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Abstract

This paper deals with the machine scheduling problems with the effects of deterioration and
learning. In this model, the processing times of the jobs are defined as functions of their starting
times and positions in a sequence. We introduce polynomial solutions for some single machine
problems and flow shop problems. The performance measures include makespan, total completion
time, total weighted completion time, and maximum lateness.
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1 Introduction

In the classical scheduling theory, the job processing times are considered to be constant. In

practice, however, we often encounter settings in which the job processing times may be subject

to change due to the phenomenon of learning or deterioration (Pinedo [28]). For example, when

the processing times arise from manual operations, the possibility of learning exists. Biskup

[7] indicated that the learning effect has been observed in numerous practical situations in

different sectors of industry and for a variety of corporate activities. On the other hand, it

has been noticed that jobs may deteriorate as they wait to be processed. Kunnathur and

Gupta [16] and Mosheiov [20] presented several real-life situations where deteriorating jobs

might occur. Lee [17] first considered the effects of deterioration and learning simultaneous. The

phenomena of learning effect and deteriorating jobs occurring simultaneously can be found in

many real-life situations. For example, as the manufacturing environment becomes increasingly

competitive, in order to provide customers with greater product variety, organizations are moving

towards shorter production runs and frequent product changes. The learning and forgetting that

workers undergo in this environment have thus become increasingly important as workers tend to

spend more time in rotating among tasks and responsibilities prior to becoming fully proficient.
1 Corresponding author. E-mail addresses: wangjibo75@yahoo.com.cn; lgtcheng@polyu.edu.hk
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These workers are often interrupted by product and process changes causing deterioration in

performance, which we will refer to, for simplicity, as forgetting. Considering learning and

forgetting effects in measuring productivity should be helpful in improving the accuracy of

production planning and productivity estimation (Nembhard and Osothsilp [26]). In this paper

we investigate the implications of these phenomena occurring simultaneously for single machine

and flow shop scheduling problems.

Analysis of scheduling problems in which the processing time of a job is an increasing function

of its starting time was introduced by Browne and Yechiali [8]. Mosheiov [18] considered the flow

time minimization problem under the assumption that basic processing times remain the same

in the linear deterioration model. The motivation for analyzing identical basic processing times

arises not only from its intrinsic interest, but it also serves as a good approximation to the general

case. Later, Mosheiov [19] further simplified the model to a simple linear deterioration model

in which the jobs have a fixed job-dependent growth rate but no basic processing times. This

follows from the fact that as the number of jobs increases, the starting times of many jobs are

postponed and their basic processing times become irrelevant. Sundararaghavan and Kunnathur

[29] considered the single machine scheduling problem in which the processing time is a binary

function of a common start time due date. The jobs have processing time penalties for starting

after the due date, and the objective was to minimize the sum of the weighted completion times.

Three special cases of this problem can be solved optimally. Bachman and Janiak [3] showed

that the maximum lateness minimization problem under the linear deterioration assumption

is NP-hard, and two heuristic algorithms are presented as a consequence. Bachman et al. [5]

considered the problem of minimizing the total weighted completion time introduced by Browne

and Yechiali [8]. They proved that the problem is NP-hard.

Chen [9] and Mosheiov [21] considered scheduling deteriorating jobs in a multi-machine

setting. They assumed linear deterioration and parallel identical machines. Chen considered the

minimum flow time and Mosheiov studied makespan minimization. Mosheiov [22] considered the

complexity of flow shop, open shop and job shop makespan minimization problems. Mosheiov

introduced a polynomial-time algorithm for the two-machine flow shop and proved its NP-

hardness when an arbitrary number of machines (three or more) are assumed. Wang and Xia [34]

considered no-wait or no-idle flow shop scheduling problems with job processing times dependent

on their starting times. In these problems the job processing time is a simple linear function

of a job’s starting time and some dominating relationships between machines can be satisfied.

They showed that for the problems to minimize makespan or weighted sum of completion times,

polynomial algorithms still exist. When the objective is to minimize maximum lateness, the

solutions of a classical version may not hold. Other types of deterioration have also been

discussed. For instance, Kunnathur and Gupta [16], and Mosheiov [20] considered piecewise
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linear deteriorating functions.

