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ABSTRACT 

 

 

The degradation of metallic systems under cyclic loading is prone to significant 

uncertainty. This uncertainty in turn affects the reliability in the prediction of residual 

lifetime and the subsequent decision regarding the optimum inspection and maintenance 

schedules.  In particular, the experimental data on the evolution of fatigue-induced cracks 

shows significant scatter stemming from initial flaws, metallurgical heterogeneities, and 

randomness in material properties like yield stress and fracture toughness. The objective 

of this research is to improve the reliability-based optimal inspection planning of metallic 

systems subjected to fatigue, taking into account the associated uncertainty. To that end, 

this research aims to address the two main challenges faced in developing a credible 

reliability-based framework for lifecycle management of fatigue-critical components. The 

first challenge is to construct a stochastic model that can adequately capture the 

nonlinearity and uncertainty observed in the crack growth histories. The second one 

involves presenting a computationally efficient strategy for solving the stochastic 

optimization associated with optimum maintenance scheduling. In order to fulfill these 

objectives, a Polynomial Chaos (PC) representation is constructed of fatigue-induced 

crack growth process using a database from a constant amplitude loading experiment. The 

PC representation relies on expanding the crack growth stochastic process on a set of 

random basis functions whose coefficients are estimated from the experimental database. 

The probabilistic model obtained is then integrated into a reliability framework that 
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minimizes the total expected life-cycle cost of the system subjected to constraints in terms 

of time to inspections, and the maximum probability of failure defined by the limit state 

function. Lastly, an efficient and accurate optimization strategy that uses surrogate models 

is suggested to solve the stochastic optimization problem. The sensitivity of the optimum 

solution to the level of risk is also examined. This research aims to provide a decision 

support tool for informed decision-making under uncertainty in the life-cycle planning of 

systems subjected to fatigue failure.   
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NOMENCLATURE 

 

 

CGR   Crack Growth Rate 

GP Gaussian Process 

LEFM Linear Elastic Fracture Mechanics 

MSE Mean Squared Error 

PC Polynomial Chaos  
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1. INTRODUCTION 

 

1.1. Overview 

Structures as a whole or their individual components degrade over time making them 

susceptible to partial or complete failure. Several phenomenon like corrosion, fatigue, 

creep and ageing may contribute to this time-dependent deterioration of structures.  In 

order to ensure that the structure remains safe and operable during its complete service 

life, it is imperative to schedule inspection and maintenance actions. To this end, the 

lifecycle management of structures can be defined in terms of two models: a degradation 

model and a decision model [1](Figure1). 

 

Figure 1: Integrity Management of Structures 
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The degradation model is used to describe the exact deterioration phenomenon under 

consideration and helps in predicting the future performance of the structure. There is no 

way in which the exact state of the structure in future can be known, thus these models 

depict the performance in a probabilistic way. This could be either achieved by defining 

the process by a stochastic model or by replacing parameters of deterministic models by 

random variables. A decision model then incorporates this deterioration model to arrive at 

an optimum inspection and maintenance schedule.  

Maintenance actions are scheduled several times during the design life of the structure. 

These actions can be broadly classified into two types: preventive actions and 

performance-based or condition-based actions. The intent of preventive maintenance 

actions is to delay the deterioration process and are generally carried out at predefined 

intervals during the lifetime of the structure. On the other hand, performance- based 

maintenance actions are carried out when there is a likelihood of the performance criteria 

of the structure to be violated. These maintenance actions improve the state of the system 

by either bringing it back to its original condition or to a state closer to its original 

condition. Several recent studies are focused on the optimization of these performance- 

based maintenance activities [2] [3] [4] [5] [6] [7] [8]. The decision model facilitates in 

carrying out this optimization. A well-known way of defining the optimum schedule is 

defining it in terms of the lifecycle costs wherein, the decisions regarding maintenance 

activities are made taking into account not only the safety of the structure but also the 

costs. 
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Fatigue- induced cracks are a major cause for the deterioration of metallic components 

subjected to cyclic loading. The crack grows with each applied load cycle leading to a 

reduction in the components structural performance. This research addresses the 

deterioration in metallic components due to fatigue and furthermore, aims to provide a 

decision support tool for making credible decisions regarding their lifecycle management. 

The crack growth process shows significant scatter due to the randomness in material 

properties such as fracture toughness and yield stress, metallurgical inhomogeneity, 

stresses applied and initial crack sizes. In this research, a stochastic model is developed 

that takes into account all these uncertainties and subsequently, integrates it into a 

reliability framework to work out an optimum inspection and repair schedule for the 

component.  An optimal inspection schedule herein corresponds to a schedule with 

minimum total expected lifecycle costs while guaranteeing that the probability of failure 

throughout the lifetime does not exceed a threshold value.  

