1,640 research outputs found

    Single-machine scheduling with deteriorating jobs and learning effects to minimize the makespan

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Scheduling problems with the effects of deterioration and learning

    Get PDF
    Author name used in this publication: T. C. E. Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Reliability-Based Optimum Inspection Planning for Components Subjected to Fatigue Induced Damage

    Get PDF
    The degradation of metallic systems under cyclic loading is prone to significant uncertainty. This uncertainty in turn affects the reliability in the prediction of residual lifetime and the subsequent decision regarding the optimum inspection and maintenance schedules. In particular, the experimental data on the evolution of fatigue-induced cracks shows significant scatter stemming from initial flaws, metallurgical heterogeneities, and randomness in material properties like yield stress and fracture toughness. The objective of this research is to improve the reliability-based optimal inspection planning of metallic systems subjected to fatigue, taking into account the associated uncertainty. To that end, this research aims to address the two main challenges faced in developing a credible reliability-based framework for lifecycle management of fatigue-critical components. The first challenge is to construct a stochastic model that can adequately capture the nonlinearity and uncertainty observed in the crack growth histories. The second one involves presenting a computationally efficient strategy for solving the stochastic optimization associated with optimum maintenance scheduling. In order to fulfill these objectives, a Polynomial Chaos (PC) representation is constructed of fatigue-induced crack growth process using a database from a constant amplitude loading experiment. The PC representation relies on expanding the crack growth stochastic process on a set of random basis functions whose coefficients are estimated from the experimental database. The probabilistic model obtained is then integrated into a reliability framework that minimizes the total expected life-cycle cost of the system subjected to constraints in terms of time to inspections, and the maximum probability of failure defined by the limit state function. Lastly, an efficient and accurate optimization strategy that uses surrogate models is suggested to solve the stochastic optimization problem. The sensitivity of the optimum solution to the level of risk is also examined. This research aims to provide a decision support tool for informed decision-making under uncertainty in the life-cycle planning of systems subjected to fatigue failure

    Minimizing the Makespan for Scheduling Problems with General Deterioration Effects

    Get PDF
    This paper investigates the scheduling problems with general deterioration models. By the deterioration models, the actual processing time functions of jobs depend not only on the scheduled position in the job sequence but also on the total weighted normal processing times of the jobs already processed. In this paper, the objective is to minimize the makespan. For the single-machine scheduling problems with general deterioration effects, we show that the considered problems are polynomially solvable. For the flow shop scheduling problems with general deterioration effects, we also show that the problems can be optimally solved in polynomial time under the proposed conditions

    Integration of production, maintenance and quality : Modelling and solution approaches

    Get PDF
    Dans cette thèse, nous analysons le problème de l'intégration de la planification de production et de la maintenance préventive, ainsi que l'élaboration du système de contrôle de la qualité. Premièrement, on considère un système de production composé d'une machine et de plusieurs produits dans un contexte incertain, dont les prix et le coût changent d'une période à l'autre. La machine se détériore avec le temps et sa probabilité de défaillance, ainsi que le risque de passage à un état hors contrôle augmentent. Le taux de défaillance dans un état dégradé est plus élevé et donc, des coûts liés à la qualité s’imposent. Lorsque la machine tombe en panne, une maintenance corrective ou une réparation minimale seront initiées pour la remettre en marche sans influer ses conditions ou le processus de détérioration. L'augmentation du nombre de défaillances de la machine se traduit par un temps d'arrêt supérieur et un taux de disponibilité inférieur. D'autre part, la réalisation des plans de production est fortement influencée par la disponibilité et la fiabilité de la machine. Les interactions entre la planification de la maintenance et celle de la production sont incorporées dans notre modèle mathématique. Dans la première étape, l'effet de maintenance sur la qualité est pris en compte. La maintenance préventive est considérée comme imparfaite. La condition de la machine est définie par l’âge actuel, et la machine dispose de plusieurs niveaux de maintenance avec des caractéristiques différentes (coûts, délais d'exécution et impacts sur les conditions du système). La détermination des niveaux de maintenance préventive optimaux conduit à un problème d’optimisation difficile. Un modèle de maximisation du profit est développé, dans lequel la vente des produits conformes et non conformes, les coûts de la production, les stocks tenus, la rupture de stock, la configuration de la machine, la maintenance préventive et corrective, le remplacement de la machine et le coût de la qualité sont considérés dans la fonction de l’objectif. De plus, un système composé de plusieurs machines est étudié. Dans cette extension, les nombres optimaux d’inspections est également considéré. La fonction de l’objectif consiste à minimiser le coût total qui est la somme des coûts liés à la maintenance, la production et la qualité. Ensuite, en tenant compte de la complexité des modèles préposés, nous développons des méthodes de résolution efficaces qui sont fondées sur la combinaison d'algorithmes génétiques avec des méthodes de recherches locales. On présente un algorithme mimétique qui emploi l’algorithme Nelder-Mead, avec un logiciel d'optimisation pour déterminer les valeurs exactes de plusieurs variables de décisions à chaque évaluation. La méthode de résolution proposée est comparée, en termes de temps d’exécution et de qualités des solutions, avec plusieurs méthodes Métaheuristiques. Mots-clés : Planification de la production, Maintenance préventive imparfaite, Inspection, Qualité, Modèles intégrés, MétaheuristiquesIn this thesis, we study the integrated planning of production, maintenance, and quality in multi-product, multi-period imperfect systems. First, we consider a production system composed of one machine and several products in a time-varying context. The machine deteriorates with time and so, the probability of machine failure, or the risk of a shift to an out-of-control state, increases. The defective rate in the shifted state is higher and so, quality related costs will be imposed. When the machine fails, a corrective maintenance or a minimal repair will be initiated to bring the machine in operation without influencing on its conditions or on the deterioration process. Increasing the expected number of machine failures results in a higher downtime and a lower availability rate. On the other hand, realization of the production plans is significantly influenced by the machine availability and reliability. The interactions between maintenance scheduling and production planning are incorporated in the mathematical model. In the first step, the impact of maintenance on the expected quality level is addressed. The maintenance is also imperfect and the machine conditions after maintenance can be anywhere between as-good-as-new and as-bad-as-old situations. Machine conditions are stated by its effective age, and the machine has several maintenance levels with different costs, execution times, and impacts on the system conditions. High level maintenances on the one hand have greater influences on the improvement of the system state and on the other hand, they occupy more the available production time. The optimal determination of such preventive maintenance levels to be performed at each maintenance intrusion is a challenging problem. A profit maximization model is developed, where the sale of conforming and non-conforming products, costs of production, inventory holding, backorder, setup, preventive and corrective maintenance, machine replacement, and the quality cost are addressed in the objective function. Then, a system with multiple machines is taken into account. In this extension, the number of quality inspections is involved in the joint model. The objective function minimizes the total cost which is the sum of maintenance, production and quality costs. In order to reduce the gap between the theory and the application of joint models, and taking into account the complexity of the integrated problems, we have developed an efficient solution method that is based on the combination of genetic algorithms with local search and problem specific methods. The proposed memetic algorithm employs Nelder-Mead algorithm along with an optimization package for exact determination of the values of several decision variables in each chromosome evolution. The method extracts not only the positive knowledge in good solutions, but also the negative knowledge in poor individuals to determine the algorithm transitions. The method is compared in terms of the solution time and quality to several heuristic methods. Keywords : Multi-period production planning, Imperfect preventive maintenance, Inspection, Quality, Integrated model, Metaheuristic

