records. Different rank-one matrices 

obtained from the SVD can be selected and grouped to be processed separately. If the groups 

are properly partitioned, they will reflect different components of the original time record (Chu, 

Lin and Wang, 2013; Golyandina and Shlemov, 2015).  

4.4.1.2 Step two: Trajectory matrix production   

The algorithm generates a trajectory matrix from the original time series 𝑋(𝑡) by sliding a 

window of length 𝑚. With the SSA, every time series can be decomposed into a series of 

elementary matrices after mapping it into a trajectory matrix. Each of these matrices shows 

glimpses of particular signature of oscillation patterns. The trajectory matrix is then 

approximated using SVD. A one-dimensional time series 𝑋(𝑡) = 𝑥1, 𝑥2, …… , 𝑥𝑁𝑡
can be 

transferred into a multi-dimensional series in the embedding step which can be viewed as a 

mapping process. The multi-dimensional series contains vectors 𝐱𝑘 which are called 𝑚-lagged 

vectors (or, simply, lagged vectors) as in Equation (4.2).  

𝐱𝑘
𝑇 = (𝑥𝑘+1, 𝑥𝑘+2, …… , 𝑥𝑘+(𝑁𝑡−𝑚+1)), (4.2) 

The trajectory matrix Y is then considered as multivariate data with 𝑚 characteristics and 

N observations. In this embedding step, the single parameter is the window length which is an 

integer such that 2 ≤ 𝑚 ≤ 𝑁𝑡. The result of the embedding process is a Hankel trajectory 

matrix Y with entries (𝑥𝑖𝑗)𝑖,𝑗=1
𝑁,𝑚

. The columns 𝐱𝑗 of Y are vectors which lie in 𝑚-dimensional 

space 𝑅𝑚 (Hassani, Heravi and Zhigljavsky, 2009). Then the embedded time series can be 

written as follows: 
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𝐘 = [𝐱𝑘=0, 𝐱𝑘=1, …… , 𝐱𝑘=𝑚−1], (4.3) 

The trajectory matrix contains the original time series in the first column and a lag 1 shifted 

version of that time series for each of the next columns. It can be obviously seen from Equation 

(4.3) that the first column is 𝑋(𝑡) when 𝑘 = 0 and the last is 𝑋(𝑡) when 𝑘 = 𝑚 − 1. However, 

as explained in (Claessen and Groth, 2002), according to delay coordinates, a total number of 

column vectors equals 𝑚 will be obtained. Importantly, these vectors are similar in size to the 

first column vector but with a 1 lag shift. This is seen as a first method when last rows of the 

produced matrix are supplemented by 0s based on the delay. In the second method, arranging 

the snapshots of any given time series as row vectors can lead to construct the trajectory matrix 

when the last rows are not supplemented by 0s (Chu, Lin and Wang, 2013; Golyandina and 

Shlemov, 2015). However, in this case, a trajectory matrix Y of size 𝑁 × 𝑚 will be constructed. 

For more clarification, a representation of any given time series 𝑋(𝑡) can be shown as in Figure 

4.4 since there is a sliding window with an overlap 𝑚 − 1 used to construct the trajectory 

matrix in the embedding process. An example with numerical values is also provided in Figure 

4.4 to show the construction of Y considering the delay shift from lag 0 to lag 𝑁 − 1. 

𝑥1 𝑥2 … 𝑥𝑚 𝑥𝑚+1 𝑥𝑚+2 … 𝑥𝑁 … … 𝑥𝑁𝑡
 

      Lag 0 

 

                                                                                                            

1 2 3 … 10
2 3 4 … 11
3 4 5 … 12
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋮

11 12 13 … 20

 

1 2 3 … … 20 

Figure 4.4. Embedding process to construct the trajectory matrix 

The coordinates of the phase space can be defined by using lagged copies of a single time 

series (Elsner and Tsonis, 2013). The trajectory matrix corresponds to a sliding window of size 

𝑚 that moves along the time series 𝑋(𝑡) (Chu, Lin and Wang, 2013; Yang et al., 2016). The 

sliding window has an overlap equals 𝑚 − 1 as shown in Figure 4.4 and the values of the lag 

𝑘 are given by 𝑘 = 0,1, …… ,𝑚 − 1. In case of considering the arrangement of column vectors 

E.g. A time series X (t). 𝑁𝑡 = 20 , 

𝑚 = 10 and 𝑁 = 11, Y as below 

Lag 1 

Lag 2 

Lag 𝑁 − 1 

The sliding window length m 
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as in Equation (4.3) with respect to the original time series presented in a column vector, 

however, the number of lags will be limited by 𝑁 − 1. This is also correct as the snapshots of 

the given time record can be arranged in row vectors considering the 1 lag shifted version as 

depicted in Figure 4.4. In all cases, it is to choose the way that gives an adequate understanding 

of how to manipulate the matrix through its rows or columns while keeping the same principle. 

The embedding dimension and the lagged time are the main principles applied in this step in 

which the delays represent the transformation of the time series presented in the vector space 

into a multivariate set of time observations (Elsner and Tsonis, 2013). The number of rows 𝑁 

of Y, which can be filled with the values of 𝑋(𝑡), indicates the number of embedding vectors 

and is given by 𝑁 = 𝑁𝑡 − 𝑚 + 1 as derived in the previous chapter, recall from Equation (3.3). 

Using the trajectory matrix transformation method is a way to make a multivariate 

statistical analysis possible from a univariate time series. The coordinates of the system can be 

defined when implementing lagged time of a single time record. However, the window length 

is seen as the time spanned by each embedding vector when considering the overlap. As 

explained in (Elsner and Tsonis, 2013), the snapshots of a given record when considering only 

the number of rows of Y that can be filled with the values of 𝑋(𝑡) are called embedding vectors. 

These vectors can be seen as 𝐯1
𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑚), 𝐯2

𝑇 = (𝑥2, 𝑥3, … , 𝑥𝑚+1), and so forth for the 

rest of the embedding vectors up to 𝐯𝑁
𝑇 = (𝑥𝑁, 𝑥𝑁+1, … , 𝑥𝑁𝑡

). Hence, the trajectory matrix can 

be constructed by arranging the snapshots as row vectors and only 𝑁𝑡 − 𝑚 + 1 rows can be 

filled with values of 𝑋(𝑡) as in Equation (4.4). 

𝐘 = 1/√𝑁

[
 
 
 
 
 
𝐯1

𝑇

𝐯2
𝑇

𝐯3
𝑇

⋮
𝐯𝑁

𝑇]
 
 
 
 
 

 = 1/√𝑁

[
 
 
 
 
𝑥1 𝑥2 𝑥3 … 𝑥𝑚

𝑥2 𝑥3 𝑥4 … 𝑥𝑚+1

𝑥3 𝑥4 𝑥5 ⋯ 𝑥𝑚+2

⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑁 𝑥𝑁+1 𝑥𝑁+2 ⋯ 𝑥𝑁𝑡 ]

 
 
 
 

, (4.4) 

where √𝑁 is the convenient normalisation, N the number of embedding vectors, 𝑁𝑡 denotes 

the length of the time record that is being processed with the SSA at a selected window length. 

The constructed trajectory matrix includes the complete record of patterns that have 

occurred within a window of length 𝑚. To generalise, assuming that 𝑋(𝑡) is a given time series 

for 𝑡 = 1,2,3, … ,𝑁𝑡, the augmented or trajectory matrix is constructed as in Equation (4.5).  
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𝐘 = [𝐱1: … : 𝐱𝑚] = (𝑥𝑖𝑗)𝑖,𝑗=1
N,𝑚

, (4.5) 

where 𝑥𝑖𝑗 = 𝑥𝑖+𝑗−1 are the entries or time domain samples of the column vectors for 1 ≤

𝑖 ≤ 𝑁, 𝑁 = 𝑁𝑡 − 𝑚 + 1, and 1 ≤ 𝑗 ≤ 𝑚, and the column vectors 𝐱𝑖  of this matrix can be 

presented as 𝐱𝑖
𝑇 = (𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑖+𝑁−1), for the values of k from 0 to 𝑁 − 1 in a 1 lag shifted 

increment and 𝑖 = 1,… ,𝑚 is the index of the columns. 

The arrangement of entries 𝑥𝑖𝑗 of the trajectory matrix depends on the lag. For example, 

when considering that the trajectory matrix has dimensions 𝑁 × 𝑚, at 0 lag, the trajectory 

matrix Y represents the first 𝑁 elements from time record vector 𝐱1
𝑇 = (𝑥1, 𝑥1+1, … , 𝑥1+𝑁−1), 

while at lag 1, 𝐱2
𝑇 = (𝑥2, 𝑥2+1, … , 𝑥2+𝑁−1) and so on up to 𝑖 = 𝑚 as illustrated in Equation 

(4.5) and Figure 4.4. As explained in (Golyandina, Nekrutkin and Zhigljavsky, 2001), the 

successive vectors 𝐱𝑖 are supposed to be long enough to characterise the dynamic of the discrete 

time record. However, based on the selection of the length of the sliding window, which plays 

a vital role in calculating the number of the embedding vectors 𝑁, and if 𝑁 > 𝑚, the number 

of rows of matrix Y will be greater than the number of its columns. The dimensionality of the 

trajectory matrix is highly dependent on two main factors which are the window length and the 

length of the time record under investigation. These two factors also affect the processing time 

of the SSA. For longer time series and bigger window size, the dimensionality of Y will be 

larger and consequently the overall computation and processing time increases.  

It is worth mentioning that Y can be constructed with different dimensions when using the 

transpose vectors of the snapshots and arranging these snapshots as column vectors, however, 

all the above-mentioned equations are always valid in this case as well. Consequently, the size 

of the covariance matrix will be changed, but without affecting its nature as a square matrix. 

The trajectory matrix and its transpose 𝐘𝑇are linear maps between the spaces 𝑅𝑚 and 𝑅𝑁 (Chu, 

Lin and Wang, 2013). Two important properties of the trajectory matrix are stated in 

(Golyandina and Korobeynikov, 2014), the first is that both the rows and columns of Y are 

subseries of the original series. The second is that Y has equal elements on anti-diagonals which 

makes it a Hankel matrix (i.e. all the elements along the diagonal i + j = const are equal) as 

shown in Equation (4.4).  

4.4.1.3 Step three: Computing the lagged-covariance matrix  

This step is the preparation for applying the SVD in the decomposition stage. The 

covariance matrix C, which is also known as diagonal matrix, is basically a matrix that shows 
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the covariance between the values 𝑋(𝑡) and 𝑋(𝑡 + 𝑘) which is mainly the covariance between 

lagged (or “delayed”) values of the original time series 𝑋(𝑡) (Chu, Lin and Wang, 2013; 

Golyandina and Shlemov, 2015). According to (Vautard and Ghil, 1989), there are two 

methods of computing the covariance matrix. Estimating the lagged-covariance matrix directly 

from the data is one method. Measuring the relation between the entries of the trajectory matrix 

can produce this lagged-covariance matrix. However, the entries in the (𝑖, 𝑗) position of the 

covariance matrix imply the covariance between the entries in the position (𝑖𝑡ℎ, 𝑗𝑡ℎ) and the 

elements in the opposite position (𝑗𝑡ℎ, 𝑖𝑡ℎ) of the trajectory matrix Y. The repeating patterns 

reflect the oscillation in the time record as explained in (Elsner and Tsonis, 2013).  

The covariance matrix is a square matrix of dimension 𝑚 × 𝑚 and can be generally seen 

as a Toeplitz matrix with constant diagonals as explained in the previous chapter. Recall from 

Chapter 3, Equation (3.10), the entries 𝑐𝑖𝑗 of this matrix depend only on the lag ji −  (Ghil et 

al., 2002). As a second method, the lagged-covariance matrix can be computed form the 

trajectory matrix Y and its transpose (Elsner and Tsonis, 2013). Therefore, the product of the 

trajectory matrix and its transpose can lead to compute the covariance matrix. The variances of 

each column of Y are presented in the main diagonal of the covariance matrix. As previously 

mentioned, repeating patterns of the trajectory matrix represent oscillations in the original time 

series. However, by examining these repeating patterns and patterns that appear in C, it can be 

seen that the entries of the covariance matrix are proportional to the linear correlations between 

all pairs of the patterns appearing in the 𝑚-window used to construct the trajectory matrix.    

Recall from Equation (3.12), it shows a general mathematical representation of computing 

the covariance matrix of the snapshots from the original time record using the trajectory matrix 

and its transpose. It is worth noting that the elements of C are all real numbers and 𝑐𝑖𝑗 = 𝑐𝑗𝑖 for 

all 𝑖 and 𝑗, therefore, the covariance matrix C is a symmetric matrix, and hence 𝐂 = 𝐂𝑇. As the 

SSA algorithms have been developed using MATLAB working environment and used in 

several experiments performed in this study, however, several built-in functions are very 

beneficial in either way of computing the covariance matrix. For example, a specified 

MATLAB function that gives a vector of size 𝑚 can be used to construct C based on this vector 

as explained in the previous chapter.  
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4.4.1.4 Step four: Performing the SVD  

• Spectral decomposition and eigenmodes  

It is a step of computing the diagonal values and their corresponding vectors where each 

presented in a separate matrix; diagonal and orthogonal matrices, respectively. This step is 

prior to obtaining the additive components or elementary matrices by performing the SVD of 

the trajectory matrix and computing the principle components. To obtain spectral information 

on the time series, the SSA proceeds by diagonalising the covariance matrix. Spectral 

decomposition is a factorisation of a diagonalisable matrix into a canonical form whereby the 

representation of the matrix is in terms of its eigenvalues and eigenvectors (Chu, Lin and Wang, 

2013; Elsner and Tsonis, 2013). Since the lagged-covariance matrix C is square symmetric 

matrix of order 𝑚 × 𝑚 with 𝑚 linearly independent eigenvectors (𝑒𝑖), 𝑖 = 1,… ,𝑚; therefore, 

a matrix E can be obtained. As any matrix can be factored into many pieces (Elsner and Tsonis, 

2013), hence 𝐄−1𝐂𝐄 = 𝚲. The columns of E are the eigenvectors of C.  

The product 𝐄−1𝐂𝐄 is called the diagonal form of C and therefore 𝚲 is a diagonal matrix 

whose nonnegative entries are the eigenvalues of C. The eigenvectors of C should be linearly 

independent, so as to make C diagonalisable in this way. Importantly, matrix E is not unique 

because the eigenvectors can always be multiplied by a constant scalar preserving their nature 

as eigenvectors (Elsner and Tsonis, 2013).   

As the covariance matrix is assumed to be a real symmetric matrix where 𝐂 = 𝐂𝑇, then 

every eigenvalue obtained by the spectral decomposition of C is also real. Since all eigenvalues 

are distinct, however, their corresponding eigenvectors are orthogonal. The real, symmetric 

matrix C can therefore be diagonalised by an orthogonal matrix E in which the columns are 

the orthonormal eigenvectors of C (Hassani, 2007). Matrix E is a diagonalisable matrix whose 

columns are orthonormal of the real and symmetric covariance matrix. The spectral 

decomposition of the covariance matrix produces two matrices 𝚲 and E.  

Since 𝐄−1𝐂𝐄 = 𝚲, 𝐄𝑇𝐄 = 𝐈, and 𝐄𝑇 = 𝐄−1,then, 𝐂 = 𝐄𝚲𝐄𝑇.  

Matrices 𝚲 and E can be written as follows: 

𝚲 = [

𝜆1 0 … 0
0 𝜆2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝑚

], 𝐄 =

[
 
 
 
𝑒1

1 𝑒1
2 … 𝑒1

𝑚

𝑒2
1 𝑒2

2 ⋯ 𝑒2
𝑚

⋮ ⋮ ⋱ ⋮
𝑒𝑚

1 𝑒𝑚
2 ⋯ 𝑒𝑚

𝑚]
 
 
 
, (4.6) 
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Matrix 𝚲 is symmetric with entries 𝜆𝑖 along the leading diagonal for 𝑖 = 1,…… ,𝑚, 

however, 𝐞𝑘 is the corresponding normalised column eigenvectors aligned in the matrix E as 

𝐄 = [𝐞1, … , 𝐞𝑘] for 𝑘 = 1,…… ,𝑚 as well. The eigenvectors matrix consists of a set of column 

vectors with entries 𝑒𝑗
𝑘 that represent the jth component of the kth eigenvector. Once these 

matrices are conserved as square matrices then 𝑗 = 𝑘 = 1,…… ,𝑚, and each single eigenvector 

is of length 𝑚. The diagonal matrix 𝚲 consists of ordered values 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚 ≥ 0 

(Schoellhamer, 2001; Ghaderi, Mohseni and Sanei, 2011). The 𝑚 × 𝑚 matrix E that presented 

the eigenvectors of C reflects the temporal covariance of the time record at different lags. In 

fact, the extracted eigenvectors are seen as axes of a new coordinate system considering that 

any scalar multiple is also an eigenvector (Golyandina and Shlemov, 2015; Harmouche et al., 

2017).  

• The singular spectrum 

The so-called singular values of the trajectory matrix are basically the square roots of the 

eigenvalues of the covariance matrix and these ordered singular values are referred to 

collectively as the singular spectrum (Hassani, Soofi and Zhigljavsky, 2010; Elsner and Tsonis, 

2013; Golyandina and Shlemov, 2015).   

From the SVD, the trajectory matrix can be factored in the form 𝐘 = 𝐔𝐒𝐄𝑇, where U is 

the matrix of the left singular vectors of Y, E is a square matrix contains the right singular 

vectors of Y for 𝐂 = 𝐘𝐘𝑇, and S is a diagonal matrix of singular values. The singular spectrum 

of Y consists of the square roots of the eigenvalues of C which are called the singular values 

of Y with the singular vectors being identical to the eigenvectors that given in matrix E (Elsner 

and Tsonis, 2013). Therefore, the factorisation of Y using SVD produces three components 

which are left singular vectors, diagonal matrix of singular values, and right singular vectors 

presented in the transpose matrix 𝐄𝑇whose entries also the eigenvectors of C. These 

components can be physically interpreted as rotation, scaling, and reverse rotation. The spectral 

decomposition of matrix C can also be performed by substituting the form of the trajectory 

matrix resulted from the factorisation using SVD which is 𝐘 = 𝐔𝐒𝐄𝑇 in the equation 𝐂 = 𝐘𝐘𝑇, 

results 

𝐂 = (𝐔𝐒𝐄𝑇)(𝐔𝐒𝐄𝑇)𝑇 = 𝐄𝐒𝐔𝑇𝐔𝐒𝐄𝑇, 

Since 𝐔𝑇𝐔 = 𝐈, then 

𝐂 = 𝐄𝐒2𝐄T, (4.7) 
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It has been found that 𝐂 = 𝐄𝚲𝐄𝑇and for the decomposition being unique it follows 

that 𝐒2 = 𝚲. From the SVD of the trajectory matrix, the right singular vectors of Y presented 

in matrix E are the eigenvectors of C and the left singular vectors of Y presented in U are the 

eigenvectors of the matrix 𝐘𝐘𝑇 (Chu, Lin and Wang, 2013; Golyandina and Shlemov, 2015). 

Importantly, the number of eigenvalues is equal to the window length and in turn the number 

of the associated eigenvectors that matrix E contains (Elsner and Tsonis, 2013).  

4.4.1.5 Step five: Contribution of PCs and grouping  

A matrix that contains the principle components PCs is introduced as a projection of the 

embedded time series onto the eigenvectors in the eigen-subspace. Therefore, the eigenvectors 

of C can be used to compute the principal components vectors with entries 𝑣𝑘′𝑠 by performing 

such projection. The selected groups of the principle components are presented in vectors and 

can be aligned in a single matrix. Recall from Chapter 3, this process was given in Equation 

(3.24). The resultant matrix V will be of dimension 𝑁 × 𝑚 in which each individual vector of 

the principle components is presented in each column as in Equation (4.8).  

𝐕 = 𝐘𝐄 =

[
 
 
 
𝑣1

1 𝑣1
2 … 𝑣1

𝑚

𝑣2
1 𝑣2

2 ⋯ 𝑣2
𝑚

⋮ ⋮ ⋱ ⋮
𝑣𝑁

1 𝑣𝑁
2 ⋯ 𝑣𝑁

𝑚]
 
 
 
, (4.8) 

The principle components are ordered in matrix V in a similar way to the eigenvectors. 

The length of the PCs is the same of the embedded time series and they are seen as time series, 

however, unlike the embedded time series introduced in the trajectory matrix, a different 

coordinate system is used to plot each point. The columns of V do not correspond to different 

time lags as in the trajectory matrix. Rather, in the SSA method, the principle components 

matrix is introduced as a projection of the embedded time series onto the eigenvectors. The 

original values of Y have been projected in a new coordinate system for gathering the variance 

in the principle components (Elsner and Tsonis, 2013; Golyandina and Shlemov, 2015). 

The variance between any consecutive principle components (e.g., 𝐯1 and 𝐯2) is identical 

to that of the eigenvalues of the corresponding eigenvectors. Importantly, due to the orthogonal 

characteristics of the principle components, it is possible to isolate each individual one from 

the others to be independently investigated as each principle component contains a part of the 

oscillation information (Elsner and Tsonis, 2013; Golyandina and Shlemov, 2015). Based on 

the separability approach introduced with the SSA method and which has been developed in 
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the case of the wind noise in this study, it is possible to eliminate unwanted components of the 

signal by selecting their corresponding PCs. Usually the selection of the unwanted principle 

components can be made with the eigenvalue’s spectra. However, the dominant PCs are the 

ones that correspond to the significant oscillation or the wanted signal (Hassani, Mahmoudvand 

and Zokaei, 2011; Golyandina and Shlemov, 2013; Golyandina and Lomtev, 2016).  

The principle components can be computed after decomposing the original time series 

and producing the so-called additive components or elementary matrices of matrix Y when 

considering 𝐂 = 𝐘𝐘𝑇. Basically, it is again a projection of the embedded time series onto the 

eigenvectors. The resultant matrix of the principle components is given in Equation (4.9) in 

terms of the transpose of matrix Y, the eigenvectors matrix E, and the singular values matrix S 

which is the square root of the diagonal matrix 𝚲 (Golyandina, Nekrutkin and Zhigljavsky, 

2001; Saito et al., 2011). 

𝐕 =
𝒀𝑇𝐄

√𝚲
, (4.9) 

The collection (√ λ𝑖 , 𝑒𝑖 , 𝑣𝑖  ) is called the 𝑖𝑡ℎ eigentriple of the SVD (Golyandina, 

Nekrutkin and Zhigljavsky, 2001). Any individual PC vector can be generally expressed as: 

𝐯𝑖 = [

𝑣𝑖𝑗

⋮
⋮

𝑣𝑖𝑚

] (4.10) 

where 𝑣𝑖𝑗  for (𝑖 = 1… . . 𝑁; 𝑗 = 1……𝑚) are the elements of the principle component 

vectors that form matrix V, therefore the multiple PCs vectors can be seen as:  

𝐯1 = [

𝑣11

𝑣12

⋮
𝑣1𝑚

] , 𝐯2 = [

𝑣21

𝑣22

⋮
𝑣2𝑚

] , and so forth until  𝐯𝑁 = [

𝑣𝑁1

𝑣𝑁2

⋮
𝑣𝑁𝑚

] 

Hence, when the complete set of vectors are aligned together, matrix V will be as  

𝐕 =

[
 
 
 
 
𝑣11 𝑣21 … 𝑣𝑁1

𝑣12 𝑣22 … 𝑣𝑁2

𝑣13 𝑣23 … 𝑣𝑁3

⋮ ⋮ ⋱ ⋮
𝑣1𝑚 𝑣2𝑚 …   𝑣𝑁𝑚]

 
 
 
 

, (4.11) 
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Grouping corresponds to splitting the elementary matrices 𝐘𝑖 into several groups and 

summing the matrices within each group (Sanei and Hassani, 2015). The SVD of Y can be 

written as a set of elementary matrices and performed as in Equation (4.12).  

𝐘 = 𝐘1 + 𝐘2 + ⋯+ 𝐘𝑑, (4.12) 

where 𝐘𝑖 = √𝜆𝑖𝑒𝑖𝑣𝑖
𝑇 are the additive components or elementary matrices of Y for 𝑖 =

1, … , 𝑑 and 𝑑 is the number of non-zero eigenvalues of 𝐘𝐘𝑇which equals to the window size.  

 The definition of 𝐘𝑖 is equivalent to the elementary matrix. If only two groups are required 

when applying the grouping criterion, the number of elementary matrices in the first group will 

be denoted by r while the rest 𝑚 − 𝑟 will represent the matrices in the second group. The set 

(√𝜆𝑖𝑒𝑖𝑣𝑖) is the 𝑖𝑡ℎ eigentriple of matrix Y of the SVD when considering 𝐞1, … , 𝐞𝑑 which are 

the orthonormal system of the associated eigenvectors and the principle components 

𝐯1, … , 𝐯𝑑  (Golyandina, Nekrutkin and Zhigljavsky, 2001; Sanei and Hassani, 2015; Xu, Zhao 

and Lin, 2017). Using the eigentriple as in Equation (4.9), the following elements are obtained. 

𝐘𝑇 = √𝚲 𝐄𝐕𝑇, (4.13) 

                             = √ λ1  e1𝑣1
𝑇 +  √ λ2  e2𝑣2

𝑇+……… √ λ𝑚  e𝑚𝑣𝑚
𝑇  

       = 𝐘1 + 𝐘2 + ⋯𝐘𝑚  

The decomposed matrix 𝐘𝑖 is given as follows: 

𝐘𝑖 = √ λ𝑖  e𝑖𝑣𝑖
𝑇 =

[
 
 
 
 
 
𝑦11

𝑖 𝑦21
𝑖 … 𝑦𝑚1

𝑖

𝑦12
𝑖 𝑦22

𝑖 … 𝑦𝑚2
𝑖

𝑦13
𝑖 𝑦23

𝑖 … 𝑦𝑚3
𝑖

⋮ ⋮ ⋱ ⋮
𝑦1𝑁

𝑖 𝑦2𝑁
𝑖 …   𝑦𝑚𝑁

𝑖 ]
 
 
 
 
 

, (4.14) 

where 𝑦𝑖𝑗
𝑖  are the entries of  𝐘𝑖 for (𝑖 = 1… . .𝑚; 𝑗 = 1……𝑁). 

The SSA is a well-known method for time series analysis and generally seen as an 

adaptive noise reduction and signal discrimination technique in many applications based on its 

capabilities for decomposing and filtering noisy signals (Sivapragasam, Liong and Pasha, 

2001). The decomposition stage in the SSA method can deliver significant results if the 

produced additive components of the embedded time series are separable from each other 

(Golyandina, Nekrutkin and Zhigljavsky, 2001). In this study the separation approach has been 
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introduced to develop the SSA for separating noise components from given signals 

contaminated with wind noise. In the developed SSA algorithms, it is to perform spectrum 

analysis on the given input data, eliminate irrelevant features, and invert the remaining desired 

components to yield a noise-free signal.  

4.4.2 Diagonal Averaging and 1-Dimensional Series Reconstruction 

Recall from Chapter 3, Equation (3.27), the reconstructed components RCs can be 

computed by projecting the principle components presented in matrix Z onto the eigenvector’s 

matrix E. The RCs can also be calculated by inverting the projection of the principle 

components onto the eigenvectors transpose matrix as in Equation (4.15). The aim is to 

generate reconstructed components whose length are the same as the original record. Each RC 

can be generated by the convolution of one principle component with the corresponding 

singular vector (Vautard, Yiou and Ghil, 1992; Wu, Chau and Li, 2009).   

𝐑𝐂 = 𝐘𝐄𝐄𝑇, (4.15) 

Each RC re-translates its corresponding PC into the original units of the time series 𝑋(𝑡). 

Now, the comparison between the reconstructions based on the selection of the PCs and 𝑋(𝑡) 

is possible. As explained in (Elsner and Tsonis, 2013), the singular vectors can be used to 

compute the PCs of the time series. Therefore, to reflect oscillatory modes of interest, the 

original time series can be filtered through a convolution when selecting a small number of 

PCs and their associated eigenvectors. Importantly, from these reconstructions, the time series 

has been reduced to oscillatory components that correspond to the most dominant eigenvalues 

with high variance and noise components that correspond to the rest of eigenvalues.  

The produced RCs can be used to filter the time series by using less of the total number 

of RCs (Elsner and Tsonis, 2013). The part of the time series which supposed to be noise and 

mainly represented in the higher subspace of the eigenvalue’s spectra can be separated out 

when considering a proper grouping criterion and wind noise spectrum explained in Chapter 2. 

In other words, the first RCs, however, are generally the most dominant that defining an 

oscillatory signal due to the phase quadrature of the corresponding PCs and their eigenvalues. 

  A group of r eigenvectors with 1 ≤ 𝑟 ≤ 𝑑 defines an r-dimensional hyperplane in the 

m-dimensional space 𝑅𝑚 of vectors in 𝐘𝑖. The projection of Y into this hyperplane will 

approximate the original matrix Y. Once the boundaries of each group have been determined, 

in this second complementary stage, the next step is then to sum-up the matrices in each cluster 
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together. The selected group I of the additive matrices that represent the oscillatory 

components, of which the time series has been reduced to, corresponds to the most dominant 

eigenvalues. All the entries along the diagonal 𝑖 + 𝑗 = 𝑐𝑜𝑛𝑠𝑡 in the additive matrices presented 

in groups are not equal as such matrices are not Hankel. Therefore, to reconstruct the signal, it 

is required to perform the diagonal averaging approach over the diagonals 𝑖 + 𝑗 = 𝑐𝑜𝑛𝑠𝑡 

(Hassani, Soofi and Zhigljavsky, 2010; Golyandina and Korobeynikov, 2014).  