Optimal planning of maintenance schedules for structures under fatigue has been 

addressed in several previous works. Gomes et al. [9] obtained an optimal maintenance 

schedule for a rectangular plate having a center-cracked tension geometry. The optimum 

maintenance schedule was defined in terms of three design variables: the crack repair size, 

the time to first inspection and the time intervals between the following inspections. The 

optimization problem involved a discontinuous objective function and was solved using a 

multi-start simplex approach. Beaurepaire et al. [10] used reliability- based optimization 

techniques to arrive at an optimum schedule. The authors developed an optimum 

maintenance schedule for a plate with two rivet holes in terms two design variables: the 
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time to the one and only inspection activity considered and the quality of inspection 

method. The crack initiation and the crack propagation phenomenon were modelled using 

cohesive zone elements. The optimization problem was solved used a gradient-based 

technique.  Valdenbenito and Schueller [11] similarly solved the problem of inspection 

planning in context of a reliability-based framework. The optimum maintenance schedule 

again was defined in terms of two design variables: the quality of inspection method and 

the time to the one and only inspection activity considered. Paris- Erdogan law [12] was 

used to model the crack growth phenomenon and the authors solved the optimization 

problem using a gradient-based approach. It was concluded that the optimal solution is a 

compromise between the costs of different actions: inspections, repairs and failures. If the 

happening of these events is minimized individually, then the solution achieved would not 

be optimum. 

Despite the recent advancements made in the field of lifecycle management of fatigue-

critical components, challenges still exist that prevent making more informed decisions 

regarding the same. The credibility of the decisions taken depends on the degradation and 

decision models employed and the efficiency of the optimization strategy. The fatigue 

crack growth process shows significant scatter and very few models exist in literature that 

can capture the fatigue crack growth phenomena accurately. Additionally, the reliability- 

based framework adopted to obtain the optimal inspection plan for components under 

fatigue can be improvised by taking into account different scenarios like multiple 

inspection activities or multiple repair efforts. 
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The above two challenges are well tackled in this research. The stochastic model 

developed herein is constructed directly from field observations and can capture the actual 

random process accurately. The decision model adopted allows for multiple inspection 

events and different repair efforts depending upon the condition of the system, thereby 

ensuring the model represents the actual repair effort taken in the field. Lastly, an efficient 

optimization strategy using Gaussian process regression model is presented to solve the 

stochastic optimization problem associated with the optimal maintenance planning of 

components under fatigue. 

This study has been organized in the following way. In the subsequent section, the 

methodology used for modelling the fatigue crack growth process using a polynomial 

chaos formalism has been described. The reliability- based framework and formulation of 

the stochastic optimization problem has been highlighted in section 3. Section 3 also 

presents an efficient strategy for solving the optimization problem. Finally, in section 4 

the proposed methodology has been implemented on a structural component to develop 

its optimal maintenance schedule.  

1.2. Research Objective 

This research aims to provide a reliability- based decision support tool for making 

informed decisions regarding the lifecycle planning of systems subjected to fatigue-

induced damage while taking into account the associated uncertainties. The proposed 

decision shall be the optimum solution for the inspection and maintenance schedule to be 

adopted that minimizes the total expected life-cycle costs of the system while ensuring 

that the probability of failure is always above a given threshold. The total expected life-
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cycle costs include the initial cost, the costs of inspections, the cost of repairs and the cost 

of failures. 

The three specific objectives of this research can be summarized as follows: 

1. Construction of a stochastic model that can adequately capture the non-linearity and 

uncertainty observed in the crack growth phenomenon.  

2. Present a reliability- based formulation for optimum maintenance scheduling that 

minimizes the total expected lifecycle cost. 

3. Present a computationally efficient strategy for solving the stochastic optimization 

associated with the optimum scheduling.  
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2. DETERIORATION MODELING FOR FATIGUE 

 

2.1. Background 

Cracks may develop and grow under repeated cyclic loading on structures. The presence 

of these cracks reduces the structural performance and may result in the failure of the 

structure below its maximum strength. Two main approaches have been adopted to predict 

the fatigue life of structures: S-N Approach and the Linear Elastic Fracture Mechanics 

(LEFM) approach. The S-N curves have been one of the oldest used approaches to 

determine the fatigue life of structures. These curves relate the total fatigue life of the 

structure to constant stress amplitudes. The total fatigue life of the structure accounts for 

the cycles spent in both the crack initiation period and the crack propagation period. 

However, this approach does not give an explicit relation between the crack length and 

the number of loading cycles and hence, cannot be suitably integrated into a reliability 

framework. 