Apart from the increasing linear model for the job processing times, there is also a decreas-

ing linear model, which essentially presents the learning effect from modelling aspect. This

model was introduced by Ho et al. [15]. Ho et al. [15] considered the problem of solution

feasibility with deadline restrictions. Cheng and Ding [10] considered some problems with an

increasing/decreasing linear model of the job processing times, but with ready time and dead-

line restrictions. They identified some interesting relationships between the linear models with

decreasing and increasing start time dependent parts. Ng et al. [27] considered three schedul-

ing problems with a decreasing linear model of the job processing times, where the objective

function was to minimize the total completion time, and two of the problems are solved opti-

mally. A pseudopolynomial time algorithm was constructed to solve the third problem using

dynamic programming. Some interesting relationships between the linear model with decreasing

and increasing start time dependent parts have also been presented by Ng et al. [27]. Bach-

man et al. [2] considered the single machine scheduling problem with start time dependent job

processing times. They proved that the problem of minimizing the total weighted completion

time is NP-hard. They also considered some special cases. Wang and Xia [32] considered the

scheduling problems under a special type of linear decreasing deterioration. They presented op-

timal algorithms for single machine scheduling of minimizing the makespan, maximum lateness,

maximum cost and number of late jobs, respectively. For the two-machine flow shop scheduling

problem to minimize the makespan, they proved that the optimal schedule can be obtained by

Johnson’s rule. If the processing times of the operations are equal for each job, they proved that

the flow shop scheduling problems can be transformed into single machine scheduling problems.

Extensive reviews of research on scheduling deteriorating jobs have been provided by Alidaee

and Womer [1] and Cheng et al. [11].

Biskup [7] and Cheng and Wang [12] were among the pioneers that brought the concept

of learning into the field of scheduling, although it has been widely employed in management

science since its discovery by Wright [35]. Biskup [7] proved that single-machine scheduling with

a learning effect remains polynomial solvable if the objective is to minimize the deviation from

a common due date or to minimize the sum of flow time. Cheng and Wang [12] considered a

single machine scheduling problem in which the job processing times will decrease as a result

of learning. A volume-dependent piecewise linear processing time function was used to model

the learning effects. The objective was to minimize the maximum lateness. They showed

that the problem is NP-hard in the strong sense and then identified two special cases which

are polynomially solvable. They also proposed two heuristics and analysed their worst-case

performance. Mosheiov [23, 24] investigated several other single-machine problems, and the

problem of minimizing the total flow time on identical parallel machines. Mosheiov and Sidney
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[25] considered the case of a job-dependent learning curve, where the learning in the production

process of some jobs is faster than that of others. Wang and Xia [33] considered flow shop

scheduling problems with a learning effect. The objective was to minimize one of two regular

performance criteria, namely makespan and total flow time. They gave a heuristic algorithm

with a worst-case error bound of m for each criterion, where m is the number of machines.

They also found polynomial time solutions to two special cases of the problems, i.e., identical

processing times on each machine and an increasing series of dominating machines. A survey

on this line of the scheduling research could be found in Bachman and Janiak [4].

In this paper we study scheduling problems with the effects of deterioration and learning.

The remaining part of this paper is organized as follows. In section 2 we consider single machine

scheduling problems. We show that for some special cases, the solutions of the classical versions

also hold for the versions with the effects of deterioration and learning. In section 3 we consider

flow shop scheduling problems and show that for some special cases the problems can be solved.

The last section is the conclusion.

2 Single machine problems

The focus of this paper is to study the effects of deterioration and learning simultaneously.

The learning effect model provided by Biskup [7] is combined with the linear deterioration model

in which the basic job processing time is proportional to the deteriorating rate to yield our model.

The model is described as follows.

The single machine problem is to schedule n jobs J1, J2, ..., Jn on one machine. All the jobs

are available for processing at some time t0 ≥ 0. The machine can handle one job at a time and

preemption is not allowed. Associated with each job Jj(j = 1, 2, ..., n) is a weight wj and a due

date dj . Let pj,r(t) be the processing time of job Jj if it is started at time t and scheduled in

position r in a sequence. The general model is

pj,r(t) = (pj + αjt)ra,

where pj is the basic processing time of the job Jj , i.e., the processing time of a job if it is

scheduled first in a sequence and its starting time is 0, i.e., t=0 and r=1, αj is its deterioration

rate and a ≤ 0 is its learning index. Lee [17] considered the models where the processing times

are pj,r(t) = αjtr
a and pj,r(t) = (p0 + αjt)ra, where αj is the deterioration rate of job Jj , p0

is the common basic processing time and a ≤ 0 is the learning index, given as the (base 2)

logarithm of the learning rate [6]. In this paper we consider a new model where pj = bαj and

pj,r = αj(b + t)ra. In fact, we consider the following general model

pj,r(t) = αj(b + ct)ra. (1)
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Obviously, when b = 0, c = 1, model (1) is the model Lee [17], when b = 1, c = 0, model (1) is

the model of Biskup [7] and Mosheiov [23].

