
Research Article
Single Machine Group Scheduling with Position Dependent
Processing Times and Ready Times

Xingong Zhang and Qiulian Xie

College of Mathematics Science, Chongqing Normal University, Chongqing 400047, China

Correspondence should be addressed to Xingong Zhang; zxg7980@163.com

Received 26 January 2015; Revised 11 April 2015; Accepted 12 April 2015

Academic Editor: Chin-Chia Wu

Copyright © 2015 X. Zhang and Q. Xie.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate a single machine group scheduling problem with position dependent processing times and ready times. The actual
processing time of a job is a function of positive group-dependent job-independent positional factors. The actual setup time of the
group is a linear function of the total completion time of the former group. Each job has a release time. The decision should be
taken regarding possible sequences of jobs in each group and group sequence to minimize the makespan. We show that jobs in
each group are scheduled in nondecreasing order of its release time and the groups are arranged in nondecreasing order of some
certain conditions. We also present a polynomial time solution procedure for the special case of the proposed problem.

1. Introduction

In traditional scheduling, job processing times are assumed
to be fixed and known (Pinedo [1]). However, in reality, we
often encounter settings in which the job processing times
vary with learning effect (Cheng et al. [2] and Lee et al. [3]),
deterioration effect (Alidaee andWomer [4], Cheng et al. [5],
and Yin et al. [6]), time dependent effect (Gawiejnowicz [7],
Zhang et al. [8], and Yin et al. [9]), and positional effect (Rus-
togi and Strusevich [10, 11], Bachman and Janiak [12], and Yin
et al. [13]). Rustogi and Strusevich [14] combined all kinds of
effect in a paperwhich considered the two classical objectives:
the makespan and the sum of the completion times.

In the second place, many manufactures have imple-
mented the concept of group technology (GT. Burbidge [15]);
it is conventional to schedule continuously all jobs from the
same group. Group technology that groups similar products
into families helps increase the efficiency of operations and
decrease the requirement of facilities (Mitrofanov [16], Janiak
and Kovalyov [17], and Webster and Baker [18]). In this
paper, we do not assume that all maintenance periods are
identical and allow each one of them to leave the processing
conditions of the machine in a different state. We deal with
a more general concept of a group setup time performed by
the processing group. Thus, the effects that change the actual

group setup time may become additionally dependent on the
actual processing times of jobs before the proposed group.

Rustogi and Strusevich [10] presented real-life examples:
“These general positional effects can be found in practice
as well. Extending the coursework marking example above,
after marking a certain number of scripts, the teacher might
get tired or bored, her attention becomes less focused and
each new script may even take longer to mark than the
one before. We are sure our academic colleagues know this
feeling, and they also know the remedy: take a break, have a
cup of coffee.” However, to the best of our knowledge, only
few results concerning schedulingmodels and problems with
position dependent processing times and group technology
simultaneously are known. But combining the group tech-
nology with start time dependent processing times is more
common. For the case that setup time of each group is a fixed
constant, Wang et al. [19] considered single machine group
scheduling in which the actual processing time of a job is a
general linear decreasing function of its starting time; for the
makespan minimization problem and total completion time
minimization problem they showed that some problems can
be solved in polynomial time. Xu et al. [20] considered the
single machine scheduling problems with group technology
and ready times; the job processing times are described by a
function which is proportional to a linear function of time;
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the setup times of groups are assumed to be fixed and known;
it showed that minimizing the makespan with ready times
can be solved in polynomial time and proposed a heuristic
algorithm. J.-B. Wang and J.-J. Wang [21] continued the work
of Xu et al. [20]; they considered amore general deterioration
model than the group setup times and job processing times;
the objective is to minimize the makespan.They showed that
the problem can be solved in polynomial time when start
time dependent processing times and group technology are
considered simultaneously.

Motivated by the ideas of Rustogi and Strusevich [14] and
J.-B.Wang and J.-J.Wang [21], we consider the singlemachine
scheduling problem with ready times of the jobs under
the group technology assumption and position dependent
processing times. Our objective is to find the optimal group
sequence and the optimal job sequence to minimize the
makespan. The rest of the paper is organized as follows. In
the next section we describe the formulation of our problem.
In Section 3, we consider the solutionmethod forminimizing
makespan. In Section 4, a reduced model will be introduced
and proposed a polynomial time algorithm. The conclusion
is given in the last section.

2. Problem Description

The independent jobs 𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
have to be processed on a

single machine. They are nonpreemptive and to be grouped
into 𝑘 groups: 𝐺

[1]
, 𝐺
[2]

, . . . , 𝐺
[𝑘]
. The jobs in the same group

are consecutively processed as long as the job has arrived;
a setup time is required if the machine switches from one
group to another and all setup times are positive. Assume
that each group contains a total of 𝑛

𝑖
jobs, so that the

permutation of jobs in the 𝑖th group is given by 𝜋
[𝑖]

=

{𝜋
[𝑖]

(1), 𝜋
[𝑖]

(2), . . . , 𝜋
[𝑖]

(𝑛
[𝑖]

)}, where ∑
𝑘

𝑖=1
𝑛
[𝑖]