    Intelligent resource scheduling for 5G radio access network slicing

    Get PDF
    It is widely acknowledged that network slicing can tackle the diverse use cases and connectivity services of the forthcoming next-generation mobile networks (5G). Resource scheduling is of vital importance for improving resource-multiplexing gain among slices while meeting specific service requirements for radio access network (RAN) slicing. Unfortunately, due to the performance isolation, diversified service requirements, and network dynamics (including user mobility and channel states), resource scheduling in RAN slicing is very challenging. In this paper, we propose an intelligent resource scheduling strategy (iRSS) for 5G RAN slicing. The main idea of an iRSS is to exploit a collaborative learning framework that consists of deep learning (DL) in conjunction with reinforcement learning (RL). Specifically, DL is used to perform large time-scale resource allocation, whereas RL is used to perform online resource scheduling for tackling small time-scale network dynamics, including inaccurate prediction and unexpected network states. Depending on the amount of available historical traffic data, an iRSS can flexibly adjust the significance between the prediction and online decision modules for assisting RAN in making resource scheduling decisions. Numerical results show that the convergence of an iRSS satisfies online resource scheduling requirements and can significantly improve resource utilization while guaranteeing performance isolation between slices, compared with other benchmark algorithms

    Multi-defect modelling of bridge deterioration using truncated inspection records

    Get PDF
    Bridge Management Systems (BMS) are decision support tools that have gained widespread use across the transportation infrastructure management industry. The Whole Life Cycle Cost (WLCC) modelling in a BMS is typically composed of two main components: a deterioration model and a decision model. An accurate deterioration model is fundamental to any quality decision output.There are examples of deterministic and stochastic models for predictive deterioration modelling in the literature, however the condition of a bridge in these models is considered as an ‘overall’ condition which is either the worst condition or some aggregation of all the defects present. This research proposes a predictive bridge deterioration model which computes deterioration profiles for several distinct deterioration mechanisms on a bridge.The predictive deterioration model is composed of multiple Markov Chains, estimated using a method of maximum likelihood applied to panel data. The data available for all the defects types at each inspection is incomplete. As such, the proposed method considers that only the most significant defects are recorded, and inference is required regarding the less severe defects. A portfolio of 9,726 masonry railway bridges, with an average of 2.47 inspections per bridge, in the United Kingdom is the case study considered

    Single Machine Group Scheduling with Position Dependent Processing Times and Ready Times

    Get PDF
    We investigate a single machine group scheduling problem with position dependent processing times and ready times. The actual processing time of a job is a function of positive group-dependent job-independent positional factors. The actual setup time of the group is a linear function of the total completion time of the former group. Each job has a release time. The decision should be taken regarding possible sequences of jobs in each group and group sequence to minimize the makespan. We show that jobs in each group are scheduled in nondecreasing order of its release time and the groups are arranged in nondecreasing order of some certain conditions. We also present a polynomial time solution procedure for the special case of the proposed problem
    corecore