Averaging over the diagonals of matrices gathered in a specific group I will enable 

completing such transformation back to one-dimensional time domain vector which tends to 

characterise a specific signal component. If the noisy signal consists of two components, the 

other group will represent the residual noise. The 𝑖𝑡ℎ reconstruction components 𝑥𝑗
𝑖 of the 

reconstructed subseries are given by the diagonal averaging (Saito et al., 2011; Elsner and 

Tsonis, 2013; Mohammadi et al., 2016). Therefore, from Equation (4.15) and after summing 

up the elementary matrices through computing the contribution of each to the wanted signal, 

matrix Y ̃can be found as follows:  

Y ̃=

[
 
 
 
 
 
 
 
𝑦11

𝑖 𝑦21
𝑖 𝑦31

𝑖 𝑦41
𝑖 … … 𝑦𝑚1

𝑖

𝑦12
𝑖 𝑦22

𝑖 𝑦32
𝑖 … … … 𝑦𝑚2

𝑖

𝑦13
𝑖 𝑦23

𝑖 𝑦33
𝑖 ⋯ … … 𝑦𝑚3

𝑖

𝑦14
𝑖 𝑦24

𝑖 𝑦34
𝑖 … … … 𝑦𝑚4

𝑖

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 𝑦𝑚,𝑁−1

𝑖

𝑦1𝑁
𝑖 𝑦2𝑁

𝑖 𝑦3𝑁
𝑖 … … 𝑦𝑚−1,𝑁

𝑖   𝑦𝑚𝑁
𝑖 ]

 
 
 
 
 
 
 

 (4.16) 

𝑥1
𝑖 = 𝑦11

𝑖  

𝑥2
𝑖 = (𝑦12

𝑖 + 𝑦21
𝑖 )/2 

⋮ 

𝑥𝑁𝑡−1
𝑖 = (𝑦𝑚,𝑁−1

𝑖 + 𝑦𝑚−1,𝑁
𝑖 )/2 

𝑥𝑁𝑡

𝑖 = 𝑦𝑚𝑁
𝑖  

The averaging ends when 𝑗 = 𝑁𝑡 for 𝑥𝑗
𝑖 entries. The transformation back to the univariate 

time record is accomplished and the desired series is now reconstructed into 𝑁𝑡 components.  

𝑋 ̌(𝑡) = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑁𝑡

𝑖 ), (4.17) 

where 𝑁𝑡 represents the length of one-dimensional reconstructed time series and in the 

given vector, 𝑥𝑗
𝑖 represents the entries of the subseries 𝑖 for 𝑗 from 1 to 𝑁𝑡. 
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4.5 The SSA Analysis Interpretation  

The simplest explanation of the idea of the SSA lies in its two complementary stages 

which are the decomposition of a time series into oscillatory components and noise and then 

the reconstruction of the desired components. As mentioned earlier, the aim is to make a 

decomposition of the original time series into a small number of independent and interpretable 

components such as a slowly varying trend, oscillatory components (harmonics), and a 

structure less noise. The idea of the embedded time series is based on the chaos theory which 

indicates that the parameters specifying a system at a 1 lag shifted version of time t+1 can be 

seen as given functions of those parameters at time 1 (Canavier, Clark and Byrne, 1990). In 

fact, using lag shifted versions of time of a single time record can help in defining the 

coordinates of the dynamic system. The trajectory matrix results from the method of delays in 

which the dynamic of the system can be approximated by the coordinates of the phase space 

when using lagged copies of the time series. With a careful choice of the window length, the 

trajectory matrix can reflect the evolution of the time record (Wu, Chau and Li, 2009).The 

embedding dimension or the window length is the time spanned in the vector space by each 

embedding vector.  

When using the SSA for noise reduction, the reconstruction can be viewed as a separation 

method when such reconstruction is partially made. In other words, not all information is used, 

only a selected portion which is the essential portion of the time series that represents the signal 

of interest in the desired subspace. For this reason, only eigenvectors that indicate a large 

portion of the variance measured by their eigenvalues are used. The eigenvectors matrix 

reflects the temporal covariance of the time record at different lags and a new coordinate system 

in the Eigen domain is used to produce the required principle components.  

The SSA reconstruction can be interpreted in such a way that for a specific time t, 

observed values of the time series 𝑋(𝑡) that fall within the window of size m around time t are 

considered. However, in this window and as a particular kind of weighted average of the values 

of 𝑋(𝑡), the reconstructed components at time t are computed. Hence, the eigenvectors define 

the weights for this averaging. The reconstruction, however, relates to a kind of moving average 

of a given time series. The moving average is identical to the original time series when all of 

eigenvectors are considered.   
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4.6  Summary 

 In this chapter, a framework of the SSA method has been established and developed 

based on its capabilities. The chapter covered the multiple steps of the SSA algorithm while 

defining and clarifying all related mathematical formulations. The SSA procedure consists of 

two main complementary stages which are decomposition and reconstruction. The first step in 

the decomposition stage is called the embedding process in which the given signal presented 

in a vector is transformed into an embedded time series known as a trajectory matrix. This step 

is a transformation from one-dimensional time series to multidimensional. Then the trajectory 

matrix and its transpose are used to compute the lagged-covariance matrix. The second step is 

considered the most significant in which two important matrices are computed using the 

Singular Value Decomposition method. These two matrices are the diagonal square matrix with 

non-negative values called the eigenvalues aligned along the main diagonal and the matrix that 

contains their corresponding eigenvectors. The latter matrix is also a square matrix represents 

the right eigenvectors; however, each eigenvector is presented in a column of this matrix.  

The third step is to compute the principle components using these two matrices along 

with the embedded time series presented in the trajectory matrix. In fact, the principle 

components can be computed after decomposing the original time series using the SVD method 

as well to produce the elementary matrices or also called the additive components. In this case, 

when considering the eigentriple of SVD of the trajectory matrix, a mathematical formula has 

been devised to compute the principle components includes matrices E and S, where S is the 

square root of the diagonal matrix 𝚲 produced from the singular spectrum of matrix C. 

Computing the principle components in this way is seen as a projection of the embedded time 

series onto a new coordinate system, which is the eigenvectors, in the eigen-subspace.  

 Grouping which corresponds to splitting the elementary matrices into several groups and 

summing the matrices within each group is therefore performed. The SSA visual tool which is 

based on the singular spectrum that shows the eigenmodes and indicates the eigenvalues in 

descending order versus their index can be used for the selection of the principle components 

that correspond to the most dominant eigenvalues. These principle components are added 

together, however, the undesired ones have to be eliminated. In the reconstruction stage and 

after computing the reconstructed components, it is to map the wanted target signal back to the 

time domain. The reconstructed series is therefore a time domain signal and can be presented 

in a vector similar to the original series.  
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Significant results can be obtained if the resulting additive components of the time series 

from the decomposition stage are approximately separable as stated in (Golyandina, Nekrutkin 

and Zhigljavsky, 2001). Importantly, the performance of the SSA algorithm is highly 

dependent upon the selection of the length of the sliding window along with the applied 

grouping criterion. Furthermore, such aspects have a key importance for the whole SSA 

procedure towards improving the separability approach. These key aspects will be discussed in 

the next chapter.   



 

 

 

   

 

 

 

 

      

5 CHAPTER FIVE     GROUPING, 

SEPARABILITY, AND RECONSTRUCTION 

TECHNIQUES 



 

125 

 

5 

Grouping, Separability and Reconstruction 

Techniques  

5.1 Overview 

The SSA method works based on the principle of how well the components of a given 

signal can be taken a part or separated from each other (Mohammadi et al., 2016). As 

mentioned previously, two stages that complement each other are entailed in the SSA approach; 

decomposition and reconstruction. In turn, each of these two stages includes some distinct 

steps. To decompose the signal, embedding process accompanied by SVD method are the two 

main steps involved in the first stage. The reconstruction stage involves applying the grouping 

criterion and the diagonal averaging for reconstructing the one-dimensional series that might 

be exploited for further analysis.  

It remains difficult to solve microphone wind induced problem due to several reasons, 

namely the broadband and time varying nature of wind noise. Developing the adaptive 

selection approach of eigentriples in the singular spectrum analysis might be a key to success 

to improve the separability and a better performance regarding microphone wind induced 

removal. Decomposing noisy signals into additive components or elementary matrices after 

producing embedded time series will lead to decompose the given time series into numbers of 

oscillations that correspond to the signal of interest and unwanted wind noise components. This 

can be performed by using SVD method and exploiting wind noise features based on wind 

noise spectrum to generate groups of oscillatory and wind noise components. Therefore, in this 

chapter, it is to introduce and develop the separation approach while a high significance is 

given to develop grouping and reconstruction techniques to improve the separability.  

Since the SSA represents a non-parametric statistical method which enables it to be used 

with arbitrary signals nevertheless of their processes or distribution such as stationary or non-

stationary signals, however, these advantages and capabilities motivate its development for 

microphone wind induced separation. Moreover, the SSA is a well-known method for time 

series decomposition and analysis as well as the categorisation of the oscillation signatures of 

the time record over time. All these specific characteristics might lead to better separation of 

the wanted signal and noise with less distortion imposed on the signal of interest. 
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 With the SSA, every time series can be decomposed into many additive components or a 

series of elementary matrices which can be achieved by mapping the time record under test 

into a trajectory matrix and then processing it using the SVD method. These elementary 

matrices can be grouped in smaller groups by applying a proper grouping criterion based on 

the aim of the decomposition. After arranging such matrices in different groups, however, it is 

now to sum-up matrices that show glimpses of a specific signature of oscillation patterns while 

leaving the random noise behind. This can be accomplished by using many tools such as the 

eigenvalues spectra and the selection of most dominant principle components. It is therefore 

the reconstruction stage in which computing the reconstruction components is performed to 

map the desired signal back to the time domain and as a result a time domain reconstruction 

series that is similar to the original one can be produced. 

 Basically, as explained in (Sanei, Ghodsi and Hassani, 2011), in which a clear 

demonstration of the decomposition of a time structure into a filtered signal and noise is given, 

the decomposition approach is seen as a common practice towards noise removal aim. In fact, 

the SSA works by decomposing signals into oscillatory components, trends and noise by 

deploying the SVD method. However, the SSA has been successfully applied for separating 

desired signals and noise with an obvious advantage of slight distortion being imposed on the 

desired signals.  The SSA method has been applied in a variety of signal processing 

applications such as EEG and ECG for the purpose of the separation and localisation of a 

combination of signals produced from amplitudes/frequencies that are generally different 

(Sanei and Hosseini-Yazdi, 2011; Bonizzi et al., 2015; Wang, Liu and Dong, 2016).  

5.2 Parameters of the SSA Algorithm  

The SSA technique depends upon two important parameters which are the window length 

𝑚, which is the sole parameter in the decomposition stage, and the number of elementary 

matrices r.  The selection of the optimal value of the window length is crucial for an increased 

accuracy of the SSA method (Tzagkarakis, Papadopouli and Tsakalides, 2009). According to 

(Yang et al., 2016), the window length is highly related to spectral information or frequency 

width that corresponds to each principle component. Moreover, the performance of the SSA 

algorithm very much depends on the window length. In spite of the diversity in selecting the 

best values of the window length in relation to the length of the given time record, however, it 

is still important to follow the standard SSA recommendations. Also, such recommendations 

might be helpful in choosing the group of indices of the eigenvectors in the grouping stage. 
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The length of the sliding window represents the number of columns of the trajectory 

matrix. In practice, the size of the embedding dimension should make a compromise between 

the quality of the information and the computational complexity. Also, the embedding 

dimension should be adequately large to capture one period or more of the expected periodic 

signal. In addition to the methods of selecting the window length as a percentage of the length 

of the time series, it can also be selected according to the lowest frequency of interest 

(Mohammadi et al., 2016).    

There is no general rule for the choice of the window length since the selection depends 

on the initial information on the time record and the problem of interest (Traore et al., 2017). 

As stated in (Alexandrov, 2009), the choice of the window length parameter used for the 

decomposition and grouping of SVD components, which eventually will be used for 

reconstruction, can totally affect the output time series. It is important, however, to select 

values of 𝑚 and groups of the eigenvectors to ensure better separability (Launonen and 

Holmström, 2017). The performance of the SSA algorithms is highly dependent on the 

selection of the window length (Harmouche et al., 2017; Rodrigues and Mahmoudvand, 2017). 

In spite of the greater computation burden due to bigger sized matrices, it has been 

recommended that 𝑚 should be large enough but not greater than 𝑁𝑡 2⁄  to significantly 

represent separated components and obtain satisfied results (Rukhin, 2002; Yang et al., 2016). 

Whereas, other studies reported that it should be larger than 𝑁𝑡 2⁄  when 𝑁 > 𝑚 (i.e. the 

trajectory matrix has many rows greater than columns) (Harris and Yuan, 2010). It has been 

stated in (Hassani and Mahmoudvand, 2013; Golyandina and Shlemov, 2015) that the window 

length should be sufficiently large to provide the information about the data variation. It can 

be always assumed that 𝑚 ≤ 𝑁𝑡 2⁄  as this value has been regarded as the most interesting case 

in practice. If 𝑚 is too large, this will leave too few observations from which to estimate the 

covariance matrix of the 𝑚 variables. Generally, large values of 𝑚 induce longer period 

oscillations to be resolved.  

Previous research has established that that the window length 𝑚 should be relatively 

bigger because when it is considerably smaller than 𝑁𝑡, the results are not greatly sensitive to 

𝑚 (Penland, Ghil and Weickmann, 1991). It has been reported that the influence of  the 

variations of the window length about a sufficiently large 𝑚 can only be on stretching or 

compressing the spectrum of eigenvalues while leaving the relative magnitudes of the 

individual eigenvalues unchanged (Elsner and Tsonis, 2013).  
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 In spite of the considerable attempts and various methods that have been considered for 

choosing the optimal value of 𝑚, there is inadequate theoretical justification for such selection 

(Patterson et al., 2011; Chu, Lin and Wang, 2013; Yang et al., 2016). Whereas, according to 

(Elsner and Tsonis, 2013), the window length used to construct the trajectory matrix can be 

computed as (𝑁t/4) and considered as a common practice. Smaller values can also be 

considered if the purpose is to extract the trend even when the time series is short (small 𝑁𝑡) 

(Alexandrov, Golyandina and Spirov, 2008). Therefore, in the latter study a small window 

length was used to extract trend for a short time series, however, the separability was 

insufficient. A method of selecting the window length is described in (Hassani, Mahmoudvand 

and Zokaei, 2011; Yang et al., 2016) and a detailed description of selecting this parameter is 

given in (Golyandina and Korobeynikov, 2014).    

Achieving appropriate separability of the components is a cardinal rule in selecting the 

window length. Hence, the decomposition stage of the SSA delivers significant results if the 

resulting additive components of the time series are approximately separable from each other 

(Golyandina and Lomtev, 2016; Harmouche et al., 2017). The improper selection of 𝑚 would 

imply an inferior decomposition, and in turn inaccurate results will be produced. The improper 

selection of 𝑟 will also have its influence on the results although some visual inspection of the 

SSA decomposition of the whole series or some large parts of the series is recommended. 

Alternatively, if a preliminary study of the time series is not possible, then it is advised to use 

all visual SSA tools in the first part of the series to choose 𝑟 (Hassani, Mahmoudvand and 

Zokaei, 2011; Golyandina and Shlemov, 2015).   

The group 𝐼 = 1,… . 𝑟  which is based on the number of eigenvalues is such that the first 

𝑟 values describe well the signal while the lower components correspond to noise. A part of 

the signal will be missed if 𝑟 is smaller than the true number of eigenvalues (under fitting). As 

consequence, the reconstructed series becomes less accurate due to the underestimated 

components. Otherwise, if 𝑟 is too large (over fitting), then a part of noise together with the 

signal will be approximated in the reconstructed series and hence finding a change in the signal 

becomes more difficult (Hassani and Mahmoudvand, 2013).  

The choice of 𝑚 depends on some criteria such as complexity of the data, the aim of the 

analysis as well as the forecasting horizon in case of using the SSA for forecasting studies. Still 

there is lack of enough rationalisation regarding the selection of the optimal values of 𝑚 and 𝑟 

(Patterson et al., 2011; Yang et al., 2016). 
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Since the aim of this study is to separate out signals of interest and wind noise 

components not yet examined with the SSA through exploring and developing the grouping 

and reconstruction techniques as key important aspects in the method, it is important to 

determine the optimum window length. However, more experimental investigation has been 

carried out for the selection of the optimal length of the sliding window following a heuristic 

method which will be shown in the next chapters. 

5.3 Singular Value Decomposition in the SSA Algorithm  

Similar to the Principal Component Analysis technique that uses Singular Value 

Decomposition SVD, the SSA utilises a representation of the data in a statistical domain which 

called Eigen domain rather than time or frequency domain. To be more precise, however, 

instead of using a set of axes that represent discrete frequencies such as with the Fourier 

Transform, the data is projected onto a new set of axes that fulfil some statistical criterion. This 

statistical technique depends on the structure of the data being analysed, whereas, in Fourier-

based techniques, Fourier components onto which a data segment is projected are fixed. 

Therefore, in this statistical method, data is projected onto axes that might change according to 

the change of the structure of the data over time (Clifford, 2005; Golyandina et al., 2013).  

With the SSA, de-noising any given signal contaminated with noise can effectively be 

performed by discarding the projections that correspond to the unwanted sources such as the 

noise and inverting the transformation. Therefore, a wind noise separation method based on 

singular spectrum analysis has been developed in this research. In the developed method, it is 

to use the SVD method for the decomposition of the given noisy time record embedded in the 

trajectory matrix and then the reconstruction of a noise-free series through developing the 

adaptive selection approach of eigentriples in the singular spectrum analysis.  

Data contained in the components that correspond to the eigenvectors associated to the 

higher-order eigenvalues in the singular spectra is assumed to be mostly represent noise 

(Hassani, 2007). Unwanted source can be removed from the original signal as long as data can 

be transformed back to the original observation space using matrix manipulation in SSA-based 

techniques. SVD can be used to determine the principal components of a multi-dimensional 

signal (Clifford, 2005). Following the previous stage, which is obtaining the trajectory matrix 

from the real observations of the time series, it is now to perform the SVD to decompose matrix 

Y into its eigen subspaces, however, Y is decomposed in the form 𝐘 = 𝐔𝐒𝐄𝑇. 
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In this mathematical formula, S is a matrix with nonzero entries along the leading 

diagonal and zeros elsewhere and its entries s𝑖 are arranged in descending order of magnitude 

in a similar way of the eigenvalue’s matrix. In fact, each entry of S is equal to the square root 

of the eigenvalues √λ𝑖  of the covariance matrix C. These square roots of the eigenvalues of 

the matrix C are called the singular values of the trajectory matrix Y and they are referred to 

as the singular spectrum. Hence, S is called a diagonal matrix of singular values. The 

eigenvectors are presented in the columns of matrix 𝐄 which represents the right singular 

vectors of Y while matrix U represents the left singular vectors of Y.   

As previously mentioned, the principle components matrix is basically a matrix of 

projection. In other words, it is the matrix that computed by projecting the trajectory matrix Y 

onto the eigenvectors of C. Hence, the matrix 𝐘𝐄 is the trajectory matrix projected onto the 

basis E since E is composed of orthogonal vectors called the singular vectors of Y. Importantly, 

the eigenvectors of C are the singular vectors of Y (Golyandina et al., 2013).  

From the singular value decomposition, the matrix that results from the projection of the 

trajectory matrix Y onto the eigenvectors of C can be seen in the form of the matrix U that 

represents the left singular vectors of Y by applying the principle of the singular spectrum. 

Therefore, from the SVD of Y, which is indicated above, matrix U can be derived using the 

factorisation formula of Y as follows: 

𝐘 = 𝐔𝐒𝐄𝑇, (5.1) 

Since 𝐄𝑇𝐄 = 𝐈, then multiplying both sides of Equation (5.1) by 𝐄 from the right 

according to matrix multiplication rules 𝐘𝐄 = 𝐔𝐒𝐄𝑇𝐄 . 

The simplified form becomes as 𝐔𝐒 = 𝐘𝐄 . 

Since S is a symmetric matrix, hence 𝐒𝑇 = 𝐒−1, therefore by multiplying both sides of 

the above form by 𝐒−1, matrix U can be represented as follows:  

𝐔 = 𝐒−1𝐘𝐄, (5.2) 

Finding the first 𝑟 column vectors of U of elements u𝑖 , where u𝑖 = 𝑠𝑖
−1y𝑖e𝑖 

, (𝑖 = 1: 𝑟), 

𝑠𝑖
−1 are the elements of  𝐒−1 and e𝑖 are the elements of 𝐄. The rest of 𝑚 − 𝑟 vectors are not of 

interest as they represent noise. Recall from Chapter 4, Equation (4.12), the SVD of the 

trajectory matrix can be written as a set of elementary matrices 𝐘 = 𝐘1 + 𝐘2 + ⋯+ 𝐘𝑑. The 

grouping, which corresponds to splitting the elementary matrices 𝐘𝑖  into several groups and 
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summing the matrices within each group, can then be performed. If a truncated SVD of Y is 

performed, which means only the significant p eigenvectors are retained, then the resultant 

matrix Y` in which the columns are the noise-reduced signal is as follows:  

 𝐘` = 𝐔𝐒𝒑 𝐄
𝑇, (5.3) 

It is worth mentioning that for the smaller eigenvalues, the energy represented along the 

corresponding eigenvectors is low. Consequently, the smallest eigenvalues are located in the 

higher subspace where commonly less powerful signals occur, and noise components generally 

arise. Whereas, more powerful signals correspond to lower-order eigenvalues are located in the 

lower subspace (Mohammadi et al., 2016).  

5.4 Grouping  

5.4.1 Elementary Matrices Selection in Grouping Criterion  

Generating the elementary matrices is a convolution of the principle components with 

their corresponding eigenvectors and weighted by the eigenvalues; however, each elementary 

matrix represents a specific oscillation of the signal including what can be considered as noise. 

As explained in the above section, performing the SVD of the trajectory matrix produces a set 

of elementary matrices. The adaptive selection approach of eigentriples in the singular 

spectrum analysis has been developed for the best reconstruction of the desired signal. 

However, the projections that correspond to the unwanted sources have to be discarded before 

inverting the transformation (Golyandina et al., 2013). 

The eigenvalues spectra are often used for detecting the boundary of the subspace that 

belongs to the signal of concern as the spectra of the eigenvalues are computed based on the 

variance. The noise is autocorrelated, which means that more variance project onto the lower-

frequency oscillations. However, with the increase in the lag 𝑘, higher associated frequencies 

fall down monotonically (Elsner and Tsonis, 2013). In other words, this indicates that higher 

variance in the frequencies project onto the lower subspace of the eigenvalue spectra. 

The effectiveness of the SSA method depends largely on the selection of the elementary 

matrices in suitable groups through a criterion that is convenient to reconstruct the desired 

components without losing any portion of the signal. Notably, each matrix in the selected 

groups is supposed to share similar harmonic characteristics (Hassani, 2010). However, 

different grouping techniques have been reported in some previous studies for detecting the 
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boundaries of the groups. For example, in their study that is related to recognise walking 

patterns and level walking using the SSA, Jarchi and Yang (2013) used only the second and 

third elementary matrices for the reconstruction. Their selection was based on considering that 

these matrices were related to the dominant oscillations since their corresponding eigenvalues 

were remarkably similar and the signal has a periodic pattern.  

Another important grouping technique is to consider pairs of eigenvalues that have nearly 

equal values for each pair. However, this means that each pair of similarly equal values 

corresponds to a significant oscillation pattern (Vautard and Ghil, 1989). This grouping 

criterion has been adopted by (Mohammadi et al., 2016) and has been used to extract sleep 

spindles, brain waves, and the so-called K-complexes from a sleeping EEG signal. It is worth 

mentioning that finding an appropriate group of eigentriples to reconstruct the desired 

components of a given signal is one of the major concerns in the SSA method (Enshaeifar, 

Sanei and Took, 2014; Mohammadi et al., 2016).  

5.4.2 Separation Boundaries and Threshold Setting  

Initially, the SSA can be used to split the elementary matrices into only two groups, which 

is the case of the selected signals in this study, through computing the contribution of each 

elementary matrix 𝐘𝑖 (Ma et al., 2012). For developing a noise removal and separation method 

based on the singular spectrum analysis, which is the case of this research, higher and lower 

subspaces have to be identified and carefully distinguished. High-order eigenvalues can be 

isolated as they represent low oscillations. However, detecting the isolated boundaries can be 

completed based on the analysis of the eigenvalue’s spectra.  

Generally, low-order eigenvalues, which are related to the wanted components, can be 

determined by standard SSA recommendations. When only two groups are considered, 

applying such recommendations by grouping the first r elementary matrices in one group and 

leaving the rest 𝑚 − 𝑟 that represent wind noise in another group is the primary step in the 

grouping stage towards developing and establishing a proper procedure. This procedure can 

lead to separate wind noise components out from the desired signals as in Equation (5.4).   

∑ 𝜆𝑖
𝑟
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

≥ ℒ (5.4) 

where ℒ is a threshold that specifies the boundary between groups I and 𝐼, 𝑟 represents 

the first selection of the elementary matrices, 𝑚 is the window length which exactly equals to 

d elementary matrices produced from SVD, d has been indicated in Equation (4.12).  
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The threshold ℒ has been defined by many authors as to equal or more than 0.85 which 

mostly defines the “elbow” point in the eigenvalue’s spectra as a boundary. However, 

immediately after this point the singular spectrum turns to the lower region that mostly 

represents the noise floor (Mamou and Feleppa, 2007; Ghaderi, Mohseni and Sanei, 2011). In 

fact, this changeover in the eigenvalue’s spectra is from one subspace to anther or form lower- 

to higher-order eigenvalues. In some other studies, this threshold has been specified by 90% of 

the total variance of the signal as in (Mohammadi et al., 2016). The identification of this ratio 

is to discard the components that most likely correspond to the noise floor in the subspace.  

The first group I composes the desired elementary matrices after aggregating them 

together to implement each group in a single matrix of the same dimension as of the trajectory 

matrix. The unwanted components which reflect the wind noise component are now in the other 

group 𝐼. These groups can be mathematically expressed as in Equation (5.5). 

𝐼 = ∑𝐘𝑖 ,     

𝑟

𝑖=1

𝐼 = ∑ 𝐘𝑖

𝑚

𝑖=𝑟+1

 (5.5) 

The grouping criterion that has been implemented in this study is based on the selection of 

the eigenvalues that seem to be pairs, which means those eigenvalues with nearly equal values. 

However, it has been considered to firstly compute the variances between the successive 

eigenvalues and then selecting the eigenvalues that have the smallest difference.  

Splitting the elementary matrices into several groups  𝐼𝑡 is seen as an initial step in the 

reconstruction stage. The elementary matrices in each group are then summed up in one matrix 

(Golyandina, Nekrutkin and Zhigljavsky, 2001). In fact, each group is displayed by the 

associated matrix �̃�𝐼 ⊂ ℝ𝑁×𝑚 and given in a general mathematical expression as follows: 

�̃� = ∑�̃�𝐼

𝐼𝑡

𝐼=1

 (5.6) 

where the sum of the elementary matrices within the group I is represented by �̃�𝐼, 𝐼𝑡 

indicates the total number of groups, and 𝐼 is an index that refers to the 𝐼𝑡ℎ subgroup of 

eigentriples. 

A specific �̃�𝐼 is selected after completing the splitting stage; however, the Hankelization 

procedure is then required to reconstruct the subseries. As mentioned previously in section 

4.4.2 in Chapter 4, this procedure is the averaging along entries i + j = const. Recall from 

Chapter 4, Equation (4.16), the elements 𝑦𝑖𝑗
𝑖  of the matrix �̃�𝐼 are under the procedure of anti-
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diagonal averaging. The 𝑛𝑡ℎ term 𝑥𝑛
𝑖  of the new reconstructed series 𝑋 ̌(𝑡) for 𝑛 = 1,2, … ,𝑁𝑡 

is computed according to this procedure by calculating the average of all along all 𝑖, 𝑗 in a 

manner that 𝑖 + 𝑗 = 𝑛 + 1. Therefore, in the reconstructed series for n=1, the first entry can be 

obtained as 𝑥1
𝑖 = 𝑦11

𝑖 , for n=2 the second entry can be computed as 𝑥2
𝑖 =

𝑦12
𝑖 +𝑦21

𝑖

2
 and so on until 

the procedure ends when 𝑛 = 𝑁𝑡 which gives 𝑥𝑁𝑡

𝑖 = 𝑦𝑚𝑁
𝑖  to produce 𝑋 ̌(𝑡) that represents the 

reconstructed time series with length 𝑁𝑡 (Golyandina, Nekrutkin and Zhigljavsky, 2001; 

Golyandina and Shlemov, 2015; Mohammadi et al., 2016).   

5.4.3 The Applied Constrains in the Grouping Criterion  

To separate wind noise components out from the desired signal and extract the signal of 

interest using the SSA method, there are several constrains have to be considered in the 

development of the grouping criterion.  

5.4.3.1 Eigenvalues rejection in the subspace 

In the decomposition stage, the variance of the signal can be represented by each 

eigenvalue in the direction of the corresponding principle components. Based on the SSA 

visual tools, the eigenvalues spectra show that the lower-order eigenvalues are related to the 

more powerful components of the signal. Whereas, the eigenvalues located in the higher 

subspaces, where the noise components typically arise, are the higher-order eigenvalues that 

represent the undesired components which are the wind noise. Therefore, in this study the 

desirable subspace is the lower one. However, this procedure is valid for the selected signals 

in the dataset for all the conducted case studies and experiments, even though the separability 

might slightly differ depends on the dataset. 

This rule has been set out among the other rules and constrains in the grouping stage which 

demonstrated by the conducted case studies and the experiments in the next chapters. 