= 𝑛. Let 𝑟
𝜋
[𝑖]
(𝑟)

represent the ready (arrival) time of the 𝑟th job in group
𝐺
𝑖
. Depending on the choice of groups and the order in

which they are performed, the actual processing time of a job
𝐽
𝑗
(𝑗 = 𝜋

[𝑖]
(𝑟)), scheduled in position 𝑟 (1 ≤ 𝑟 ≤ 𝑛

𝑖
) in group

𝐺
𝑖
(1 ≤ 𝑖 ≤ 𝑘), is given as follows:

𝑝
[𝑖]

𝑗
(𝑟) = 𝑝

𝑗
𝑔
[𝑖]

(𝑟) , 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑟 ≤ 𝑛
𝑖
, (1)

where 𝑔
[𝑖]

(𝑟) denotes positive group-dependent job-
independent positional factors of the 𝑟th job in group 𝐺

𝑖
; we

call the values 𝑔[𝑖](𝑟) deterioration factors.
Furthermore, since the number of jobs, 𝑛

𝑖
, in each group

and the total duration of each group,𝐹
𝑖
, are known, the actual

setup time 𝑠
𝑖
is defined as follows:

𝑠
𝑖
= 𝑎
𝑖
𝐹
𝑖−1

, 1 ≤ 𝑖 ≤ 𝑘, (2)

where 𝑎
𝑖
(>0) is the deterioration rate of the group 𝐺

𝑖
.

The deterioration factors 𝑔
[𝑖]

(𝑟) are given in the form of a
collection of ordered array of numbers:

1 ≤ 𝑔
[𝑖]

(1) ≤ 𝑔
[𝑖]

(2) ≤ ⋅ ⋅ ⋅ ≤ 𝑔
[𝑖]

(𝑛
𝑖
) , 𝑖 = 1, 2, . . . , 𝑘, (3)

and 𝑟
𝜋
[𝑖]
(𝑟)
,𝑝
𝜋
[𝑖]
(𝑟)

satisfy the following relations: when 𝑟
𝜋
[𝑖]
(1)

≤

𝑟
𝜋
[𝑖]
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑟
𝜋
[𝑖]
(𝑛𝑖)

, there are

𝑝
𝜋
[𝑖]
(1)

≥ 𝑝
𝜋
[𝑖]
(2)

≥ ⋅ ⋅ ⋅ ≥ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

, 𝑖 = 1, 2, . . . , 𝑘. (4)

For a given schedule 𝜋, let 𝐶
𝜋
[𝑖]
(𝑟)

= 𝐶
𝜋
[𝑖]
(𝑟)

(𝜋) denote the
completion time of job 𝐽

𝜋
[𝑖]
(𝑟)
, and 𝐶max = max{𝐶

𝜋
[𝑖]
(𝑟)

| 𝑖 =

1, 2, . . . , 𝑘; 𝑟 = 1, 2, . . . , 𝑛
𝑖
} represent the makespan of a given

schedule. Using the three-field notation schema in scheduling
problems (Graham et al. [22]), the makespan minimization
problem is denoted as 1 | 𝑟

𝑗
, 𝑝[𝑖]
𝑗

(𝑟) = 𝑝
𝑗
𝑔
[𝑖]

(𝑟), 𝑠
𝑖
= 𝑎
𝑖
𝐹
𝑖−1

,
GT | 𝐶max, where GT denote group technology.

3. The Solution Method

In the following section, we will give the solution method
so that the single machine minimization scheduling problem
with deteriorating jobs and ready times can be solved under
certain conditions. Firstly, we consider that all jobs can be
processed in one group; that is, 𝑘 = 1.

Lemma 1. For the problem 1 | 𝑟
𝑗
, 𝑝
𝑗
(𝑟) = 𝑝

𝑗
𝑔(𝑟) | 𝐶max,

where 𝑔(𝑟)meets (3), the optimal job sequence can be obtained
by sequencing the jobs in nondecreasing order of 𝑟

𝑗
.

Proof. Suppose that 𝜋 = {𝑆
1
, 𝐽
𝑖
, 𝐽
𝑗
, 𝑆
2
} and 𝜋


= {𝑆
1
, 𝐽
𝑗
, 𝐽
𝑖
, 𝑆
2
}

are two job sequence, where 𝑆
1
and 𝑆

2
denote a partial

sequence (note that 𝑆
1
and 𝑆

2
may be empty), and the

difference between 𝜋 and 𝜋
 is a pairwise interchange of two

adjacent jobs 𝐽
𝑖
and 𝐽
𝑗
. In addition, the completion time of

the last job of 𝑆
1
in sequence 𝜋(𝜋


) is denoted by𝐴. Then, the

completion times of job 𝐽
𝑖
and 𝐽
𝑗
under 𝜋 are

𝐶
𝑖
(𝜋) = max {𝐴, 𝑟

𝑖
} + 𝑝
𝑖
𝑔 (𝑟) = max {𝐴 + 𝑝

𝑖
𝑔 (𝑟) , 𝑟

𝑖

+ 𝑝
𝑖
𝑔 (𝑟)} ,

(5)

𝐶
𝑗
(𝜋) = max {𝐶

𝑖
(𝜋) , 𝑟
𝑗
} + 𝑝
𝑗
𝑔 (𝑟 + 1) = max {𝐴

+ 𝑝
𝑖
𝑔 (𝑟) + 𝑝

𝑗
𝑔 (𝑟 + 1) , 𝑟

𝑖
+ 𝑝
𝑖
𝑔 (𝑟)

+ 𝑝
𝑗
𝑔 (𝑟 + 1) , 𝑟

𝑗
+ 𝑝
𝑗
𝑔 (𝑟 + 1)} .

