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Abstract 

This paper studies the single-machine scheduling problem with deteriorating jobs and 

learning considerations. The objective is to minimize the makespan. We first show 

that the schedule produced by the largest growth rate rule is unbounded for our model, 

although it is an optimal solution for the scheduling problem with deteriorating jobs 

and no learning. We then consider three special cases of the problem, each 

corresponding to a specific practical scheduling scenario. Based on the derived 

optimal properties, we develop an optimal algorithm for each of these cases. Finally, 

we consider a relaxed model of the second special case, and present a heuristic and 

analyze its worst-case performance bound.  
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1. Introduction 

Machine scheduling problems with deteriorating jobs have received increasing 

attention in resent years. The actual processing time of a job in a schedule is modeled 

as an increasing function of its starting time due to deterioration effects. This model 

reflects a variety of real-life situations such as steel production, resource allocation, 

fire fighting, maintenance or cleaning, etc. (see Kunnathur and Gupta 1990, Mosheiov 

1995), in which any delay in processing a job may result in an increasing effort to 

accomplish the job. In order to make the analysis possible, most research models the 

actual processing time of a job as a linear or piecewise linear increasing function of its 

starting time. For single-machine scheduling problems, Browne and Yechiali (1990) 

assumed that the actual processing time is tp ii α+ , where ip  is the basic 

processing time, iα  is the growth rate of the processing time, and t is the starting 

time, of job i. They showed that sequencing the jobs in increasing order of iip α/  

minimizes the makespan. Mosheiov (1991) considered the total flow time 

minimization problem with the actual processing time of job i being tp iα+0 , where 

0p  is a common basic processing time, and iα  is the growth rate of the processing 

time, of job i. He showed that an optimal schedule is V-shaped with respect to iα , i.e., 

the jobs appearing before the minimal growth rate job are sequenced in nonincreasing 

order of iα  and the ones after it are sequenced in nondecreasing order of iα . 

Mosheiov (1994) further simplified the model with the actual processing time of job i 

being tiα , and showed that the problems of minimizing such objectives as the 

makespan, total flow time, sum of weighted completion times, total lateness, number 

of tardy jobs, maximum lateness, and maximum tardiness are all polynomially 

solvable. Bachman and Janiak (2000) proved that the maximum lateness minimization 

problem with the actual processing time of job i being tp ii α+  is NP-hard, and 

presented two heuristics for this problem. For this model, Bachman et al. (2002) 

proved that minimizing the total weighted completion time is NP-hard. For research 
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results on other scheduling models considering deterioration effects and under 

different machine environments, the reader may refer to the review papers of Alidaee 

and Womer (1999), and Cheng et al. (2004). 

   On the other hand, it is reasonable and necessary to consider learning effects in 

scheduling research under some practical situations. Biskup (1999), and Cheng and 

Wang (2000) have observed and analyzed various production activities for which 

scheduling with learning effects may arise. Cheng and Kovalyov (1994) were 

probably the first researchers who introduced the concept of learning into scheduling. 

They modeled the learning effects on the actual processing time of a job as a 

piecewise linear decreasing function of the total actual processing time of all the jobs 

scheduled before it. They studied both single-machine and parallel-machine problems 

to minimize the makespan and total flow time. Cheng and Wang (2000) used the 

volume-dependent processing time function to model the learning effects, in which 

the learning effects on the processing time of a job depend on the number of jobs 

processed before the job. They showed that the maximum lateness minimization 

problem on a single-machine is NP-hard in the strong sense, and developed two 

bounded heuristics. Different from the above models to deal with the learning effects, 