Therefore, the focus is on separating the wind noise part which is found in the higher subspace 

from the lower subspace that indicates the lower-order eigenvalues. To remove the noise part, 

a proper procedure has been established for the grouping criterion as indicated in Equation 

(5.4), however, the specified threshold can be written using this Equation as follows: 

ℒ = 𝑚𝑖𝑛 {𝑟:
∑ 𝜆𝑖

𝑟
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

> 0.85} (5.7) 

where the number of the eigenvalues whose overall energy is 85% of the total energy is 

defined by r. 
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The principle components associated with the eigenvalues above the elbow point in the 

spectra which correspond to 85% of the total variance of the signal are omitted. In other words, 

this percentage indicates that the sum of the eigenvalues equals to the total variance of the 

original time record. From Equation (5.7), the eigenvalue 𝜆𝑖 are rejected if 𝑖 > ℒ.  

5.4.3.2 The extraction of periodic component 

Since the aim is to extract the oscillatory components and leave the wind noise 

components behind or otherwise separate the noise components from the signal of interest in 

the noisy signal, the periodicity nature of the oscillatory components has been used to select 

the best subgroup of principle components for reconstruction a noiseless signal. It is known by 

now that a pseudo-periodic time record can be factorised into some eigenvalues pairs using the 

SSA (Vautard, Yiou and Ghil, 1992; Elsner and Tsonis, 2013; Hu et al., 2017). Therefore, 

using the lower subspace as previously mentioned, only the eigenvalues that appear as pairs 

will be selected.  

Importantly, in case of not obtaining eigenvalues pairs, this simply means that the 

component does not exist in the given time domain signal as stated in (Mamou and Feleppa, 

2007). However, when selecting some eigenvalues, the highest peak of the associated 

eigenvectors is relevant to the frequency of the periodic components and the power spectrum 

density can be used to estimate the related frequency (Tao, Lam and Tang, 2001). There are 

several important points have to be considered when selecting the eigenvalues pairs (Mamou 

and Feleppa, 2007; Ghaderi, Mohseni and Sanei, 2011; Mohammadi et al., 2016). 

• Because of the effect of noise, the possibility of having two equal eigenvalues is quite 

low. Therefore, the focus is on the nearly equal eigenvalues in each selected pair.   

• Selecting pairs of eigenvalues that belong to noise components might happen, however, 

it is important to be very selective to avoid missing any portion of the signal or adding any 

portion of noise. To acquire the actual pairs that represent the signal of interest, eigenvalue 

pairs 𝜆𝑖 and 𝜆𝑗  are selected as a pair only if all the conditions listed below are satisfied: 

1. Discarding all the eigenvalues that assumed to be associated with wind noise, that is 

when 𝑖 and 𝑗 are less than ℒ, where ℒ is the threshold as defined in Equation (5.7).  

2. For 𝜆𝑖 , 𝜆𝑖+1, then  |𝜆𝑖+1 − 𝜆𝑖| = 𝑚𝑖𝑛  |𝜆𝑗 − 𝜆𝑗+1|     ∀   1 <  𝑖 < 𝑚 

3. |1 −
𝜆𝑖

𝜆𝑗
|  <  𝒦 
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According to the amplitude of the waveforms and the oscillatory components of the signal, 

the value of 𝒦 might be changed, however, for each principle component, a specific value of  

𝒦 can be set (Mohammadi et al., 2016). In this study, it is to focus on wind noise components 

that have to be separated out from the signal while considering a particular threshold value 𝒦 

based on the analysis of the eigenvalues spectra for the noisy signal including the desired signal 

using the SSA visual tools.  

5.5 Separability  

The representation of an observed series as a sum of interpretable components, which 

mainly are trends, periodicals or harmonics with different frequencies, and noise along with 

the separation of such components is always considered as an issue of concern in time series 

analysis. With a developed SSA, this problem can be solved, trends can be extracted, and 

harmonic signals can be separated out from noise. Concretely though, and when the SSA is 

used for noise reduction, it shares the goals of de-nosing and filtering, with two major 

advantages. First, the SSA allows easier intuitions in the selection of the additive components 

to be integrated in the reconstruction of the desired signal as these components can be rated 

according to their eigenvalues. Second, the decomposition of the given noisy signal and 

reconstruction of the desired signal can be successfully performed even in situations where the 

sampling rate is relatively low (Del Pozo and Standaert, 2015). 

The idea is based on developing suitable grouping technique to the SVD components 

matrix in order to transform back to time series expansion from the expansion of grouped 

matrix. The separability of the components of the time series can therefore be defined as the 

ability of allocating these components from an observed sum when appropriate grouping 

criterion is applied (Golyandina and Shlemov, 2015; Golyandina and Lomtev, 2016; Hansen 

and Noguchi, 2017). The SSA decomposition relies on the approximate separability of the 

different components of the time record (Harmouche et al., 2017; Traore et al., 2017).  

For splitting the indices 1 ≤ 𝑟 ≤ 𝑑 of the r group of eigenvectors into I groups that is 

adequate to achieve the separability, r must be clearly specified. In this study, only two groups 

have been considered; one associated with the signal and the other associated with wind noise. 

In this case, group 𝐼 = {1,… , 𝑟} with the related elementary matrices, which will be 𝐘𝐼 = 𝐘1 +

𝐘2 + ⋯+ 𝐘𝑟, are associated with the first group that represents the signal. The second group 

𝐼 = {𝑟 + 1, … , 𝑑} and the related elementary matrices 𝐘𝐼 = 𝐘𝑟+1 + 𝐘𝑟+2 + ⋯+ 𝐘𝑑, represent 
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the noise. In other words, the rest of vectors (𝑑 − 𝑟) is not of interest as they represent noise 

(Hassani, 2007; Chu, Lin and Wang, 2013; Golyandina and Lomtev, 2016; Mahmoudvand, 

Konstantinides and Rodrigues, 2017).  

A quantity known as weighted correlation or simply (w-correlation) and defined as a 

natural measure of the dependence between the reconstructed components can be used to 

achieve the separability. Well-separated reconstructed components are the ones that have zero 

w-correlation. Whereas, reconstructed components with large values of w-correlation should 

be considered as one group as this corresponds to the same component in the SSA 

decomposition (Harmouche et al., 2017; Rodrigues and Mahmoudvand, 2017; Xu, Zhao and 

Lin, 2017).  

The plot of the singular spectra, which shows the eigenvalues 𝜆1, … , 𝜆𝑑, can give an overall 

observation of the eigenvalues to decide where to truncate the summation of the additive 

components in Equation (4.12) for building a good approximation of the original matrix. 

Notably, similar values of the eigenvalues 𝜆′𝑠 can give an identification of the eigentriples 

which correspond to the same harmonic component of the time series. Furthermore, using 

periodogram analysis of the original time series can also lead to select the groups. As mentioned 

previously, the higher subspaces of the singular spectra typically show a slowly decreasing 

sequence of eigenvalues and mainly related to the noise component (Hassani, 2007). 

It is worth mentioning that in the higher subspaces where higher-order eigenvalues are 

located, the energy represented along the corresponding eigenvectors is low. Consequently 

higher-order eigenvalues are commonly considered to be noise. However, it is possible to 

remove the unwanted source from the original signal if the data can be transformed back into 

the original observation space using matrix manipulation in the SSA-based techniques. If a 

truncated SVD of the trajectory matrix Y is performed (i.e. when only the significant 

eigenvectors are retained), then the columns of the resultant matrix �̃�𝐼 are the noise-reduced 

signal (Chu, Lin and Wang, 2013; Golyandina and Shlemov, 2015).  

5.6 Example for the justification of the developed SSA Method  

I. Description and Procedure   

Before moving to the experimental phases which started with a simulation phase using 

different signals and noise including wind noise, a working example has been selected for the 
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justification of the developed method. This example has been selected to frame the main 

concepts in developing SSA algorithms. The development process of SSA algorithms went 

gradually based on the requirements of the testing, verification and validation phases. In the 

selected example, a simplistic grouping and reconstruction techniques have been applied using 

a short time record to simplify the way of handling the produced matrices as of smaller- sized. 

However, it is an example with the dual purpose of justifying the method and showing the 

nature of the produced matrices using numerical values.    

 Many different testing experiments have been carried out in this study regarding the 

verification of the developed system using different signals in the first experimental phase. 

However, some selected experiments from the first phase will be reported in Chapter 7, 

whereas the second experimental phase, which is more sophisticated when realistic samples of 

real-world sounds for the system validation have been used, will be described in Chapter 8. 

Therefore, in this section and to justify the developed method, many points regarding the main 

aspects of the SSA technique will be illustrated with this example. 

In principle, it is to work on the theory that the SSA is a statistical and mathematical 

approach based on elementary linear algebra following the developed SSA algorithm steps as 

explained in the previous chapters. Developing an algorithm that illustrates the principle of 

time series reconstruction using the SSA and includes many important aspects in the method 

with a given time series is the main objective towards achieving the following aims of giving 

this example.   

• To frame the important concepts of the SSA technique including matrix construction 

and manipulation.  

• To introduce the SSA approach in a worked example from the experiments with a given 

time series explained it in a step by step manner.  

• To demonstrate the SSA capabilities in recovering the original time series. 

Consider a uniformly sampled time series 𝑋(𝑡),  𝑡 = 1,2,3… . . 𝑁𝑡 in which the data points 

are sampled over time at given regular time intervals. Since the number of data points or the 

length of the time series is denoted by 𝑁𝑡, therefore from the time series given in this example, 

it can be clearly seen that there are 20 data points (𝑁𝑡 = 20) and 𝑋(𝑡) = 𝑥1,  𝑥2 ……… . . 𝑥20   as 

graphed in Figure 5.1.    

The algorithm has been implemented using MATLAB platform, however, the purpose is 

to recover the time series by selecting the dominant PCs. Such selection, which will be 
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explained later, corresponds to the dominant eigenvalues based on its associated eigenvectors 

as a procedure of grouping in order to construct matrix Z. The main purpose of this example is 

to apply the principle components approach based on their selection to reconstruct the original 

time series shown in Figure 5.1. The time series in this example is sampled from a sinus 

function with a defined period and with Gaussian noise added. This time series example has 

been used for different explanations in Chapter 3 in which a justification of its selection has 

been provided. The sampled signal is the original time series with a specified length indicated 

through the data points shown in Figure 5.1. Also, this experiment is aimed at studying the 

effect of the selection of the principle components on the reconstruction process.  

 

Figure 5.1. An example of a time series sampled with 20 data points 

In this example, the grouping and reconstruction techniques are based on the proper 

selection of the principle components after decomposing the one-dimensional time series into 

multi-dimensional time series. However, the concepts explained earlier are quite important in 

the SSA method for reconstructing the time series and returning to the original coordinate 

system that representing the reconstructed one-dimensional time series in the time domain.   

In this demonstration and while comparing the reconstructed components with the 

original time series 𝑋(𝑡), it is assumed that the length of the time series presented in the Figure 

5.1 is 𝑁𝑡 = 20 and the window length 𝑚 = 4. To provide a considerable justification, the main 

steps of the developed SSA algorithm in this experiment can be outlined in the following points 

with obvious explanations.   

1. Trajectory Matrix Construction   

Since 𝑁𝑡 = 20, 𝑚 = 4, the trajectory matrix Y can be constructed considering a lag (or 

“delay shift”) of 1. This delay shift is provided as 𝑘 = 0,1, …… ,𝑚 − 1. The first column of Y 
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is a column vector denoted by 𝐲0 and represents the original time series 𝑋(𝑡) at lag 𝑘 = 0 as 

shown in Figure 5.1. Using numerical values from the experiment, this vector can be illustrated 

as follows: 

 𝐲𝑜
𝑇= [1.0135518 -0.7113242 -0.3906069 1.565203 0.0439317 -1.1656093 1.0701692 

1.0825379 -1.2239744 -0.0321446 1.1815997 -1.4969448 -0.7455299 1.0973884 -0.2188716 

-1.0719573 0.9922009 0.4374216 -1.6880219 0.2609807]. The constructed trajectory matrix 

can be presented in the following form.  

Y= 

[
 
 
 
 
 
 
 
 
𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑥1 𝑥2 𝑥3 𝑥4

𝑥2 𝑥3 𝑥4 𝑥5

𝑥3 𝑥4 𝑥5 𝑥6

⋮ ⋮ ⋮ ⋮
𝑥17 𝑥18 𝑥19 𝑥20

𝑥18 𝑥19 𝑥20 0
𝑥19 𝑥20 0 0
𝑥20 0 0 0 ]

 
 
 
 
 
 
 
 

 

2. Covariance Matrix Computation 

Since the number of embedding vectors 𝑁 =  𝑁𝑡 − 𝑚 + 1, then 𝑁 = 20 − 4 + 1 = 17. 

The covariance matrix C can be computed as 𝐂 =  
1

𝑁
 𝐘𝑇𝐘. This diagonal constant matrix is a 

square matrix and symmetric about its leading diagonal (top left to bottom right) which is 

known as a line of symmetry or a mirror line. Therefore, matrix C is of Toeplitz structure in 

which each descending diagonal from left to right is constant as shown in Figure 5.2.  

 

Figure 5.2. The spectrogram of matrix C shows the line of symmetry (leading diagonal)  
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The covariance matrix is a square matrix of size 𝑚 × 𝑚 or 4 × 4 (in this example) as 

 𝐘𝑇 is of dimension 4 × 20. From the experiment, matrix C has been obtained as: 

𝐂 = [

1.1765 −0.3373 −0.7701  0.8086
 −0.3373  1.1160 −0.2949  −0.7468
−0.7701  −0.2949 1.0863 −0.3113
0.8086 −0.7468 −0.3113 1.0773

] 

3. SVD for Eigenvalues and Eigenvectors Computation  

the eigenvalues and their associated eigenvectors of the covariance matrix can be 

computed using the MATLAB function [P, D] = eig (C), or [RHO, Lambda] = eig (C). Matrix 

𝚲 is the eigenvalues matrix in which the eigenvalues are along the main diagonal and zero 

elsewhere and it is a square matrix of size 𝑚 × 𝑚 or 4 × 4 (in this example). For each 

eigenvalue there is a corresponding eigenvector represented in a column of matrix P, therefore 

P is of the same dimension as 𝚲. These two matrices are shown as follows:  

𝐏 = [

0.6218 −0.2325 0.6618  0.3483 
 −0.3654  −0.6759  −0.2119  0.6039
−0.3675 0.6578 0.2583 0.6045
0.5871 0.2373 −0.6711 0.3854

] 

                       𝚲 = [

2.5933 0 0  0 
 0  1.5492  0  0
0 0 0.1639 0
0 0 0 0.1496

]       

The eigenvalues spectra depicted in Figure 5.3 illustrates only 4 values in this example 

because the window length has been selected as 4. However, Figure 5.3 typically shows the 

eigenvalues spectra with higher and lower subspaces.   

 

Figure 5.3. Eigen-mode indicate the subspaces in the eigenvalue’s spectra  
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The variance of the signal can be represented by each eigenvalue in the direction of the 

corresponding principle components. The associated eigenvectors of these eigenvalues are 

shown in Figure 5.4. The eigenvectors represent the axes of projection and can describe trend 

and phase. As explained earlier in this chapter and in the previous two chapters that eigenvalues 

spectra are typically divided into higher and lower subspace. The lower-order eigenvalues are 

mostly the dominant ones and represent the significant oscillations, whereas the eigenvalues 

located in the higher subspace are generally represent noise components. Although pairs of 

eigenvalues cannot be clearly seen in the spectra due to the short time series and small window 

length selected in this example, however, the lower-order eigenvalues can be used for 

reconstructing the time series.  

  

Figure 5.4. Eigenvectors graphical representation 

4. Principle Components Computation  

The PCs can be computed with MATLAB by projecting the trajectory matrix onto the 

eigenvectors using the operation 𝐕 = 𝐘 × 𝐏. This operation yields the principle components 

matrix V of the same dimension as Y. The principle components ordered in the same way as 

the eigenvectors and resemble the embedded time series introduced in the trajectory matrix; 

however, they are presented in a different coordinate system. Therefore, the columns of the 

principle components matrix do not correspond to different time lags when compared to the 

trajectory matrix. In other words, the original values of the trajectory matrix have been 

projected in a new coordinate system for gathering the variance in the PCs.  
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As mentioned previously, the principle components are aligned in a proper sequence in 

their matrix in which the first column is the PC1; the second is PC2, and so on. The graphical 

representation of the principle components is illustrated in Figure 5.5. Notably, this is not a 

time domain representation, however, the principle components can indicate dominance and 

can also give a clear observation about the reconstruction.  

 

Figure 5.5. Principle components graphical representation 

5. Reconstructed Components Computation  

This step can be performed by firstly constructing a matrix Z in the grouping step. This 

matrix is constructed based on the selection of the principle components aligned in matrix V 

when considering the principle components that correspond to the eigenvectors associated to 

the lower-order eigenvalues as explained above. Matrix Z is similar to Y and has the same size 
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1

𝑚
𝐙 × 𝐏. In doing 

this, the comparison between the reconstructed series and the original one is possible.  

Figure 5.6 shows the reconstructed components where RC1 corresponds to the 

eigenvector associated with the lower-order eigenvalues, whereas RC4 corresponds to the 
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principle component. The reconstructed components indicate how to build the reconstruction 
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quadrature.  Figure 5.6 also illustrates that the first two RCs are in phase and practically contain 

all variance of the time series which can already be known based on the eigenvalues. RC4 

seems to describe a trend in the data.   

 

Figure 5.6. A graphical representation of the reconstructed components for PC1 

II. Discussion and Conclusion  

When considering the group related to the last principle component PC4 for example, 

the reconstruction will be completely different from the original time series as illustrated in 

Figure 5.7, and hence no reconstruction of the time series can be obtained. This eventually 

means that when considering groups related to selecting the principle components, not all of 

these principle components are dominant and consequently only few of the reconstructed 

components are required.  

 

Figure 5.7. A graphical representation of the reconstructed components for PC4 

0 2 4 6 8 10 12 14 16 18 20
-2

0

2
RCs produced from projecting the matrix of PC1 

 

 

0 2 4 6 8 10 12 14 16 18 20
-2

0

2

 

 

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

 

 

RC1

RC2

RC3

RC4

0 2 4 6 8 10 12 14 16 18 20
-2

0

2
RCs generated from projecting the matrix of PC4

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

 

 

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

 

 

RC1

RC2

RC3

RC4



Chapter 5. Grouping, Separability and Reconstruction Techniques 

 

145 

 

This result becomes very clear when looking at Figure 5.8 which illustrates a comparison 

between the reconstructed components and the original time series including the last two 

reconstructed components. Even though the selected RCs have all been produced from 

projecting the matrix of the selected principle component PC1 only onto the eigenvector’s 

matrix, it is important to consider the axis of projection. Therefore, the adaptive selection 

approach of eigentriples has been developed for the best reconstruction of the desired signal. 

 

Figure 5.8. Comparison between the RCs for PC1 and the original time series 

The comparison between the reconstructed time series based on the first principle 

component and the original time series is illustrated in Figure 5.9.  

 

Figure 5.9. Comparison between the RC1 for PC1 and the original time series 
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Analysing the results demonstrated in Figure 6.9 can approve the effectiveness of 

developed SSA particularly with regards to the selection of the principle components and the 

RCs generated based on this selection. In fact, it is a satisfactory outcome and very encouraging 

result that can give a considerable justification as the reconstruction of the original time record 

can be performed with the selection of only the dominant PCs and few numbers of the 

reconstructed components. Some important points can be outlined from the previous 

explanation and the results reported from this experiment as follows:  

• Short records can make differences to the results, affect the ordering of the eigenvalues 

in the spectra, and affect the estimated matrix.  

• The principal components represent a projection in a different coordinate system as 

their interpretation is different from that of 𝑋(𝑡). Therefore, they cannot be compared 

to the time series 𝑋(𝑡). 

• Each RC re-translated its corresponding principal component into the original units of 

the time series 𝑋(𝑡). Now, the comparison between the reconstructions (based on the 

PCs) and 𝑋(𝑡) is possible. 

• To reflect oscillatory modes of interest, the original time series can be filtered through 

a convolution when selecting a small number of PCs and their associated eigenvectors. 

• The produced RCs can be used to filter the time series by using less of the total number 

of RCs. The part of the time series which supposed to be noise is mainly represented in 

the higher subspace of the eigenvalues spectra and can be separated out. In other words, 

the part with higher-order eigenvalues is the one that supposed to be noise. The first 

two RCs, however, are generally defining an oscillatory signal due to the phase 

quadrature of the corresponding PCs and their eigenvalues.  

A predefined time series has been used, however, from this example, it has been found that 

using RC1, the defined time series can be reconstructed as in Figure 5.9 and this satisfies the 

SSA concepts for both its two complementary stages; decomposition and reconstruction. In 

this example, it can be obviously seen that the first two eigenvalues are meaningfully higher 

than the others and take more of the energy of the given signal, while the others in the higher 

subspace represent the noise floor. Consequently, the corresponding PCs will be significant for 

reconstructing the series as they provide glimpses of the periodic components, however, the 

others represent random components. Importantly, the first two PCs contain all the variance of 

the given time series which is consistent with the first two eigenvalues.  
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As explained above, the pre-calculated PCs can be used to reconstruct each elementary 

matrix by projecting the principle components matrix back onto the eigenvector coordinates. 

The grouping criterion applied in this example depends on the singular spectra which have 

been divided into two subspaces along with principle components approach. It is worth noting 

that the grouping and reconstruction are key elements in the SSA-based techniques. Therefore, 

they have systematically developed and discussed in this chapter where the aim is to improve 

the separability. However, the development of the SSA algorithms in terms of these two 

concepts has passed through different steps during the time slot of conducting this research 

based on the aims and requirements of the testing experiments and the planned experimental 

phases. 

This example provides a clear illustration of the usefulness of the SSA method for 

reconstructing the decomposed components based on the eigenvalue’s spectra and the principle 

components and omitting the undesired ones. It also gives a practical demonstration of the 

capability of the SSA method towards further improving the separability for omitting the 

undesired components. From this example, it can be concluded that the anticipated subspace 

belongs to the desired components and the subspace corresponds to the undesired component, 

which is the additive noise, can be defined. The main purpose of this example was to practically 

introduce the SSA main concepts and perform a systematic manipulation of the produced 

matrices in a working practical example rather than giving strong focus on noise separation 

approach which will be experimentally illustrated in the next chapters. 
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6 

Dataset and Preparation  

6.1 Overview 

In the previous chapters, a systematic approach has been developed to use the SSA for 

wind noise removal and separation that might guide to success and drive to creating academic 

knowledge and claiming certain novelty and uniqueness in this field. This systematic approach 

has been developed in many ways including the mathematical equations that have been written 

in new and specific forms. However, that was mainly based on reviewing the literature in which 

it has been found that the SSA has never been implemented in the past for such specific 

purpose. This might lead to consider the developed and modified SSA version in this study as 

an alternative method to many existing wind noise methodologies.  

After justifying the developed method through giving some working examples using 

results from the performed experiments in this thesis, it is now to adopt this systematic 

approach for more testing. Therefore, the SSA has been explored based on this approach using 

typical testing signals. Several case studies including wind noise have been conducted as a first 

experimental phase which is related to the verification of the developed system. In the second 

phase, it is to adopt this developed system of the SSA in a validation phase with a complete 

selected dataset of real-world sounds that includes several interesting environmental and smart 

cities sounds as signals of interest along with wind noise samples from real measurements.  

The long-term objective is to pave the way for applying acoustic sensing in outdoor data 

acquisition applications for monitoring smart city soundscapes by improving further 

development to best tailor these methods for practical uses. In addition, exploring smart cities 

as environments of open and user-driven and studying the influence of applying acoustic 

sensing in such urban environments can also be seen as a long-term aim which might be 

achieved in further research work based on the work conduced in this study. 

 This chapter will describe and outline the basics of the selected dataset and review the 

benchmark and Freesound recordings and freefield1010 dataset samples that have been 

selected for this study. Furthermore, this chapter also covers some aspects of the experimental 

procedure for this research and points out certain important concepts related to the criteria 

required for testing, comparing, and analysing results. Also, the adopted design, which is 

needed to meet the research requirements to achieve the main aim of this study, will be 
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described in this chapter as well. A model of generating mixed soundtracks from these datasets 

using different mixing ratios is also presented. Indeed, this chapter is an effective presentation 

to provide an obvious explanation of the audio samples and mixed soundtracks that are used 

for the verification, validation, and evaluation of the developed SSA system in the subsequent 

chapters.  

6.2 Data Collection and Dataset Preparation  

Since cleaning up the microphone signal from wind noise as a particular type of 

environmental noises to enable further analysis is the main aim, hence, for experimental 

investigation purposes, the whole procedure is divided into several stages. The first stage is to 

generate noisy signals that are required for exploring the method, testing the algorithms in the 

system verification phase. The second is further developing the SSA algorithms in many ways 

by performing a large number of experiments and conducting several case studies with real-

world sounds.  

Due to the difficulties of doing urban soundscape synthesis to get field recordings, existing 

datasets will be used. However, realistic samples which have been collected for different 

published datasets and urban soundscape synthesis for some internet-based dataset sources 

such as Freesound recordings and freefield1010 dataset will be valuable for testing purposes 

and performing different experiments as well as for validation and evaluation purposes.  

6.2.1 Concepts for Dataset Preparation  

During the data collection and sample’s selection stage, it is always important to be very 

selective, particularly with regards to the sample type and size that should be representative.  

Also, it is important to consider some factors that may affect how well the selected samples 

can precisely reflect the specific aspects of concern and consequently how to draw valid and 

reliable conclusions. Furthermore, a selection that can lead to a conclusion that generalising 

the aspect of concern relating to the objective of the study.  

There are some key concepts that have been considered in the data collection stage such 

as the required level of precision which in known as the margin of error. According to (Lenth, 

2008), the sample size has a clear effect on how precise the estimate is. Basically, the size 

of the sample dictates the amount of information that can be made available. Hence, in part, 

it determines the level of confidence and precision that is required in the selected samples. 
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As stated in (Sarah, 2014), other concepts such as the power and the effect size are 

considered important in data collection stage. The power is a concept used to show 

evidences of any noticed differences between the groups (when there is a variety in the 

dataset given that there are different categories where the data falls in) and this requires 

larger sample size. The effect size can be expressed in terms of the deviation which is 

generally required being as smaller and closer to the mean as possible. As a conclusion, the 

narrower margin of error, the greater power, and the smaller effect size require a larger 

sample size and representative data. It is essential, however, to consider how the sample is 

selected to make sure that it is unbiased and representative of the target items. In this 

research, the above-mentioned concepts have been considered in dataset selection stage 

regarding wind noise dataset and the multiple signals and audio recording samples used in 

the different experimental phases.  

6.2.2 The Structure of the Dataset   

The selection of the samples of audio recordings included in the dataset is based on 

considering examples of important and interesting smart city sounds that have been indicated 

significant in many applications. The samples in the dataset are realistic and required for the 

testing, validation and evaluation of the developed system after exploring the developed 

method by performing many experiments in the verification phase using typical testing signals. 

The results of some selected experiments in the verification phase will be shown in the next 

chapter, whereas the results of system validation will be reported in Chapter 8.  

A freefield1010, which is a published dataset of standardised 10 seconds excerpts from 

Freesound field recording, has been selected. The freefield1010 database collection is adequate 

since it consists of a large number of tracks including many wanted real-world sounds required 

for this study such as birdsongs, city, nature, train, etc., (Stowell and Plumbley, 2013; Grill and 

Schluter, 2017). A benchmark database consists of the required signals of interest such as birds’ 

chirps, alarms, and car sirens along with wind noise sample, has been set up for this study. 

Accordingly, it is particularly important to carefully preparing the working platform and the 

required tools to perform the practical work in a methodical and systematic manner.  

It took considerable effort to make the samples suitable to the experiments by using 

automatic methods where possible to ensure that all the samples included in the dataset are 

pure sounds (e.g., birds’ chirps or alarms). In addition, all silent gaps have been removed from 

the samples. The dataset also includes the samples of wind noise as the samples from this 
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dataset have been mixed to generate mixed soundtracks. As mentioned previously, the 

processing time of the SSA depends on the length of the given time series and the selected 

window length. To reduce the processing time of the SSA, the frame by frame processing 

method has been applied to process the soundtrack samples instead of processing the whole 

audio file directly. The average method has been used, however, an average 100 ms frame size 

has been selected to be a representative sample from five thousand frames in the dataset of 

audio recordings of the desired signals. 

The data is divided into two main categories depending on the requirements of the 

experiments which are wanted signals sample and wind noise sample. Moreover, multiple 

recordings that contain single pure sounds (e.g., alarms) have also been considered in the 

dataset which is the case of some possible city recordings as such audio recordings will be 

subjectively easier to identify with regards to the enhancement level of noise reduction. It 

seems apparently important to have such arrangement as a step toward specific applications for 

adopting the developed systematic approach and direct it for improving further development. 

Also, to best tailor this method for practical uses in environmental smart city application and 

soundscapes monitoring. Different typical testing signals have been used to perform many 

experiments in the system verification phase for exploring the capabilities of the developed 

method and testing new functionalities. The distribution of the data sources is based on dividing 

the samples into signals of interest and wind noise as follows:  

I. Realistic sample of audio recordings 

For testing and validation purposes, different audio recordings of real-world sounds such 

as real birds’ chirps, alarms, and car sirens have been used as signals of interest.  

II. Wind noise sample 

As explained, real measured wind noise samples have been used to be mixed with the 

real audio samples of desired signals to produce mixed soundtracks. 

The main purpose of organising the dataset in this way is to make the dataset easy to 

handle when manipulated and to help in reporting, analysing and discussing the results. It is 

important, at first sight, to bear in mind that the main aim of the research is to develop noise 

reduction algorithms based on the singular spectrum analysis to improve separability when 

using real-world sounds of audio recordings from the city in the presence of wind noise. At this 

stage, the main concern is to decide to what extent the developed system is a valid one for wind 

noise separation regardless for what application the cleaned signals will be used for.  
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6.2.3 Descriptions and Specifications of the Dataset   

Clearly specifying the path of the research could always help in selecting the required 

tools and specifying the dataset as well as indicating the long-term objective of the study. 