(6)

Similarly, the completion times of jobs 𝐽
𝑗
and 𝐽
𝑖
under 𝜋

 are

𝐶
𝑗
(𝜋

) = max {𝐴, 𝑟

𝑗
} + 𝑝
𝑗
𝑔 (𝑟) = max {𝐴

+ 𝑝
𝑗
𝑔 (𝑟) , 𝑟

𝑗
+ 𝑝
𝑗
𝑔 (𝑟)} ,

(7)

𝐶
𝑖
(𝜋

) = max {𝐶

𝑗
(𝜋

) , 𝑟
𝑖
} + 𝑝
𝑖
𝑔 (𝑟 + 1) = max {𝐴

+ 𝑝
𝑗
𝑔 (𝑟) + 𝑝

𝑖
𝑔 (𝑟 + 1) , 𝑟

𝑗
+ 𝑝
𝑗
𝑔 (𝑟)

+ 𝑝
𝑖
𝑔 (𝑟 + 1) , 𝑟

𝑖
+ 𝑝
𝑖
𝑔 (𝑟 + 1)} .

(8)

Suppose that 𝑟
𝑖
≤ 𝑟
𝑗
, based on (6) and (8), we have

𝐶
𝑖
(𝜋

) − 𝐶
𝑗
(𝜋) = max {𝐴 + 𝑝

𝑗
𝑔 (𝑟) + 𝑝

𝑖
𝑔 (𝑟 + 1) , 𝑟

𝑗

+ 𝑝
𝑗
𝑔 (𝑟) + 𝑝

𝑖
𝑔 (𝑟 + 1) , 𝑟

𝑖
+ 𝑝
𝑖
𝑔 (𝑟 + 1)} − max {𝐴

+ 𝑝
𝑖
𝑔 (𝑟) + 𝑝

𝑗
𝑔 (𝑟 + 1) , 𝑟

𝑖
+ 𝑝
𝑖
𝑔 (𝑟)

+ 𝑝
𝑗
𝑔 (𝑟 + 1) , 𝑟

𝑗
+ 𝑝
𝑗
𝑔 (𝑟 + 1)} .

(9)
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Based on the formula (3) 𝑝
𝑖
≥ 𝑝
𝑗
, 𝑔(𝑟) ≤ 𝑔(𝑟 + 1), and the

values of 𝑟
𝑖
, 𝑟
𝑗
, and 𝐴, we divide these values into three cases

as follows.
(1) 𝑟
𝑖
≤ 𝑟
𝑗
≤ 𝐴; that is, jobs 𝐽

𝑖
and 𝐽
𝑗
have arrived at time

𝐴; then

𝐶
𝑖
(𝜋

) − 𝐶
𝑗
(𝜋) = 𝐴 + 𝑝

𝑗
𝑔 (𝑟) + 𝑝

𝑖
𝑔 (𝑟 + 1)

− [𝐴 + 𝑝
𝑖
𝑔 (𝑟) + 𝑝

𝑗
𝑔 (𝑟 + 1)]

= (𝑝
𝑖
− 𝑝
𝑗
) [𝑔 (𝑟 + 1) − 𝑔 (𝑟)] ≥ 0.

(10)

(2) 𝑟
𝑖
≤ 𝐴 < 𝑟

𝑗
; that is, job 𝐽

𝑖
has arrived before time 𝐴,

and 𝐽
𝑗
has not arrived at time 𝐴; then

𝐶
𝑖
(𝜋

) − 𝐶
𝑗
(𝜋) = 𝑟

𝑗
+ 𝑝
𝑗
𝑔 (𝑟) + 𝑝

𝑖
𝑔 (𝑟 + 1)

− [𝐴 + 𝑝
𝑖
𝑔 (𝑟) + 𝑝

𝑗
𝑔 (𝑟 + 1)]

= (𝑟
𝑗
− 𝐴)

+ (𝑝
𝑖
− 𝑝
𝑗
) [𝑔 (𝑟 + 1) − 𝑔 (𝑟)] > 0.

(11)

(3) 𝐴 < 𝑟
𝑖
≤ 𝑟
𝑗
; that is, jobs 𝐽

𝑖
and 𝐽
𝑗
have not arrived at

time 𝐴; then

𝐶
𝑖
(𝜋

) − 𝐶
𝑗
(𝜋) = 𝑟

𝑗
+ 𝑝
𝑗
𝑔 (𝑟) + 𝑝

𝑖
𝑔 (𝑟 + 1)

− [𝑟
𝑖
+ 𝑝
𝑖
𝑔 (𝑟) + 𝑝

𝑗
𝑔 (𝑟 + 1)]

= (𝑟
𝑗
− 𝐴)

+ (𝑝
𝑖
− 𝑝
𝑗
) [𝑔 (𝑟 + 1) − 𝑔 (𝑟)]

≥ 0.