Biskup (1999) used the log-linear learning curve popularized in industrial engineering 

to describe the learning effects, i.e., if job i is scheduled in position r in a sequence, its 

actual processing time is a
i rp , where ip  is the basic processing time and 0≤a  is 

the learning index (to be defined later). He showed that single-machine scheduling 

problems to minimize the total flow time and total deviations from a common due 

date are polynomially solvable. Mosheiov (2001) followed Biskup’s (1999) model 

and showed that the single-machine makespan minimization problem remains 

polynomially solvable. He also provided some counterexamples to show that the 

optimal properties for the corresponding counterpart classical scheduling problems no 

longer hold. For instance, the earliest due date rule is not optimal for minimizing the 

maximum lateness, and the weighted shortest processing time rule is not optimal for 

minimizing the weighted flow time.  
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   However, to the best of our knowledge, there exist only a few research results on 

scheduling models considering the effects of deterioration and learning at the same 

time, although the phenomena can be found in many real-life situations. Wang and 

Cheng (2005) discussed several real-life examples of a processing environment 

involving task rotation, where job deterioration is caused by the forgetting effects, 

while the learning effects reflect that the workers become more skilled to operate the 

machines through experience accumulation. Here, we give another practical example. 

The main stage in the production of porcelain craftworks is to shape the raw material 

according to the designs. Raw material, made up of clay and special coagulant, 

becomes harder with the lapse of time. It may result in increasing time to shape a 

craftwork. On the other hand, the productivity of the craftsmen can improve through 

increasing their proficiency in design and operations. For this situation, considering 

both the job deterioration and learning effects in job scheduling is both necessary and 

reasonable. In this paper we study a single-machine scheduling problem considering 

both deterioration and learning effects to minimize the makespan.    

In Section 2 we will give a formal description of the model under study. In Section 

3 we will show that the schedule generated by the largest growth rate rule is 

unbounded for our model. We will identify three special cases of the problem, each 

corresponding to a specific practical scheduling scenario, and develop an optimal 

algorithm for each case in Section 4. In Section 5 we will consider a relaxed model of 

one of the cases in Section 4, and present a heuristic and analyze its worst-case 

performance bound. Finally, conclusions are given in Section 6. 

 

2. Formulation 

   To model the effect of job deterioration, we follow Mosheiov (1991) by assuming 

that the processing time of a job is a linear function of its starting time. The learning 

effect is modeled in its popular form of the log-linear curve (see, for example, Biskup, 

1999). In order to study the effects of deterioration and learning simultaneously, we 

combine the above models to constitute our model. Formally, the model is stated as 

follows: 
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   There are n jobs to be scheduled on a single machine. All the jobs are 

nonpreemptive and available for processing at time zero. The machine can handle at 

most one job at a time and cannot stand idle until the last job assigned to it has 

finished processing. If job ,,,2,1, nii = is scheduled in position r in a sequence, its 

actual processing time is 

,)( 0,
a

iri rtpp α+=                            (1) 

where 0p  is a common basic processing time that is incurred if job i is scheduled 

first in a sequence; t is the starting time of job i to be processed; iα is the growth rate 

of the processing time of job i, which is the amount of increase in the processing time 

of job i per unit delay in its starting time due to the deterioration effects; and a is the 

learning index, given as the logarithm to the base 2 of the learning rate x, i.e., 

%).100,0(,log2 ∈= xxa  The assumption that all the jobs have an identical basic 

processing time is reasonable, which both reflects some real-life situations and may 

serve as an approximation of the more general cases. In addition, this assumption is 

necessary to make the analysis possible from a modeling perspective. 

   Our objective is to schedule the jobs so as to minimize the makespan, i.e., the 

completion time of the last job. Noting that an optimal schedule not only depends on 

the performance measure, but also on the parameter distribution of the growth rates 

and the learning index, we give an exact description of the parameter distribution of 

our model as follows: 

{ }.0,0,,0,0}{},,,,{ 2121 <>>>= aaGL nn αααααα   

   Adopting the three-field notation of Graham et al. (1979) to describe classical 

scheduling problems, we denote our problem as ,)(|1 0,
a

iri rtpp α+= max| CGL . 

   For a given schedule π = [1, 2 ,,  n], we can derive an expression of its 

objective function. Setting 0 1p = , from (1), we have 

,11)01( 11,1
aap =⋅+= α  



 6  

,222)1( 1,121,122,2 ppp aaa αα +=+=  

then, 

).21(12)22( 21,121,12,21,1
aaaaa pppp αα ++=++=+

 

Furthermore, 

),(333)](1[ 2,21,132,21,133,3 ppppp aaa ++=++= αα  

then, 

)](33[)( 2,21,132,21,13,32,21,1 ppppppp aa ++++=++ α  

)31)((3 32,21,1
aa pp α+++=  

)31)(21(1)31(23 323
aaaaaa ααα +++++= . 