Therefore, the first priority was to think of something manageable and doable and at the same 

time should be justified for the academic. Wanted signals and wind noise samples were 

required to establish a benchmark database for the testing and validation of the developed SSA 

particularly for wind noise separation and removal. Using such published and standard datasets 

is highly beneficial as to accurately report and compare the results even with results from other 

related work. The sample selection from such datasets might be seen as a careful and right 

choice because they are popular and standard databases used, validated and cited in many 

research works. Freefield1010 dataset is an open dataset for research on audio field recording 

archives (Stowell and Plumbley, 2013; Grill and Schluter, 2017).  

In the early stages of conducting this research and in many experiments, the Audio and 

Acoustics Signal Processing challenge (AASP) dataset was used. This dataset, which is 

published by IEEE and was collected in many different places in the London area, provide one 

set for soundscapes classification and includes many event types such as alert (beep sound), 

speech, etc. For the later stages of this study, however, after discussing the results obtained in 

the first phase, expanding the dataset or using different signals of interest was essential to prove 

or disprove the developed SSA system in the final phase which is the validation.   

The size of the samples taken for conducting the multiple experimental investigations 

phases is big enough to satisfy the testing and validation requirements. Audio recording files 

with their metadata including descriptions and contents are saved in JSON format (Java Script 

Object Notation) in the original dataset. Table 6.1 below shows the specifications of the 

samples as standardised file format selected for this research.  

Table 6.1.   The specifications of the samples  

Audio file 

format 

Duration 

(s) 

Sampling Rate 

samples/second 

(Hz) 

Total 

Samples 

Bit depth 

/resolution) 

Bits/Sample 

Channels 

WAV 10 44100.0 441000 16-bit PCM Single 

All audio files in the dataset need to be passed through the mixing stage to mix their 

contents with wind noise to produce noisy signals. However, it is to work out with the average 

for reporting the results after producing noise reduced audio files which represent the output 

of the de-noising process of the SSA algorithms.   
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6.2.4 Mixing Recorded Sounds with Wind Noise 

The wanted signals/wind noise mixing strategy requires an audio mixer which is an 

algorithm developed in MATLAB to mix the pre-recorded samples. Importantly, to avoid 

misinterpretation, it is to consider adding the two signals in a correct proportion. Therefore, the 

normalisation has been addressed in the algorithm as a default method to ensure the reliability 

that the mixed signals are to the same perceived level. The main goal of the mixing stage is to 

generate soundtrack benchmark database.   

A variety of environmental sounds have been used in the experimental investigation and 

testing phases. The scenario of mixing multiple signals recorded from the environment that 

contain desired sounds as signals of interest with the under testing unwanted wind noise signals 

was based on selecting a desired SNR ratio in a reasonable range (from -20 dB to 20 dB). The 

SNR was mainly the variable that has been changed to produce a number of soundtracks ready 

for testing purposes in the proposed dataset. It is also considered as an objective measure to 

evaluate noise reduction methods and compare results before and after de-noising. 

Selecting multiple predetermined mixing ratios is for showing the behaviour and 

assessing the performance of the developed SSA noise reduction algorithms under different 

conditions. Meanwhile, this procedure helps in examining the features of the signals as the 

content of the noise changes in a proportional manner with the content of the signal to optimise 

the noise reduction algorithms of the developed system. 

6.3 Algorithm, Testing and Implementation 

Figure 6.1 is a flowchart for the implementation of the developed method in the 

experimental investigation’s phases. Figure 6.1 shows the sequence of performing the 

experiments starting from defining the input to the analysis and evaluation. The input differs 

from one experimental phase to another. In the system verification phase, typical testing signals 

have been used before using different recordings containing multiple real-world sounds 

recorded from the city in the system validation phase as shown in the explanation of the dataset. 

The second step is the mixing stage using a mixing model to produce noisy signals by mixing 

signals together or the desired signals with wind noise. Passing the signals through the mixing 

stage is for the simulation purposes which can be achieved by specific MATLAB codes for 

mixing signals at desired SNR. The output of this stage is noisy signals that required to be 

tested by the noise separation and reconstruction technique developed for this research.  
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After obtaining such noisy signals, however, the next step is to implement the developed 

SSA algorithms for wind noise reduction and separation. It is important to consider the 

optimisation of the sole parameter of the embedding process in the SSA algorithms because of 

its vital role in the decomposition stage. Also, developing and applying an appropriate grouping 

criterion is a key element for testing and validation purposes to produce the output which is 

supposed to be noise reduced signals. Furthermore, based on the developed grouping and 

reconstruction techniques, desired signals can be reconstructed, and further improvement of 

the separability can be achieved.  

The de-noised signals are the resultant signals and the final output of the SSA wind noise 

reduction algorithms of this experimental procedure. To avoid complexity, the SSA noise 

reduction algorithms do not include a complete set of objective measures or any analytical 

procedure. Therefore, the output of the SSA algorithms needs to be manipulated by other tools 

 

 

DSP Techniques & Measures 

 

 

 

 

 

Input 

De-noised Output Signal 

Original Audio Signal 

Audio Mixer 

SNR 

Window length optimisation 

                       Figure 6.1. A flowchart of the experimental investigation phases 

Preparation of 

the input signals 

to the algorithm  

 

De-noising 

Process  

 

Algorithm 

Output 

Output Analysis 

& Evaluation  

 

Embedding process (Embedding in 

a vector space & Trajectory matrix 

production) 

Computing Lagged-covariance 

matrix of the embedded time series 

 

Performing SVD, spectral 

decomposition, eigenmodes, and 

singular spectrum 

Principle Components (projection of 

the embedded time series onto the 

eigenvectors) & Grouping 

Diagonal averaging & One-

dimensional series Reconstruction 

(Back to the original coordinates)  

SSA Algorithm 

Main Steps 

Production of 

Noisy Signals 

(Environment

al Sounds + 

Wind Noise) 

SSA Algorithm 

 



Chapter 6. Dataset and Preparation  

156 

 

and codes to report and compare the obtained results after indicating suitable evaluation 

measures. All SSA algorithms development and implementation, data analysis, and producing 

figures have been performed in MATLAB. 

6.4 Analysis, Validation, and Evaluation Methods   

There are different ways to evaluate the output of a noise reduction algorithm such as 

objective evaluations, subjective evaluations and an objective perceptual evaluation. The latter 

is an automated methodology used to capture the perceptual quality when applying subjective 

evaluations. Using relevant measures is quite important to evaluate how a method performs. 

Signal-to-Noise ratio is one of the objective evaluation measures that often considered as an 

appropriate measure of how the applied methods perform. However, rarely has been the 

perceptual comprehension of the output of an applied technique that needs to be evaluated 

subjected to an objective evaluation.  

Numerous of different subjective tests are available and have been used in some research 

work. Using subjective test evaluation method is also considered as a good way to grade noise 

reduction algorithms and evaluate the sound output, which is planned to be used by real people, 

however, it is very time consuming. Therefore, for a noise reduction algorithm optimisation, 

subjective test evaluation is not highly recommended. Alternatively, some objective evaluation 

measures, which are known as objective perceptual evaluation, that give predictions closed to 

those of a subjective listening test are indicated as good measures (Rohdenburg, Hohmann and 

Kollmeier, 2005; Ding, Lee and Soon, 2012). It is not necessary to use all the evaluation 

methods at a time to evaluate a noise reduction algorithm; however, it could be sufficient to 

use some of them. The subjective test evaluations are time consuming, instead, the most 

commonly used evaluation measures are objective measures. In this research, however, only 

objective evaluation methods have been used.  

After experimentally verifying and testing the developed SSA algorithms and reporting 

related results, it is significant to validate the developed system and applying comparison and 

evaluation approaches to ensure how efficient it is. Verification is an activity used to address 

whether such algorithms appropriately reflect the specified requirements. Whereas, validation 

is the process of evaluating a product, method or an algorithm to determine whether it satisfies 

specified requirements. It is also an activity used to demonstrate whether a method or an 

algorithm can fulfil its intended use. However, similar approaches such as testing, analysis, 

inspection, demonstration, and simulation are used for validation activities. Validation 
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activities can sometimes be concurrently run with the verification and portions of the same 

environment (Maropoulos and Ceglarek, 2010; Sarode and Deshmukh, 2011).  

Validation activities can be applied to different aspects of a method being developed in 

any of its intended environments, such as training and pre-integration of integration phases. 

Generally, to accomplish validation, the methods employed for that can be applied with regards 

to requirements, designs, and prototypes which should be selected based on how well the 

method or algorithm will satisfy the specifications and the needs. Therefore, the selected 

environment for validation activities should represent the intended environment suitable with 

the deployment of the method (Maropoulos and Ceglarek, 2010; Sarode and Deshmukh, 2011). 

Figure 6.2 illustrates a flowchart of software verification and validation processes applied to 

the developed method in this research.  

 

 

 

 

 

 

Figure 6.2. Algorithms verification and validation activities  

The verification activity is often to evaluate the specifications during the development 

process. The validation activity is always prior to the final deployment and performed with 

realistic data. The validation of the results of this study will be performed using the samples of 

the second dataset as proposed. 

6.5  Objective Evaluation Method   

Among all the objective measures available for use, few can particularly give a clear 

indication on the amount of the reduced noise especially if the desired signal of interest is 

speech (Ding, Lee and Soon, 2012). The amount of the reduced noise along with the signal 

distortion are two key metrics to evaluate the enhanced perceptual quality of the de-noised 

signal. It is important therefore to have such balance while applying objective measurement 

tools to evaluate the capability of the noise reduction algorithm with regards to reducing the 

noise and at the mean time recovering desired signals with as much less distortion as possible. 
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For evaluating noise reduction algorithms, the most commonly used objective measure 

is the Signal-to-Noise measure including its different variations. To evaluate the performance 

of the developed SSA wind noise reduction algorithms in this research, it is important to select 

suitable criteria and consider multiple objective measures for analysing and evaluating the 

results. Each criterion gives useful indications and measures a specific means of the de-noising 

method by comparing the output to the input. The input represents the signals before passing 

through the noise reduction algorithm which are the noisy signals, while the output represents 

the de-noised signals. The original clean signals are also used for comparison purposes. It is 

worth mentioning that simulated noisy signals have been generated by adding the target 

environmental noise to wind noise-free audio signals.  

6.5.1 Signal-to-Noise Ratio 

To assess the effect of noise on a signal, the Signal-to-noise ratio measure is generally 

used. SNR is defined as the ratio of the power of a signal which is the meaningful information 

and the power of background noise which is the unwanted signal. The ratio between the signal 

powers of 𝑠(𝑛) to the noise 𝑤(𝑛), where w stands for wind noise in this context, defines the 

SNR which is given in a logarithmic scale in decibels (dB). That is to consider the logarithmic 

perception of loudness in humans and to capture the wide range of potential SNR values 

(Villanueva-Luna et al., 2011). The input Signal-to-Noise ratio is defined as: 

 SNR𝑖 = 10 log 
  ∑  𝑠(𝑛)2𝑛

   ∑ 𝑤(𝑛)2𝑛  
, (6.1) 

where 𝑠(𝑛) is the original clean signal and 𝑤(𝑛) is the wind noise.  

The signal estimate which is given the notation �̂�(𝑛) is the output of the noise reduction 

algorithm. Hence, the output error is given as: 

  𝑠𝑜(𝑛) =  𝑠(𝑛) − �̂�(𝑛), (6.2) 

The output error 𝑠𝑜(𝑛) contains the unfiltered wind noise and the part of the signal that 

has been removed by estimation errors in the algorithm. The output SNR is given as follows:  

 SNR𝑜 = 10 log 
∑  𝑠(𝑛)2𝑛

  ∑  𝑠𝑜(𝑛)2𝑛  
, (6.3) 

The difference between SNR𝑖 and SNR𝑜 is therefore the noise as the desired signal is the 

same in both cases.     
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6.5.2 Noise Residual 

Applying the same concept and using a similar measure which is known as Noise 

Residual (NR) can show how the output resembles the wind noise. Noise Residual NR can be 

computed as in Equation (6.5). Given that: 

𝑤𝑜(𝑛) =  𝑤(𝑛) − �̂�(𝑛), (6.4) 

where 𝑤(𝑛) is the true wind noise and  �̂�(𝑛) is the output 

NR𝑜 = 10 log 
  ∑  𝑤(𝑛)2𝑛

    ∑ 𝑤𝑜(𝑛)2𝑛  
, (6.5) 

Using SNR along with NR measure can evaluate the noise reduction method. However, 

a good method is the one with high SNR𝑜 and low NR𝑜.  

6.6  The Measurement of Audio Signals   

Along with SNR measure, there are certain measurements that have been suggested to be 

used such as root mean square values, crest factor, dynamic range, and sound pressure level. 

Sound analysis methods are sometimes applied and seen as useful data analysis tools. The Root 

Mean Square RMS is a mathematical way of expressing the amount of energy in a signal and 

its measurement is time dependent. It is particularly useful as it allows comparing signals in 

equal terms. RMS calculation for complex waveforms such as audio signals which are made 

of multiple frequencies is far more complex although finding the peak level is relatively easy. 

If two signals have the same peak level, it would not necessarily that these signals have the 

same RMS. In other words, even if two signals have the same peak level, one might sound 

louder than the other. Depending upon the type of the signal, the RMS level can be estimated 

by using the crest factor if the peak level is known (Ballou, 2015). 

• Crest factor  

Crest factor is defined as a measure of a waveform and it indicates the ratio between the 

peak value and the effective value. Since it represents the ratio of peak value to the root mean 

square value, therefore a crest factor 1 such as for direct current indicates no picks; however, 

higher crest factors indicate peaks such as sound waves. Generally, sound waves tend to have 

high crest factors in a considerable range between 10dB to 20dB for most typical sounds. 

Accordingly, crest factor indicates how extreme the peaks are in a waveform. It can be useful 

in some applications to judge overall perceived loudness especially in loudspeaker testing 
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standards it is fairly an important issue of the test signals as well as in modulation techniques 

(Crocker, 2007; Ballou, 2015). It can mathematically be given as the peak amplitude divided 

by the RMS value as a dimensionless quantity. Therefore, crest factor is defined as a positive 

real number and sometimes stated as a ratio of two whole numbers.  

CF =
    |𝑥|𝑝𝑒𝑎𝑘

  𝑥𝑟𝑚𝑠 
, (6.6) 

Crest factor can be also expressed in decibels as in Equation (6.7). However, in this case 

it is equivalent to peak-to-average power ratio (PAPR) which is mostly used in signal 

processing applications due to the way decibels for amplitude ratios and power ratios are 

calculated (Crocker, 2007).  

CF𝑑𝐵 = 20 log10  
   |𝑥|𝑝𝑒𝑎𝑘

  𝑥𝑟𝑚𝑠 
, (6.7) 

The minimum possible crest factor is 1, 1:1 or 0dB, that’s for a square wave. 

Theoretically and even in the real world, other waveforms have a non-zero crest factor since 

there is always some difference between their peak and RMS values. For instance, a sine wave 

has a crest factor of 3dB when all peak magnitudes have been normalised to 1. That means the 

RMS level is 3dB below the peak level. For real life sound the crest factor of human voice is 

greater than 14dB according to statistical values, which means RMS level is about 14dB below 

the peak level (Crocker, 2007; Ballou, 2015).   

• Dynamic range  

Dynamic range and signal-to-noise ratio are closely related concepts. Basically, SNR 

measures the ratio between an arbitrary signal level and the noise considering that it is not 

necessarily the most powerful signal possible. Dynamic range measures the ratio between the 

maximum strongest un-distorted signal and the minimum discernible signal which for most 

purposes is the noise level. According to this definition, the dynamic range can be calculated 

as in Equation (6.8) (Crocker, 2007; Ballou, 2015).  

  DR𝑑𝐵 = 20 log10  
   𝑥𝑚𝑎𝑥

   |𝑥|𝑚𝑖𝑛
, (6.8) 

The dynamic range often describes the ratio of the amplitude of the loudest possible to 

the RMS noise amplitude. According to (Huber and Runstein, 2013), the level of a signal can 

vary broadly from one moment to the next which indicates the dynamic range of the signal. 

For instance, the variance in an audio signal from an impassioned scream following a soft 
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whispery passage is a good indication of a jump from the optimum recording level into severe 

distortion. According to (Kendrick et al., 2015), exerting some form of control over a signal's 

dynamic range becomes obviously required by using various techniques and dynamic 

controlling devices. However, this is another issue which is not directly fit in this context. In 

short, as stated in (Huber and Runstein, 2013), the dynamics of an audio program's signal 

resides somewhere in a continuously varying realm between three categories. These categories 

are saturation which occurs when an input signal is so large, average signal level which 

represents where the overall signal level resides, and the third one is the ambient noise. 

•  Sound pressure level  

For environmental noise measurement, the so-called A-weighting curve has been broadly 

adopted and considered as standard in many sound level meters. This system is used in any 

measurement of environmental noise such as rail noise, roadway noise and aircraft noise. A-

weighting is the most commonly used among the curves defined in the International standard 

IEC 61672:2003 relating to the measurement of sound pressure level. Low frequency signals 

are given very low weight while high weight is given to higher frequencies. Wind noise, which 

is the noise of concern in the context of this research, has several of low-frequency content. 

Also, A-weighted SPL measurements of noise level are increasingly found for domestic 

appliances (Kuttruff, 2006).  

The A-weighting measures could be useful for comparing the output of a noise reduction 

method when putting more emphasis on the frequency range where most of the content of the 

signal of interest exists. For this purpose, sound pressure level SPL measure has been used in 

some experiments in this study. SPL, which is also known as acoustic pressure level, is a 

logarithmic measure of the effective pressure of a sound relative to a reference value. It is 

denoted by Lp and measured in dB and can be defined as in Equation (6.9) (Rienstra and 

Hirschberg, 2003; Kuttruff, 2006; Crocker, 2007; Müller and Möser, 2012).  

  𝐿𝑝 = 20 log10  
𝑃

  𝑃𝑜 
, (6.9) 

where 𝑃 is the root mean square sound pressure and  𝑃𝑜 is the reference sound pressure.    

The commonly used reference sound pressure in air is 𝑃 = 20𝜇𝑃𝑎 which is often 

considered as the threshold of human hearing. Most sound level measurements are made 

relative to this reference (i.e.1 Pa equals an SPL of 94dB).   
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6.7 DSP Analysis Techniques and Visual SSA Tools   

This section discusses some Digital Signal Processing DSP analysis techniques that are 

commonly used in sound analysis. It is just a brief introduction to these methods rather than 

detailed mathematical description. Appling the concepts of time-domain analysis and spectral 

analysis are quite important to visually present audio signals. Such common DSP techniques 

are considered useful to demonstrate valuable interpretation while analysing any given signals 

regarding viewing important aspects such as frequency content, noise presented, silence 

periods, etc. Not only will they help in visualising sound signals and their related concepts 

but also observing the changes occurred to the signals during different processes for 

comparison purposes. For instance, showing the spectrogram can help in interpreting the 

changes occurred to the signals after the de-noising process when compared to the original 

signals and noisy signals before applying the noise reduction algorithms as the case for this 

research. Therefore, MATLAB plots will be introduced and used to show the results such as 

time and frequency domain analysis as well as spectrogram analysis and visual SSA tools such 

as the eigenvalues spectra in the Eigen domain.  

To do such sound analysis for numerous of signals used in the multiple experiments 

performed in this study according to the requirements of the experimental investigation phases 

along with the proper presentation of the results, specific MATLAB algorithms have been 

developed. The “audio read” function in MATLAB has been used to load the data files from 

the dataset. Complete codes have been developed for computing the measurements explained 

in section (6.6) along with plotting certain important figures regarding the analysis techniques 

introduced in this section. SNR calculation and SPL presentation require separate codes.  

Time domain analysis is a mode used for analysing data over time. It gives the behaviour 

of the signal over time and allows predictions and regression models for the signal. A time 

domain graph shows how a signal changes over time which therefore indicates time versus 

amplitude. Frequency domain is a method refers to analysing a signal or a mathematical 

function with respect to the frequency rather than time. All signals have a frequency domain 

representation and this method is mostly used to signals or functions that are periodic over 

time. Transformation is the most important concept in the frequency domain analysis which is 

used to convert a frequency domain function to a time domain function and vice versa. A 

frequency-domain graph shows how much of the signal lies within each given frequency band 

over a range of frequencies indicating frequency versus amplitude (Sovijarvi et al., 2000). 
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Spectrogram is a visual representation of sound or any signal. It shows the amplitude of 

the frequency components of the signal over time. Compared to another visual representation 

of sound known as the waveform, spectrogram is a record or graphic representation that 

indicates the variation with time of the resonance of the sound or series of sounds. The 

spectrogram reflects the change in the frequency in the signal and is useful with complex 

signals especially those that contain more than one frequency component. Frequency 

components of the signal cannot be discerned from a visual examination of a waveform, but 

they are obvious when using spectrogram. It is produced by a sound spectrograph and based 

on the mathematical algorithm Fast Fourier Transform FFT which takes the signal and 

decomposes it into frequency components. In spectral analysis, the spectrogram is always seen 

as a useful tool and it presents interpolated colours of magnitude versus time. Therefore, the 

spectrogram plot not only allows seeing which frequencies are present in the signal, but also 

with reference to time and amplitude (Sovijarvi et al., 2000; Johnson, 2011).  

As stated in (Johnson, 2011), the spectrogram represents the amplitude by colour rather 

than on a separate axis in the graph. The spectrum can be drawn by replacing the vertical axis 

with a colour scheme as a single line that changes colour to show the approximate amplitudes 

of the components. Therefore, instead of drawing a peak, a dot is drawn on the frequency axis 

in (yellow) to represent that the amplitude at that frequency is high. The spectrogram is a 

method that adopts a colour scheme such that any frequency component with amplitude in the 

top tenth of the amplitude scale is indicated in (yellow). Consequently, frequency component 

with amplitude in the next tenth of the amplitude scale is indicated by another colour (red), and 

so on (Johnson, 2011).  

The spectrogram shows time in the horizontal x-axis, and frequency along the vertical y-

axis as in waveform visual representation, and intensity indicated by varying shades of 

darkness of the pattern. In this way a spectrogram is 3-D plot. In many cases, the components 

that make up a complex signal do not share the same amplitude value. Therefore, differences 

in amplitude are shown in the spectrogram by shading, that is the frequency components with 

the highest amplitude values are shown in darkest region of the colours, components of lower 

values are shown in ladder shad of light colours up to the one that signifying very low amplitude 

or silence (Johnson, 2011). Among the SSA visual tool that uses such DSP analysis techniques, 

the spectrogram is also used to show the covariance matrix for example.  
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7 

System Verification: Empirical Study with Testing 

Signals  

7.1 Overview 

Wind noise has been a problem for many decades and numerous methods have been 

applied, yet not many effective and realistic solutions have been obtained. This was the main 

reason behind developing a wind noise separation method based on singular spectrum analysis 

in this study. A noise reduction technique is the process of removing noise in the signal, and 

generally, such techniques are conceptually quite similar regardless the signal that is being 

processed (Sarode and Deshmukh, 2011). Based on this definition many experiments have been 

performed and several case studies have been conducted. After the justification stage that 

intended to develop and test the method to investigate its potential capabilities with regards to 

the decomposition and reconstruction of signals, the method has been further developed in the 

system verification phase for signals and noise separation using typical testing signals. 

The contribution is targeting with systematic investigation and optimisation along with 

more advanced grouping techniques to improve the separability for wind noise separation and 

mitigation. Though, the separability may vary depending upon the dataset itself. However, in 

this study, the methodology has been developed incrementally to identify the potential and 

capability for wind noise removal with testing signals before using real-world sounds in the 

system validation phase. The experimental procedure includes testing new functionalities 

within the framework established for this study when adopting the developed systematic 

approach for the method. This strategy was successful in drawing the algorithm flowchart and 

develop the method in a step by step manner in the empirical study phases.  

The method was systematically developed regarding grouping and reconstruction 

techniques as key elements and in system verification and validation phases. In the system 

verification phase, different experiments have been performed for the separation of a mixture 

of deterministic signals such as sine wave and triangular wave, etc., as a first stage. In the 

second stage, the method has been developed to separate white noise and wind noise from such 

deterministic signals. Results of some selected experiments which have been carried out during 

the experimental investigation of system verification are presented in this chapter.  
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7.2 Principle Framework Description  

In the system verification phase, it is important to develop and investigate the SSA for 

signals and noise separation by first applying the principles of the method through performing 

many experiments using different testing signals and noise before developing a complete SSA 

algorithm when using real audio recordings. As previously mentioned, developing and testing 

new functionalities and developing the method in many ways based on the systematic approach 

explained in the previous chapters is the central objective. The main focus while experimentally 

investigating the developed SSA method is on how to improve the separability. Among the 

long-term aims is to perform further development and best tailor the selected method for 

practical uses in environmental smart city application and soundscapes monitoring. The 

developed SSA algorithms have been implemented using MATLAB platform. 

In the system verification phase, the principle of the SSA as a noise reduction method 

has been applied including all the steps of the SSA algorithm when two signals are generated 

and mixed together. The principle of recovering and reconstructing one of the signals and 

excluding the other at the end has been developed and applied as a kind of separating signal 

from noise based on the capabilities of the SSA for reconstructing signals. The development of 

the SSA algorithms related to wind noise separation have been performed by examining such 

algorithms in a simulation phase when wind noise is added to some typical testing signals. The 

main purpose is extracting information by specifying the oscillation that represents the signal 

of interest while excluding the noise. Such simulation phase can be seen as a pre-integration 

phase for testing the developed functionalities and ensuring the capabilities of the modified 

SSA method for signals and noise separation. 

In addition, such simulation process can help in obtaining a full descriptive and clear idea 

about the nature of the obtained findings when running SSA algorithms and carrying on further 

experimental investigations with realistic samples in the system validation phase. Further 

development of the key aspects in the method and optimisation of the window length have been 

considered in the validation phase which includes producing mixed soundtracks or noisy audio 

recordings based on establishing a dataset of audio files containing different environmental 

sounds as explained in Chapter 6. 

The key words in this experimental work are; the SSA method as a statistical technique 

based on linear algebra, typical testing signals, wind noise, digital signal processing, sound 

analysis including audio and acoustic approaches, and MATLAB coding.  
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7.3 Experimental Investigation Procedure   

The simulation procedure is firstly based on generating different signals such as sine 

wave and triangular waveform for instance. Secondly, mixing two signals together considering 

recovering one signal as a signal of interest when applying the multiple sequential steps of the 

SSA algorithm as explained in the previous chapters. In other words, this system verification 

phase is an activity used to address whether the developed algorithms appropriately reflect the 

specified requirements, and also to evaluate the specifications during the development process.  

Such verification activity is required as an introductory step towards the system validation 

phase and implementing the developed method with real audio recordings. Figure 7.1 shows a 

flowchart of the system verification phase presenting the simulation procedure of the 

experiments using typical testing signals. Figure 7.1 also illustrates the sequential steps of the 

developed SSA algorithm in case of two different generated signals that are mixed together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. A flowchart of the system verification phase presenting the simulation procedure 

for typical testing signals and wind noise 
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To enable this simulation process, the SSA algorithm has been written and developed 

using MATLAB platform in such a way to perform the whole steps and plot figures related to 

each step. Numerical values regarding the different matrices used in the method are not 

provided in the results. However, only findings from the experiments that provide practical 

assistance for the purpose of this verification phase are indicated. Also, it is to avoid giving 

many matrices with enormous numbers which by themselves will have no much significant 

meaning in interpreting and demonstrating the SSA method. Instead, demonstrating the 

performance of method in this phase is by presenting multiple figures. The working examples 

given in the previous chapters which provided with numerical values and performed with 

MATLAB are sufficiently enough to show the nature of the different matrices used in the SSA 

as well as to give a clear idea of the construction of the matrices, their arrangement, 

manipulation, and the values they contain. The working environment of such simulation and 

testing platform is with MATLAB. The different steps of this procedure will be discussed with 

more details in this chapter.  

7.4 Proposed Algorithm Framework    

The SSA consists of two complementary stages as explained in the previous chapters 

which are; decomposition and reconstruction. Decomposing the original series into a sum of 

small number of independent and interpretable components is the first step that aimed to obtain 

such components like oscillatory components, and a structure-less noise. The reconstruction 

stage is to reconstruct the time series based on the selection of the principle components that 

correspond the eigenvectors associated with the dominant eigenvalues. 

The SSA has been used for noise reduction, however, when developing grouping and 

reconstruction techniques it removes noise in broadband and it can be seen as a source 

separation. Wind noise is a broadband noise that covers a wide range of frequencies. Generally, 

broadband noise is defined as sound that does not have any tonal character and is not dominated 

by any particular frequency; however, the energy of such noise is distributed over a wide sector 

of the audible range. Since the decomposed additive components can be identified as to 

distinguish between signal components and wind noise components in the Eigen domain, 

therefore these wind noise components can be separated out from the others.  

The experiments in the experimental investigation phase described in this chapter are 

gradually performed in a step by step manner starting from implementing typical testing signals 

that are mixed together to the next stage when such signals mixed with white noise and wind 
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noise. As previously mentioned, the developed SSA system that performs all the required 

functions has been validated and evaluated using mixed soundtracks of real audio recordings 

towards achieving the central objective of this study.  

The SSA algorithm has been written and developed in the development process to meet 

the specifications laid down according to the needs and expectations of each experimental 

phase as explained in the previous chapter. Therefore, the algorithm has been written in 

different versions to satisfy such conditions considering the contribution of the study which is 

developing the method specifically with regards to the key concepts in a methodical and 

systematic manner. The systematic approach developed for the SSA within the framework of 

this study has been explained in Chapters 4 and 5.  

7.5 Practical Work Phases 

As previously mentioned, the SSA decomposes a time series into many component parts 

and reconstructs the series considering the meaningful components while leaving the noise 

component behind. However, this fundamental principle has been applied for developing the 

SSA algorithms during the different experimental phases. The method has been incrementally 

developed and implemented in a logical sequence according to the requirements and aims set 

for each experimental phase. The experimental investigation procedure of this research is 

divided into three main phases which are the justification, verification, and validation of the 

developed SSA system.  