(12)

In conclusion, we have 𝐶
𝑖
(𝜋

) ≥ 𝐶

𝑗
(𝜋). Repeating this

interchange argument, an optimal schedule can be obtained
by sequencing the jobs in nondecreasing order of 𝑟

𝑗
.

Next, we consider the problem 1 | 𝑟
𝑗
, 𝑝[𝑖]
𝑗

(𝑟) = 𝑝
𝑗
𝑔
[𝑖]

(𝑟),
GT | 𝐶max; assume that 𝐵 denotes the completion time of the
(𝑖 − 1)th group and 𝑟

𝜋
[𝑖]
(1)

≤ 𝑟
𝜋
[𝑖]
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑟
𝜋
[𝑖]
(𝑛𝑖)

is satisfied
in group 𝐺

𝑖
. Then we have

𝐶
𝜋
[𝑖]
(1)

= max {𝐵 + 𝑎
𝑖
𝐵, 𝑟
𝜋
[𝑖]
(1)

} + 𝑝
𝜋
[𝑖]
(1)

𝑔
[𝑖]

(1)

= max {(1 + 𝑎
𝑖
) 𝐵 + 𝑝

𝜋
[𝑖]
(1)

𝑔
[𝑖]

(1) , 𝑟
𝜋
[𝑖]
(1)

+ 𝑝
𝜋
[𝑖]
(1)

𝑔
[𝑖]

(1)} ,

𝐶
𝜋
[𝑖]
(2)

= max {𝐶
𝜋[𝑖](1)

, 𝑟
𝜋
[𝑖]
(2)

} + 𝑝
𝜋
[𝑖]
(2)

𝑔
[𝑖]

(2)

= max{(1 + 𝑎
𝑖
) 𝐵 +

2

∑

𝑟=1

𝑝
𝜋[𝑖](𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(1)

+

2

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+ 𝑝
𝜋
[𝑖]
(2)

𝑔
[𝑖]

(2)} ,

𝐶
𝜋
[𝑖]
(3)

= max {𝐶
𝜋
[𝑖]
(2)

, 𝑟
𝜋
[𝑖]
(3)

} + 𝑝
𝜋
[𝑖]
(3)

𝑔
[𝑖]

(3)

= max{(1 + 𝑎
𝑖
) 𝐵 +

3

∑

𝑟=1

𝑝
𝜋[𝑖](𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(1)

+

3

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋[𝑖](2)

+

3

∑

𝑟=2

𝑝
𝜋[𝑖](𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(3)

+ 𝑝
𝜋
[𝑖]
(3)

𝑔
[𝑖]

(3)} ,

.

.

.

𝐶
𝜋
[𝑖]
(𝑛𝑖)

= max{(1 + 𝑎
𝑖
) 𝐵 +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(1)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+

𝑛𝑖

∑

𝑟=2

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , . . . , 𝑟
𝜋
[𝑖]
(𝑛𝑖)

+ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

𝑔
[𝑖]

(𝑛
𝑖
)}

= max{(1 + 𝑎
𝑖
) 𝐵 +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)} ,

(13)

where

𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) = max{𝑟
𝜋
[𝑖]
(1)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+

𝑛𝑖

∑

𝑟=2

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , . . . , 𝑟
𝜋
[𝑖]
(𝑛𝑖)

+ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

𝑔
[𝑖]

(𝑛
𝑖
)} ,

𝐵 (𝑖) ∈ {1, 2, . . . , 𝑛
𝑖
} , 𝑖 = 1, 2, . . . , 𝑘.

(14)

Theorem 2. For the problem 1 | 𝑟
𝑗
, 𝑝
[𝑖]

𝑗
(𝑟) = 𝑝

𝑗
𝑔
[𝑖]

(𝑟),
𝑠
𝑖
= 𝑎
𝑖
𝐹
𝑖−1

, 𝐺𝑇 | 𝐶max, where 𝑔
[𝑖]

(𝑟) satisfies formula (3), and
𝑝
𝜋
[𝑖]
(𝑟)

, 𝑟
𝜋
[𝑖]
(𝑟)

satisfy formula (4). An optimal schedule can be
obtained by the conditions as follows.

If (1) jobs in each group are scheduled in nondecreasing
order of 𝑟

𝜋
[𝑖]
(𝑗)
, that is,

𝑟
𝜋
[𝑖]
(1)

≤ 𝑟
𝜋
[𝑖]
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑟
𝜋
[𝑖]
(𝑛𝑖)

, 𝑖 = 1, 2, . . . , 𝑘, (15)

and if (2) the groups are arranged in nondecreasing order of

𝑟
𝜋
[𝑖]
(𝐵(𝑖))

− ∑
𝐵(𝑖)−1

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

1 + 𝑎
𝑖

,

∑
𝑛𝑖

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

𝑎
𝑖

,

(16)
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where

𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) = max{𝑟
𝜋
[𝑖]
(1)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+

𝑛𝑖

∑

𝑟=2

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) . . . , 𝑟
𝜋
[𝑖]
(𝑛𝑖)

+ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

𝑔
[𝑖]

(𝑛
𝑖
)} ,

(17)

where 𝐵(𝑖) ∈ {1, 2, . . . , 𝑛
𝑖
}, 𝑖 = 1, 2, . . . , 𝑘.

Proof. In the same group, the result of (1) can be easily
obtained by Lemma 1. Next, we consider the case in item (2).