For a given schedule π = [J1, J2, . . . , Jn], Cj = Cj(π) represents the completion time of job

Jj and f(C) = f(C1, C2, . . . , Cn) is a regular measure of performance. Let Cmax = max{Cj |j =

1, 2, . . . , n}, ∑
Cj ,

∑
wjCj and Lmax = max{Cj − dj |j = 1, 2, . . . , n} represents the makespan,

sum of completion times, weighted sum of completion times and maximum lateness of a given

permutation, respectively. In the remaining part of the paper, all the problems considered will

be denoted using the three-field notation schema α|β|γ introduced by Graham et al. [13].

In this section we examine several well-known classical single-machine scheduling problems

under the assumption that the actual processing time has the form of the model (1).

Lemma 1 For a given scheduling π = [J1, J2, . . . , Jn] of 1|αj(b + ct)ra|f(C), if job Jj starts at

time t0 ≥ 0, then its completion time Cj is equal to

Cj = (t0 +
b

c
)

j∏

i=1

(1 + cαii
a)− b

c
. (2)

Proof: (by induction).

C1 = t0 + α1(b + ct0)1a = (t0 +
b

c
)(1 + cα11a)− b

c
,

C2 = C1 + α2(b + cC1)2a = (t0 +
b

c
)(1 + cα11a)(1 + cα22a)− b

c
.

Suppose Lemma 1 holds for job Jj , i.e.,

Cj = (t0 +
b

c
)

j∏

i=1

(1 + cαii
a)− b

c
.

Consider job Jj+1.

Cj+1 = Cj + αj+1(b + cCj)(j + 1)a = (t0 +
b

c
)

j+1∏

i=1

(1 + cαii
a)− b

c
.

Hence, Lemma 1 holds for Jj+1. This completes the proof of Lemma 1. 2

Theorem 1 For the problem 1|αj(b + ct)ra|Cmax, an optimal schedule can be obtained by se-

quencing the jobs in non-decreasing order of αj (i.e., the smallest deterioration rate (SDR)

rule).

Proof: Suppose αi ≤ αj . Let π and π′ be two job schedules where the difference between π and

π′ is the pairwise interchange of two adjacent jobs Ji and Jj , that is, π = [S1, Ji, Jj , S2], π′ =
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[S1, Jj , Ji, S2], where S1 and S2 are partial sequences. Furthermore, we assume that there are

r− 1 jobs in S1. Thus, Ji and Jj are the rth and the (r +1)th jobs, respectively, in π. Likewise,

Jj and Ji are scheduled in the rth and the (r + 1)th positions in π′. To further simplify the

notation, let t denote the completion time of the last job in S1. To show π dominates π′, it

suffices to show that the (r + 1)th jobs in π and π′ satisfy the condition that Cj(π) ≤ Ci(π′).
The actual processing time of Ji in π is pir = αi(b + ct)ra and its completion time is

Ci(π) = (t +
b

c
)(1 + cαir

a)− b

c
.

Thus, the actual processing time for Jj in π is pj,r+1 = αj(b + cCi(π))(r + 1)a and its

completion time is

Cj(π) = Ci(π) + αj(b + cCi(π))(r + 1)a = (t +
b

c
)(1 + cαir

a)(1 + cαj(r + 1)a)− b

c
. (3)

Similarly, it is easy to derive the completion times of Jj and Ji in π′ as

Cj(π′) = (t +
b

c
)(1 + cαjr

a)− b

c

and

Ci(π′) = (t +
b

c
)(1 + cαjr

a)(1 + cαi(r + 1)a)− b

c
. (4)

Based on (3) and (4), we have

Ci(π′)− Cj(π) = (ct + b)(αj − αi)(ra − (r + 1)a) ≥ 0.

Thus, π dominates π′. 2

Theorem 2 For the problem 1|αj(b + ct)ra|∑Cj, an optimal schedule can be obtained by se-

quencing the jobs in non-decreasing order of αj (the SDR rule).