2.1.1. Linear Elastic Fracture Mechanics (LEFM) 

The basic principle underlying the fracture mechanics approach is that the stresses ahead 

of the crack tip in any structural element can be explained completely by a single 

parameter known as stress intensity factor (SIF) K . The value of this parameter is 

dependent on the crack size and the magnitude of the stresses applied on the element. The 

growth of crack under repeated cyclic loading is termed as fatigue. There are three stages 

that define the fatigue crack propagation process: the crack initiation stage, the stable crack 

growth stage and the unstable crack growth stage. The time taken by micro-cracks to 
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nucleate to form larger cracks that may grow corresponds to the time spent in the crack 

initiation stage. It is represented by Region I in Figure 2. This region is characterized by a 

threshold value of stress intensity factor range thK  . If the SIF range is below this 

value, then the crack will not propagate. The crack initiation period varies according to 

the element being studied [11]. For welds, this period is almost negligible and can be 

ignored [11]. On the other hand, for aerospace elements that follow higher standards of 

manufacturing and assembling this stage may account for the entire lifetime [11]. 

 

Figure 2: Crack Growth Rate versus Stress Intensity Factor Range [13] 

Stable crack growth is represented by Region II in Figure 2. In this stage, the crack 

propagates with each applied load cycle and if its propagation is not limited, then it may 
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lead to the failure of the structure. The crack growth rate (CGR) follows a linear 

relationship with the SIF range on a log-log scale in this region. This relationship is 

described by Paris Law. LEFM accounts for the time spent by the crack in the crack 

propagation stage or the stable crack growth stage. Region III in Figure 2 accounts for the 

unstable crack growth stage where the crack advances at a very fast rate leading to fracture. 

This stage is ignored for design purposes.  

Fracture can be defined as a tension failure mode in which the component breaks into two 

parts losing its load carrying capacity in entirety leading to failure of the structure. Fracture 

failures in structures could be either ductile, brittle or a combination of both. Ductile 

fracture is associated with plastic yielding before failure, thus it is the preferred mode of 

failure as it gives sufficient warning. Brittle fracture on the other hand gives little or no 

warning at all. In this case the structure fails before reaching its ultimate capacity. This is 

tantamount to the unstable crack growth stage. In this failure mode, the SIF attains a 

critical value known as the fracture toughness, which is a material property and is a 

measure of the ability of the material to resist brittle fracture. 

2.2. Fatigue Models in Literature 

As mentioned previously, deterioration models predict the future performance of the 

structure in a probabilistic fashion. There are mainly two types of models that can be used 

for degradation modeling: Random variable models and Stochastic Models. 

2.2.1. Random Variable Models 

In these models, random variables are substituted in place of the deterministic parameters 

in continuum crack propagation laws. These random variables then account for the 
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uncertainty associated with the process. Most of these models are based on Paris Law [12] 

which can be represented by the following equation: 

 ( )
mda

C K
dN

=    (2.1) 

where, C  and m  are material parameters and assume probabilistic distributions in this 

case. 

This is a very common approach; however, it has some drawbacks. The major 

disadvantage of using this method is that most of these models are based on a randomized 

version of Paris Law while it has been mentioned in literature [14] that other laws like 

Forman’s Law can describe the process better. 

2.2.2. Stochastic Models 

Several stochastic models have been reported in literature for the modeling of fatigue 

crack growth phenomenon [15]. Yang and Manning [16] extend the concept of lognormal 

random variable model to represent the crack growth rate. Kozin and Bogdanoff [17] and 

Ghonem and Provan [18] have used a discontinuous markov process to represent the crack 

growth phenomenon. The concepts developed in [18] have been extended by Ghonem and 

Dore [14] to describe the scatter associated with crack growth process at any stress level 

in terms of constant probability curves. Guida and Penta [19] propose a stochastic model 

in which the time to reach a specified crack length is modeled by a gamma process. The 

shape parameter for the gamma distribution is assumed to depend on the crack length. 

Ortiz and Kiremidjian [20] [21]in their probabilistic model assume that the CGR is 

comprised of two components: a low frequency component and a high frequency 
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component. The low frequency component is representative of the mean behavior and they 

use a randomized version of Paris law to describe this part. The distributions of the 

parameters of the crack growth law are determined from an experimental dataset. The high 

cycle frequency component, which is responsible for the scatter observed in the process, 

is modeled as random noise and is completely characterized by its auto covariance 

function. 

In this research, the crack growth process is described by a stochastic model that is based 

on polynomial chaos expansions constructed from experimental data.   