Let 𝜋 and 𝜋
 be a pairwise interchange of two adjacent

groups 𝐺
𝑖
and 𝐺

𝑗
, that is, 𝜋 = [𝑆

1
, 𝐺
𝑖
, 𝐺
𝑗
, 𝑆
2
] and 𝜋


=

[𝑆
1
, 𝐺
𝑗
, 𝐺
𝑖
, 𝑆
2
], where 𝑆

1
and 𝑆
2
are partial sequences. Further,

we assume that 𝐵 denotes the completion time of the last
job in 𝑆

1
. To show 𝜋 dominates 𝜋

, it suffices to show that
𝐶
𝜋
[𝑗]
(𝑛𝑗)

(𝜋) ≤ 𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋

). Under 𝜋, using (13), we obtain that

the completion time of group 𝐺
𝑖
is

𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋) = max{(1 + 𝑎
𝑖
) 𝐵

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)} ,

(18)

and the completion time of the group 𝐺
𝑗
is

𝐶
𝜋
[𝑗]
(𝑛𝑗)

(𝜋) = max
{

{

{

(1 + 𝑎
𝑗
) 𝐶
𝜋
[𝑗]
(𝑛𝑖)

(𝜋) +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)
}

}

}

= max
{

{

{

(1 + 𝑎
𝑗
) (1 + 𝑎

𝑖
) 𝐵

+ (1 + 𝑎
𝑗
)

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , (1 + 𝑎
𝑗
) [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)] +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝑗(𝑟)

𝑔
[𝑗]

(𝑟)
}

}

}

= max
{

{

{

max{(1 + 𝑎
𝑗
) (1 + 𝑎

𝑖
) 𝐵, (1 + 𝑎

𝑗
) [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)]}

+ (1 + 𝑎
𝑗
)

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝑗(𝑟)

𝑔
[𝑗]

(𝑟)
}

}

}

.

(19)

Under 𝜋
, the completion time of the group 𝐺

𝑗
is

𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋) = max{(1 + 𝑎
𝑖
) 𝐵

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)} ,

(20)

and the completion time of the group 𝐺
𝑖
is

𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋

) = max{(1 + 𝑎

𝑖
) 𝐶
𝑗𝑛𝑗

(𝜋

) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)} = max
{

{

{

(1 + 𝑎
𝑖
) (1 + 𝑎

𝑗
) 𝐵

+ (1 + 𝑎
𝑖
)

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , (1 + 𝑎
𝑖
) [

[

𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)]

]

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)
}

}

}

= max{max{(1 + 𝑎
𝑖
) (1 + 𝑎

𝑗
) 𝐵, (1 + 𝑎

𝑖
) [𝑟
𝜋
[𝑗]
(𝐵(𝑗))

−

𝐵(𝑗)−1

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)]}

+ (1 + 𝑎
𝑖
)

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)} .

(21)
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Suppose that

𝑟
𝜋
[𝑖]
(𝐵(𝑖))

− ∑
𝐵(𝑖)−1

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

1 + 𝑎
𝑖

≤
𝑟
𝑗𝐵(𝑗)

− ∑
𝐵(𝑗)−1

𝑟=1
𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)

1 + 𝑎
𝑗

,

∑
𝑛𝑖

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

𝑎
𝑖

≤
∑
𝑛𝑗

𝑟=1
𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)

𝑎
𝑗

;

(22)

that is

(1 + 𝑎
𝑗
) [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)]

≤ (1 + 𝑎
𝑖
) [𝑟
𝜋
[𝑗]
(𝐵(𝑗))

−

𝐵(𝑗)−1

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)] ,

𝑎
𝑗

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) ≤ 𝑎
𝑖

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) .

(23)

Based on (19) and (21), we have

𝐶
𝑖𝑛𝑖

(𝜋

) − 𝐶
𝑗𝑛𝑗

(𝜋) = max{max{(1 + 𝑎
𝑖
) (1 + 𝑎

𝑗
) 𝐵, (1 + 𝑎

𝑖
) [𝑟
𝜋
[𝑗]
(𝐵(𝑗))

−

𝐵(𝑗)−1

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)]}

+ (1 + 𝑎
𝑖
)

𝑛𝑗

∑

𝑟=1

𝑝
𝑗(𝑟)

𝑔
[𝑗]

(𝑟) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)}

− max
{

{

{

max{(1 + 𝑎
𝑖
) (1 + 𝑎

𝑗
) 𝐵, (1 + 𝑎

𝑗
) [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)]} + (1 + 𝑎
𝑗
)

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

+

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)
}

}

}

≥ max{max{(1 + 𝑎
𝑖
) (1 + 𝑎

𝑗
) 𝐵, (1 + 𝑎

𝑗
) [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)]} + (1 + 𝑎
𝑗
)

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

+

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)}

− max
{

{

{

max{(1 + 𝑎
𝑖
) (1 + 𝑎

𝑗
) 𝐵, (1 + 𝑎

𝑗
) [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)]} + (1 + 𝑎
𝑗
)

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

+

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)
}

}

}

= 0.

(24)

Therefore 𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋

) ≥ 𝐶
𝜋
[𝑗]
(𝑛𝑗)

(𝜋); this completes the proof.