Proof: Similar to the proof of Theorem 1, except that

Ci(π′) + Cjπ
′)− Ci(π)− Cj(π) = (ct + b)(αj − αi)(2ra − (r + 1)a) ≥ 0.

2

For the other three objective functions, minimizing the total weighted completion time,

minimizing maximum lateness, and minimizing the number of tardy jobs, Lee [17] showed that

the O(n log n) solutions of these classical versions do not hold with the effects of deterioration

and learning, hence for the model (1), the classical versions do not hold with the effects of

deterioration and learning. But for some special cases, the problems can be solved in polynomial

time.
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Theorem 3 For the problem 1|αj(b + ct)ra|∑wjCj, if the jobs have agreeable weights, i.e.,

αj ≤ αk implies wj ≥ wk for all the jobs Jj and Jk, an optimal schedule can be obtained by

sequencing the jobs in non-decreasing order of αj/wj (i.e., the weighted smallest deterioration

rate (WSDR) rule).

Proof: (by contradiction). Consider an optimal schedule π that does not follow the WSDR

rule. In this schedule there must be at least two adjacent jobs, say job Ji followed by job Jj ,

such that αi/wi > αj/wj (it implies αi ≥ αj). Assume that job Ji is scheduled in position r

and starts its processing at time t. Perform an adjacent pair-wise interchange of jobs Ji and Jj .

Whereas under the original schedule π, job Ji is scheduled in position r and job Jj is scheduled

in position r+1, under the new schedule job Jj is scheduled in position r and job Ji is scheduled

in position r + 1. All other jobs remain in their original positions. Call the new schedule π′.

The completion times of the jobs processed before jobs Ji and Jj are not affected by the job

interchange. Furthermore, the completion times of the jobs processed after jobs Ji and Jj will

not increase by the interchange (since αi ≥ αj). Under π,

Ci(π) = (t +
b

c
)(1 + cαir

a)− b

c

Cj(π) = (t +
b

c
)(1 + cαir

a)(1 + cαj(r + 1)a)− b

c
.

Whereas under π′, they are

Cj(π′) = (t +
b

c
)(1 + cαjr

a)− b

c

Ci(π′) = (t +
b

c
)(1 + cαjr

a)(1 + cαi(r + 1)a)− b

c
.

So we have

∑
wjCj(π′)−

∑
wjCj(π)

= (ct + b)[(αj − αi)(ra − (r + 1)a)(wi + wj) + (αjwi − αiwj)(r + 1)a

+c(wi − wj)αiαjr
a(r + 1)a].

Since αi ≥ αj , ra ≥ (r+1)a, wj ≥ wi and αi/wi > αj/wj , then
∑

wjCj(π′)−
∑

wjCj(π) < 0.

It follows that the weighted sum of completion times under π′ is strictly less than under π. This

contradicts the optimality of π and proves the theorem. 2

Theorem 4 For the problem 1|αj(b + ct)ra|Lmax, if the jobs have agreeable conditions, i.e.,

αj ≤ αk implies dj ≤ dk for all the jobs Jj and Jk, an optimal schedule can be obtained by

sequencing the jobs in non-decreasing order of dj (i.e., the earliest due date (EDD) rule).
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Proof: Consider an optimal schedule π that does not follow the EDD rule. In this schedule

there must be at least two adjacent jobs, say Ji and Jj , such that di > dj , it implies αi ≥ αj .

Schedule π′ is obtained from schedule π by interchanging jobs in the rth and in the (r + 1)th

positions of π. From the proof of Theorem 3, under π, the lateness of the jobs are

Li(π) = (t +
b

c
)(1 + cαir

a)− b

c
− di,

Lj(π) = (t +
b

c
)(1 + cαir

a)(1 + cαj(r + 1)a)− b

c
− dj ,

whereas under π′, they are

Lj(π′) = (t +
b

c
)(1 + cαjr

a)− b

c
− dj ,

Li(π′) = (t +
b

c
)(1 + cαjr

a)(1 + cαi(r + 1)a)− b

c
− di.

Since di > dj and αi ≥ αj , then

max{Li(π′), Lj(π′)} ≤ max{Li(π), Lj(π)}.