Generally, we have 

)],1([
111

,
a

i

n

ki

a
n

k

n

i
ii ikp α+= ∏∑∑
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where )1(
1

a
i

n

ni

iα+∏
+=

: =1.  

   If the common basic processing time is 0p , then the makespan )(max πC  can be 

expressed as 

)].1([)(
11

0max
a

i

n

ki

a
n

k
ikpC απ += ∏∑

+==

                (2) 

   Analyzing (1), we see that the actual processing time of a job is not only related to 

its position in a schedule, but also to the jobs processed prior to it. Hence, the optimal 

properties with respect to the learning effects only are not applicable to our problem. 

On the other hand, the actual processing time of a job is no longer a linear function of 

its starting time, so the existing results for the optimal schedule concerning only the 

linear deterioration of jobs no longer hold for our scheduling model either. These 

characteristics make our model very difficult to deal with. 

   We also observe from (1) that although a job has a distinct actual processing time 

if it is sequenced in a different position in a schedule, the jobs can be distinguished 
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from one another by their growth rates; in other words, we can identify a job by its 

growth rate. Based on this observation, we may say that the expression (2) for the 

makespan is appropriate for any schedule in which the jobs are numbered by their 

positions in the schedule. 

 

3. The general model 

   To the best of our knowledge, the complexity of the model under study is open. 

The largest growth rate (LGR) rule, which sequences the jobs in nonincreasing order 

of iα , yields an optimal solution for max0 ||1 Ctpp ii α+= (Browne and Yechiali, 

1990). However, the LGR rule is unbounded for our model. 

   We define a subset of GL as 

 /)2(,/)1(|}{},,,,{{ 22
121 nknnna kn +−=+>=Π ααααα   

}2,,,2for −== ank  . 

For a job system consisting of n jobs with parameters belonging toΠ , let π = [1, 

2 ,,  n] be a schedule produced by the LGR rule. Then we have  

)21()3)1(1)(21(1{)( 2
2
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−−−− ⋅+⋅
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+⋅+= n
nn
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   We consider a schedule ]2,,1,,1[ −=′ nnπ , whose makespan is  
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})1()1( 22
2

2 −−− +⋅+−++ nn
n
nn .               (3) 

Since e
n

n

<





 +

−111 , where e is the base of the natural logarithm, from (3), we have 

epnepC 0
222

0max 2)321()( <++++<′ −−− π . 

Since the optimal objective )(* maxmax π ′≤ CC , then 
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   For any given number M > 0, if )12(4 −> eMn , we have  

M
C

C
>

max

max

*
)(π . 

   Summarizing the above analysis, for any given number M > 0, there exists a job 

system with parameters belonging to Π  such that the makespan of the LGR rule 

schedule is larger than M times of that of the optimal schedule. So we have the 

following theorem. 

 

Theorem 1. The LGR rule schedule is unbounded for the problem =rip ,|1  

a
i rtp )( 0 α+ , max| CGL . 

 

Theorem 1 indicates that the LGR rule is no longer effective in solving the general 

problem under study. 

 

4. Some polynomially solvable cases 

   To further observe our model, we find that the model processes a very intricate 

geometric structure due to the fact that learning and deterioration create opposing 

effects on the objective function qualitatively and quantitatively. Hence, the analysis 

will be facilitated by classifying the general problem into some special cases 

according to different distributions of the growth rates and the learning index. 
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   In the following we define three special cases characterized by the distributions of 

the parameters nααα ,,, 21  and a. 

   First, we define GL1 as a subset of GL as follows: 

{ }.1,0,,,0|}{},,,,{1 2121 −≤>>>= aaGL nn αααααα   

This case is denoted as .|1,)(|1 max0, CGLrtpp a
iri α+=  

   From 1a ≤ −  and 2loga x= , the learning rate x may be a percentage between 0 

and 50%. This case describes the situation in which the operator has a good learning 

ability and learning has a more significant effect on shortening the processing times of 

the jobs than other factors. 