4. A Reduced Model

In this section, we explore a single machine model, which
can be expressed as a special case of the general problem
1 | 𝑟
𝑗
, 𝑝[𝑖]
𝑗

(𝑟) = 𝑝
𝑗
𝑔
[𝑖]

(𝑟), 𝑠
𝑖
= 𝑎
𝑖
𝐹
𝑖−1

, GT | 𝐶max; that is, the
actual setup time 𝑠

𝑖
of group𝐺

𝑖
is a constant 𝑡 (>0).Themain

purpose of this section is to give a streamlined conclusion
and algorithm. Assume that 𝐵 denotes the completion time

of the (𝑖 − 1)th group and 𝑟
𝜋
[𝑖]
(1)

≤ 𝑟
𝜋
[𝑖]
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑟
𝜋
[𝑖]
(𝑛𝑖)

is
satisfied in the group 𝐺

𝑖
. Then we have

𝐶
𝜋
[𝑖]
(𝑛𝑖)

= max{𝐵 + 𝑡 +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(1)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+

𝑛𝑖

∑

𝑟=2

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , . . . , 𝑟
𝜋
[𝑖]
(𝑛𝑖)

+ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

𝑔
[𝑖]

(𝑛
𝑖
)}
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= max{𝐵 + 𝑡 +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)} ,

(25)

where

𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) = max{𝑟
𝜋
[𝑖]
(1)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+

𝑛𝑖

∑

𝑟=2

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , . . . , 𝑟
𝜋
[𝑖]
(𝑛𝑖)

+ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

𝑔
[𝑖]

(𝑛
𝑖
)} ,

(26)

and 𝐵(𝑖) ∈ {1, 2, . . . , 𝑛
𝑖
}, 𝑖 = 1, 2, . . . , 𝑘. Then 𝐶

𝜋
[𝑖]
(𝑛𝑖)

can be
written as

𝐶
𝜋
[𝑖]
(𝑛𝑖)

= max{𝐵 + 𝑡, 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)}

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) .

(27)

Theorem 3. For the problem 1 | 𝑟
𝑗
, 𝑝[𝑖]
𝑗

(𝑟) = 𝑝
𝑗
𝑔
[𝑖]

(𝑟), 𝑠
𝑖
= 𝑡,

𝐺𝑇 | 𝐶max the 𝑔
[𝑖]

(𝑟) satisfies formula (3), and 𝑝
𝜋
[𝑖]
(𝑟)

, 𝑟
𝜋
[𝑖]
(𝑟)

satisfy formula (4); the optimal schedule satisfies the following.

(1) Jobs in each group are scheduled in nondecreasing order
of 𝑟
𝑗
; that is,

𝑟
𝜋
[𝑖]
(1)

≤ 𝑟
𝜋
[𝑖]
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑟
𝜋
[𝑖]
(𝑛𝑖)

, 𝑖 = 1, 2, . . . , 𝑘. (28)

(2) The groups are arranged in nondecreasing order of
𝑟
𝑖𝐵(𝑖)

− ∑
𝐵(𝑖)−1

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟), where

𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) = max{𝑟
𝜋
[𝑖]
(1)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+

𝑛𝑖

∑

𝑟=2

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , . . . , 𝑟
𝜋
[𝑖]
(𝑛𝑖)

+ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

𝑔
[𝑖]

(𝑛
𝑖
)} ,

(29)

where 𝐵(𝑖) ∈ {1, 2, . . . , 𝑛
𝑖
}, 𝑖 = 1, 2, . . . , 𝑘.

Proof. Similar to Theorem 2, using the two exchange meth-
ods, under 𝜋, based on (27), we can obtain the completion
time of 𝐺

𝑖

𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋)

= max{𝐵 + 𝑡, 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)}

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) ,

(30)

and the completion time of 𝐺
𝑗

𝐶
𝜋
[𝑖]
(𝑛𝑗)

(𝜋) = max{𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋) + 𝑡, 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

−

𝐵(𝑗)−1

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)} +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) = max
{

{

{

𝐵

+ 2𝑡 +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+ 𝑡 +

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)

+

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)
}

}

}

.

(31)

Under 𝜋
, the completion times of 𝐺

𝑗
and 𝐺

𝑖
are

𝐶
𝜋
[𝑗]
(𝑛𝑗)

(𝜋

) = max{𝐵 + 𝑡, 𝑟

𝜋
[𝑗]
(𝐵(𝑗))

−

𝐵(𝑗)−1

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)} +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) ,

𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋

) = max{𝐶

𝜋
[𝑗]
(𝑛𝑗)

(𝜋

) + 𝑡, 𝑟

𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)} +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) = max
{

{

{

𝐵

+ 2𝑡 +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+ 𝑡

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)
}

}

}

.