Hence, interchanging the positions of the jobs Jj and Jk will not increase the value of Lmax. A

finite number of such changes transform π into the EDD order, showing that EDD sequence is

optimal. 2

Using the simple job interchange technique, we can prove the following results. The problems

1|αj(b + ct)ra, wj = kαj |
∑

wjCj , 1|αj(b + ct)ra, αj = α|Lmax and 1|αj(b + ct)ra, dj = kαj |Lmax

can be obtained by sequencing the jobs in non-decreasing order of αj , dj and dj . An optimal

solution for the problem 1|αj(b + ct)ra, αj = α|∑wjCj can be obtained by sequencing the jobs

in non-increasing order of wj .

3 Flow Shop Problems

The flow shop scheduling problem is to schedule n jobs J1, J2, . . . , Jn on m machines

M1,M2, . . . , Mm. Job Jj consists of m operations (O1j , O2j , . . . , Omj). Operation Oij has to

be processed on machine Mi, i = 1, 2, . . . , m. The processing of operation Oi+1,j may start only

after Oij has been completed. A machine can handle one job at a time and preemption is not

allowed. All the jobs are available for processing at some time t0 ≥ 0. We also restrict ourselves

to permutation schedules only. Let pi,j,r(t) be the processing time of job Jj on machine Mi if it
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is started at time t and scheduled in position r in a sequence. As in Section 2, we consider the

following model,

pi,j,r(t) = αij(b + ct)ra. (5)

For a given schedule π, Cij = Cij(π) represents the completion time of operation Oij , and

Cj = Cmj represents the completion time of job Jj .

We first consider the special case of the two-machine flow shop problem where all the jobs

have equal deterioration rates on machine M2, i.e., α21 = α22 = . . . = α2n = α2.

Theorem 5 For the problem F2|αij(b + ct)ra, α2j = α2|
∑

Cj , an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order of α1j.

Proof: Without loss of generality, let π = [J1, J2, . . . , Jn] be the schedule in which the jobs are

processed in non-decreasing order of α1j . Consider an arbitrary schedule π′ = [J[1], J[2], . . . , J[n]].

We prove the theorem by showing that Cj ≤ C[j] for j = 1, 2, . . . , n.

The proof is by induction.

For j = 1, we have C1 = (t0+ b
c)(1+cα11)(1+cα2)− b

c ≤ (t0+ b
c)(1+cα1[1])(1+cα2)− b

c = C[1].

Suppose that Cj ≤ C[j] for j = 1, 2, . . . , k, we have

Ck+1 = (max{Ck, (t0 +
b

c
)

k+1∏

i=1

(1 + cα1ii
a)− b

c
}+

b

c
)(1 + cα2(k + 1)a)− b

c
,

C[k+1] = (max{C[k], (t0 +
b

c
)

k+1∏

i=1

(1 + cα1[i]i
a)− b

c
}+

b

c
)(1 + cα2(k + 1)a)− b

c
.

The term (t0 + b
c)

∏k+1
i=1 (1 + cα1ii

a) − b
c is the makespan of the single machine problem with

jobs O11, O12, . . . , O1,k+1 and the term (t0 + b
c)

∏k+1
i=1 (1 + cα1[i]i

a) − b
c is the makespan of the

single machine problem with jobs O1[1], O1[2], . . . , O1,[k+1]. Since α11 ≤ α12 ≤ . . . ≤ α1,k+1, by

Theorem 1, we have

(t0 +
b

c
)

k+1∏

i=1

(1 + cα1ii
a)− b

c
≤ (t0 +

b

c
)

k+1∏

i=1

(1 + cα1[i]i
a)− b

c
.

From (t0 + b
c)

∏k+1
i=1 (1 + cα1ii

a)− b
c ≤ (t0 + b

c)
∏k+1

i=1 (1 + cα1[i]i
a)− b

c and Ck ≤ C[k], we have

Ck+1 ≤ C[k+1]. Hence, the theorem holds for the job Jk+1, and from the induction principle, we

have Cn ≤ C[n]. This completes the proof of the theorem. 2

Theorem 6 For the problem F2|αij(b + ct)ra, α2j = α2|Cmax, an optimal schedule can be ob-

tained by sequencing the jobs in non-decreasing order of α1j
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Proof: This result follows directly from the proof of Theorem 5. 2

Now we consider a special case of the m-machine flow shop: The flow shop problem with

dominant machines. Following Ho and Gupta [14], Xiang et al. [30] and Wang and Xia [31], ma-

chine Mr is dominated by Mk, or Mk dominates Mr iff max{αr,j |j = 1, 2, . . . , n} ≤ min{αk,j |j =

1, 2, . . . , n} (denoted Mk > Mr). Based upon the above concept of machine dominance, the

case considered in the following is that the machines form an increasing series of dominating

machines (idm), i.e.,

M1 < M2 < . . . < Mm.