2.3. A Polynomial Chaos Approach for Modelling Fatigue Growth 

2.3.1. Overview of the Polynomial Chaos Method 

Polynomial Chaos (PC) expansions serve as an efficient tool for describing dynamic 

systems [22] and for propagating the associated uncertainties into the model predictions. 

A second order random variable X  having finite variance can be expressed by the 

following expansion: 

 ( ) ( )
0

i i

i

X c


=

 =     (2.2) 

Herein, ic  are known as the polynomial chaos coefficients which are deterministic in 

nature and (.)i  are polynomials involving all combinations of the 𝑛 random variables

 
1

n

j=
  [23] . The parameter n  refers to the stochastic dimension of the polynomial. These 

polynomials fulfill orthogonality conditions with respect to a given probability density 

measure which is a characteristic of the underlying random variable j . The orthogonality 

condition can be expressed as follows: 



 

12 

 

 ( ) ( ) 1m j m j
      =
 

  (2.3) 

The expansion represented by Eq. (2.2) needs to be trimmed to a fixed number of terms P 

which is can be computed by the following equation: 

 
( )!

1
! !

n m
P

n m

+
+ =   (2.4) 

where, m  represents the order of the polynomial. The accuracy of the expansion thus 

relies on the order of the polynomials selected and also on the choice of the underlying 

random variables [24]. The expansion can then be modified and represented as follows: 

 ( ) ( )
0

P

i i

i

X c
=

 =     (2.5) 

The choice of the PC basis is governed by the choice of the underlying random variables 

[24]. Hermite family of orthogonal polynomials are used if underlying random variables 

are Gaussian. Similarly, Legendre polynomials are used when uniform random variables 

are chosen and Laguerre polynomials are chosen if the underlying random variables follow 

gamma distributions. In this research, the underlying random variables are assumed to be 

uniformly distributed and thus the corresponding chosen PC basis are Legendre 

polynomials. The polynomials can be given by: 

 0 ( ) 1i  =   (2.6) 

 1( )i i  =    (2.7) 

 1 1

2 1
( ) ( ) ( ),

1 1
n i i n i n i

n n

n n
+ −

+
  =    −  

+ +
    2n    (2.8) 
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The PC coefficients are calculated by making use of the orthogonal nature of the PC basis. 

The expression used to evaluate PC coefficients is given by: 

 
2

[ ( ) ( )]

[ ( )]

i
i

i

X
c

   
=

  
  (2.9) 

The denominator in Eq. (2.9) can be readily determined for any orthogonal family of 

polynomials. In case of Legendre polynomials, the value of this denominator can be given 

by: 

 2 1
[ ( )]

2 1
i

i
   =

+
  (2.10) 

The calculation of the numerator requires the following integral formulation to be solved: 

 [ ( ) ( )] ( ) ( ) ( )i i

S

X X p d



    =        (2.11) 

where, S  is the support of   and p  is the marginal probability density function of  . 

The evaluation of this numerator requires the mapping ( )X→   be established. Before 

elaborating further on the methodology used for the determination Eq.(2.11), it should be 

noted that the expansion given by Eq. (2.5) can be readily extended to represent second-

order random processes in which the coefficients are now representative of the physical 

dimension of the process. A stochastic process X that is represented over a finite subset 

of physical dimension t  can be then expressed as: 

 
0

( , ) ( ) ( )
P

i i

i

X t c t
=

 =     (2.12) 

2.3.2. Construction of PC expansions representing random processes using     

experimental data 
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The methodology adopted in this research for constructing the PC expansion representing 

the stochastic process is based on the work of Das et al [25]. The actual random 

deterioration process is modeled as a stochastic process given by ( , )X t  . The process can 

be discretized over an n  -finite subset of its physical dimension t . The process now 

consists of n  components and be given by: 

 1 2[ , ,...... ]T

nX x x x=   (2.13) 

Where, T  is the transpose operator.  

Each of these n random variable components can be represented by a PC expansion given 

by: 

 
,

0

( ) ( )
P

j j j j i i j

i

x x c
=

  =     (2.14) 

This formulation is similar to the one shown in Eq. (2.5). Similarly, now Eq. (2.9) used 

for determination of Chaos coefficients can be rewritten as: 

 
, 2

[ ( ) ( )]

[ ( )]

j j i j

j i

i j

x
c

   
=

  
  (2.15) 

As mentioned previously, the computation of the numerator of the above equation requires 

the mapping ( )j j jx →   which is constructed using Rosenblatt transformation. 

According to Rosenblatt transformation [26], the left-hand side and right-hand side of the 

equation given below are equal in distribution sense. 