The first phase, however, was an introductory phase to investigate the SSA by studying 

and applying its principles and concepts through performing a large number of experiments to 

handle with the method. In addition, the first phase was to justify the developed method to 

implement it as a wind noise separation technique in the subsequent phases. The focus was on 

generating different signals and applying the principles of the method for decomposition and 

reconstruction of signals. Also, the idea was to provide, as outcomes, with working examples 

to show the two main stages of the method, how to manipulate with the multiple types of 

matrices, and the way of recovering and reconstructing signals which all given in the previous 

chapters. Meanwhile, this phase also included testing new functionalities which are gradually 

developed in the adopted systematic approach of the method.  

In the second phase which is presented in this chapter, experiments started with the 

implementation of the developed SSA for the separation of a mixture of deterministic signals 
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and noise as previously mentioned. This phase is divided into two stages, the first is to 

implement the developed method with such deterministic signals as typical testing signals 

when mixed together (e.g., sine wave and triangular wave, etc.). The second stage is a crucial 

stage in which the method developed and deployed to separate white noise followed by wind 

noise from such deterministic signals.   

As known, the window length is the sole and important parameter in the embedding stage 

of the SSA algorithm. However, unlike the proceeding phases, its optimisation is left to the 

third experimental phase. Also, w-correlation matrix has been used to indicate the separability. 

In the third phase, it is to bring together the different aspects of the developed SSA system for 

validation and critical evaluation considering and adopting suitable dataset that links up to the 

application area of the study. 

7.6 System Verification Phase Using Typical Testing Signals and Noise  

Many different testing experiments have been performed in this phase regarding the 

verification of the developed SSA algorithms using typical testing signals. Only three 

experiments have been selected as examples to illustrate the main aspects of the developed 

SSA technique in this study as explained above. 

The selected experiments presented in this chapter cover all the previously mentioned 

aspects when working on the theory that the SSA is a time series decomposition method used 

for signals separation and noise reduction. To describe these experiments, a specific style has 

been established and followed. This style includes setting the aims for each experiment, 

introducing a relevant part of the general SSA theory that fulfill the requirements of the 

experiment, description and procedure, and eventually results and discussion.  

7.6.1 Experiment 1: The SSA Algorithm for Separating Two Signals  

The Implementation of the developed SSA algorithm with two signals mixed together 

(e.g., a sine wave and a triangular wave) is presented in this experiment.   

Aims:  

• To practice the SSA aspects on two signals generated and mixed together.   

• To apply the essential concepts of the SSA regarding its two complementary stages.  

• To demonstrate the SSA capabilities for separating signals out from each other.  

• To understand the basis of the complete reconstruction and the dominant reconstructed 

components.  
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Theory:  

The developed SSA system is based on the two complementary stages of the method as 

the SSA is a two stand-point method with multiple steps involved in the developed algorithm. 

The fundamentals of generating signals and mixing them are required for this experiment. 

Window length selection in the embedding stage along with the eigenvalues spectra that have 

to be considered for selecting the significant eigenvalues and their associated eigenvectors to 

identify the dominant principle components are parts of the general SSA theory.   

Procedure and description: 

Generating a time series and defining parameters that are required to adequately perform 

the experiment is the first step in writing the algorithm of this experiment. A time series 𝑋(𝑡) 

is created by first generating a time series composed of a sine wave of length N and added to 

another generated triangular wave. The resultant time series is a mixed signal composed of 

these two signals. Figure 7.2 illustrates the original signals (sine wave and triangle wave) 

generated and mixed together to be used in the experiment. 

   

Figure 7.2. Original sine function and triangle wave used in the experiment  
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The embedding dimension (window length), the length of the generated time series, the 

period length of the sine wave, and the triangular wave should be set and clearly defined. Recall 

from Chapter 3, window length is generally in the range 
 𝑁𝑡

4
 to 

 𝑁𝑡

2
. For this experiment, it is 

assumed that 𝑁𝑡 = 100, 𝑚 = 30 where the selection of the length of the time series and the 

parameter 𝑚 is based on an assumption for appropriate simulation. A sample of the mixed 

wave is shown in Figure 7.3.   

 

Figure 7.3. A time series sampled from sine wave mixed with triangle wave 

To provide a detailed description of this experiment, the steps of the algorithm can be 

explained and outlined as follows: 

I. Constructing matrices Y and C 

After constructing the embedded time series or the trajectory matrix Y, the covariance 

matrix C can be calculated based on the (Toeplitz approach) or it can be computed based on 

the trajectory approach directly by multiplying the trajectory matrix Y by its transpose. There 

are some built-in MATLAB functions (e.g., “cov”) to compute the covariance matrix and a 

vector x whose entries can be used to construct the covariance matrix which is a diagonal-

constant matrix which is also known as Toeplitz matrix.  Figure 7.4 shows the spectrogram of 

the covariance matrix.  
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Figure 7.4. The spectrogram of the covariance matrix 

II. Computing matrices LAMBDA and RHO 

Figure 7.5 illustrates the eigenvalues spectra and first four eigenvectors for comparison 

where the most significant are the first two eigenvectors which are in phase.  

 

Figure 7.5. The eigenvalues and first four associated eigenvectors 
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The eigenvalues and their associated eigenvectors of the matrix C can be calculated using 

a MATLAB function (EIG). This function returns two matrices, the matrix LAMBDA with 

eigenvalues along the leading diagonal and the matrix RHO with eigenvectors arranged in 

columns. In this step, it is to extract the diagonal elements of matrix LAMBDA and sort their 

associated eigenvectors from matrix RHO. It is worth mentioning that the eigenvectors 

represent the axis of projection in the Eigen domain and they can describe trend and phase. 

III. Principal components  

The principal components PCs can be computed by projecting matrix Y onto and the 

eigenvectors matrix. The PCs represent the variance of the signal and give a clear observation 

about the reconstruction. The first four principle components are shown in Figure 7.6. 

 

Figure 7.6. The first four principle components  

IV. Reconstructed Components  

The reconstructed components can be computed by inverting the projection of principle 

components in Equation (7.1) onto the eigenvectors transpose matrix as Equation (7.2).   

𝐏𝐂 = 𝐘 × 𝐑𝐇𝐎, (7.1) 

𝐑𝐂𝐬 = 𝐘 × 𝐑𝐇𝐎 × 𝐑𝐇𝐎𝑻, (7.2) 
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Averaging along anti-diagonals provides the RCs for the original input 𝑋(𝑡). It is 

possible to completely reconstruct the original time series 𝑋(𝑡) by the sum of all 

reconstructed components RCs or the signal of interest by the first two RCs. Figure 7.7 

presents the first four RCs for comparison purposes.  

 

 

Figure 7.7. The first four reconstructed components 

Results, discussion, and conclusion:  

Since the main aim set in this experiment is to implement the developed SSA algorithm 

for separating two generated signals (e.g., sine wave and triangular wave) and to work on the 

theory of the SSA with regards to its two complementary stages, however, from the experiment, 

some important points can be outlined as follows:  

• The time series has been decomposed to oscillatory components that correspond to the 

first two eigenvalues located in the lower subspace of the eigenvalues spectra and other 

components that correspond to the higher-order eigenvalues.  

• From the reconstructions shown in Figure 7.8, the time series 𝑋(𝑡) can be completely 

reconstructed using the whole set of the reconstructed components while the signal of 

interest, which is assumed the sine wave, can be reconstructed using the first two RCs.  

When comparing the original time series 𝑋(𝑡) to the reconstruction with RC1-2, which is the 

sum of the first two RCs, it can be found that the signal of interest can be reconstructed while 

excluding the others. 
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Figure 7.8. Reconstruction with RCs 1-2 vs the complete reconstruction  

It can be concluded from this experiment that the time series can be decomposed and 

reconstructed either completely for the whole set of RCs (with no selection or specifying 

boundaries in the subspace) or partially regarding the signal of interest for the first two ones 

that correspond to the most dominant principle components. This principle will be applied in 

the next experiment when considering noise added to signals instead of two periodic signals 

by using less of the total number of RCs. A part of the given noisy time series (the mixed signal) 

that supposed to be noise can be separated out. 

7.6.2 Experiment 2: SSA Algorithm for Separating Sine Wave and White Noise 

This experiment is an implementation to demonstrate the developed method in step by 

step manner by analysing a generated time series composed of a sine function and white noise.  

Aims: 

• To illustrate the two main complementary stages in the SSA method.  

• To analysis a generated time series composed of a sine function and white noise.  

• To apply a developed SSA algorithm for noise reduction by separating the noise out 
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Theory:  

Decomposing the original time series into a small number of independent and 

interpretable components, such as a trend, oscillatory components (harmonics), and a structure 

less noise, is the first stage in the SSA method. The original time series can be completely 

reconstructed by the sum of all reconstructed components. The signal of interest can generally 

be reconstructed with the first RCs that correspond to the most dominant principle components. 

In the decomposition stage, the variance of the signal can be represented by each eigenvalue in 

the direction of the corresponding principle components. Based on SSA visual tools, the 

eigenvalues spectra show the eigenvalues found in the lower subspaces (the lower-order 

eigenvalues) are related to the more powerful components of the signal. Whereas, eigenvalues 

located in the higher subspaces, where the noise components typically arise, are the higher-

order eigenvalues that represent the undesired components which are noise components.  

Procedure and description: 

As a first step in writing the algorithm is to set the needs and expectations and lay down 

the specifications, however, it is also required to define all the parameters to carry out the 

particular functions in the algorithm. A time series 𝑋(𝑡) composed of a sine function of length 

N with observational white noise added is created in this experiment. It can be generated when 

removing the mean (at zero mean) and normalised to standard deviation equals one. White 

noise has an equal energy distribution and its frequency spectrum is completely flat. 

As known, the sole parameter in the embedding stage of the SSA method is the 

embedding dimension (window length) which has to be selected along with the other variables 

required in the algorithm. These variables are the length of the generated time series, the period 

length of the sine function, and the signal to noise ratio (SNR) for the white noise added which 

all should be set and clearly defined in the algorithm. Recall from Chapter 3, window length 

should be generally in the range from 
 𝑁𝑡

4
 to 

 𝑁𝑡

2
.  

For this experiment, it is assumed that 𝑁𝑡 = 200, 𝑚 = 30, period length of sine function 

(T) equals 22 and the SNR is set at 1dB for instance. The selection of these variables is based 

on an assumption for appropriate simulation. The time series is therefore sampled from a sinus 

function with white noise added, and has mean=0, SD=1, and a length of 200 data points. A 

time series sampled from sine function with white noise is shown in Figure 7.9.  
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Figure 7.9. A time series sampled from sine function with white noise added 

To provide a full description of this experiment, the steps of the algorithm can be 

explained and outlined as follows: 

I. Constructing matrices Y and C 

In the embedding process, it is to construct the embedded time series or trajectory matrix 

Y as a first step and then the covariance matrix C can be calculated based on the (Toeplitz 

approach). Figure 7.10 shows a spectrogram of the covariance matrix in this case.  

 

Figure 7.10. The spectrogram of the covariance matrix  
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There are several numerical approaches to estimate C such as calculating the covariance 

function in MATLAB and computing C with the function TOEPLITZ. Alternatively, the 

covariance matrix can be computed based on the trajectory approach directly from the scalar 

product the time-delayed embedding of 𝑋(𝑡) which is the trajectory matrix Y.  

II. Computing matrices LAMBDA and RHO 

Here, the eigenvalues LAMBDA and eigenvectors RHO of the matrix C can be computed 

and as an essential step in the SSA algorithm. In doing so, a MATLAB function (EIG) is used. 

This function returns two matrices, the matrix LAMBDA with eigenvalues along the main 

diagonal and matrix RHO with eigenvectors arranged in columns. In this step, it is to extract 

the diagonal elements of matrix LAMBDA and sort their associated eigenvectors from matrix 

RHO. The eigenvalues spectra and the first four eigenvectors which have been selected for 

comparison purposes are all illustrated in Figure 7.11. It is worth mentioning that the 

eigenvectors represent the axes of projection in the Eigen domain and can describe trend and 

phase. Therefore, it can be clearly seen that the eigenvectors in the bottom part of Figure 7.11 

are not in phase and thus they cannot be considered as axes of projection compared to the first 

two eigenvectors.  

 

Figure 7.11. The eigenvalues and the first four associated eigenvectors  
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III. Principle components  

The principal components are given as a projection of the time-delayed embedding of the 

time series 𝑋(𝑡) which is given in matrix Y onto and the eigenvectors matrix RHO as axis of 

projection presented in a new coordinate system. In other words, it is the scalar product between 

Y and eigenvectors matrix RHO. The graphical representation of the PCs is not a time domain 

representation, but an Eigen domain representation that can indicate dominance.  Figure 7.12 

illustrates the first four principle components for comparison and selection of the dominant 

ones. The dominant principle components can give a clear observation about the reconstruction 

as for PC1 and PC2, whereas the others cannot.  

  

Figure 7.12. The first four principle components 

IV. Reconstructed components 

Computing the reconstructed components RCs can be performed by inverting the 

projection of the principle components onto the eigenvectors transpose matrix as explained in 

the previous experiment. Averaging along anti-diagonals provides the RCs for the original 

input 𝑋(𝑡). The signal of interest which is the sine function in this example can be reconstructed 

with the first reconstructed components. The original time series 𝑋(𝑡) can be completely 

reconstructed by the sum of all reconstructed components. The first four reconstructed 

components are shown in Figure 7.13.   
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The reconstructed components indicate how the reconstruction can be built. They also 

indicate the dominance with regards to retaining accurate signal energy in the reconstruction 

stage. The first reconstructed components are commonly defining an oscillatory signal due to 

phase quadrature as shown in Figure 7.13. The first two RCs indicate higher variance compared 

to the others.  

 

Figure 7.13. The first four reconstructed components 

Results, discussion, and conclusion:  

The reconstructed components that resemble the original time series are the ones with 
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Figure 7.14 shows the possible reconstruction when using complete reconstruction 
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reconstructed with the RCs that correspond to the first pair of nearly equal eigenvalues as in 

the bottom part of Figure 7.14. 

 

Figure 7.14. Reconstruction with RCs 1-2 vs the original series 

When comparing the original time series 𝑋(𝑡) to the reconstruction RC1-2 which are the 
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performed in this way while excluding the other components that represent the noise. 

According to the SSA recommendations and what have been demonstrated by using less of the 

total number of RCs in this experiment, a part of the time series that supposed to be noise can 

be separated out. 

This verification activity of the developed SSA as noise reduction method indicates the 

separability approach of the method in many ways. In this experiment, the time series has been 

reduced to oscillatory components and noise components. Oscillatory components correspond 
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7.6.3 Experiment 3: The SSA for Separating Sine Wave and Wind Noise  

This experiment is to demonstrate the developed SSA as a wind noise reduction method 

in this system verification phase. Also, this experiment is to examine to what extent the 

separability can be achieved by analysing a generated time series composed of a sine wave and 

wind noise added. This is mainly what this study is aiming at as an interesting case for further 

investigation and development of the SSA algorithms with realistic samples in the system 

validation phase. 

Aims:  

• Developing an algorithm based on the aspects of the SSA for separating wind noise out 

when added to a generated deterministic signal (e.g., Sine wave), and apply the main 

concepts of the developed method including the SVD to produce the eigentriples. 

• To investigate and develop the grouping criterion and apply several constrains to be 

included in the algorithm following the systematic approach developed for the method 

in this study as discussed in Chapters 4 and 5.  

• To demonstrate the capabilities of the developed SSA system for separating signals 

mixed with wind noise as a particular type of environmental noise in this thesis.  

Theory: 

The SSA is a statistical and mathematical approach based on linear algebra. The SSA 

main concepts from the general SSA theory and different algorithm steps for separating signals 

out from noise are considered in writhing the algorithm for this experiment. Furthermore, it is 

important to adopt the developed systematic approach that includes all the mathematical 

formulations formulated and explained in the previous chapters. Also, in the system 

verification phase, it important to bring these mathematical formulations to practice for 

developing SSA algorithms for wind noise separation and verify the requirements and 

specifications. The key elements discussed in Chapters 4 and 5 which are grouping and 

reconstruction techniques along with the proper selection of window length and the dominated 

eigenvalues are among the aspects considered for developing the SSA particularly for wind 

noise separation. 

Procedure and description: 

The SSA generates a trajectory matrix Y from the original time series 𝑋(𝑡) by sliding a 

window of length 𝑚. The trajectory matrix is approximated using Singular Value 
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Decomposition method to produce the additive components. Constructing the covariance 

matrix used for computing the eigenvalues and eigenvectors by performing matrix operations 

is an important step in SSA algorithm. The eigenvectors are needed to compute the principle 

components as they represent the axes of projection and this can be simply accomplished using 

the covariance matrix. The eigenvectors are presented in a square matrix that corresponds to a 

number of eigenvalues of matrix C presented along the main diagonal of the eigenvalue’s 

matrix. Determining the eigenvalues in this way is known as Singular Value Decomposition.  

The amplitude of each eigenvector will be comparable to the amplitudes of all other 

eigenvectors with the normalisation used in the construction of the trajectory matrix. The first 

eigenvectors represent a high-frequency oscillation when considering successive elements of 

the eigenvectors over time, while the rest capture the lower-frequency components of the time 

series. The components to be used to reconstruct the series must be properly chosen based on 

the singular spectrum appearance as explained in Chapter 5. 

The last step, however, is to reconstruct the series from the approximated trajectory 

matrix after computing the principle components as they are produced by the projection of Y 

onto the eigenvectors. The principle components are incomparable to the original series 

because they are Eigen domain representation. However, the principle components should be 

selected in identified groups to compute the reconstructed components. As previously 

mentioned in the first experiment, the first RCs are commonly defining an oscillatory signal 

due to the phase quadrature of the corresponding PCs. This means the PCs that correspond to 

the eigenvectors associated with the dominant eigenvalues which are the lower-order ones.  

The interesting output of this experiment is to see how the developed SSA method 

functioning with regards to eliminating wind noise from a signal contaminated of this noise in 

most likely source separation approach. Also, to finally obtain from the singular spectrum 

of 𝑋(𝑡) a column vector represents a reconstructed one-dimensional series after applying the 

diagonal average method as explained in Chapter 4. 

Results and discussion:  

The strategy adopted in this system verification phase was by conducting an empirical 

study when using testing signals mixed together along with different types of noise added. 

Developing and implementing the SSA technique in such a way helped to lead to better 

understanding the concepts of the method regarding time series analysis, decomposition and 

reconstructions, etc. Importantly, this strategy paved the way towards improving the method 
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with regards to certain key elements to make a substantial contribution to knowledge as in 

Chapters 4 and 5. In fact, as mentioned previously, the systematic procedure developed for the 

SSA in the framework of this thesis was adopted in all the experiments in this verification 

phase.  

This illustration typically shows a complex case as wind noise separation is presented in 

this experiment when considering the original signal is a sine wave. The main aim is to verify 

the specification and requirements in the developed SSA method. Among the aims of this 

experiment is to demonstrate the capabilities of this developed system for reducing wind noise. 

Also, this experiment is aiming at evaluating the performance of the developed algorithm 

regarding the main concern of this study which is wind noise separation and improve 

separability of the decomposed components of the given noisy signals.  

In this discussion, Figure 7.15 shows the eigenvalues spectra that represent the Eigen 

mode in the horizontal axis versus the eigenvalues number in the vertical axis. Figure 7.15 also 

illustrates typical eigenvalues spectra; however, the number of the dominant eigenvalues 

located in the lower-subspace might differ from one case to another as previously mentioned.   

 

Figure 7.15. A graphical representation of the eigenvalues 

Figure 7.16 illustrates a combination of the different signals in the experiment which are 

the original sine wave, the mixed wave (sine wave and wind noise), and the reconstructed 

series. The top part of Figure 7.16 shows the original signal which is the sine wave 

contaminated with wind noise. Accordingly, the positive result that can be emerged from 

Figure 7.16 is that the reconstructed series is perfectly resembles the original signal with no 
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reconstruction errors. However, these results of this verification phase helped in considering 

the developed SSA a promising technique for wind noise separation.  

 

Figure 7.16. Comparison between the different signals in the experiment 
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reconstructing the decomposed components based on gathering wind noise components in a 
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regarding the separability particularly for the separation of wind noise component.  

Furthermore, from this experiment, it can be concluded that defining a subspace for the desired 

components and another subspace that corresponds to unwanted components is possible using 

the developed SSA based on developing groping and reconstruction techniques and using 

standard SSA tools. 

Figure 7.17 illustrates the comparison between mixed (noisy) signal and reconstructed 
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The findings also provide evidence that considerable noise reduction was obtained as it can be 

seen in the bottom of Figure 7.17. A considerable amount of wind noise was separated out from 

the signal and denoted as residual series although this remains to be validated when using real-

world sounds and critically evaluating the developed SSA using different objective measures.  

 

Figure 7.17. Reconstructed series vs original signal and residual series  
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-3 5 8 

0 7 7 
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signal due to the phase quadrature of the corresponding PCs. These principle components 
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7.7 Summary 

The experiments performed during the SSA system verification phase presented in this 

chapter are for clarifying the principle of the developed SSA method and test the developed 

functionalities and algorithm capabilities in recovering the original time series and separating 

the noise out in noisy signals. Furthermore, performing such experiments helped in 

understanding multiple aspects like generating signals, adding noise, etc., and most 

importantly, writing and developing SSA algorithms in a step by step manner. 

In this chapter, a principle framework has been established considering many important 

key elements in developing the SSA algorithm throughout the different experimental phases of 

the empirical studies in this thesis. The procedure of drawing a map to perform a wide range 

of experiments has been established in the system verification phase using typical testing 

signals and noise including wind noise. This chapter also introduced the proposed algorithm 

framework as the algorithm has been written in different versions to meet the specifications 

laid down according to the needs and expectations of each experimental phase. This chapter 

also introduced the arrangement of the practical work phases of the study.   

The system verification phase using typical testing signals and noise has been carried out 

and presented with only three experiments that have been selected as examples among the wide 

range of the experiments performed in this phase. These experiments have been presented in 

such a way to include the aims, the theory formulated for each case based on the general theory 

of the SSA and SSA recommendation and standards. Also, the experiments have been reported 

to include procedure and description along with results, discussion, and conclusion. The 

straightforward procedure that has been established from the outset was performed by first 

decomposing the time series into several components and reconstructing the desired signal by 

grouping desired components based on the eigentriples. This procedure aimed at separating the 

decomposed components after grouping similar components together. 

To make a comprehensive evaluation of the performance of the developed algorithms 

and measure the effectiveness of the SSA as a method for wind noise separation, the criteria 

used to evaluate the method will be with real-world sounds. Therefore, the system validation 

and critical evaluations of the results are carried out in the next experimental phase presented 

in the next chapter.  
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8 

System Validation: Empirical Study with Real-World 

Sounds and Discussion  

8.1 Overview 

A wide range of experiments have been carried out to identify the potential and capability 

of the developed SSA in microphone wind noise reduction. The experimental investigation 

procedure and practical work were divided into several phases based on developing an 

incremental methodology as explained in the preceding chapters. Recall from Chapter 7, for 

the verification of the developed SSA, several experiments have been performed for the 

separation of wind noise from many deterministic signals along with the separation of such 

signals from each other. However, in the system validation phase presented in this chapter, 

real-world sounds have been used in the experiments.  

In the system validation phase, it is to deal with realistic samples; therefore, some 

interesting environmental sounds such as birds’ chirps have been used as wanted signals for 

testing and validation. Also, for validation purposes, different samples have been selected 

which are alarms and car series as mentioned in Chapter 6 (section 6.4.1). It is worth 

mentioning that during conducting this research, the developed SSA algorithm was also 

implemented to mitigate wind noise in corrupted speech signals in specific experiments whose 

results have been previously published in an IEEE conference (Eldwaik and Li, 2017).  

To examine the developed SSA method and determine significant oscillations, noisy 

audio recordings composed of wanted signals and wind noise have been used. However, this 

testing and validation phase is based on establishing a dataset of audio files containing different 

environmental sounds such as birds’ calls, alarms, car sirens, etc. The soundtracks used in the 

experiments performed in this phase contain a mixture of such signals at different mixing ratios 

to enlarge the sample size and study the effect of the content of wind noise on the output of the 

SSA algorithms. To extract information by specifying the oscillation that represents the signal 

of interest while excluding the wind noise, a complete SSA algorithm has been written 

considering all the key aspects in the method and following the systematic approach developed 

for the SSA within the framework of this study as explained in the previous chapters.  
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The main aim is to validate the developed SSA system and investigate the capability of 

the developed algorithms to decompose such mixed soundtracks that include wind noise and 

wanted signal into different components. That is to group the desired signal in one group and 

omit the other which is the unwanted wind noise content in a different group. Reconstructing 

the decomposed components into time domain representation has been made after applying the 

developed grouping criterion in the algorithm. However, two groups are defined as one 

represents the signal of interest and the residual noise presented in the other group represents 

the wind noise component with typically non-over-lapping content.  

Although in all cases, notable wind noise reduction was observed, results are slightly 

different from case to another due to the complexity of the environmental sounds. Using the 

dataset specified for testing, results from the separation of outdoor wind noise from birds’ 

chirps are detailed in the current chapter. The results of the validation and evaluation using the 

other real-world sounds as specified in the dataset are presented in this chapter as well.  

8.2 Theory and Practice 

The SSA has been showed as a valid method for time series decomposition using spectral 

decomposition (Vautard and Ghil, 1989; Elsner and Tsonis, 2013). As mentioned previously, 

from the SSA theory, the spectral (eigenvalue) decomposition of a given matrix into a set 

(spectrum) of eigenvalues and eigenvectors gave us a clear theoretical and scientific 

understanding of the term “singular spectrum”. As stated in (Elsner and Tsonis, 2013), the 

covariance matrix plays a vital role for the spectral decomposition. However, when it is 

estimated from short records in particular, it can make a difference to the results. To clarify, 

for instance, when the SSA is used to decompose a time record with oscillations of varying 

frequencies and similar amplitudes, the ordering of the eigenvalues might be affected by the 

selected estimated matrix. Consequently, the main objective of the development process of the 

SSA in the context of this research is to decompose mixed soundtracks into a number of 

components which are wanted signal and wind noise. 

In principal, as known, the SSA embeds a given time record into multi-dimensional 

Euclidean space and finds a subspace corresponding to the sought-for component as a first 

stage (decomposition stage). In other words, the SSA decomposes the time series into a number 

of elementary matrices by mapping the time record under test into a trajectory matrix and then 

processing it using the SVD method. Basically, the SSA decomposition depends on the 

approximate separability of the different components of the time record (Harmouche et al., 
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2017; Traore et al., 2017). The window length should be properly identified to obtain the lag k 

required for constructing a new matrix (trajectory matrix) according to delay coordinates. 

 At the decomposition stage and after computing the covariance matrix from constructed 

trajectory matrix, the time record is decomposed into mutually orthogonal components. The 

trajectory matrix is constructed from the real observations of the time series and decomposed 

into additive components or elementary matrices by means of SVD (Chu, Lin and Wang, 2013; 

Golyandina and Shlemov, 2015; Harmouche et al., 2017). As explained in the preceding 

chapters, the SVD method is also used to determine the principal components of a multi-

dimensional signal. Once the SSA decomposes mixed signals in the eigen-subspaces, it selects 

and groups the principle components according to their contributions to wind noise and desired 

signal in the singular spectrum domain.  

Eventually, the second complementary stage involves applying the grouping criterion 

and the diagonal averaging to reconstruct a time series component corresponding to its specific 

subspace. In the grouping step, different rank-one matrices obtained from the SVD can be 

selected and grouped to be processed separately. The groups will reflect different components 

of the original time record if they are properly partitioned (Chu, Lin and Wang, 2013; 

Golyandina and Shlemov, 2015). Therefore, the elementary matrices can be grouped into 

smaller groups by applying the grouping criterion. After arranging such matrices in different 

groups, however, it is to sum-up matrices that show glimpses of a specific signature of 

oscillation patterns while separating out the wind noise based on many tools such as the 

eigenvalues spectra and the selection of most dominant principle components. Indeed, 

generating the elementary matrices can be perceived as a convolution of the principle 

components with their corresponding eigenvectors and weighted by the eigenvalues. 

The SSA reconstructs the wanted components back to the time domain resulting in the 

separation of wind noise and wanted signal. The reconstruction of the one-dimensional series 

is accomplished by using estimated trend and harmonic components. The reconstruction of the 

time record is by selecting those components that reduce the noise in the time series (Ghil et 

al., 2002; Patterson et al., 2011).  

In the SSA, there are some useful approaches that can be used in the separation of the 

wanted signal from the noise. In general, a harmonic component produces two eigentriples with 

close singular values. Using visual SSA tool by checking breaks in the eigenvalue spectra is 

considered as useful insight. It is worth noting that a slowly decreasing sequence of singular 

values is typically produced by a pure noise time series (Golyandina and Lomtev, 2016). 
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8.3 Testing Criteria and Experimental Procedure 

After examining the developed SSA algorithms in the system verification phase with 

general testing signals as presented in Chapter 7, it is to apply suitable criteria for the testing 

and validation of the SSA algorithms with detailed specifications and requirements when using 

real audio recordings containing wind noise. These testing criteria include; the effect of the 

environment type, SNR ratio, as well as the optimisation and proper selection of the sole 

parameter of the embedding stage in the SSA algorithm which is the window length. Further 

development of grouping and reconstruction techniques when using real-world sounds are also 

included in these criteria.  

To implement the methodology of this research in the testing and validation stages of this 

final experimental phase presented in this chapter, the experimental procedure of the method 

has been established as shown in Figure 8.1. The experiments were carried out on MATLAB 

platform. There are five main stages in the experimental procedure as shown in Figure 8.1. 