Theorem 7 For the problem Fm|αij(b + ct)ra, idm|∑Cj and a fixed job in the first position,

an optimal schedule can be obtained by sequencing the remaining (n− 1) jobs in non-decreasing

order of αmj.

Proof: For the schedule π = [J1, J2, . . . , Jn], since M1 < M2 < . . . < Mm, similar to the result

of Wang and Xia [34] (see also Figure 1), we have

C1 = (t0 +
b

c
)

m∏

i=1

(1 + cαi1)− b

c
,

C2 = (t0 +
b

c
)

m∏

i=1

(1 + cαi1)(1 + cαm22a)− b

c
,

. . . , . . .

Cj = (t0 +
b

c
)

m∏

i=1

(1 + cαi1)
j∏

k=2

(1 + cαmkk
a)− b

c
,

. . . , . . .

Cn = (t0 +
b

c
)

m∏

i=1

(1 + cαi1)
n∏

k=2

(1 + cαmkk
a)− b

c
,

∑
Cj = (t0 +

b

c
)

m∏

i=1

(1 + cαi1) + (t0 +
b

c
)

m∏

i=1

(1 + cαi1)




n∑

j=2

j∏

k=2

(1 + cαmkk
a)


− n

b

c
.

The term (t0+ b
c)

∏m
i=1(1+cαi1) is a constant (because job J1 is fixed), and the term

∑n
j=2

∏j
k=2(1+

cαmkk
a can be minimized by sequencing the remaining (n − 1) jobs in non-decreasing order of

αmj (by Theorem 2). Therefore, an optimal schedule for the Fm|αij(b + ct)ra, idm|∑Cj is

obtained by arranging the remaining (n− 1) jobs in non-decreasing order of αmj provided that

the first job is fixed. 2
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J1 J2 J3M1

J1 J2 J3M2

J1 J2 J3M3 -

Figure 1. An Example of Fm|αij(b + ct)ra, idm|f(C), n = 3,m = 3.

Theorem 8 For the problem Fm|αij(b + ct)ra, idm|Cmax and a fixed job in the first position,

an optimal schedule can be obtained by sequencing the remaining (n− 1) jobs in non-decreasing

order of αmj.

Proof: For the schedule π = [J1, J2, . . . , Jn], from the proof of Theorem 7, we have

Cmax = Cn = (t0 +
b

c
)

m∏

i=1

(1 + cαi1)
n∏

k=2

(1 + cαmkk
a)− b

c
.

The term (t0 + b
c)

∏m
i=1(1+αi1) is a constant, and the term

∏n
k=2(1+cαmkk

a) can be minimized

by sequencing the remaining (n− 1) jobs in non-decreasing order of αmj (by Theorem 1). 2

To solve Fm|αij(b + ct)ra, idm|∑Cj and Fm|αij(b + ct)ra, idm|Cmax, each job can be con-

sidered in the first position to generate n schedules. The one with the minimum value of the

performance measure among these n schedules is an optimal schedule.

Now, we consider another special case of the flow shop scheduling problem with identical

deterioration rates on each machine, i.e., αij = αj . For the classical problem Fm|pij = pj |f(C),

where pij is the processing time of operation Oij , the makespan is sequence independent (Pinedo

[28]). Let pl = maxj=1,2,...,n pj , the makespan is

Cmax(π) =
n∑

j=1

pj + (m− 1)pl.

The above solution can be generalized to the problem Fm|αij(b + ct)ra, αij = αj |f(C). We

consider each operation as a job, and the problem Fm|αij(b + ct)ra, αij = αj |f(C) is equivalent

to the single machine problem 1|αj(b + ct)ra|f(C) with n + m − 1 jobs. For the schedule

π = [J1, J2, . . . , Jn], let the job Jl be considered as m jobs (αl = max{α1, α22a, . . . , αnna}).
Hence, the makespan of Fm|αij(b + ct)ra, αij = αj |f(C) is

Cmax = (t0 +
b

c
)(1 + cαl)m−1

n∏

i=1

(1 + cαii
a)− b

c
.

By the results of the single machine problem, we have the following results:
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Theorem 9 For the problem Fm|αij(b + ct)ra, αij = αj |Cmax, an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order of αj (the SDR rule).