 ( ) ( )
j j j jP P x  =   (2.16) 

where, ( )
j jP   and ( )j jP x  are two random variables, both of which have their PDF as 

uniform distributions supported on [0,1] . Thus, Eq. (2.16) can be rewritten as: 
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 1 ( )
jj j jx P P−

=    (2.17) 

Now, rewriting Eq. (2.14) incorporating Eq. (2.17): 

 1

,

0

( ) ( )
j

P

j j j j i i j

i

x P P c−



=

=  =     (2.18) 

Thus, Eq. (2.15) can now be written as: 

 

1

, 2

[ ( ) ( )]

[ ( )]

jj j i j

j i

i j

P P
c

−

   
=

  
  (2.19) 

The solution to 1

jjP P−

 require solving an integral equation for each j  that has a high 

computational burden. In order to avoid this, the following has been solved using a 

surrogate function. It is essential to note that in this approach, the marginal PDF of jx  are 

used to define the mapping, thus making it more appropriate to represent 
1

jP−
 as 1

jxP− . This 

marginal distribution for each jx  is obtained by linearly interpolating the normalized 

marginal histogram at the particular jx  . 

The dependency between the different components of 1( )n

j jx =  is characterized by the 

dependency between the random variables 1( )n

j j= . Initially, the Spearman’s rank 

correlation coefficient matrix (SRCC) between the different components is found out 

using the experimental data. The size of this matrix s  is nXn . The SRCC matrix does not 

change under monotonic transformation and this property of it has been utilized to 

characterize the dependencies between the random variables. The samples of the random 

variables are generated such that they have the same SRCC matrix as the experimental 

data and then, the samples of the random variables obtained for each component are put 
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back into the PC expansion obtained for the respective component. This ensures that the 

realizations generated to depict the random process will be consistent with the original 

stochastic process.  

The construction of the model is thus solely done by using the information known about 

the marginal PDF of the components and the SRCC matrix. Once the model has been 

constructed, it is synthetically used to generate realizations of the process that capture the 

evolution of damage in the structure. This information is then integrated into a reliability- 

based lifecycle management framework. 
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3. DECISION MODELING 

 

As discussed previously, structures need to be inspected and repaired in time such that a 

check can be maintained on their time- dependent degradation, thereby ensuring they 

remain safe for operation throughout their lifetime. The stochastic model developed herein 

adequately captures the randomness in the crack growth histories and appropriately 

propagates it into the limit state functions and the reliability framework. This section 

discusses the reliability-based framework adopted in this study. 

3.1. Limit State Functions 

State functions are generally representative of the difference between the maximum load 

the structure can withstand and the actual load applied. It can take a value greater than 

zero as long as the former is higher than the latter. Since structures deteriorate over time 

the positive value of these functions decreases over time. This instant at which this 

function attains a value of zero is known as the limit state and this point in time 

corresponds to failure in the structure. These functions play a very integral part in 

reliability assessment of structures and are responsible for characterizing the failure mode. 

These in turn can also assist in deciding the kind of maintenance action which should be 

taken once an inspection activity is carried out. 

In context of LEFM, the instant at which SIF IK  exceeds the fracture toughness ICK  of 

the material, a failure event is considered to occur. This type of failure can be termed as 

brittle failure. However, the failure of a component may also occur when the maximum 

capacity of the component is exceeded (ductile failure) or may occur due to the collective 
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effect of the above two reasons. The R6 curve [27] takes into account all the above cases 

and thus, is an appropriate way to define the failure event. The limit state function for the 

failure event can be given by: 

 ( ( )) ( ( )) ( ( ))f IC f IG a t K C a t K a t= −   (3.1) 

Where, ICK  is representative of the fracture toughness of the material and varies with the 

type of material, ( ( ))IK a t  is the value of the SIF at a particular crack length, ( )a t which 

in turn is a function of time t , and  ( ( ))fC a t  is a factor given by the following equation: 

 

1
2

max max

2

8
( ( )) log sec

( ( )) 2 ( ( ))
f

c c

C a t
a t a t





−

    
=          

  (3.2) 

Where, max  is the maximum stress applied and ( ( ))c a t  is known as the collapse stress. 

It is dependent on the crack length, however for a component under axial tension it is taken 

equal to the yield stress y .The value of the SIF at any crack length ( )a t  can be evaluated 

using the following equation: 

 max( ( )) ( ( )) ( )IK a t Y a t a t=    (3.3) 

where, ( ( ))Y a t  is a geometry function. 