   Second, we impose on the growth rates of the jobs in a job system and the 

learning index the following constraints: 
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The parameter distribution subset of GL satisfying the above constraints is denoted as 

GL2. The schedule problem in this situation is denoted as ,)(|1 0,
a

iri rtpp α+=  

.|2 maxCGL  

   In this case, the growth rates of all the jobs are small and the learning rate is close 

to 100%. This model reflects the practical situation in which the deteriorating effects 

on all the jobs are not very significant and the growth rate differences among the jobs 

are not large. The learning efforts to shorten the actual processing times of the jobs are 

very difficult. 

   Third, for the parameter distributions of the growth rates of all the jobs and the 

learning index, we define a subset GL3 of GL as 
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The general model with respect to GL3 is denoted as ,)(|1 0,
a

iri rtpp α+=  

.|3 maxCGL  

   In this case, we clarify some relations between the job growth rates and the 

learning index by utilizing a parameter β. Once β is determined, GL3 stipulates the 

constraints imposed on the job growth rates and learning index, respectively. In 

general, this model reflects some real production environments in which the 

deterioration effects on all the jobs have large differences, and the learning effects on 

shortening the actual processing times of the jobs are moderate. 

   In the above definitions, the condition } ,,,max{ 321 nαααα ≥ in GL2 and GL3 

always holds if the job with the largest growth rate is numbered as job 1. It is noted 

that GL1, GL2 and GL3 cover all the possible distributions of the learning index a. 

   For these three cases, we will derive some optimal properties and develop an 

optimal algorithm for each of them. 

 

4.1 Problem max0, |1,)(|1 CGLrtpp a
iri α+=  

   We notice from (2) that the makespan of the schedule π does not include the 

growth rate 1α . This means that the contribution of the first job in a schedule to the 

makespan is a constant, no matter what its growth rate is. Thus, we have the following 

lemma immediately. 

 

Lemma 1. For the problem max0, |,)(|1 CGLrtpp a
iri α+= , the job with the largest 

growth rate should be sequenced in the first position in an optimal schedule. 
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   Lemma 1 tells us which job must be sequenced in the first position in an optimal 

schedule. In the following we will derive an optimal property for sequencing the 

remaining 1n −  jobs. 

 

Lemma 2. For the problem max0, |1,)(|1 CGLrtpp a
iri α+= , sequencing the jobs in 

the 2nd to nth positions in nondecreasing order of their growth rates minimizes the 

makespan. 

 

Proof. For a schedule π = [1, 2 ,,  n], only swap the jobs in positions i (i >1) and i 

+1 to generate a new scheduleπ ′ . From (2), we have 

{   )31)(21][()1([)()()( 3210maxmax
aaaa

ii iipCC ααααππ ++−+−=−′ +       

 ))1(1()31(2))1(1( 131 +−+++−+ −−
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i
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i ii ααα   

}aaaa
i

a iiiii )1(])1())1(1()2( 1 ++−+−+−+ −α        

)1())2(1( 2
a

n
a

i ni αα +++ +  .                      (4) 

   We set { } εααα =−−
a

i
aa i )1(,,3,2min 132  . Assuming that ,1+≤ ii αα  from (4), 

we have 

{ aiiaa
ii iipCC 2)1()1][()1([)()()( 32
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{  aaa
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   For the function f(x) = x-a, its derivative function 1( ) ( ) adf x a x
dx

− −= − . According to 

the Lagrange finite increment theorem (i.e., if a function f(x) is continuous on the 

closed interval 1 2[ , ]t t , and differentiable in the open interval 1 2( , )t t , then there 

exists a number 1 2( , )c t t∈ , such that 2 1 2 1
( )( ) ( ) ( ) |x c

df xf t f t t t
dx =− = −  holds.), we 

have  

              ,))(()1( 1−−−− +−=−+ aaa iaii θ                       (6) 

where 0 < θ <1. In GL1, 1a ≤ − . Therefore, 

.)()1( 1−−−− −≥−+ aaa iaii                       (7) 

From (5) and (7), we have 
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1

max max 0 1( ) ( ) ( ) ( 1) ( ) 1  
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i i
iC C p i i a

i
π π α α
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and in GL1, a ≤ −1. So, we have 
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i
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Therefore, 

                max max( ) ( ) 0.C Cπ π′ − ≥    □ 

   According to Lemmas 1 and 2, we can develop an algorithm for the problem 

=rip ,|1 ,)( 0
a

i rtp α+ max|1 CGL . The algorithm is formally described as follows. 
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Algorithm AGL1: 

   Step 1. Select a job with the largest growth rate among the n jobs. Sequence it in 

the first position. 