Theorem 10 For the problem Fm|αij(b + ct)ra, αij = αj |
∑

Cj, an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order of αj (the SDR rule).

Theorem 11 For the problem Fm|αij(b + ct)ra, αij = αj |
∑

wjCj, if the jobs have agreeable

weights, i.e., αj ≤ αk implies wj ≥ wk for all the jobs Jj and Jk, an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order of αj/wj (the WSDR rule).

Theorem 12 For the problem Fm|αij(b + ct)ra, αij = α|∑wjCj, an optimal schedule can be

obtained by sequencing the jobs in non-increasing order of wj.

Theorem 13 For the problem Fm|αij(b+ct)ra, αij = αj , wj = kαj |
∑

wjCj, an optimal sched-

ule can be obtained by sequencing the jobs in non-decreasing order of αj (the SDR rule).

Theorem 14 For the problem Fm|αij(b + ct)ra, αij = αj |Lmax, if the jobs have agreeable con-

ditions, i.e., αj ≤ αk implies dj ≤ dk for all the jobs Jj and Jk, an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order of dj (the EDD rule).

Theorem 15 For the problem Fm|αij(b + ct)ra, αij = α|Lmax, an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order of dj (the EDD rule).

Theorem 16 For the problem Fm|αij(b + ct)ra, αij = αj , dj = kαj |Lmax, an optimal schedule

can be obtained by sequencing the jobs in non-decreasing order of dj (the EDD rule).

4 Conclusions

Different types of scheduling problems with the effects of deterioration and learning were

studied in this paper. It was shown that for some special cases of the single machine problem and

flow shop problem, they can be solved in polynomial time (see Table 1). However, the complexity

status of the problems of minimizing the total weighted completion time and maximum lateness

is still open (see Table 1). These questions may be a subject for a future research.

As a side result of our analysis, it is easily shown that some bicriterion problems (simul-

taneous optimization) can be solved. (For example, F2|αij(b + ct)ra, α2j = α2|Cmax ∩
∑

Cj ,

Fm|αij(b + ct)ra, idm|Cmax ∩
∑

Cj).

12



Table 1

Problem Complexity

1|αj(b + ct)ra|Cmax O(n log n)

1|αj(b + ct)ra|∑Cj O(n log n)

1|αj(b + ct)ra, αj ≤ αk =⇒ wj ≥ wk|
∑

wjCj O(n log n)

1|αj(b + ct)ra, wj = kαj |
∑

wjCj O(n log n)

1|αj(b + ct)ra, αj = α|∑wjCj O(n log n)

1|αj(b + ct)ra, αj ≤ αk =⇒ dj ≤ dk|Lmax O(n log n)

1|αj(b + ct)ra, dj = kαj |Lmax O(n log n)

1|αj(b + ct)ra, αj = α|Lmax O(n log n)

F2|αij(b + ct)ra, α2j = α2|Cmax O(n log n)

F2|αij(b + ct)ra, α2j = α2|
∑

Cj O(n log n)

Fm|αij(b + ct)ra, idm|Cmax O(n2 log n)

Fm|αij(b + ct)ra, idm|∑Cj O(n2 log n)

Fm|αij(b + ct)ra, αij = αj |Cmax O(n log n)

Fm|αij(b + ct)ra, αij = αj |
∑

Cj O(n log n)

Fm|αij(b + ct)ra, αij = αj , αj ≤ αk =⇒ wj ≥ wk|
∑

wjCj O(n log n)

Fm|αij(b + ct)ra, αij = αj , wj = kαj |
∑

wjCj O(n log n)

Fm|αij(b + ct)ra, αij = αj , αj = α|∑wjCj O(n log n)

Fm|αij(b + ct)ra, αij = αj , αj ≤ αk =⇒ dj ≤ dk|Lmax O(n log n)

Fm|αij(b + ct)ra, αij = αj , dj = kαj |Lmax O(n log n)

Fm|αij(b + ct)ra, αij = αj , αj = α|Lmax O(n log n)

1|αj(b + ct)ra|∑wjCj Open problem

1|αj(b + ct)ra|Lmax Open problem

F2|αij(b + ct)ra|Cmax Open problem

Fm|αij(b + ct)ra, αij = αj , |
∑

wjCj Open problem

Fm|αij(b + ct)ra, αij = αj , |Lmax Open problem
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