(32)
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Supposing that 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

− ∑
𝐵(𝑖)−1

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) ≤ 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

−

∑
𝐵(𝑗)−1

𝑟=1
𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟), based on (31) and (32), we have

𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋

) − 𝐶
𝜋
[𝑗]
(𝑛𝑗)

(𝜋) = max
{

{

{

𝐵 + 2𝑡

+

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝑗𝐵(𝑗)

+ 𝑡

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)
}

}

}

− max
{

{

{

𝐵 + 2𝑡

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+ 𝑡

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝑖(𝑟)

𝑔
[𝑖]

(𝑟) +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) , 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)
}

}

}

= 𝑟
𝜋
[𝑗]
(𝐵(𝑗))

+ 𝑡

+

𝑛𝑗

∑

𝑟=𝐵(𝑗)

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟) +

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) − [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+ 𝑡 +

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) +

𝑛𝑗

∑

𝑟=1

𝑝
𝜋
[𝑗]
(𝑟)

𝑔
[𝑗]

(𝑟)]

= [𝑟
𝜋
[𝑗]
(𝐵(𝑗))

−

𝐵(𝑗)−1

∑

𝑟=1

𝑝
𝑗(𝑟)

𝑔
[𝑗]

(𝑟)] − [𝑟
𝜋
[𝑖]
(𝐵(𝑖))

−

𝐵(𝑖)−1

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟)] ≥ 0.

(33)

Therefore 𝐶
𝜋
[𝑖]
(𝑛𝑖)

(𝜋

) ≥ 𝐶
𝜋
[𝑗]
(𝑛𝑗)

(𝜋); this completes the proof.

For the problem 1 | 𝑟
𝑗
, 𝑝
[𝑖]

𝑗
(𝑟) = 𝑝

𝑗
𝑔
[𝑖]

(𝑟), 𝑠
𝑖

= 𝑡,
GT | 𝐶max, we provide an algorithm based on the result of
Theorem 3 as follows.

Algorithm 4.

Step 1. Jobs in each group are scheduled in nondecreasing
order of 𝑟

𝑖𝑟
; that is,

𝑟
𝜋
[𝑖]
(1)

≤ 𝑟
𝜋
[𝑖]
(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑟
𝜋
[𝑖]
(𝑛𝑖)

, 𝑖 = 1, 2, . . . , 𝑘. (34)

Step 2. Let

𝑟
𝜋
[𝑖]
(𝐵(𝑖))

+

𝑛𝑖

∑

𝑟=𝐵(𝑖)

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) = max{𝑟
𝜋
[𝑖]
(1)

+

𝑛𝑖

∑

𝑟=1

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , 𝑟
𝜋
[𝑖]
(2)

+

𝑛𝑖

∑

𝑟=2

𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟) , . . . , 𝑟
𝜋
[𝑖]
(𝑛𝑖)

+ 𝑝
𝜋
[𝑖]
(𝑛𝑖)

𝑔
[𝑖]

(𝑛
𝑖
)} ,

(35)

where 𝐵(𝑖) ∈ {1, 2, . . . , 𝑛
𝑖
}, 𝑖 = 1, 2, . . . , 𝑘.

Calculate 𝐵(𝑖) and 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

− ∑
𝐵(𝑖)−1

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟), 𝑖 =

1, 2, . . . , 𝑘.

Step 3. Groups are scheduled in nondecreasing order of
𝜌(𝐺
𝑖
) = 𝑟
𝜋
[𝑖]
(𝐵(𝑖))

− ∑
𝐵(𝑖)−1

𝑟=1
𝑝
𝜋
[𝑖]
(𝑟)

𝑔
[𝑖]

(𝑟).
Obviously, the complexity of obtaining the optimal job

sequence within a certain group 𝐺
𝑖
is 𝑂(𝑛

𝑖
log 𝑛
𝑖
) and that

of obtaining the optimal group sequence is 𝑂(𝑘 log 𝑘). It is
easy to show that ∑

𝑘

𝑖=1
𝑂(𝑛
𝑖
log 𝑛
𝑖
) ≤ 𝑂(𝑛 log 𝑛). Hence, the

complexity of Algorithm 4 is at most 𝑂(𝑛 log 𝑛). In addition,
we demonstrate Algorithm 4 by the following example.

Example 5. There are eight jobs (𝑛 = 8) divided into three
groups (𝑘 = 3) to be processed on a single machine.

Let 𝑠
𝑖

= 3, and 𝐺
1

= {𝐽
𝜋
[1]
(1)

, 𝐽
𝜋
[1]
(2)

}, 𝑝
𝜋
[1]
(1)

= 10,
𝑝
𝜋
[1]
(2)

= 8, 𝑔[1](1) = 1, 𝑔[1](2) = 1.2, 𝑟
𝜋
[1]
(1)

= 3, 𝑟
𝜋
[1]
(2)

=

7; 𝐺
2

= {𝐽
𝜋
[2]
(1)

, 𝐽
𝜋
[2]
(2)

, 𝐽
𝜋
[2]
(3)

}, 𝑝
𝜋
[2]
(1)

= 9, 𝑝
𝜋
[2]
(2)

= 10,
𝑝
𝜋
[2]
(3)

= 7, 𝑔[2](1) = 1.1, 𝑔[2](2) = 1.3, 𝑔[2](3) = 1.5, 𝑟
𝜋[2](1)

=

9, 𝑟
𝜋[2](2)

= 2, 𝑟
𝜋[2](3)

= 12; 𝐺
3

= {𝐽
𝜋
[3]
(1)

, 𝐽
𝜋
[3]
(2)

, 𝐽
𝜋
[3]
(3)

},
𝑝
𝜋
[3]
(1)

= 8, 𝑝
𝜋
[3]
(2)

= 5, 𝑝
𝜋
[3]
(3)

= 10, 𝑔[3](1) = 1, 𝑔[3](2) = 1.3,
𝑔
[3]

(3) = 1.3, 𝑔
[3]

(3) = 1.4, 𝑟
𝜋
[3]
(1)

= 14, 𝑟
𝜋
[3]
(2)

= 15,
𝑟
𝜋
[3]
(3)

= 3.