   Step 2. For the remaining n−1 jobs, sequence them in the 2nd to nth positions in 

nondecreasing order of their growth rates. Stop. 

 

   Obviously, the complexity of Algorithm AGL1 is O(nlogn). For Algorithm AGL1, 

utilizing the properties of Lemmas 1 and 2, we have the following conclusion. 

 

Theorem 2. Algorithm AGL1 produces an optimal solution for the problem 

=rip ,|1 ,)( 0
a

i rtp α+ max|1 CGL . 

 

4.2 Problem =rip ,|1 ,)( 0
a

i rtp α+ max|2 CGL  

   When the operator’s learning ability follows a learning curve whose learning rate 

is between 50% and 100%, i.e., –1 ≤ a < 0, the jobs in positions 2 and 3 in an optimal 

schedule satisfy the following lemma. 

 

Lemma 3. For the problem max0, |,)(|1 CGLrtpp a
iri α+= , if the learning index 

satisfies –1 ≤ a < 0, the growth rate of the job in position 2 should be no less than that 

of the job in position 3 in an optimal schedule. 

 

Proof. For a schedule π = [1, 2 ,,  n], swap only the jobs in positions 2 and 3 to 

generated a new scheduleπ ′ . From (2), we have 

)1()41](32)23)[(()()( 4320maxmax
a

n
aaaaa npCC ααααππ +++−−=−′   

)1()41)](23(1[32)( 4320
a

n
aaaaa np αααα ++−−−= −−  . 

   From (6), we have 
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1)2)((23 −−−− +−=− aaa a θ , 

where 0 < θ < 1. If –1 ≤ a < 0, then –1 < −a −1 ≤ 0. So, we have 

,1)2)((23 1 ≤+−=− −−−− aaa a θ  

Therefore, if –1 ≤ a <0 and 32 αα ≥ , we have 

.0)()( maxmax ≥−′ ππ CC    □ 

 

Theorem 3. For the problem =rip ,|1 ,)( 0
a

i rtp α+ max|2 CGL , the jobs should be 

sequenced in nonincreasing order of their growth rates to minimize the makespan. 

 

Proof. According to Lemmas 1 and 3, the theorem holds for the first three positions in 

an optimal schedule. 

   In the following we show that the theorem also holds for the 3rd to nth positions 

in an optimal schedule. Assume that we are given a schedule π = [1, 2 ,,  n] and 

.21 nααα ≥≥≥   Swapping two jobs i (i >2) and i +1 to produce a new schedule 

π ′ . For the parameter distribution in GL2, making use of (2), we can derive the 

following inequality: 
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   For the function f(x) = (1+x)i-1, its derivative function 2( ) ( 1)(1 ) .idf x i x
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−= − +  

According to the Lagrange finite increment theorem, there exists a constant θ1, 0 < θ1 

< 1, such that 
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   From (6), there also exists a constant θ 2, 0 < θ 2 < 1, such that 

1
2 ))(()1( −−−− +−=−+ aaa iaii θ . 
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   Therefore, from (8), we have 
2

1 1
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   In GL2, ,01
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en
 then 10 a

en
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i n e

− − −+ +
− < < . 

Then, from (9), we have 

max max( ) ( ) 0.C Cπ π′ − ≥    □ 

   According to Theorem 3, an algorithm that sequences the jobs in nonincreasing 

order of their growth rates produces an optimal solution for the problem 

=rip ,|1 ,)( 0
a

i rtp α+ max|2 CGL . Obviously, the time complexity of the algorithm is 

O(nlogn). 