The decrease in the value of the limit state function can be attributed to the crack length 

growing in time. The limit state function also includes several other parameters in its 

formulation that have uncertainty associated with them. There is randomness in the initial 

crack size which is accounted for by modeling it as a random variable. The uncertainty 

associated with the evolution of crack length with loading cycles is taken into account by 

the deterioration model and through it is incorporated into the limit state function. The 
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material properties like fracture toughness and yield stress are also subjected to uncertainty 

and thus, can been modeled as random parameters. 

The failure probability is then described as: 

 ( 0)f fP G=     (3.4)  

This information is then used by a reliability- based lifecycle management framework to 

develop an optimum maintenance schedule for the component.  

Besides this limit state function, another limit state function could be defined that 

describes the repair event. A repair action following an inspection activity is only 

undertaken if the crack length at the time of inspection exceeds a critical value of crack 

size. This limit state function could be formulated as follows: 

 ( )r crG a t a= −   (3.5) 

where, ( )a t  is the crack length at the time of inspection and cra  is the critical crack repair 

size. However, in this study this limit state function has not be considered and it is assumed 

that an inspection event is always followed by a repair action. The main reason for doing 

so is that taking into account both the limit state functions will increase the computational 

burden immensely. The increase observed in the computational burden has been explained 

explicitly in the section 3.2. Thus, only the former limit state function that holds higher 

importance as it corresponds to a more catastrophic failure is considered. However, the 

methodology is robust enough to accommodate this modification but at the expense of 

higher computational cost.  
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3.2. Lifecycle Optimization Formulation 

An optimum inspection and repair strategy is usually aimed at minimizing the total 

expected life cycle costs of the structure while confirming that the probability of failure at 

any instant during the lifetime does not exceed a maximum allowable limit. Since the 

optimum schedule corresponds to the minimum total expected lifecycle costs, 

minimization of this cost can be termed as the objective function of the optimization 

problem. The total life-cycle costs ETC  for the system is the sum of the following 

components: the initial costs IC  , the costs of inspections INSPC  , the costs of repairs REPC  , 

and the costs of failures FC . Inspections, repairs and failures are scheduled at different 

times during the service life of the structure. Thus, the costs associated with each of these 

events occurring in the future have to be changed to match their values at the time the 

decision is made. This can be done by using a discount function, te−  where  is the 

discount rate. Thus, the cost of any event at time t  can be expressed as:  

 t

event eventC c e−=  ,      , ,event insp rep fail=   (3.6) 

where, eventc  = cost factor associated with the event. In this study, the value of 0.05 = . 

The value the objective function takes depends on both the parameters that define the 

inspection plan and the repair actions that are adopted following those inspection 

activities. The parameters defining the inspection plan are known as the design variables. 

An ideal way of defining the inspection schedule is deciding the time of inspections: the 

time to first inspection, the time to second inspection and so on and so forth. However, 

since similar repair and inspection tools are adopted each time the time between 
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consecutive inspections is usually kept the same. In this research, the inspection plan is 

characterized by the time to first inspection 1t  and the time between consecutive 

inspections t and hence these two variables herein are the design variables of the 

optimization problem.  

As mentioned, the value of the objective function also depends on the outcome of the 

inspection activities and the associated repair effort. In general, following an inspection 

activity, there is a likelihood that damage may or may not be detected in the structure. 

Depending on the damaged state of the system at the time of inspection, a decision shall 

be taken either to repair the system or not repair the system. The type of repair action 

adopted could also vary according to the damage observed in the system and so would the 

costs that associate with them. For instance, the repair costs would be higher if the 

component has failed or on the contrary it could be that if failure occurs the system is not 

repaired at all. Thus, in order to make credible decisions these several scenarios should be 

taken into account by means of a decision tree. A typical decision tree could look like 

Figure 3. This tree takes into account three possibilities following every inspection event: 

no repair, repair and replacement of component if failure occurs.  
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Figure 3: A Typical Decision Tree  

In this research, it has been assumed that following an inspection activity a repair always 

take place however, the repair action is different if the component has failed. These two 

repair actions can also be better understood as condition-based actions and routine actions. 

The repair action when a component fails is undertaken when the limit-state function is 

violated and hence is more of a condition-based action. This action is equivalent to 

replacing the component. The likelihood of its occurrence is dependent on the probability 

of failure of the component at that instant of time. Throughout this document, the cost 

associated with this repair effort will be referred to as the cost of failures. The alternate 

repair action is always undertaken after an inspection activity and thus, is more like a 
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routine action and the cost associated to it will be simply referred to as the cost of repairs. 