 

 

Figure 8.1. A flowchart of the experimental procedure of testing and validation phase 
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A complete SSA algorithm has been developed based on adopting the systematic 

approach in which all the key aspects have been considered. Based on the results of the 

verification phase and empirical study conducted in early stages, the first stage is to prepare 

the dataset and make it suitable for the experiments. Also, many factors have been considered 

as explained in Chapter 6, such as the length of the soundtracks the sampling rate, etc.  

 The second stage is the mixing stage, which is shown as one step here, but it is mainly 

an audio mixer model that mixes pre-recorded samples according to their signal intensity. In 

the third, it is to apply the developed grouping and reconstruction techniques followed by 

analysing the outputs of the algorithm, reporting the results, and eventually evaluating the 

method by applying objective measures as fourth and fifth stages. As explained in Chapter 6, 

evaluating the developed method for noise reduction capabilities, measuring the performance 

of the algorithm, the effectiveness, and efficiency will be through applying objective measures 

including sound analysis methods, DSP measurements and w-correlation matrix.  

8.4 Testing Platform  

The testing criteria introduced in this chapter have been developed to meet the 

requirements of the testing and validation phase. At this stage, these testing criteria have been 

further improved compared to the criteria used in the system verification phase. However, this 

improvement is based on the new requirements and specifications as mixed soundtracks of 

audio recordings of wanted sounds and wind noise have been used for the validation and critical 

evaluation of the developed system. It is worth mentioning that some of the results presented 

in this chapter are from related articles that have been previously published in the context of 

this research (Eldwaik and FF Li, 2017; Eldwaik and Li, 2017; Eldwaik and F. Li, 2018).   

The system architecture of implementing the developed SSA system in the testing and 

validation phase for the empirical study with real-world sounds is presented in Figure 8.2. The 

testing and validation system architecture of the developed SSA has been designed to include 

several stages. Figure 8.2 shows the adequate preparation of the sounds used in the system 

validation phase and the configuration of the testing platform. The audio files database has 

been originally established to contain audio files of 10 s excerpts of desired sounds and wind 

noise. In the processing stage, it is to apply specific algorithms to detect and remove silence. 

Specific software tools have been used to split the audio files in the database to 1 s length which 

is fully representative to reduce the computational load of the SSA algorithms.  
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The configuration process of the testing platform also includes preparing mixed 

soundtracks using a mixing model and averaging of the produced samples using MATLAB 

codes.   The mixing model works based on the principle of mixing the samples of clean signals, 

which are the output of the splitting stage located in the database, with the wind noise average 

sample (the output of the averaging model) at desired SNR. The output of the mixing model is 

mixed soundtracks; however, this procedure is repeated at different SNR. The framing and 

averaging methods are used to process the mixed soundtracks to produce the SSA algorithm 

input noisy signals. The averaging model also produces an audio file represents the clean 

signal. For all the case studies when different sounds are used, clean signals are required for 

comparing the results. Therefore, framing and averaging methods are also used to process the 

clean signals. When running the SSA algorithm to process input noisy signals, all the SSA 

processing and algorithm steps are implemented. Eventually, this procedure results in the 

separation of wind noise and the reconstruction of desired signals as shown in Figure 8.2.  

 

Figure 8.2. Testing and validation system architecture of the SSA method 
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8.4.1 Testing Requirements  

A benchmark database consists of the signals of interest is needed to conduct the case 

studies in this system validation phase. A freefield 1010, which is a dataset of standardised 10 

seconds excerpts from Freesound field recording, has been selected. However, some effort has 

been made in order to make the samples suitable to the case through using automatic methods 

where possible to ensure that all the samples included in the datasets for testing and validation 

purposes are pure desired sounds such as birds’ chirps, alarms, car sirens, etc. In addition, all 

silent gaps have been removed from the samples.  

The dataset also includes the samples of wind noise as the samples from this dataset have 

been mixed to generate mixed soundtracks as shown in Figure 8.2. The testing requirements 

for developing and implementing the SSA algorithms for wind noise separation are indicated 

as follows:  

• In case of a single class of environmental noise (wind noise).  

• Using different types of environmental sounds based on selecting multiple recordings 

from different locations in the city.   

• Using different values of SNR ratio to represent different noise content.  

• A careful preparation of the dataset as explained in Chapter 6. 

• Using framing and averaging methods along with window length optimisation method.  

8.4.2 Framing Method  

Since the processing time of the SSA depends on the length of the given time series and 

the selected window length, therefore, to reduce the processing time of the SSA, the frame by 

frame processing method has been applied. This method helps in processing the soundtrack 

samples instead of processing the whole audio file directly. Therefore, it is not practical to use 

embedding dimension of the same length of the given time series as the SSA works with a large 

number of matrices and their size will be increased with bigger window lengths, and as a 

consequence the processing time of the SSA will be very long. Since the frame will be mapped 

into a two-dimensional trajectory matrix which will be used to compute principle components 

vectors before applying grouping criterion using the eigentriple, both the window length and 

frame size might affect the distribution of the eigenvalues in the singular spectra. As a 

consequence, the separation of the undesired noise components and the reconstruction of the 

desired signal might be affected. 
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In the experiments conducted in this phase, samples from the datasets of audio recordings 

of the multiple desired signals have been selected for testing and validation using an average 

of 100 ms frame size of five thousand frames. It is a common practice to use such size or even 

more to be fully representative likewise for selecting the sliding window to contain sufficient 

information. However, smaller frame sizes are not recommended as they might not contain 

enough information as required. Even though the average method has been used in all cases, a 

balance between the window length and the frame size is required. Using sufficient frame size 

as recommended and the method of computing the optimal value of the window length based 

on reviewing the literature as discussed in the next sections might lead to achieve an adequate 

balance and therefore satisfactory results.   

8.5 Key Objectives for the SSA Testing and Validation  

8.5.1 Window Length and Singular Spectra Method of Calculation 

The calculation of the singular spectra for the given time records using seven different 

window lengths is the method used to optimise the window length and obtain its optimal value 

in the system validation phase. The selected range of 𝑚 is between 15 ms and 90 ms based on 

the size of the frames for the reasons explained above. The size of the frames is 100 ms; 

however, this range indicates in different steps a percentage from 15% to 90% of the new 

calculated 𝑁𝑡. Therefore, to obtain the optimal value of the window length, a comparison of 

the eigenvalues of the lagged-covariance matrix was made for these window lengths which 

used to generate the trajectory matrix from the frame. 

To perform the calculation of 𝑁𝑡 and the multiple suggested window lengths to be entered 

to the algorithm for the optimisation purpose, Equation (8.1) has been formulated. This is the 

first study to undertake this new equation in the optimisation method of the window length. 

This equation has been particularly developed in this research and can be considered as one of 

the major contributions. Also, it is among some other equations formulated within the 

framework of this study which can all make a significant contribution to knowledge.  

𝑚𝑖 = 𝑝𝑖𝑁𝑡 = 𝑝𝑖𝐿𝐹𝑠, (8.1) 

where 𝑚𝑖 is the window length, 𝑝𝑖 is the desired percentage of the length for 𝑖 = 1,… , 𝑛, for n 

number of required steps of the desired percentage with the maximum percentage that gives 

value of 𝑚𝑖 ≤ 𝑁𝑡, 𝑁𝑡 is the new calculated length, L is the frame size in seconds, 𝐹𝑠 is the 

sampling rate in Hertz.  
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8.5.2 The Detection of Eigenvalues Pairs in the Singular Spectra  

Since the construction of the trajectory matrix by means of mapping the soundtrack 

vector is one of the main steps in the SSA algorithm, the selection of the window length is 

always seen as an initial and key step towards implementing the SSA method. Therefore, the 

window length must be optimised to make the best selection. As previously mentioned in 

Chapter 5, the window length is highly related to spectral information or the frequency width 

that corresponds to each principle component.  

Many assumptions have been made by several authors and researchers about how the 

window length should be selected, however, such selection is greatly dependant on some 

criteria such as the aim of the analysis and the complexity of the data. Importantly, achieving 

appropriate separability of the components can be considered as a central aim of selecting the 

window length as the case of this study. The formulated concept that introduces each pair of 

eigenvalues with nearly equal values in the singular spectrum has also been reported as a key 

aspect in relation to significant oscillations and dominant frequencies in the signal. The 

eigenvalue ordering along the singular spectrum may be affected by the window length 

(Vautard and Ghil, 1989; Elsner and Tsonis, 2013; Mohammadi et al., 2016).  

Regarding the detection of eigenvalues pairs, it has been showed that greater value of the 

window length 𝑚 can enhance such detection (Vautard, Yiou and Ghil, 1992). Various types 

of noise with several generated time records were tested in (Vautard, Yiou and Ghil, 1992) to 

observe the impact of the on the dominant signal. The recommendation given in (Vautard, Yiou 

and Ghil, 1992) is possible for their case study which is trend forecasting for weather time 

record where the frequency is very low; however, this is not the case for audio data.    

In some studies such as the one conducted by (Penland, Ghil and Weickmann, 1991), the 

authors argued that as long as 𝑚 < 𝑁𝑡, the window length did not significantly affect the results 

of the SSA. However, the findings of many other studies including this study contradict this 

assumption to a certain extent. Although the optimisation and justification of the selection of 

the window length is always required, it can be assumed, as a common practice, that the ratio 

𝑁𝑡/2 is the optimal window length as reported by many researchers.   

Since the lagged-covariance matrix is seen as symmetric matrix of Toeplitz structure, 

however, with values of 𝑚 that are nearly equal to 𝑁𝑡, the construction of the trajectory matrix 

will be affected, and in turn the covariance matrix. As previously mentioned in Chapter 3, the 

Toeplitz structure of the covariance matrix can be determined by the length of the time series 
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and the window length. Also, according to (Elsner and Tsonis, 2013), that the lagged-

covariance matrix is used for the spectral decomposition and when it is estimated from short 

records in particular, it can make a difference to the results. In fact, the expected Toeplitz 

structure which is indicated by the ratio 𝑁𝑡 𝑚⁄  cannot always be obtained in practice because 

of the shortness of the time series or high values of 𝑚.  

As the SSA was not previously implemented for wind noise reduction and since there is 

no benchmark for the window length, the optimal window length can be determined using a 

heuristic method. In the optimisation of the window length, smaller variances between the 

lower-order subspaces of the eigenvalue’s spectra should be highlighted. Consequently, the 

window length that enhances the detection of pairs of the eigenvalue’s spectra can be seen as 

the optimal value. 

8.6 Testing Phase, a Case Study Using Birds Chirps as Wanted Signal 

In the third and last phase which is the system validation, it is to bring together the 

developed SSA algorithms presented in the systematic approach for testing, validation, and 

critical evaluation. As previously mentioned, this systematic approach includes developing 

grouping and reconstruction techniques to ensure further improvement with regards to the 

separability. In this phase, a suitable dataset that links up to the application area of the study 

using real-world sounds has been adopted.  

The standard procedure that has been established in the context of this study will be 

considered in this final phase for testing and validation of the developed system. Therefore, it 

is to follow the steps of this procedure in a similar way regardless the sound of the wanted 

signal. However, the dataset used in the testing and validation phase share same characteristics 

as explained in Chapter 6. At this stage, birds’ chirps have been selected as a wanted signal. 

The SSA window length optimisation method has been examined for determining the optimal 

value which might differ upon the dataset.  

8.6.1 Window Length Optimisation  

For its optimisation, different SSA window lengths will be computed using Equation 

(8.1). To clarify, when using 100 ms frame size then L= 100 ms and as defined 𝐹𝑠= 44100 

Hertz, assuming n= 7 which denotes the required different steps that gives 𝑖 = 1,… ,7, therefore 

the suggested window lengths can be calculated to be tested with the SSA algorithm for 

computing the optimal value. The optimisation method has been developed to fulfil the 
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conditions set out for the selection of the window length that are concordant with the 

observation in the other studies as discussed in Chapter 5 and mentioned in the above section. 

Any number of steps equal or different based on the desired percentages can be selected. 

Therefore, Equation (8.1) which is one of the significant contributions of this study is used to 

calculate 𝑚𝑖 for the selected values of  𝑝𝑖 for 𝑖 = 1,… ,7, and fill Table 8.1 as below.  

Table 8.1.   The calculation of different SSA window lengths in optimisation method 

𝒑𝒊 𝒎𝒊 Optimal value 

15% 662 
Testing all these values to select the 

optimal one or a suitable range  

 

30% 1323 

40% 1764 

50% 2205 

60% 2646 

75% 3308 

90% 2969 

The processing has to be performed for soundtrack samples of the above-mentioned size 

considering applying the average method. Figure 8.3 shows the average of the eigenvalues 

measured using thousands of samples of the mixed soundtracks in the dataset that represent the 

time records of mixed birds’ chirps with wind noise for the seven above-mentioned lengths. 

The optimisation of the window length is based on using Equation (8.1) that has been 

formulated and applied for the first time in this thesis to develop the optimisation method. Due 

to its vital role in the embedding stage to generate the trajectory matrix, the eigenvalues 

ordering along the singular spectrum, and the way that the grouping and reconstruction can be 

performed, window length optimisation in this study is a major finding. Consequently, this 

optimisation process has a significant effect on the results particularly with regards to the 

separability improvement as proved later in this chapter.    

The audio files in the database are originally 10s length with a sampling rate of 44100 

samples per second. Figure 8.3 also shows different dominant pairs of nearly equal eigenvalues 

for almost values of 𝑚 in the range from 
1

4
𝑁𝑡 to 

3

4
𝑁𝑡. This size has too much significance in 

maintaining most of the variance of the time record by generating the required symmetric 

covariance matrix. The eigenvalues in the singular spectrum which can be defined as variance 

peaks can be affected by the window length. To clarify, the adjacent eigenvalues in the singular 

spectrum in case of small window length might be merged together and represented by one 

eigenvalue. However, large window length defines a high-resolution case and the variance 
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peaks might be split into a number of consecutive frequency components. The window length 

value that enhances the detection of pairs of nearly equal values in the singular spectra and 

monitors most of the variance has been experimentally obtained. Therefore, as previously 

mentioned, window length optimisation is a major finding in this thesis. 

 

Figure 8.3. Window length optimisation using seven different values for the input signal of 

the SSA algorithm 

More precisely, the eigenvalues spectrum for the window lengths in the range from 40 

ms to 60 ms gave apparently concordant results as the first two pairs are considerably satisfy 

the assumption of obtaining pairs of eigenvalues that have nearly equal values before the noise 

floor in the higher subspace. This information is valuable when applying the grouping criterion 

as each pair of the nearly equal values corresponds to an important frequency while the noise 

is defined in the higher subspace of the eigenvalue’s spectrum. In contrast, the other examined 

window lengths could not satisfy the assumption of determining pairs of nearly equal values. 

In addition, a definite threshold cannot be specified for the pairs obtained above or below the 

aforementioned optimal range of window lengths which mainly becomes indifferent when 

moving away from the optimal range in both sides.   

A clear break between these singular values and the others which spread out in a nearly 

flat noise floor can also be realised. For window lengths above and below this band, indifferent 

eigenvalues are obtained. It is not strange to find the optimal window around 𝑁𝑡 2⁄  , however, 
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there was a general consensus of opinion as most other researchers and authors have noticed.  

Therefore, based on the above-mentioned observation, reasonable results can be obtained from 

the indicated range as still the length 𝑁𝑡 2⁄  produces two dominant pairs of nearly equal 

eigenvalues as illustrated in Figure 8.3. Thus, the statistical dimension 𝑑𝑠 = 4 seems to be the 

most dominant value in this case since the record is the superposition of oscillations perturbed 

by wind noise. It is worth mentioning that dominant eigenvalues in the singular spectrum 

correspond to an important oscillation of the system for each pair of nearly equal as stated in 

(Elsner and Tsonis, 2013; Yang et al., 2016) 

Using values of the window length from the above-mentioned range, approximately same 

results will be achieved. Selecting higher window length when there is a choice such as in the 

indicated range is not recommended because this selection is likely to affect the processing 

time of the SSA algorithms. In fact, the computational load of the SSA is one of the challenges 

when developing and implementing the SSA particularly with long time records and large 

dataset. The SSA uses a massive number of matrix multiplications whose complexity increases 

with the size of the dataset along with the size of the generated matrices that mainly depend on 

the window length. Therefore, processing the soundtrack samples instead of processing the 

whole audio file directly by using framing and averaging methods along with the optimisation 

of the window length helped in reducing the processing time of the SSA algorithms. 

8.6.2 Description and Implementation  

The applied SSA algorithm in the final phase has been written and developed following 

the systematic approach developed for the method including all the technical and practical key 

aspects explained in Chapters from 3 to 5 along with the procedures and dataset explained in 

Chapter 6 and evaluated according to the measures explained in Chapter 6 as well. 

Decomposing noisy signals into numbers of oscillations that correspond to desired signals and 

unwanted wind noise components is a key to success in order to improve the performance of 

microphone wind induced removal methodologies. In fact, exploiting the SVD in the SSA 

method and wind noise features as explained in Chapter 2 along with wind noise spectrum of 

mixed samples to generate groups of oscillatory and wind noise components lead to important 

observations towards achieving the separability of the components of the given noisy signals. 

As mentioned previously, the main objective to make a significant contribution to 

knowledge is based on developing the method with regards to grouping the SVD components’ 

matrices to transform back to time series expansion from the expansion of grouped matrices 

towards achieving a proper separability of these components. As stated in (Golyandina and 
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Shlemov, 2015; Golyandina and Lomtev, 2016; Hansen and Noguchi, 2017), the ability of 

allocating these components from an observed sum when suitable grouping criterion is applied 

defines the separability of the components of the time series. However, this approach has been 

developed and adopted as a central objective to separate wind noise out from the signal.  

In the performed experiments in the system testing and validation phase, the SSA is 

developed and applied for clustering the desired signal oscillation patterns and wind noise 

components comprised within the mixed recordings of the sample into a number of spaces 

indicated by the elementary matrices as explained in the previous chapters. These elementary 

matrices have to be divided into two groups, desired signal and wind noise through the 

specified grouping criterion developed in the algorithm. The elementary matrices presented 

within each group are summed up to generate a single matrix; however, in one group such 

matrix reflects significant oscillations while the matrix in the other group reflects wind noise 

component. 

In the reconstruction stage, each of the final matrices that correspond to a specific group 

is recovered back to the time domain from the Eigen domain. Accordingly, the mixed 

soundtracks will be represented by more than one time series as reconstructed wanted signal 

and residual wind noise, results the separation of wind noise out from the desired signal. Based 

on the results of the optimisation method, window length 𝑚 = 𝑁𝑡 2⁄   is the optimal value for 

the given record. Since 𝑁𝑡 = 4410 for the 100 ms frames, the window length is therefore equal 

to 2205. However, this selection can generally be made based on SSA recommendations in the 

case of harmonic or oscillatory components (Traore et al., 2017). Consequently, after 

performing the SVD of the trajectory matrix, the most dominant eigentriples ordered by their 

contribution in the decomposition can be obtained. 

From the plot of logarithms of the singular values shown in Figure 8.3, a significant drop 

in values can be seen around component 6 which indicates the start of the noise floor. 

Therefore, three obvious pairs can be considered as with almost leading singular values. 

Basically, to perfume the experiments, the mixed soundtracks have been produced from mixing 

wind noise with the clean birds’ chirps at different SNR to obtain noisy singles. The 

normalisation has been considered to the mean at scale 1 in the singular spectra for all the 

calculated averages to make a valid and fair comparison between the two signals. Figure 8.4 

shows the eigenvalues arranged in descending order in the eigenvalue’s spectra of a 

decomposed signal of birds’ chirps corrupted with wind noise and a clean one. 
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Figure 8.4. Singular spectra of birds’ chirps clean and noisy records (wind noise added) 

The eigenvalues spectra shown in Figure 8.4 represent the average of both clean and 

noisy signals. In the corrupted signal, only first few of the eigenvalues carry large amount of 

energy. The first pairs of eigenvalues, however, are the ones with less correlation. The high 

correlation ones are those which left behind in the higher subspace and generally represent 

noise. As illustrated in Figure 8.4, the distribution of the eigenvalues of nearly equal pairs along 

with equal location of the eigenvalues within the pairs themselves over a specified threshold 

can be clearly seen in the clean signal. However, this indicates a normal ordering of the 

eigenvalues in the absence of noise. On the other hand, different ordering with only few of 

nearly equal eigenvalues can be seen in the noisy signal. The grouping technique is developed 

based on defining such aspects for the best selection of the most dominant pairs of eigenvalues.  

8.6.3 Results and Discussion 

To separate wind noise component out and retain the signal of interest, fewest numbers of 

eigenvalues in the lower subspace before the noise floor will be examined to establish the 

separation boundaries as explained in complete details in Chapter 5. This procedure is based 

on the contribution of the principle components to the wanted signal and wind noise according 

to admissible orthonormal bases of eigenvectors. Basically, from the calculation of the singular 

spectra for the given noisy signal which is a superposition of oscillations of birds’ chirps 

perturbed by wind noise in this case study, the statistical dimension 𝑑𝑠 = 4 has been 

determined as the most dominant value. As previously mentioned, the optimal value of the 

window length has been determined as  𝑚 = 𝑁𝑡 2⁄  from the optimisation method.   
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The leading four principle components have been used for grouping and reconstruction of 

the desired components that represent birds’ chirps form a noisy signal with additive wind 

noise as shown in Figure 8.5. From this time domain representation shown in Figure 8.5, it can 

be clearly seen that the first two pairs of eigenvectors correspond to important oscillations 

represented by their corresponding principle components. However, birds’ chirps signal can be 

reconstructed based on the selection of these pairs in the grouping step. It is worth mentioning 

that the experiment was performed using the mixed soundtracks that have been produced from 

five thousand of samples in the dataset and the input of the SSA algorithms represents the 

average so as the output which is the reconstructed signal. The separability cannot be clearly 

indicated with time domain representations, but when using different evaluation measures, such 

as w-correlation matrix, as explained later in this chapter.  

 
(a) 

        

 
(b) 

Figure 8.5. The leading four principle components used for grouping and reconstruction of 

birds’ chirps record with additive wind noise added: (a) Reconstruction with the first two leading 

pairs; (b) Reconstruction with the third and fourth pairs 
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The phases are in quadrature and regular changes in amplitude are obviously present for 

the reconstruction with the first two leading pairs of principle components as shown in the top 

part of Figure 8.5. In contrast, for the third and fourth pairs shown in the bottom part of Figure 

8.5, there is a slight coherent phase relationship between their two eigenvectors. To reconstruct 

the desired signal while separating the wind noise out, the pairs of nearly equal eigenvalues are 

considered dominant while the others which spread out in a nearly flat noise floor are not of 

interest, or otherwise they correspond to wind noise components. However, the eigenvalues 

associated with the ones represent the higher-order values are mostly located in the noise floor 

or the higher subspace of the singular spectra as they are of low variance.  Figure 8.5 also shows 

the original noisy signal of the give record in this case study.  

The principal components can be computed using the eigenvectors by projecting the 

embedded time series onto the individual eigenvectors. In the principle components matrix; 

each column vector represents a separate PC. The principal component pairs correspond to the 

most dominant eigenvectors consist of clean structures of the signal are in marked contrast to 

the next pairs of principal components, which are noisy with low amplitudes. The grouping 

therefore has been performed when clearly setting the separation boundaries between the 

subspaces in the spectra and defining a specified threshold as explained in Chapter 5.  

As known, a pure noisy time record typically produces a slowly decreasing sequence of 

singular values which is the start of the noise floor; however, the selection of such higher-order 

eigenvalues will only produce noisy signals. Therefore, it has been experimentally found that 

selecting eigenvalues beyond a prescribed limit that precisely indicates the boundaries in the 

singular spectra based on setting defined constrains and imposing certain conditions on such 

allocation as explained earlier, will lead to add portion of the noise to the signal. Eventually, to 

produce the reconstructed components of the time record, the principle components are then 

projected onto the orthogonal matrix of the eigenvectors.  

The developed grouping technique applied in the SSA algorithms in the experiments 

performed in this system testing and validation phase is to group pairs of the resultant 

elementary matrices in two groups I and 𝐼 as explained in Chapter 5 (section 5.4). Recall from 

Chapter 5, dividing the resultant elementary matrices in two groups is mathematically 

expressed in Equation 5.3 for specifying the threshold and Equation 5.4 for identifying the 

groups. Group I consists of the desired elementary matrices after aggregating them together to 

implement each group in a single matrix of the same dimension as of the trajectory matrix. 



Chapter 8. System Validation: Empirical Study with Real-world Sounds and Discussion   

207 

 

However, group 𝐼 contains unwanted components which reflect the wind noise. Restoring to 

the time domain is now possible by applying the diagonal averaging as described in Chapter 4.  

Figure 8.6 illustrates a comparison of the noisy record (bird chirps and wind noise), with 

the reconstructed one. The differences between reconstructed series and original noisy signal 

are highlighted in the top part of Figure 8.6. It is clear from the bottom part of the figure, a 

considerable amount of noise (denoted as residual series) was separated out. However, the 

findings revealed that the de-noised signal resembles the clean one. As seen above, the SSA 

can readily extract and reconstruct periodic components from noisy time series.  

 

Figure 8.6. Reconstructed series vs original noisy signal and residual series 

A combination of the signals used in the experiment and presented in the time domain is 

shown in Figure 8.7. These signals are the original signal (birds’ chirps) which is denoted as 

clean signal shown in the tope part Figure 8.7 (a), the mixed signal which represents bird chirps 

and wind noise shown in Figure 8.7 (b), and the reconstructed signal shown in Figure 8.7 (b). 

Sound pressure level (SPL) measurements are also shown in Figure 8.7. The single most 

significant observation to emerge from the data comparison was that the SSA can separate wind 

noise out and reconstruct the desired signal which is birds’ chirps in this case. However, these 

results will be proved when evaluating the performance of the developed SSA system using 

sound analysis methods, DSP measures, and w-correlation matrix as the time domain 

representation cannot clearly indicate to what extent the separability can be achieved and the 

desired signals can be retained with no reconstruction errors.  
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(a) 

 

 
(b) 

(c) 
Figure 8.7. A combination of the signals used in the experiments: (a) Clean record of birds’ 

chirps; (b) Noisy record (birds’ chirps and wind noise); (c) The de-noised record separated by 

retaining only the leading two pairs of the eigenvalues 

To assess the effect of noise on a signal, the signal-to-noise ratio (SNR), which is an 

objective measure, is generally used. This measure can be used jointly with some other criteria 

to evaluate the output of a noise reduction algorithm. It was applied to evaluate the developed 

SSA system for wind noise separation in this study. The SNR ratios are calculated using 

standard definition before the removal process. After the separation process, signal levels and 

noise levels have been estimated. The SNR ratios are calculated using Equation (8.2) (Crocker, 

2007; Vaseghi, 2008; Brandstein and Ward, 2013; Arul Elango, Sudha and Francis, 2017).  
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Results of using the SNR measure are given in Table 8.2 for comparison. A notable 

improvement for an average of about 9dB as it is apparent from Table 8.2 has been achieved. 

The result shown in Table 8.2 is a reported average of many cases.    

Table 8.2.  SNR measure applied for evaluating the developed SSA method for wind noise 

reduction, measurement cases and difference as a reported average. 

The Objective Measure for Evaluating the 

Method 
Before After    Difference 

SNR in dB 0dB 9.47dB   9.47dB 

8.7 Validation Phase, a Case Study Using Alarms as Wanted Signals 

As mentioned previously, in the system validation phase, however, the developed 

systematic approach with regards to many key elements in the method has been adopted in the 

empirical study using real-world sounds. Therefore, the algorithm has reached its final stage 

after regular updates and verification to meet the final requirements and specification set based 

on deep experimental investigations and testing. Regarding the dataset used in this phase, 

environmental sounds, have been used as specific signals of interest. In addition to the sound 

of birds’ chirps, some other interesting signals such as car sirens (e.g., police car siren), sound 

of alarms (e.g., fire alarm) are given as examples in the validation phase.  

As previously mentioned in Chapter 6, the dataset used in this study has been prepared 

for testing and validation purposes according to clear rules. The samples in the dataset share 

same characteristics and the mixed soundtracks have been prepared using the same model and 

under the same conditions using the same wind noise dataset. The defined testing criteria and 

the experimental procedure along with all the above defined technical approaches have been 

used in this validation phase. The developed SSA system has been validated and evaluated 

using different real-world sounds and desired signals.  

8.7.1 Defining the Embedding Dimension in the Algorithm 

The embedding dimension parameter or the window length has to be defined in the SSA 

algorithm by its optimal value. Window length optimisation is always seen as a preliminary 
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step to select the optimal value to be defined in the SSA algorithm instead of trial and error 

method, however, this gives more accurate results although as discussed earlier the value 𝑁𝑡 2⁄  

can mostly be considered as a common practice.   

To plot the singular spectra for comparison, Equation (8.1) has also been used to calculate 

different window lengths similar to those calculated in the testing phase as provided in Table 

8.1 in (section 8.6.1). These window lengths will be used to generate trajectory matrices for 

each one from a frame of the same size as explained in the previous sections. However, the 

experiments in the system validation phase have to be carried out under strictly controlled 

conditions to validate the method and make a fair and valid comparison.  

As the aim is to map the soundtrack vector in the embedding step into a trajectory matrix 

using a specified window length that might differ depends on the used dataset. However, to 

find this specific embedding dimension, the way of distributing the eigenvalues in the 

eigenvalue’s spectra considering the lower subspace has to be compared. These eigenvalues 

are produced from the SVD of the covariance matrices for each proposed embedding dimension 

for 𝑚 ≤ 𝑁𝑡. The distribution of the eigenvalues in this subspace depends on the type of the 

dataset itself and the selected embedding dimension from which the statistical dimension can 

be defined. The soundtrack samples have been processed using the framing method with a 

frame size as mentioned earlier and then applying the average method. The average of the 

eigenvalues has been measured using thousands of samples of the mixed soundtracks in the 

dataset that represent the time records of mixed wanted signals with wind noise for the seven 

window lengths as in the testing phase.  