 

4.3 Problem =rip ,|1 ,)( 0
a

i rtp α+ max|3 CGL  

   In GL3, the coefficient β indicates the constraints imposed on the distance of the 

growth rates between the jobs and the scope of the learning index. When β becomes 

larger, the distribution of the growth rates becomes more sparse and the learning index 

has a wider scope. 

   In this case, GL3 gives the boundaries on the parameter distribution of the growth 
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rates involving n−2 jobs that are numbered as job 3 ,, job n. We derive an optimal 

property for these n−2 jobs in the following. 

 

Lemma 4. For the problem =rip ,|1 ,)( 0
a

i rtp α+ max|3 CGL , suppose the n−2 jobs, 

indexed as job 3 ,, job n, are determined in the last n−2 positions in a schedule, then 

these jobs should be sequenced in nondecreasing order of their growth rates to 

minimize the makespan. 

 

Proof. For a schedule π = [1, 2 ,,  n], we only swap the jobs in positions i (i > 2) 

and i +1 to yield a new schedule π ′ . In GL3, making use of (2), we have 
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10maxmax β
βααππ

i
aaaaa

ii iiiiipCC                              

)1())2(1(  2
a

n
a

i ni αα +++ +  .            (10) 

   For i ≥ 3, we will prove that the following inequality holds: 

011)1()1]()1[(
1

>−
−+

−−+
−

−−

β
β i

aaa iii .                 (11) 

   Obviously, we have 

.
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)2)(1()1(1)2/)2)(1()1(1(1)1( 21
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   From (6), we have 

.
)1(
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)()1( 11 aa
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i
a

i
aii ++

−−

+
−

>
+
−

=−+
θ

             (13) 

where 0 < θ < 1. 

   Then, from (12) and (13), we have 
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   In GL3, ,
4

4
β+

−<a  then 
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ββ
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   Notice the Bernoulli inequality: if 0 < 1+a < 1, then 
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   From (15) and (16), we have 

,
1
1

2
21)(
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i
iia
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+− β  

i.e., 
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21
1
1)(
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βi
i
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                     (17) 

   From (14) and (17), we have shown that (11) holds. Thus, from (10), we have 

max max( ) ( ) 0.C Cπ π′ − ≥                               (18) 

   Since (18) holds for i = 3, 4 ,,  n –1, we have reached the conclusion.   □ 

   Suppose that the schedule π = [1, 2 ,,  n] is an optimal solution for the 

problem =rip ,|1 ,)( 0
a

i rtp α+ max|3 CGL . According to Lemmas 3 and 4, both 
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32 αα ≥  and nααα ≤≤≤ 43  hold. In the following we derive an optimal 

property relating to the relations between 2α  and .,,, 54 nααα   

 

Lemma 5. For the problem =rip ,|1 ,)( 0
a

i rtp α+ max|3 CGL , if the schedule π = [1, 

2 ,,  n] is an optimal solution, then iαα ≤2  if .
)1(

1112 3−
−−

+
−++≥ i

aai
βββ

 

 

Proof. We assume that schedule π ′  is obtained by swapping the 2nd and ith jobs 

(i >3) in schedule π . Since βα a−≥ 33  and ,])1[(1 βαα aa
ii ii −−

+ −+≥−  for i = 3, 

4 ,,  n–1, in GL3, making use of (2), we have 
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Therefore, if  
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βββ

 

then max max( ) ( ) 0C Cπ π′ − ≥ .   □ 

 

   Making use of Lemmas 1, 3, 4 and 5, we can develop an algorithm for the 
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problem =rip ,|1 ,)( 0
a

i rtp α+ max|3 CGL . The algorithm is described in detail in 

the following. 

 

Algorithm AGL3: 

   Step 1. Select a job with the largest growth rate, and sequence it in the first 

position. 

   Step 2. For the remaining n –1 jobs, number them such that ,32 nααα ≤≤≤   

where iα  is the growth rate of job i, i = 2, 3 ,,  n. 

   Determine an integer i1 such that }./112|min{1 β++≥= −− aaiii  

   For k = 3 to i1−1: 

   Sequence job k in the 2nd position, and the remaining n−2 jobs in nondecreasing 

order of their growth rates, i.e., .112 nkk αααα ≤≤≤≤≤ +−  Compute the 

objective function as Cmax (k). 