A decision tree depicting these scenarios is shown in Figure 4.  As it can be seen, these 

trees grow exponentially with the number of inspections. When only two repair efforts are 

considered, then the number of branches for a total of 3 inspections is 8. However, as 

mentioned previously if the limit state function describing the repair event was also 

considered separately, then there would be three scenarios to account for. These scenarios 

would be repair, no repair and repair effort corresponding to failure event. This means that 

now for 3 inspections there will be a total of 27 branches to account for. This may seem 

like a small increase when the number of inspections are less, however this increase is 

tremendous when the number of inspections increase. Thus, in this study the additional 

limit state function has been ignored. However, this should not be considered as a 

limitation as the more important limit state function has been accounted for. 

 

Figure 4: Diagrammatic Representation of the Scenarios considered 

following an inspection event in this study. 
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The total lifecycle costs should be evaluated taking into account all these possible 

scenarios and since there is a likelihood associated with the occurrence of each of these 

events at every instant of time, the total lifecycle costs can be better understood in an 

expected sense. The expected lifecycle cost can thus be defined as follows:  

      [ ]ET I INSP REP FC C E C C C  = + + +   (3.7) 

Where,  .  denotes the expectation operator.  

The optimum maintenance strategy should also ensure that the maximum probability of 

failure throughout the lifetime never exceeds a threshold value. This can be incorporated 

as a constraint on the optimization problem. The optimization problem can then be 

formulated as follows: 

 
 

 
1 ,

min ET
t t

C

   (3.8) 

                                                           subject to   ,f f thresholdP P   

                                                                              min max

1 1 1t t t    

                                                                             
min maxt t t      

Where, fP  is the maximum probability of failure associated with an inspection strategy,

,f thresholdP is the threshold or the target value of the maximum probability of failure, min

1t  

and max

1t  are the lower and upper bounds on 1t  and similarly, 
mint  and 

maxt  are the lower 

and upper bounds on t . 
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3.2.1. Evaluation of Total Expected Lifecycle costs 

Given the parameters of the inspection schedule 1,t t , the value of the objective function 

needs to be determined. The total number of inspections scheduled over the complete 

design life dt  of the structure can be determined once 1t  and t  are known. Thus, the 

expected cost associated with the inspection events in a particular inspection plan is a 

deterministic value. The number of inspections can be given by: 

 11 d

INSP

t t
N floor

t

− 
= +  

 
  (3.9) 

The cost of inspection can then be evaluated as: 

 
1

[ ] ( )
INSPN

INSP INSP i

i

E C C
=

=    (3.10) 

The evaluation of expected costs of repairs  REPC  and expected cost of failures  FC

depends on the probabilities of occurrence of the respective events at the time of 

inspections and also on the probability of the branch of the decision tree to which they 

correspond. The probability of repair at any instant can be defined as the probability of 

not observing any failure at that instant. 

 1RM rep fP P P= = −   (3.11) 

The cost associated with each of the event can be given by: 

 
.

.

REP rep rep

F fail f

C C P

C C P

=

=
  (3.12) 

A sample inspection plan with 3 inspections (Figure 5) has been used to illustrate the 

methodology used for calculating the expected costs. The methodology used has been 
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based on the work of Frangopol et. al [28]. At inspection 1, there are only two possible 

events, repair or failure represented by events 1

1e and 2

1e  respectively. The notation used 

for numbering of events can be generalized as i

je  , where j  stands for the inspection 

number (in this case j can take values1 3to ) while i  is used to number the events possible 

at the thj  inspection event. The value of i  ranges from1  to 2 j at the thj  inspection event. 

 

Figure 5: Event Tree for an inspection plan involving 3 inspections [28] 

At inspection 2, there are 4 possible events: repair and failure events corresponding to the 

repair event at the last inspection, and repair and failure events corresponding to the failure 

event at the last inspection. These branches are denoted by 2

1 2 3 4

2 2 2, , ,e e e e  respectively. 

Similarly, at the end of third inspection there are 8 possible events. The costs associated 

with each of these events can be found out by Eq. (3.12). It is important to note that the 

event tree grows exponentially, having a total of 2 j
 branches for an inspection strategy 
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involving a total of j  inspections. Each of these branches is a combination of events and 

the probabilities of these branches can be given by: 

  

1 1 1

1 2 3

1 1 2

1 2 3

2 4 8

1 2 3

( 1) ( ). ( ). ( )

( 2) ( ). ( ). ( )

.

.

( 8) ( ). ( ). ( )

P Branch P e P e P e

P Branch P e P e P e

P Branch P e P e P e

=

=

=

  (3.13) 

The costs associated with each of these branches can be found out by adding the cost of 

the events making up each branch. This cost can be given by: 

 

1 1 1

1 2 3

1 1 2

1 2 3

2 4 8

1 2 3

( 1) ( ) ( ) ( )

( 2) ( ) ( ) ( )

.

.