Figure 8.8 shows the values proposed for the window lengths presented in the lower 

subspace of the eigenvalues spectra and taken as a percentage of the length of the time records 

𝑁𝑡 measured from the applied framing method. Two cases have been selected to be presented 

in this validation phase which are police car siren and fire alarm as wanted signals. The 

optimisation has to be accomplished with SSA input signal which is a mixed noisy signal; 

however, it can be at different considerable SNR such as 0dB or −10dB for example. 

For the eigenvalue’s spectra shown for both cases at different embedding dimensions as 

in Figure 8.8, it is to focus on dominant pairs of nearly equal eigenvalues which can be seen 

for almost values of 𝑚 in the range from 0.4𝑁𝑡 to 0.6𝑁𝑡 for both cases. Consequently, the 

embedding dimension that enhances the detection of pairs of nearly equal eigenvalues is the 

optimal window length as well as this is one of the key aspects in grouping technique. This 
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specific embedding dimension should help in maintaining most of the variance of the time 

record by generating the required symmetric covariance matrix.  

 
(a) 

 

 
(b) 

Figure 8.8. Comparison between different values of m for SSA input signal at 0dB for 

case (a) and −10dB for case (b) to obtain and define the optimal value in the algorithm: (a) Police 

car siren; (b) Alarm sound 
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of eigenvalues that have nearly equal values. As mentioned previously, dominant eigenvalues 

in the singular spectra correspond to an important oscillation for each pair of nearly equal 

values. Each pair of the nearly equal values therefore correspond to an important frequency; 

however, this information is valuable in the grouping step. In contrast, the assumption of 
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determining pairs of nearly equal values could not be fulfilled with the other examined window 

lengths. For example, in case of considering 15% of the length of the time record, even a single 

pair cannot be identified as shown in bottom part of Figure 8.8 for the case of the alarm sound. 

Furthermore, a definite threshold cannot be specified for the pairs obtained above or below the 

above-mentioned range of window lengths. In fact, moving away in both sides from this range, 

which can be seen as an optimal range, defining specific threshold becomes indifferent.   

Checking clear breaks between the singular values presented in the lower subspace and 

the others presented in the higher subspace that represent the noise floor is another important 

aspect. However, clear breaks can be realised in the indicated range, whereas, indifferent 

eigenvalues that distributed randomly are obtained above and below this range. Based on such 

calculations, it can be observed that the embedding dimension from the above indicated range 

can help in producing dominant pairs of nearly equal eigenvalues from which positive results 

can be obtained. Accordingly, the statistical dimension, which is one of the constrains required 

for defining boundaries in the singular spectra in the grouping criterion as explained in Chapter 

5, can be computed based on the above-mentioned observation. To sum up, the optimal 

selection of the embedding dimension can also lead to better applying the grouping technique.  

8.7.2 Description and Implementation 

This phase is aiming at validating the developed system by means of implementing the 

SSA algorithm which has been written following the systematic approach developed for the 

method. The experimental procedure has been established for conducting multiple experiments 

and case studies. The main objective to achieve certain separability is to distinguish between 

wind noise component and other components that represent numbers of oscillations correspond 

to the wanted signals. This can be accomplished by decomposing the SSA input noisy signal 

into additive components after mapping the soundtrack vector into a trajectory matrix using a 

defined length of the sliding window. Therefore, it is to apply the SVD for obtaining the 

eigentriples required for grouping along with using wind noise features and wind noise 

spectrum of mixed samples.  

As mentioned previously, the adopted systematic approach developed for the SSA 

method within in the context of this study was mainly based on deeply reviewing the literature 

concerning all the key aspects in the method. In this approach, it has been defined that each 

principle component vector which is corresponding to eigenvalues of nearly equal values has 

a unique oscillation pattern. In fact, the principle components are produced by projecting the 
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two-dimensional matrix onto a new set of axes which are the eigenvectors associated to those 

eigenvalues. The PCs are similar to the embedded time series; however, they are presented in 

a different coordinate system.  

In all cases, the mixed soundtracks used in the experiments are composed of wind noise 

and wanted signal. When considering the wind noise spectrum and harmonics that 

exponentially spaced in terms of frequency, the PCs can be determined according to their 

contribution to wind noise and wanted signal. The oscillation patterns of the wanted signal are 

presented in the elementary matrices and as a consequence in the principle components in a 

different way to the wind noise components. Therefore, summing up each corresponding 

number of elementary matrices together leads to generate the required groups. Errors arising 

from adding a portion of the desired signal to the noise or part form the noise to the wanted 

signal, which might happen in some cases, can be avoided and then reducing any undesirable 

effect on the separability when applying all the constrains described in Chapter 5. As previously 

mentioned, the separability might differ based on the dataset.    

Considering all these aspects can lead to generate groups of oscillatory and wind noise 

components to make important observations towards achieving the required separability. After 

going through the whole processes and stages defined in the SSA algorithm for processing 

mixed soundtracks, the system output when returning from Eigen domain to time domain will 

be represented in two time series which are reconstructed desired signal and residual wind 

noise. Detailed description of the method implementation regarding some other aspects as 

described in the algorithm has been given in section (8.6.2).  

As indicated by the above mentioned range from 0.4𝑁𝑡 to 0.6𝑁𝑡, the window length 

𝑚 = 0.4𝑁𝑡  has been selected as an optimal value for the given record based on the optimisation 

explained above for both cases. As mentioned previously, this value is nearly concordant with 

the SSA recommendations which is 𝑚 = 0.5𝑁𝑡 . However, approximately same results can be 

achieved when using values of the window length from the above-mentioned range. Since 𝑁𝑡 =

4410 for the 100 ms frames, the window length is therefore equal to 1764 as calculated using 

Equation (8.1). However, this value has been defined in the algorithm to map the frames into 

the trajectory matrix when using the average method.  

The significant drop in values indicates the start of the noise floor that can be seen from 

the plot of logarithms of the singular values. For example, what stands out in the bottom part 

(b) of Figure 8.8 in the case of alarm sound is the significant drop in values that can be seen 
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around component 6. The results obtained from the preliminary analysis of the eigenvalues 

spectra using the SSA visual tools are shown in Figure 8.8, however, three obvious pairs can 

be considered as with almost leading singular values. For proper grouping, it is important to 

select the most dominant eigentriples obtained from the SVD method that must be ordered by 

their contribution. As described in the case study presented in the testing phase, the 

normalisation to the mean at scale 1 in the singular spectra for all the calculated averages has 

been considered to make a valid and fair comparison between the different signals used in the 

experiment. Figure 8.9 shows the eigenvalues (arranged in descending order) of a decomposed 

signal of police car siren (a) and alarm sound (b) which both corrupted with wind noise along 

with the original clean signal for each.  

 
(a) 

 
(b) 

Figure 8.9. Singular spectra of clean and SSA input noisy records of the two selected cases 

(a) Police car siren; (b) Alarm sound in the validation phase with wind noise added at different 

SNR for 𝑚 = 0.4𝑁𝑡  
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In Figure 8.9, the comparison is made when using 𝑚 = 0.4𝑁𝑡 . The figure compares the 

eigenvalues spectra for the clean signal and the SSA input noisy signal at different SNR mixing 

ratios.  One of the aims of using different SNR values in producing the mixing soundtracks is 

to study the effect of wind noise content on the distribution of the eigenvalues in the singular 

spectra. From Figure 8.9, significant differences between the noisy and clean signals can be 

noticed. As mentioned previously, the significant drop and slowly decreasing sequence of 

singular values typically indicates the noise floor. 

Generally, concordant with the observations of other studies, the dominance of the first 

two or three pairs of eigenvalues are noticeably greater than any other values. In the noisy 

signal, only first few of the eigenvalues carry large amount of energy. The first pairs of 

eigenvalues in the lower subspace, however, are the ones with less correlation. The high 

correlation ones are those which left behind in the higher subspace and generally represent 

noise. Looking at Figure 8.9, it is apparent that the eigenvalues spectra of the clean signal 

shows multiple eigenvalues with nearly equal values with gradual descending in order which 

is not the case for the noisy signals. The SNR mixing ratio of the SSA input signals indicates 

how strong the effect of wind noise on the distribution of the eigenvalues in the singular spectra.  

8.7.3 Results and Discussion  

As the main aim of this study is to separate wind noise components out and retaining the 

desired signal, however, the statistical dimension that represents fewest numbers of dominant 

eigenvalues before the noise floor will be examined to establish the separation boundaries as 

clarified in Chapter 5. This is based on the contribution of the principle components to the 

wanted signal and wind noise according to admissible orthonormal bases of eigenvectors. 

When fixing the boundary in the singular spectra to define the starting point of the noise floor 

by means of determining the appropriate statistical dimension, the principle components in the 

higher subspace should contain no much information. Therefore, the objective is to separate all 

the principle components that correspond to eigenvalues indexes greater than the defined 

statistical dimension. The projection of the trajectory matrix onto the eigenvectors can be 

interpreted as a transformation process of the trajectory matrix with reference to the selected 

eigenvectors in a way that the trajectory matrix is multiplied by one representative eigenvector 

at a time.  

Basically, for the value of window length 𝑚 = 0.4𝑁𝑡 defined in the algorithm for 

calculating the singular spectra of the record used in this case study as shown in Figure 8.8, it 
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is apparent that the first pairs of eigenvectors correspond to important oscillations. The desired 

signal can be reconstructed in the grouping step based on the selection of these pairs to produce 

dominant pairs of principle components PCs. Dominant pairs selected according to admissible 

orthonormal bases of eigenvectors can show regular changes in the amplitude of the oscillations 

as well as quadrature phase. In contrast, for other pairs, there is slight coherent phase 

relationship between their two eigenvectors.  

Figure 8.10 shows the reconstruction of the wanted signal using the dominant leading PCs 

and the original SSA input noisy signal of the produced soundtracks (fire alarm sound and wind 

noise) mixed at 0dB and -10dB as examples. 

 
(a) 

 
(b) 

Figure 8.10. The dominant leading principle components used for grouping and 

reconstruction of the alarm sound record with additive wind noise: (a) Reconstruction for SSA 

noisy input signal at 0dB; (b) Reconstruction for SSA noisy input signal at −10dB 

As mentioned previously, based on the defined aspects and grouping constrains, pairs of 

nearly equal eigenvalues in the eigenvalue’s spectra are always considered dominant. However, 

others particularly those which spread out in a nearly flat noise floor do not contain much 
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information, or otherwise they are corresponding to wind noise components. The higher 

subspace mostly represents the eigenvalues of low variance, whereas a slowly decreasing 

sequence of singular values is typically produced by a pure noise time series (Golyandina and 

Lomtev, 2016). 

Similarly, Figure 8.11 shows the case of selecting police car siren as a wanted signal. As 

known, the calculation of the principal components is by projecting the embedded time series 

onto the individual eigenvectors. However, each column vector represents a separate PC in the 

principle components matrix. It is worth mentioning that the principal component pairs 

correspond to the most dominant eigenvectors consist of clean structures of the signal are in 

marked contrast to the other pairs of principal components, which are noisy with low 

amplitudes. Clustering the elementary matrices produced from the SVD in different groups can 

be performed by clearly setting the separation boundaries between the subspaces in the singular 

spectra and defining a specified threshold as explained in Chapter 5. 

 
(a) 

 
(b) 

Figure 8.11. The dominant leading principle components used for grouping and 

reconstruction of the record of police car siren with additive wind noise: (a) Reconstruction for 

SSA noisy input signal at 0dB; (b) Reconstruction for SSA noisy input signal at −10dB 
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The results obtained as an output of the SSA algorithm are shown in Figure 8.12 which 

compares between the original SSA input noisy record and the reconstructed output signal for 

the alarm sound used in this case study. It can be seen from Figure 8.12 that the original noisy 

input signal is plotted in time domain with the reconstructed desired signal for comparison 

purposes. However, the reconstructed series is obtained by using the most dominant principle 

components as clarified above, whereas the SSA input signal represents the standard case used 

to report the results which is at 0dB SNR along with −10dB SNR for comparison.  

  
(a) 

 
   (b) 

Figure 8.12. Mixed SSA input at 0dB and −10dB and reconstructed output series with the 

residual unwanted series for alarm sound: (a) SSA input signal at 0dB; (b) SSA input signal at 

 −10dB 
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The output audio signals of the SSA algorithm are hearable which can also be 

subjectively evaluated, however, the SSA shows better output sound and performance in 

reconstructing the desired signal for positive SNR mixing ratios compared to the negative ones 

with a considerable amount of wind noise removal in all cases. 

Similar to the case of fire alarm sounds, Figure 8.13 shows the results of the case of police 

car siren. The differences between reconstructed series and original noisy signal are highlighted 

in the top part (a) of Figure 8.13. Looking at the bottom part (b) of Figure 8.13, a considerable 

amount of wind noise (denoted as residual series) was clearly separated out. However, the 

findings revealed that the de-noised signal resembles the clean one. As can be seen from Figure 

8.13, the SSA can readily extract and reconstruct periodic components from noisy signals 

contaminated with wind noise. 

  
(a) 

 
   (b) 

Figure 8.13. Mixed SSA input at 0dB and −10dB and reconstructed output series with the 

residual unwanted series for car siren sound: (a) SSA input signal at 0dB; (b) SSA input signal 

at  −10dB 
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A combination of the main types of the signals used in the experiments conducted in the 

validation phase presented in the time domain with the SPL measurement and given as 

examples for both case studies are shown in Figure 8.14 

 

(a) 

 

(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 8.14. A combination of the signals used in the experiments: (a), (b), (c) for the case 

car siren; (d), (e), (f); for the alarm signal 
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components in a different way to the wind noise components. Hence, in the grouping step, it is 

to sum up each corresponding number of elementary matrices together to generate the required 

groups. Desired elementary matrices have been grouped in group I after aggregating them 

together to implement each group in a single matrix of the same dimension as of the trajectory 

matrix. Whereas, undesired components corresponding to wind noise have been grouped in 

group 𝐼. Eventually, the projection of the principle components onto the orthogonal matrix of 

the eigenvectors produced the reconstructed components of the given time record. 

Strong evidence was found when the SSA can separate a significant amount of wind 

noise out from the SSA input noisy signals and reconstruct the desired signals in all the cases.  

What stands out from the results presented in the figures shown above is that the SSA can work 

towards a satisfactory solution of the problem of wind induced microphone signals addressed 

in this study. As the focus of this study is on the separation of wind noise, results of the critical 

evaluation phase will demonstrate the improvement of the separability of the SVD components.    

In-depth analysis will be given in the next section when critically evaluating the developed 

SSA system.  

8.8 Critical Evaluation  

The third phase of implementing the developed SSA system was performed with bigger 

dataset of real-world sounds for testing and validation process as explained earlier in this 

chapter. The objective measures explained in Chapter 6, which are signal processing 

measurements and sound analysis methods, were mainly used for evaluating the performance 

of the developed SSA method and measuring its effectiveness with regards to wind noise 

separation. Importantly, the w-correlation matrix which is an important measure to indicate the 

separability was used in the critical evaluation process.   

8.8.1 Objective Evaluation  

To make a comprehensive evaluation of the performance of the algorithm and measure 

the effectiveness of the developed SSA as a method of wind noise separation, at this stage, an 

example from the large number of case studies conducted in the system testing and validation 

phase using realistic samples has been selected. In this section, the results and discussions of 

the critical evaluation process of the developed SSA method using common approaches as 

explained in Chapter 6 are presented. For instance, sound analysis method and different signal 

processing measures have been used to present experimental findings to provide practical 
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assistance to the evaluation process. Therefore, this section consists of some tables and figures 

along with comments on the significant data shown in these.   

It seems impossible to present all the results of all the experiments and case studies and 

even for a single case due to the different experimental conditions required for performing the 

experiments in a convenient and effective way. For example, mixing the soundtracks with 

different SNR values, the reconstruction with different principle components to give evidence 

in analysing and evaluating the results, and the variety of the desired signals are some of the 

experimental conditions and testing requirements. Therefore, the systematic approach that has 

been established based on the given data is followed. Also, the indispensable available tools 

are used to cover every single aspect in the evaluation process such as w-correlation method 

which will be presented later in a separate section.  

To assess the evaluation process, some common DSP measurements for sound analysis 

method have been used. It is important to choose the most representative cases based on the 

procedure of the testing and validation and the results obtained. To clarify, Table 8.3 shows an 

overview of the sound analysis method when using repeated-measures which are DSP 

measurements. Table 8.3 presents the experimental data for the reconstructed signals with 

different principle components when using these measures. Meanwhile, it also compares 

between the different signals produced from the mixed soundtracks that have been prepared at 

a selected range of the SNR which is from -20 to 20 dB in a step of 10 when performing the 

reconstruction process using the first four leading principle components. 

Moreover, Table 8.3 presents the original clean signal for comparing with the 

reconstructed signals for the four leading PCs with regards to the indicated measures. In fact, 

these signals obtained as an output of the SSA algorithm and represented in audio files as de-

noised signals. However, it is worth noting that the SNR was mainly the variable that has been 

changed to produce a number of soundtracks for testing purposes in the proposed dataset along 

with the type of the signals of interest that indicate different cases. As mentioned previously, 

the audio files are not treated individually; however, the average method was used for preparing 

the data in the experiments.  

The first aim of presenting the experimental data in this way as in Table 8.3 is to examine 

the reconstruction technique with regards to possible selected PCs when considering different 

SNR used for preparing the soundtracks that represent the noisy signals. The second aim is to 

compare between the reconstructions using the selected PCs with the original signal that 
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represents the average of the clean soundtrack signals. Table 8.3 also helps in analysing the 

effect of SNR. In other words, presenting the experimental data in this way somehow indicates 

the effect of the content of wind noise mixed with the original clean signals on the performance 

of the algorithm. Basically, due to the wind noise content presented in the mixed signals, the 

singular spectra might be affected. Consequently, the grouping and reconstruction techniques 

introduced in the developed systematic approach followed in the experiments have to be 

modified in case of any changes in the singular spectra. To sum up, it is to examine and compare 

the developed SSA algorithm output with the original clean signal with regards to the indicated 

measures in the selected SNR range when always considering the grouping and reconstruction 

techniques defined in the algorithm to achieve the most possible separability.   

Table 8.3.  Sound analysis method for the reconstructed signals with the leading four PCs 

and other types of signals  

 

Type of signal  

DSP measurements 

RMS value Dynamic range D Crest factor Q Autocorrelation time  

Clean signal  0.030315 71.6413 11.6991 0.58231 

SNR (dB) = -20 

PC1 0.046354 71.3711 7.7403 0.88569 

PC2 0.045924 71.2435 7.6936 0.88544 

PC3 0.027786 69.5453 10.3599 0.95875 

PC4 0.027434 68.6754 9.6007 0.95868 

SNR (dB) = -10 

PC1 0.014653 61.3414 7.7139 0.94549 

PC2 0.014379 61.2064 7.743 0.94501 

PC3 0.010014 59.3697 9.0488 0.95234 

PC4 0.010526 59.7354 8.9812 0.95231 

SNR (dB) = 0 

PC1 0.041064 51.3405 10.7644 0.87478 

PC2 0.040829 54.253 10.7212 0.87451 

PC3 0.027281 49.2779 10.2518 0.95866 

PC4 0.026857 48.2995 9.4094 0.95429 

SNR (dB) = 10 

PC1 0.03293 51.8213 11.1606 0.80077 

PC2 0.032912 51.8213 11.1651 0.80077 

PC3 0.025598 49.4843 11.0112 0.75714 

PC4 0.025589 49.4843 11.0143 0.75848 

SNR (dB) = 20 

PC1 0.029199 50.9061 11.2899 0.63766 

PC2 0.029193 50.9061 11.2917 0.63766 

PC3 0.02387 49.8831 12.0169 0.62372 

PC4 0.023863 49.8831 12.0197 0.62372 
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The indicated DSP measurements can provide with a prevailing view in such comparison 

as it is required to consider how the reconstruction in selecting pairs of principle components 

might differ. Also, it is to evaluate to what extent the performance of the SSA algorithm 

becomes affected with the change of the SNR. It has been previously mentioned that the RMS 

value is a mathematical way of expressing the amount of energy in a signal and its measurement 

is time-dependent. Although RMS calculation for audio signals which are made of multiple 

frequencies is far more complex as indicated in Chapter 6, however, it is particularly useful as 

it allows comparing signals in equal terms.  

Crest factor is a measure of a waveform that indicates the difference between the peak 

value and the effective value. It represents the ratio of peak value to the root mean square value. 

Generally, sound waves tend to have high crest factors in a considerable range between 10 to 

20 dB for most typical sounds. Accordingly, crest factor indicates how extreme the peaks are 

in a waveform. It can be useful to judge overall perceived loudness. The dynamic range 

measures the ratio between the maximum strongest un-distorted signal and the minimum 

discernible signal, and often describes the ratio of the amplitude of the loudest possible to the 

RMS noise amplitude. The level of a signal can vary broadly from one moment to the next and 

that indicates the dynamic range of the signal. In other words, it can indicate the variance in an 

audio signal from optimum recording level into severe distortion.   

The autocorrelation for a signal, which is mathematically corresponding to a time delay, 

can be used for comparing the signal with time-delayed versions of itself. For instance, periodic 

signals can be considered as perfectly correlated signals with versions of such signals when the 

time-delay is an integer number of periods. The autocorrelation of a signal is very much 

associated to the power spectrum of that signal. The autocorrelation has been involved in signal 

processing for human hearing as an important part. Since audio signals are not necessarily 

periodic, however, they have autocorrelations that are closed to 1 and therefore they are often 

interpreted. Without going through further details, in the context of this study the 

autocorrelation time has been presented in the experimental data for having an overall and clear 

view of the evaluation process.  

It is important to maintain a balance between these measures; however, values that are 

closed to those of the clean signal can be always considered as the most optimal in this 

evaluation process. A graphic representation shown in Figure 8.15 has been generated based 

on the findings presented in Table 8.3.   
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(a) 

 
   (b) 

Figure 8.15. Graphic representation to show the leading four PCs used for reconstruction 

with reference to the original clean signal when using noisy signals at different SNR: (a) for D 

and Q values; (b) for RMS and autocorrelation time 

As can be seen from Figure 8.15, the first two categories with the lowest SNR reported 

significantly more values of D than the other three groups particularly with the first two PCs 

pairs, however, with lower values of Q. What also stands out in Figure 8.15 is that 

autocorrelation is generally closed to that of the clean signal for all categories although it is 

more reasonable for the last two categories. Closer inspection of Figure 8.15 shows that the 
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RMS values are quite stable for mostly of all the five categories particularly for the first two 

pairs of the PCs. It is apparent from Figure 8.15 that the last two levels are more stable with 

regards to the indicated measures even with lower values of D.  

In the graphic representation shown in Figure 8.15, the focus is on presenting the four 

leading PCs calculated for the soundtracks that mixed at different SNR when using the 

indicated DSP measurements. At lower SNR, with much content of wind noise, the 

performance of the method is slightly affected. Still, at different PCs, the dynamic range is 

nearly equal to that of the original signal particularly at low SNR, however, this is not always 

positive as the content of noise is considered in the signal. At higher SNR, with less content of 

wind noise particularly at 20dB, very much closer results to the original clean signal regarding 

RMS and autocorrelation time are obtained. With regards to the leading principle components, 

better results have been obtained with the first two PCs and particularly with less wind noise 

content when considering a balance among all these measurements. Regarding the crest factor, 

nearly equal values to those of the original signal can be mostly seen with the first two PCs 

and at higher SNR. 

On average, the PCs were shown to have a fair and meaningful comparison of the 

reconstructed signals with regards to the indicated measures among each other and with the 

original clean signal to ensure the developed approach for grouping and reconstruction 

techniques. In addition to presenting the results in the selected case studies in this chapter which 

are based on adopting the systematic approach developed for the method in context of this 

study and used in the algorithm, strong evidence of selecting the first two pairs as dominant 

ones was found when considering these measures as well.   

To conclude, the results, as provided in Table 8.3 and Figure 8.15, indicate that the first 

two pairs of the principle components are the most dominant ones which confirm and 

demonstrate the results presented in the previous sections. Therefore, Table 8.4 has been set to 

provide the results obtained from the first two pairs only showing all the signals in this case for 

the five options of the SNR and with the same indicated measures. Table 8.4 presents the results 

obtained from the preliminary analysis of reconstructing the desired signals using only the first 

two pairs of PCs. For each value of the SNR, it is to compare between the noisy signals and 

the outputs of the SSA algorithm which are the de-noised signals when using the original clean 

signal as a reference.  
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Table 8.4.  Results for the first two pairs with other signals for the selected SNR range 

 

Type of signal  

DSP measurements 

RMS value Dynamic range D Crest factor Q Autocorrelation time  

Clean signal  0.030315 71.6413 11.6991 0.58231 

SNR (dB) = -20 

Noisy signal 0.31752 90.3087 9.9644 0.68415 

De-noised 

signal 
0.045924 71.2435 7.6936 0.88544 

SNR (dB) = -10 
Noisy signal 0.10503 82.7369 12.0018 0.68401 

De-noised 

signal 

0.014379 61.2064 7.743 0.94501 

SNR (dB) = 0 
Noisy signal 0.044878 75.3134 11.9637 0.18002 

De-noised 

signal 

0.040829 54.253 10.7212 0.87451 

SNR (dB) = 10 
Noisy signal 0.033208 72.8552 12.1213 0.58188 

De-noised 

signal 

0.032912 51.8213 11.1651 0.80077 

SNR (dB) = 20 
Noisy signal 0.031769 72.2768 11.9277 0.58202 

De-noised 

signal 

0.029193 50.9061 11.2917 0.63766 

It is apparent form Table 8.4 that at different SNR values, the value of D for the noisy 

signals is always higher than the one measured for the clean signal, and particularly much 

higher at lower values of SNR. What is interesting about the results in Table 8.4 is that practical 

values for the measures at all the SNR mostly those above 0dB have been obtained except for 

the slight effect on the values of D. However, this can be considered as a reliable indication of 

the SSA output mainly for these values of SNR. Figure 8.16 is also a graphic representation 

that has been generated based on the findings presented in Table 8.4. 

After considering the best reconstruction which can be achieved with the first two PCs, 

this graphic representation is therefore generated to focus on the effect of the content of wind 

noise represented by the SNR used for generating the mixed soundtracks. Consequently, this 

illustration is to show the performance of the SSA algorithm with respect to the content of wind 

noise in the noisy signals. In other words, it is to show how the reconstruction using these pairs 

for the SSA output signals becomes affected by the content of wind which, in turn, indicates 

the performance of the method and always with regards to the selected measurements. From 

Figure 8.16, it can be summarised that at extremely low SNR values with high content of wind 
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noise, the performance of the developed SSA method is slightly affected compared to the case 

with low wind noise content.  

  
(a) 

 
   (b) 

Figure 8.16. Graphic representation to show the first two PCs pairs used for 

reconstruction with reference to the original clean signal and noisy signals at different SNR: (a) 

for D and Q values; (b) for RMS and autocorrelation time 
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As mentioned previously in Chapter 6 (section 6.7), there are several DSP analysis 

techniques that are commonly used in sound analysis along with visual SSA tools that have 

been used in presenting the results of these empirical studies. Time-domain analysis and 

spectral analysis are rather important concepts to visually present audio signals. Such common 

DSP techniques are useful to demonstrate valuable interpretation while analysing any given 

signals regarding viewing important aspects such as frequency content, noise presented, silence 

periods, etc. Also, such analysis techniques can be used for observing the changes occurred to 

the signals used in the experiments during different processes for comparison purposes. 

Therefore, these techniques can help in interpreting the changes occurred to the signals after 

the noise separation process when compared to the original signals and noisy signals before 

applying the noise reduction algorithms as the case for this study. Discussion centred on sound 

analysis techniques would make to the evaluation process. These techniques can help in 

critically evaluate noise reduction methods as they can give strong and reasonable indication 

to the effectiveness and performance level of the developed SSA algorithms.  

To summarise the results, a representative case has been selected. However, this case 

provides a comprehensive overview of the three types of signals used in the experiments 

conducted in this empirical study which are noisy mixed signals represent SSA input, original 

clean signals used as reference, and de-noised signals which are the output of the noise 

separation process of the SSA algorithm. Therefore, as it is in the middle of the five levels 

selected of the SNR range and interesting results have been obtained, 0dB case has been 

selected for presenting more results and carrying out further analysis in the evaluation process. 

The results presented in Table 8.5 have been produced from the above tables to summarise the 

0dB case. The results of the reconstruction signals for the first leading PCs along with clean 

and noisy signals with regards to the indicated measurements are summarised in Table 8.5.   

Table 8.5.   Summary of the results obtained for the reconstructed signals and other signals 

for the case of 0dB  

 

DSP 

measurements 

Type of signal Reconstruction with different PCs 

Clean 

signal 

Noisy 

Signal 

PC1  PC2 PC3 PC4 

RMS value 0.030315 0.044878 0.041064 0.040829 0.027281 0.026857 

Dynamic range 

D (dB) 
71.6413 75.3134 51.3405 54.253 49.2779 48.2995 

Crest factor Q 

(dB) 
11.6991 11.9637 10.7644 10.7212 10.2518 9.4094 

Autocorrelation 

time (s) 
0.58231 0.18002 0.87478 0.87451 0.95866 0.95429 
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Figure 8.17 is a summarised comparison graph for the leading four PCs at 0dB case. This 

graphic representation shows the leading four PCs used for the reconstruction with the 

reference clean signal and noisy signal at 0dB with regards to the signal processing 

measurements which are D values (a) and for Q and autocorrelation time values (b).   