   Step 3. Select j such that { })1(,),4(),3(min)( 1maxmaxmaxmax −= iCCCjC  . Then, 

determine the schedule with the makespan Cmax (j). Stop. 

 

   In Algorithm AGL3, the dominant computational step is to sequence the jobs in 

nondecreasing order of their growth rates, which requires O(nlogn) times. So the time 

complexity of Algorithm AGL3 is O(nlogn). 

   According to Lemma 1, in Step 1, we determine a job that should be sequenced in 

the first position in an optimal solution. For the remaining n−1 positions in an optimal 

solution, Steps 2 and 3 ensure that the conditions of Lemmas 3, 4 and 5 are satisfied. 

So Algorithm AGL3 generates an optimal solution. Thus, we have established the 

following theorem. 

 

Theorem 4. For the problem =rip ,|1 ,)( 0
a

i rtp α+ max|3 CGL , Algorithm AGL3 

yields an optimal schedule. 
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5. A special model with a bounded heuristic 

   In this section we introduce a special model with a parameter subset GL4. GL4 is 

defined as 

{
n

aGL
a

jinn

−

≤−≥=
2},,,{max}{},,,{4 211 ααααααα    

for ji ≠ and ,2, ≥ji  }01 <<− a . 

   We denote the general model with the parameter subset GL4 as =rip ,|1  

,)( 0
a

i rtp α+ .|4 maxCGL  

   The parameter distribution of the growth rates and learning index in GL4 reflects 

the actual scheduling situation in which the deterioration effects on all the jobs have 

little differences and the learning process to increase operating efficiency is not very 

fast. 

   We notice that 42 GLGL ⊂ , which indicates that this case models more general 

practical scheduling situations than =rip ,|1 ,)( 0
a

i rtp α+ max|2 CGL . Consequently, 

the LGR rule schedule, which is optimal for the problem =rip ,|1  

,)( 0
a

i rtp α+ max|2 CGL , is no longer optimal for this case. However, we show in the 

following that the LGR rule schedule is bounded for the problem =rip ,|1  

,)( 0
a

i rtp α+ .|4 maxCGL  

 

Lemma 6. Suppose the n−m+1 numbers nmm ααα ,,, 1 +  satisfy 

≤≤< +10 mm αα  nα≤ , and 
nmm iii ααα ,,,

1


+
 are obtained by re-indexing 

nmm ααα ,,, 1 + , and a < 0, then 
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n

mk
i

a
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==

.                 (19) 
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Proof. We use induction to prove the result. 

   The case n = m + 1: 

   If ,, 11 +==
+ mimi mm

αααα then (19) holds. Otherwise, we have  
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So, we have 
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kk
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αα . 

   Hence, we have proved that (19) holds for the case n +1. 

   Thus, according to the induction principle, we have established the result.  □ 

   Making use of Lemma 6, we can give a lower bound for =rip ,|1  

,)( 0
a

i rtp α+ max| CGL as follows. 

 

Lemma 7. For the problem =rip ,|1 ,)( 0
a

i rtp α+ max| CGL , if the n jobs are 
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numbered such that ,21 nααα ≥≥≥   then the makespan )(max πC  of any 

schedule π satisfies 

)])1(1([)(
11

0max
a

i

n

ki

a
n

k
kinkpC ++−+≥ ∏∑

+==

απ ,          (20) 

where 1:))1(1(
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a
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n

ni
kinα . 

 

Proof. For any schedule π = [i1, i2 ,,  in], from (2), its makespan is  
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For k = 1, 2 ,, n−1, re-number 
nkk iii ααα ,,,

21


++
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that nk αα ′≥≥′+ 1 . From Lemma 6, we have 
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   For the parameter distribution of growth rates and learning index in GL4, we 

denote the LGR rule schedule and the optimal schedule as π and π*, respectively. The 

LGR rule schedule has the following performance bound. 
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Theorem 5. For the problem =rip ,|1 ,)( 0
a

i rtp α+ max|4 CGL , the LGR rule 

schedule has a performance bound 
12

maxmax */)(
−−

<
a

eCC π ,  

where e is the base of the natural logarithm. 