Solution. According to Algorithm 4, we solve Example 5 as
follows.

Step 1. The optimal job sequence in 𝐺
1
, 𝐺
2
, 𝐺
3
is

𝐺
1
: 𝐽
𝜋[1](1)

→ 𝐽
𝜋
[1]
(2)

;

𝐺
2
: 𝐽
𝜋
[2]
(2)

→ 𝐽
𝜋
[2]
(1)

→ 𝐽
𝜋
[2]
(3)

;

𝐺
3
: 𝐽
𝜋
[3]
(3)

→ 𝐽
𝜋[3](1)

→ 𝐽
𝜋
[3]
(2)

.

(36)

Step 2. Calculating 𝐵(𝑖) and 𝜌(𝐺
𝑖
), we compute the following

values for each group:

𝐺
1
: 𝑟
𝜋
[1]
(𝐵(1))

+

2

∑

𝑟=𝐵(1)

𝑝
𝜋
[1]
(𝑟)

𝑔
[1]

(𝑟) = max{𝑟
𝜋
[1]
(1)

+

2

∑

𝑟=1

𝑝
𝜋
[1]
(𝑟)

𝑔
[1]

(𝑟) , 𝑟
𝜋
[1]
(2)

+ 𝑝
𝜋
[1]
(2)

𝑔
[1]

(2)}

= max {3 + 19.6, 7 + 9.6} = 22.6;

(37)



8 Mathematical Problems in Engineering

𝐵(1) = 1, that is, the jobs from the first to continuous
processing in group 𝐺

1
, 𝜌(𝐺
1
) = 𝑟
𝜋
[1]
((1)

= 3:

𝐺
2
: 𝑟
𝜋
[2]
(𝐵(2))

+

3

∑

𝑟=𝐵(2)

𝑝
𝜋
[2]
(𝑟)

𝑔
[2]

(𝑟) = max{𝑟
𝜋
[2]
(1)

+

3

∑

𝑟=1

𝑝
𝜋
[2]
(𝑟)

𝑔
[2]

(𝑟) , 𝑟
𝜋
[2]
(2)

+

3

∑

𝑟=2

𝑝
𝜋
[2]
(𝑟)

𝑔
[2]

(𝑟) , 𝑟
𝜋
[2]
(3)

+ 𝑝
𝜋
[2]
(3)

𝑔
[2]

(3)}

= max {2 + 33.2, 9 + 22.2, 12 + 10.5} = 35.2;

(38)

𝐵(2) = 1, that is, the jobs from the first to continuous
processing in group 𝐺

2
, 𝜌(𝐺
2
) = 𝑟
𝜋
[2]
(1)

= 2:

𝐺
3
: 𝑟
𝜋
[3]
(𝐵(3))

+

3

∑

𝑟=𝐵(3)

𝑝
𝜋
[3]
(𝑟)

𝑔
[3]

(𝑟) = max{𝑟
𝜋
[3]
(1)

+

3

∑

𝑟=1

𝑝
𝜋
[3]
(𝑟)

𝑔
[3]

(𝑟) , 𝑟
𝜋
[3]
(2)

+

3

∑

𝑟=2

𝑝
𝜋
[3]
(𝑟)

𝑔
[3]

(𝑟) , 𝑟
𝜋
[3]
(3)

+ 𝑝
𝜋
[3]
(3)

𝑔
[3]

(3)}

= max {3 + 27.4, 14 + 17.4, 15 + 7} = 31.4;

(39)

𝐵(3) = 2, that is, the jobs from the second to continuous
processing in group 𝐺

3
, 𝜌(𝐺
2
) = 𝑟
𝜋
[3]
(2)

− 𝑝
𝜋
[3]
(1)

𝑔
[3]

(1) = 4.

Step 3. Since 𝜌(𝐺
2
) < 𝜌(𝐺

1
) < 𝜌(𝐺

3
), hence, the optimal

group sequence is 𝐺
2

→ 𝐺
1

→ 𝐺
3
.

Therefore, the optimal schedule is [𝐽
𝜋
[2]
(2)

→ 𝐽
𝜋
[2]
(1)

→

𝐽
𝜋
[2]
(3)

] → [𝐽
𝜋
[1]
(1)

→ 𝐽
𝜋
[1]
(2)

] → [𝐽
𝜋
[3]
(3)

→ 𝐽
𝜋
[3]
(1)

→

𝐽
𝜋
[3]
(2)

], and the optimal value of the makespan is 90.2.

5. Conclusion

In this paperwe have considered the scheduling problemwith
group technology and position dependent processing times,
for the case that group setup times are linearly related to the
completion time of the former group and the job processing
times are the general nondecreasing function of the positional
factors.We showed that themakespanminimization problem
with ready times can be solved under certain conditions.
A reduced model can be considered as special case of our
general model. Furhermore, we present an 𝑂(𝑛 log 𝑛) time
algorithm to solve the proposed problem.
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