  
(a) 

 
   (b) 

Figure 8.17. Graphic representation to show the leading four PCs for reconstruction with 

reference to the original clean signal and noisy signals at 0dB: (a) for D values; (b) for Q and 

autocorrelation time 
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It is apparent from the graphic representation shown in Figure 8.17 that the value of D 

for the noisy signal is higher than the one measured for the clean signal and the values obtained 

for the leading four PCs. Although there is a slight effect on the values of D for these leading 

four PCs when comparing to the value related to the reference clean signal, however, these 

values still considered practical. As previously mentioned, it is important to achieve an 

adequate balance between all the used measures. What is interesting about the results shown in 

Figure 8.17 is that the most practical values for D has been measured when reconstructing using 

the first two leading PCs which demonstrate the results presented in the previous sections. 

As can be seen from Figure 8.17, the first three leading PCs reported significantly more 

values of Q than the fourth PC particularly with the first two PCs pairs. What also stands out 

in Figure 8.17 is that the autocorrelation is generally closed to that of the clean signal for all 

leading PCs although it is more reasonable for the first two leading PCs. Closer inspection of 

Figure 8.17 shows that the values of the indicated measures are fairly stable and considered 

practical for the first two pairs of the PCs even with slightly lower values of D. However, this 

can be considered as a reliable indication of the SSA output mainly for two leading PCs. To 

sum up, signal processing measurements gave a reliable indication to the effectiveness and 

performance level of the developed SSA algorithms particularly with regards to the two leading 

PCs used for the reconstruction. Clear separation can be further demonstrated using sound 

analysis methods and particularly w-correlation which helps in indicating the separability. 

In addition to the importance of analysing the signals used in this evaluation process by 

using their graphical representations, the results produced by the sound analysis algorithm are 

presented for comparison purposes. The main aim of this discussion is to critically evaluate the 

developed SSA method for wind noise separation and measure the algorithm effectiveness and 

performance particularly with regards to the key aspects involved in the systematic approach 

developed for the SSA method which are grouping and reconstruction techniques. 

Figure 8.18 shows an overview of noisy signal for the case of 0dB which is the case that 

has been chosen for further discussion as mentioned above. The top left part of Figure 8.18 

shows a sample of the noisy signal in the time domain while the amplitude spectrum is shown 

in the right top part in which the changes in the magnitude with respect to the frequency can 

be seen. The difference between this part of Figure 8.18 and the corresponding one of Figure 

8.19 which is for the clean signal was significant as the effect of wind noise components in the 

lower frequency range for approximately less than 4000Hz can be clearly seen.  
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The visual representation in the spectral analysis of the signals is shown by means of the 

spectrogram which shows the amplitude of the frequency components of the signal over time. 

The spectrogram also presents interpolated colours of magnitude versus time to allow seeing 

which frequencies are present in the signal with reference to time and amplitude. As known, a 

colour scheme is used to show the approximate amplitudes of the components to indicate 

intensity by varying shades of darkness of the pattern. Therefore, the bottom left part of Figure 

8.18 shows the spectrogram of the noisy signal used as an example in this evaluation process. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.18. An overview of noisy signal for the case of 0dB: (a) Noisy signal in the time 

domain; (b) Amplitude spectrum; (c) Spectrogram (d) Probability distribution 

Based on the shading system used in the spectrogram, components that make up complex 

signals like the sound signals used in this study do not share the same amplitude value. 

However, frequency components with the highest amplitude values are shown in darkest region 

of the colours and components of lower values are shown in ladder shad of light colours. The 

spectrogram also shows changes in frequency values of the components of the signal over time. 

However, looking at part c of Figure 8.18 for the noisy signal, it is obvious that wind noise 

components which indicated by the colour (red) are located in the lower frequency region with 

frequency range for approximately less than 4000Hz as mentioned above.  
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The probability distribution of the noisy signal is illustrated in the bottom right part of 

Figure 8.18. A higher amplitude value can be seen compared to the probability distribution of 

the other two signals presented in Figure 8.19 and Figure 8.20. However, this represents the 

content of wind noise components in the signal. Similar to Figure 8.18 while using the same 

visual DSP techniques, Figure 8.19 graphically shows an overview of the original clean signal 

and Figure 8.20 for the de-noised output signal of the SSA algorithm reconstructed using the 

first two pairs of PCs. 

With regards to the amplitude spectrum shown in the right top part of these three figures, 

there was a significant difference between both the clean and de-noised signals with the 

corresponding one which is the noisy signal presented in Figure 8.18. Also, it can be seen that 

the de-noised signal has similar amplitude spectrum as for the clean signal. However, the effect 

of wind noise components in the indicated range discussed above cannot be seen in the de-

noised signal. Also, similar indication can be found when comparing the de-noised signal 

shown in Figure 8.20 with the noisy and clean signals with regards to the other measurements. 

 

(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 8.19. An overview of the original clean signal: (a) Clean signal in the time domain; 

(b) Amplitude spectrum; (c) Spectrogram (d) Probability distribution 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 8.20. An overview of the output signal of the SSA algorithm reconstructed using the 

first two pairs of PCs: (a) representation in the time domain; (b) Amplitude spectrum; (c) 

Spectrogram (d) Probability distribution 

These visual DSP and sound analysis techniques used in the evaluation process yielded 

significant results as the output signal of the SSA algorithm is very much similar to the original 

clean signal. A significance difference can be noticed between the de-noised wind noise free 

signal and the input noisy signal in a way that ensures the performance and effectiveness of the 

developed SSA system. These results gave a reliable indication that the developed grouping 

and reconstruction techniques worked in an efficient with regards to separating wind noise 

components out and reconstructing the desired signals with no reconstruction errors.  However, 

another important measure, which is the w-correlation matrix, provides with a strong evidence 

to approve the separability approach will be discussed in the next sub-section.   

8.8.2 W-correlation   

Recall from Chapter 5, an important quantity known as weighted correlation (w-
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dependence between the reconstructed components; however, it can be used to realise the 

separability and a method for determining the grouping criterion. Reconstructed components 

that have zero w-correlation are the well-separated ones, whereas, large values of w-correlation 

indicate that the reconstructed components are of one group. Thus, in the SSA decomposition, 

this corresponds to the same component (Harmouche et al., 2017; Rodrigues and 

Mahmoudvand, 2017; Xu, Zhao and Lin, 2017). 

Examining the matrix of the absolute values of the w-correlations is a useful measure that 

can be used to show that microphone wind noise is separable or not in the singular spectrum 

domain. The matrix of w-correlation contains information that can be very helpful for detecting 

the separability and identifying grouping. It is a standard way used to check the separability 

between elementary components. Furthermore, w-correlations can also be used for checking 

the grouped decomposition. The w-correlation matrix consists of weighted cosines of angles 

between the reconstructed components of the time series. The number of entries of the time 

series, which terms into its trajectory matrix, is reflected by the weights (Golyandina and 

Shlemov, 2013; Hansen and Noguchi, 2017; Rodrigues and Mahmoudvand, 2017).  

In the case of this study, the analysis using w-correlation matrix is to distinguish between 

frames containing mostly the energy of the desired signal and wind-only frames presented in 

the subspace of the higher-order eigenvalues of the singular spectra. Basically, the separability 

between two components such as 𝑋(1), 𝑋(2) of the time record characterises how well these two 

components can be separated from each other. Using the w-correlation can help in evaluating 

the separability and can be simply shown as in Equation (8.3) (Harmouche et al., 2017; Traore 

et al., 2017). 

𝜌12
(𝑤)

=
<𝑋(1),𝑋(2)>𝑤

‖𝑋(1)‖
𝑤

‖𝑋(2)‖
𝑤

, (8.3) 

The values of 𝜌12
(𝑤)

 ensure the concept of separability, however, small absolute values, 

particularly the ones closed to zero, indicate that the components are well-separated. Whereas, 

big values show that these components are inseparable and therefore they relate to the same 

components in the SSA decomposition (Harmouche et al., 2017; Traore et al., 2017). A specific 

software known as Caterpillar software was used and recommended in many studies such as in 

(Hassani, Mahmoudvand and Zokaei, 2011; Golyandina and Lomtev, 2016). However, in this 

study this software has also been used for carrying out the w-correlation investigation. 
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Figure 8.21 shows the moving periodogram matrix of the reconstructed components from 

which the corresponding eigentriples ordered by their contribution can be seen. Generally, 

poorly separated components have large correlation while well-separated components have 

small correlation. Groups of correlated series components can be found while looking at the 

matrix which indicates the w-correlations between elementary reconstructed series. Such 

information can be used for the consequent grouping. Strongly correlated elementary 

components should be grouped together in one group. As an important rule, it is recommended 

that correlated components should not be included into different groups. The matrix of w-

correlations between the series components is graphically depicted in absolute magnitude in 

white-black scale. Correlations with moduli close to 1 are displayed in black, whereas small 

correlations are shown in white (Golyandina and Shlemov, 2013). 

 

Figure 8.21. Moving periodogram matrix of reconstructed components 

To evaluate the developed SSA system with regards to the separability using w-correlation 

matrix, harmonic and broadband noise, mainly, birds’ trill and wind noise has been selected as 

an example. These two signals are of different waveform characteristics such as energy, 

duration and frequency content. As previously mentioned, only few of the reconstructed 

components can lead to the best reconstruction. The moving periodogram matrix of the 

reconstructed components presented in Figure 8.21 shows the contribution of the eigentriples. 

The first two eigentriples indicate the maximum contribution with regards to the desired signal, 

whereas the energy presented along the corresponding eigenvectors of the rest is low.   
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Figure 8.22 shows the w-correlations matrix for only the first 50 reconstructed 

components. The system uses a 20-grade grey scale ranging from white to black which 

corresponds to the absolute values of correlations from 0 to 1. Components with small 

correlations are shown in white and indicate well-separated components; however, such 

components are considered as w-orthogonal which points out that they are highly separable. 

Whereas big correlation ones shown in black with moduli close to 1 are not w-orthogonal and 

therefore, this means that they are poorly separated components.  

 

Figure 8.22. Matrix of w-correlations of the selected 50 eigenvectors of the SVD of Y 

Based on the information extracted from the matrix of correlations, the first two pairs of 

the eigentriples can be used to reconstruct the de-noised signal, while separating out the rest of 

the matrices presented in the second group as they represent the wind noise components. With 

regards to the separability, the analysis of this matrix shows that the given record has two 

independent components. Also, it can be observed that w-correlation shown in white is the 

correlation between pair eigenvector that represents the noise component and nearly equals to 

zero. The resultant reconstructed record based on the results approved by the w-correlation is 

assumed to be noise free and hence; 𝜌
(𝑆(1),𝑆(2))

(𝑤)
= 0. 

Using the eigenvalues spectra helped in efficiently selecting the eigenvectors associated 

with S1 as a noise free signal and eigenvectors associated with S2 that represent noise. These 
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two groups of eigenvectors are mainly corresponding to different frequency events which 

eventually led to their reconstruction. Based on this information; it can be concluded that the 

dataset used in this study is separable with the selection of the first dominant eigentriples to 

reconstruct of the original series while wind noise component is represented by the rest.  

8.9 Summary 

This chapter presented the results of the empirical study using real-world sounds in the 

system validation and evaluation phases along with comprehensive analyses and detailed 

discussions. It included the results obtained from these experimental phases using some 

selected experimental case studies. In the system testing and validation phase, the window 

length has been optimised, the developed systematic approach which includes the developed 

grouping and reconstruction techniques has been adopted. Along with SSA visual tools, 

relevant DSP techniques, sound analysis methods, and w-correlation matrix has been used to 

indicate grouping and separability in the critical evaluation stage.   

Regarding the dataset used in these phases, realistic samples of environmental sounds 

have been used. For testing the SSA algorithms and, as specific signals of interest, birds’ chirps 

sound has been taken as an example. The results of the validation phase followed by the critical 

evaluation considering and adopting suitable dataset that links up to the application area of the 

study (e.g., smart city interesting sounds such as police car siren and fire alarm sound) have 

been reported in this chapter. 

The only parameter that can be adjusted in the decomposition stage is the window length. 

This parameter is known to have significant impact on the performance and effectiveness of 

the SSA algorithm. Therefore, systematic investigation has been carried out using a 

mathematical model provided in the optimisation method that has been particularly developed 

in this study. More advanced grouping and reconstruction techniques have been applied to 

ensure and improve the separability. The grouping technique reported in this empirical study 

was mainly based on the eigentriples for separating the decomposed components after grouping 

similar components together. The current results have been obtained using an optimisation 

method based on certain important aspects in the grouping technique such as the nearly equal 

singular values and other constrains as defined in the systematic approach developed within 

the framework of the developed SSA method.  
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The w-correlation method has also been involved in the grouping technique to ensure the 

separability. However, positive results and notable wind noise reduction were achieved. The 

plausible findings from the investigation suggest that microphone wind noise and wanted 

sounds are separable in the singular spectrum domain by the developed SSA in this study. 

These findings are evidenced by the w-matrix and considerable amount of wind noise 

separation which is indicated by the applied objective measures and observed after the SSA 

de-noising in the testing, validation, and critical evaluation phases as discussed in this chapter. 

The experimental investigation and findings indicate the potential of the developed SSA 

as a valid method for wind noise reduction. Indeed, with this developed version of SSA, the w-

matrix showed that wind noise is separable for all the real-world sounds used in the system 

testing and validation phase. Based on these findings, wind noise has its features clearly 

separable in the proposed SSA subspaces indicated by the w-matrix. This suggests that the 

developed SSA method is effective and generally robust in separating wind noise. This further 

suggests that this developed system should be able to extend to other outdoor audio acquisition 

or recording. This opens much more extended applications and impact. Therefore, effective 

deployment in real-time noisy environments will hopefully lead this developed SSA to a 

universal microphone wind noise separation method.  
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9 

Conclusion and Future Work  

9.1 Conclusion  

This thesis set out to develop the separation approach of wind noise in microphone 

signals based on singular spectrum subspace method in the context of outdoor sound 

acquisition. Data for this thesis was collected from two main sources: freefield1010 dataset, 

internet based Freesound recordings as described in Chapter 6. Suitable testing criteria have 

been followed for the justification of the developed method at the very early stage. Several 

tests have been designed in the justification stage before further developing and examining new 

functionalities according to the requirements of each of the next experimental phases. 

Conducting several experiments as well as following a case-study design with in-depth analysis 

of the results using SSA visual tools, related signal processing, and sound analysis techniques 

was the strategy that has been drawn up to meet the aim of this thesis. These experiments and 

case studies have been carried out in the empirical studies for the verification of the developed 

system as in Chapter 7 and system validation and evaluation in Chapter 8 based on the 

systematic approach developed for the method presented in Chapters 3-5. The key concepts 

and wind noise characteristics and spectrum explained in Chapter 2 have been considered in 

the development process. Additionally, this procedure was based on using the established 

measurable objectives to address the research question and achieve the central aim stated in 

Chapter 1.  

In this thesis, a new method to mitigate wind induced noise in microphone signals has 

been developed. The present thesis developed, for the first time, the Singular Spectrum 

Analysis method for wind noise separation in the singular spectral subspace based on the 

systematic approach that has been developed and established considering the development of 

grouping and reconstruction techniques as key aspects. In this approach, new mathematical 

models and formulations used in developing SSA algorithms with particular emphasis on 

investigating the factor that determines and improves the separability and window length 

optimisation have been introduced. In the context of this study, the SSA has been developed as 

a two-step point-symmetric noise reduction method of noisy records contaminated with wind 

noise based on data-adaptive nature of its functions which improved the ability of adding or 

removing such additive components either low or high frequencies. However, noiseless signals 

have been obtained with high separability and no reconstruction errors. 



Chapter 9. Conclusion and Future Work    

242 

 

In the testing and validation phases with real-world sounds, the window length has been 

optimised using a new mathematical model particularly developed in the context of this study. 

Grouping technique has been developed and w-correlation matrix has been used to indicate 

grouping and separability. In the system validation phase, it was to bring the developed method 

for critical evaluation considering and adopting suitable dataset that links up to the application 

area of the study (e.g., birds’ chirps, smart city interesting sounds such as siren of ambulance 

cars, police cars, and different alarm sounds). For this purpose, soundtracks generated from a 

mixing model through mixing desired signals with wind noise at different SNR has been 

established and examined. 

This work provides an exciting opportunity to advance and contribute to existing 

knowledge of the SSA theory and practice by developing such separation approach. This 

approach utilises a conceptual framework, has, in its final form, three key objectives; grouping, 

reconstruction, and separability. Before this study, evidence of improving the understanding of 

such key elements was purely anecdotal. Besides, new descriptive figures have been introduced 

which can be seen as a significant part to add to existing literature. In the context of this study, 

improving separability has therefore been considered as a key element in the developed SSA 

using non-orthogonal decompositions of time series and independent component analysis. 

However, this is because the signals obtained by the SSA decomposition are generated from 

eigenvectors in the Eigen subspace. Wind induced noise is statistically separated from wanted 

signals in a singular spectral subspace. Thus, the new developed method provides a convenient 

alternative to existing standards.  

Returning to the question posed at the beginning of this thesis, it is now possible to state 

that the results of the experiments and case studies conducted during the empirical studies 

increased the effectiveness of the developed SSA for distinguishing wind noise in the Eigen 

domain. This separation approach is based on reconstructing the decomposed components of 

the SVD method by gathering wind noise components in a separate cluster as residual noise 

and reconstructing the desired components in one group. Moreover, the obtained results from 

both empirical studies for system verification and validation produced a positive outcome that 

showed the capability of the modified SSA with regards to the separability which has been 

approved by the w-correlation matrix. Also, from the results discussed in Chapters 7 and 8, it 

can be concluded that defining a subspace for the unwanted wind noise and another subspace 

that corresponds to desired components was possible with the developed method. This 

indicated the effectiveness of the developed grouping and reconstruction techniques.  
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These results further support the idea of noise separation using singular spectral subspace 

method. The finding of window length optimisation with optimal value around 𝑁𝑡 2⁄  is 

consistent with that of many previous studies. It is worth noting that higher window lengths are 

likely to affect the performance of the SSA with regards to the processing time. In addition to 

the size of the generated matrices that depends on the window length, the SSA uses a massive 

number of matrix multiplications which increases with the size of the dataset. Therefore, the 

computational load increases due to the mathematical complexity of SSA algorithms. In fact, 

this is one of the challenges and a major limitation of the SSA particularly with long time 

records and big dataset. 

Several important aspects such as the selection of the PCs, the generated RCs, and the 

grouping and reconstruction techniques that allow creating groups for the decomposed 

components to improve the separability have been introduced in the developed method. It can 

be concluded from the obtained results that not all the principle components are dominant and 

accordingly only few of the reconstructed components are required. Each RC retranslates its 

corresponding principal component into the original units of the time series which permits a 

comparison between the reconstructed components. Therefore, it can also be concluded that to 

reflect oscillatory modes of interest, the original noisy time series can be de-noised through a 

convolution when selecting a small number of principle components and their associated 

eigenvectors based on the eigentriple produced by the SVD. Using less of the total number of 

the produced reconstructed components can be used as an appropriate manner for reflecting the 

oscillatory modes of interest when properly defining the grouping constrains. It is a satisfactory 

outcome indeed as separating wind noise in a different cluster as a residual noise and the 

reconstruction of one-dimensional time series have been performed in this way when 

considering these developed key objectives that eventually led to achieve high separability.  

In the experiments and case studies conducted within the empirical studies for system 

verification and validation, it can be obviously seen from the eigenvalues spectra that the 

eigenvalues located in the lower subspace are meaningfully higher than the others and take 

more of the energy of the given signal, whereas others in the higher subspace represent the 

noise floor. Accordingly, the corresponding principle components are significant for 

reconstructing a noise free series as they provide glimpses of the periodic components. 

Meanwhile, the random components are represented by the ones that correspond to the other 

subspace. Notably, all the variance of the given time series can be specified by the dominant 

principle components which is consistent with the lower-order eigenvalues.  
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For the types of data used in the empirical studies, extremely low reconstructions errors 

were found as a clear indicative sign of an optimal recovery and separability. A comprehensive 

evaluation of the performance of the developed system has been made to measure its 

effectiveness for wind noise separation using suitable evaluation criteria. Therefore, results 

show that microphone wind noise is separable in the singular spectrum domain after completing 

the verification and validation of the developed system and the critical evaluation when 

different objective measures have been applied and finally evidenced by the w-correlation. The 

findings indicate the potential of the developed SSA as a valid method for wind noise 

separation. The results improve the reliability of outdoor acoustic sensing for soundscapes and 

environmental noise monitoring. In addition, the developed method should be able to extend 

to any outdoor audio acquisition and recording. As a result, it may have much more extended 

applications and impact. 

Finally, the new aspect presented in this thesis to wind noise in microphone signals, 

which is the separation of the decomposed components using the developed SSA, might even 

lead to better results. It is only with reliable developed SSA method wind noise can be separated 

and wanted sounds can be retained. Hence, it is possible to improve soundscapes monitoring 

and construct smart urban environments based on acoustic sensing technology in such a way 

that their true capabilities may be exploited. The thesis outcomes including main technical 

achievements and improvements can be outlined as follows:  

1. The separation approach has been developed. 

2. The findings suggest that microphone wind noise and wanted sounds are separable by 

the developed SSA. 

3. Wind noise can be distinguished and separated in the singular spectral subspace 

evidenced by w-correlation matrix and other measures. 

4. Results of reconstructed signals indicate significant improvement in separability and 

the effectiveness of the developed grouping and reconstruction techniques. 

5. Window length has been optimised using new mathematical model with optimal value 

obtained around 𝑁𝑡 2⁄ .   

6. The developed grouping technique helped in efficiently selecting the eigentriples 

associated with one group as a noise free signal, and others associated with the second 

group represent noise.  
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7. Best reconstruction has been achieved based on the first two PCs with high separability 

proved by the applied measures (w-correlation matrix).    

8. At extremely low SNR with high content of wind noise, the performance of the method 

is slightly affected.   

9. For both system verification and validation and with all the selected signals of interest, 

the method shows high performance with no reconstruction errors and clear 

separability.  

10.  The developed systematic approach which includes new mathematical models and 

formulations as well as new descriptive figures can be seen as a significant part to add 

to existing literature.  

11.  As a major limitation, mathematical complexity of SSA algorithms increases the 

computational load and the processing time.  

12.  The generalisability of the results as to deploy the developed method in real-time noisy 

environments and with other types of environmental noises or different desired signals 

might be another limitation. 

9.2 Future Work  

It is probably hard to conclude whether the developed method will still work efficiently 

in real- time noisy environments despite the positive results obtained for wind noise separation 

with multiple real-world sounds even under adverse condition with low SNR values. Therefore, 

the generalisability of these results is subject to this limitation. Also, whether the method will 

work in the same way with other types of environmental noises or not. Although the 

effectiveness of the developed grouping and reconstruction techniques needed to be identified 

for noise components as for such difficult case is evidenced by the w-correlation matrix, 

however, there is no likely apparent reason why the method should not work. 

This procedure of wind noise separation can be considered as complex case for a time-

varying broadband noise as previously discussed, however, it might be less complex with other 

environmental noises. Hence, considering this issue can lead to indicate the generalisability of 

the developed method with a more convenient way. Also, despite of the positive results 

obtained from the new derived mathematical model for window length optimisation and its 

consequence effects on other processes, this optimisation method was implemented manually. 

Therefore, using machine learning technique could be a practical suggestion in this case. To 
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summarise, this research has thrown up some questions in need of further investigation. It is 

recommended to undertake further research in the following areas.  

1. To what extent the method can be deployed in real-time noisy environments along with 

selecting other desired signals to indicate the generalisability. 

2. To what extent the developed method will work with other types of environmental 

noise, such as rain noise, as to indicate the generalisability as well.  

3. It would be interesting to assess the effects of the computational load and processing 

time of the SSA on its real-time implementation for environmental noise separation. 

4. Applying machine learning technique could be a practical suggestion to implement 

window length optimisation method.  

Finally, it is worth mentioning that analysis regarding improving soundscapes design in 

urban smart environment has not been included in the thesis and might be thoroughly 

recommended for future work. A further study could assess the long-term deployment of 

acoustic sensing considering acoustic modelling as one of the key initiatives. Furthermore, such 

important aspect may underpin the vision to probably introduce a model based on a virtual 

platform that includes characteristics of applications to have a more complete solution which 

could improve performance and ensures more accurate production and delivery of sensed 

information in different applications.  
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APPENDICES  

  APPENDIX A: A Brief Summary of Existing Wind Noise Reduction 

Methodologies  
Table A.1. Conventional noise reduction schemes applied for wind noise reduction  

Conventional noise reduction schemes, (spectral subtraction and statistical-based 

estimators) 

Approach - Based on subtracting an estimate of the noise magnitude spectrum 

from the noisy signal magnitude spectrum. 

- Spectral subtraction has been used for wind noise reduction (Boll, 

1979). 

Main advantage Main limitations 

Robust, easy to 

implement, 

comprehensively studied 

and generalised through 

many years 

- Show limited effectiveness and cannot effectively attenuate wind 

noise (Schmidt, Larsen and Hsiao, 2007; King and Atlas, 2008).  

- Assumes that the noise is stationary, noise estimate is mostly 

obtained during the silence period (e.g. speech pauses). 

- Unable to obtain new noise estimates as long as the signal of 

interest is there (Boll, 1979). 

- Special detection and processing might be required to better reduce 

the effect of wind noise when using such methods.  

Traditional remedy for wind noise (e.g. Wiener filter method) 

Approach - Random noise optimal removal filter, used for removing noise from 

a signal when the signal of interest and the noise have different 

frequency characteristics.  

- It works by attenuating frequencies where the noise is expected to 

be the most dominant. 

Main advantage Main limitations 

Robust, easy to 

implement, 

comprehensively studied 

and generalised through 

many years 

- It compromises the quality of the sensed acoustic data, shows some 

but limited performance (Schmidt, Larsen and Hsiao, 2007). 

- It assumes stationary signals, which might give inappropriate 

approximation for speech and wind noise (Dietrich and Utschick, 

2005; Vaseghi, 2008).   

- Kalman and Wiener filters are not applicable in case of reducing 

noise levels in certain experimental time series related to dynamical 

systems. 
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Table A.2. The post filters and their extension with methods introduced for the estimation of noise PSD 

Post-filters and extension of the conventional post-filters 

Approach - Post-filters: It is to emphasise the formant frequencies and 

deemphasise the spectral portion where noise contributes the most to 

the observed distortion (Nemer and Leblanc, 2009).  

- An extension post-filter: Based on adapting the emphasis parameters.  

- A time-domain adaptive post-filter proposed in (Nemer and Leblanc, 

2009) to reduce wind noise in corrupted speech. It is based on tracking 

the changing envelop spectrum of wind noise similarly to other post-

filters except it deemphasises the wind ‘resonance’.  

Main advantage Main limitations 

LPC analysis was 

used in time-domain 

adaptive post-filter to 

distinguish between 

frames  

Used in model-based speech coders (Juin-Hwey Chen and Gersho, 

1995) as an attempt to speech quality improvement in the presence of 

wind noise but not an optimal solution to broadband noise such as wind 

especially with a non-stationary speech signals.  

Single microphone methods introduced for the estimation of noise PSD from noisy 

speech signals and other methods that dealing with wind noise reduction in single 

microphone 

Approach - The estimation of the noise Power Spectral Density (PSD). 

- Exploiting the spectral characteristics of the wanted signal (speech) 

and noise in order to estimate the wind noise PSD is the applied 

approach in (Nelke et al., 2014).  

- Considering magnitude spectrum towards higher frequencies of wind 

noise and the harmonic structure of the wanted speech signal (Nelke et 

al., 2014). 

- The concept relies on directly modify the noisy input signal (Kuroiwa 

et al., 2006; King and Atlas, 2008; Hofmann et al., 2012).    

Main advantage  Main limitations 

Focused on wind noise 

reduction from speech 

signals 

 

- The assumption of considering noise signal as slower varying over 

time than the speech signal is not true for wind noise signals. 

- According to (Nelke et al., 2014), due to inaccurate estimates of noise 

PSD, such conventional algorithms provide insufficient level of noise 

reduction. 

- Better performance but still there is a remarkable distortion.    
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Table A.3. The different models and comb filters introduced for wind noise reduction for speech 

Based on the approach below, many models have been introduced, such as Gaussian 

Mixture Models (Ding et al., 2005), Hidden Markov Models (Roweis, 2001), Non-negative Sparse 

Coding (Schmidt, Larsen and Hsiao, 2007) and Vector Quantization (Ellis and Weiss, 2006) 

Approach 
- Modelling the sources in noisy signals independently in order to use these 

models to find the best estimate of the signal of interest and noise signal has 

been involved in the more recent methods. 

- Using binary masking to remove individual signals (Cermak et al., 2007).  

Main advantage Main limitations 

The estimation of the signal 

of interest and noise  

Mainly for speech signals cleaning, this approach often models an 

individual speaker rather than speaker independent. 

Comb filters 

Approach Based on reinforcing the harmonic nature of speech signals depending on 

accurate pitch estimation.  

Main advantage Main limitations 

Easy to use The difficulty of achieving accurate pitch estimation in noisy environments 

(King and Atlas, 2008).  

Table A.4.  The dual microphone and microphone array technologies 

Dual microphone technologies 

Approach For speech understanding (e.g. in hearing aid applications) 

Main advantage  Main limitations 

- Innovative designs 

brought notable progress in 

noise reduction  

- Helped in thriving multi-

microphone technology 

- Inherent microphone placement is susceptible to wind noise at the input of 

the microphone which is considered a downside  

- More than half of the users of this technology (hearing aid users) reported 

the downside of methods used in their hearing aid devices and the low 

performance in windy environments (Kochkin, 2010).  

Multichannel with more microphones available (microphone array) 

Such as Independent Component Analysis 

Approach - The correlation between the desired signals in the microphones 

- Based on exploiting the difference in propagation delay between the 

acoustic signals and the wind. 

Main advantage  Main limitations 

Efficient and effective for 

reducing wind noise 

Such methods are computationally considered prohibitive as well as their 

complicated setups are difficult to deploy which limit their usage.  
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APPENDIX B: Best Paper Award Certificate  

The paper was selected based on the contribution. The criteria used are 

novelty/originality, method, experimentation, inference, presentation, and contribution to the 

domain.  
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