 

Proof. For schedule π = [1, 2 ,,  n] that follows the LGR rule, its makespan is 
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   Comparing the objective function (21) of the schedule π and its lower bound (20) 

in GL4, we have 
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Generally, for k = n−4, n−5 ,, 1, we have 
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where  x denotes the largest integer that is less than x. Therefore, 
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From (22), we have 
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That is 
12

maxmax */)(
−−

<
a

eCC π .   □ 

   In Theorem 5 the performance bound is related to the learning index a. In GL4, 

)0,1(−∈a . So, the performance bounds are between e and e, where e is the base of 

the natural logarithm. However, if we make the distances of the growth rates of the 

jobs shorter, then the performance bound will become tighter. 

 

6. Conclusion 

   In this paper we studied the simultaneous effects of deterioration and learning on 

single-machine scheduling to minimize the makespan. For the general model, its 

inherent complexities make the LGR rule to be unbounded, although the LGR rule 

yields an optimal solution for the scheduling problem considering deteriorating jobs 

only. We modeled some practical scheduling scenarios, and developed optimal 

algorithms for them based on the derived optimal properties. Finally, we focused on a 

special model and showed that there exists a bounded heuristic for it. 

 

Acknowledgements 

We are grateful for two anonymous referees for their helpful comments on an earlier 

version of this paper. This research was supported in part by The Hong Kong 

Polytechnic University under a grant from the Area of Strategic Development in 

Chain Business Services. 

 

References 



 25  

Alidaee, B. and Womer N. K. (1999) “Scheduling with time dependent processing 

times: review and extensions,” Journal of the Operational Research Society, 50, 

711-720. 

Bachman, A. and Janiak, A. (2000) “Minimizing maximum lateness under linear 

deterioration,” European Journal of Operational Research, 126, 557-566. 

Bachman, A., Janiak, A. and Kovalyov, M. Y. (2002) “Minimizing the total weighted 

completion time of deteriorating jobs,” Information Processing Letters, 81, 

81-84. 

Biskup, D. (1999) “Single-machine scheduling with learning considerations,” 

European Journal of Operational Research, 115, 173-178. 

Browne, S. and Yechiali, U. (1990) “Scheduling deteriorating jobs on a single 

processor,” Operations Research, 38, 495-498. 

Cheng, T. C. E., Ding, Q. and Lin B. M. T. (2004) “A concise survey of scheduling 

with time-dependent processing times,” European Journal of Operational 

Research, 152, 1-13. 

Cheng, T. C. E. and Kovalyov, M. Y. (1994) “Scheduling with learning effects on job 

processing times,” Working Paper, No. 06/94, Faculty of Business and 

Information Systems, The Hong Kong Polytechnic University. 

Cheng, T. C. E. and Wang, G.-Q. (2000) “Single machine scheduling with learning 

effect considerations,” Annals of Operations Research, 98, 273-290. 

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G.. (1979) 

“Optimization and approximation in deterministic sequencing and scheduling: a 

survey,” Annals of Discrete Mathematics, 5, 287-326. 

Kunnathur, A. S. and Gupta, S. K. (1990) “Minimizing the makespan with late start 

penalties added to processing times in a single facility scheduling problem,” 

European Journal of Operational Research, 47, 56-64. 

Mosheiov, G.. (1991) “V-shaped policies for scheduling deteriorating jobs,” 

Operations Research, 39, 979-991. 

Mosheiov, G.. (1994) “Scheduling deteriorating jobs under simple linear 

deterioration,” Computers and Operations Research, 21, 653-659. 



 26  

Mosheiov, G.. (1995) “Scheduling jobs with step-deterioration: minimizing makespan 

on a single- and multi-machine,” Computers and Industrial Engineering, 28, 

869-879. 

Mosheiov, G.. (2001) “Scheduling problems with a learning effect,” European Journal 

of Operational Research, 132, 687-693. 

Wang, J-B. and Cheng, T. C. E. (2005) “Scheduling problems with the effects of 

deterioration and learning,” Asia-Pacific Journal of Operational Research, 

accepted.  


	Abstract