( 8) ( ) ( ) ( )

C Branch C e C e C e

C Branch C e C e C e

C Branch C e C e C e

= + +

= + +

= + +

  (3.14) 

The total expected cost for the event tree can be given by: 

 
8

1

[ ] ( , ). ( , )
i

E C C Branch i P Branch i
=

=   (3.15) 

The total expected cost for any inspection strategy in general can be then given by: 

 
2

1 1

[ ] ( ) ( , ). ( , )

NINSP
INSPN

ET I INSP i

i i

E C C C C Branch i P Branch i
= =

= + +    (3.16) 

The failure probabilities at the end of design life can also be determined. The maximum 

probability of failure associated with an inspection strategy is the maximum of the value 

of the failure probabilities observed over the event tree and the failure probabilities 

observed at the end of design life. The optimal solution should be such that this maximum 

probability of failure never exceeds a threshold limit. 
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3.3. Surrogate Model for Stochastic Optimization 

 The optimization problem requires several simulations to be carried out before it can 

accurately predict regions having low probabilities of failure. These simulations are 

generally very costly to run, thus making it imperative to adopt surrogate- based 

optimization techniques. These surrogate or meta-models can be constructed over a 

smaller number of simulations and thereby serve as a fast and computationally efficient 

alternative. Herein, the observation dataset in terms of 1t , t , [ ]ETE C and fP  available from 

the simulation is used to build Gaussian process regression models. These models serve 

as the substitute in the optimization problem. The observation dataset can also be called 

as the training data set. 

In general, a training dataset  
1

,
N

i i i
x y

=
 consists of a set of predictor or input variables ix  

and response or output variables iy . In this study, the predictor variables are 1{ , }t t in each 

case and the response variable would be [ ]ETE C  for the objective function and fP  for the 

constraint function. Each iy  can be represented as: 

 ( )i iy f x= +    (3.17) 

Where 
2 ) ( is the random noise component and ( )if x  is known as the signal term. 

In linear regression model, ( )if x   takes the form . ia b x+ , with a  being representative of 

the intercept and b  of the slope.  

In a Gaussian process regression model, it is assumed ( )if x  is from a Gaussian process 

(GP). In a Gaussian process, a distribution is defined over these functions which is updated 



 

29 

 

to get a posterior distribution when observations are available. A GP assumes that the joint 

probability distribution of these functions 1 2( ( ) ( ).... ( ))Np f x f x f x  is also Gaussian with 

mean   and covariance K . The mean of a Gaussian process is generally assumed to be 

zero unless some prior information about the process is available. There are several 

choices available for the covariance function of a Gaussian process. Thus, 

 ( ) (0, )f x N K   (3.18) 

The basic principle underlying a Gaussian process is that if the input variables ix  and jx  

are alike then the corresponding output variables will also be alike, with the similarity 

rooted in the covariance function [29]. Once the covariance function has been chosen, 

predictions can be made. For a given observation point x , the function f  is known. When 

the predictions have to be made at a test point x  then a new function f   has to be defined. 

Using the GP framework, it can be concluded that f  and f   also follow a joint Gaussian 

distribution [30]. 

 0,
T

f K K

f K K



  

    
     

    

  (3.19) 

Where, K  is the matrix obtained by applying the covariance function to observed data, 

K   is the matrix obtained from the covariance between the observed points and the test 

points and K 
 is obtained from the covariance between the test points. The joint 

distributions on observed y  and test y  taking into account the noise component can be 

given by: 
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  (3.20) 

Using the standard formulation in [30], the following formulation can be obtained: 

 *| ( , )y y N     (3.21) 

Where * * 2 1( )TK K I y− = +   

            * ** 2 * 2 1 *( )TK K K I K− = + − +   

 Many freely available software exist that can be used to train a Gaussian process 

regression model. Herein, the inbuilt regression toolbox of MATLAB is used to train the 

Gaussian process regression model. Once the surrogate model for the objective and 

constraint function has been constructed, it can be used by a gradient based optimization 

solver to solve the optimization problem given by Eq. (3.8).  
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4. IMPLEMENTATION AND RESULTS 

 

4.1. Experimental Database 

The experimental observations used to construct the PC expansions are obtained from the 

tests conducted by Virkler et.al [31] on Al 2024-T3 alloy. This dataset is an ideal choice 

considering its richness and its wide applicability observed in previous studies [32] [33] 

[34] [20] [35] to construct stochastic models representing fatigue crack growth process. 

The observations from the tests consisted of half crack length ' 'a  versus number of cycles 

' 'N records required to reach the particular crack length under constant amplitude loading. 

These observations have been plotted in Figure 7. The experimental tests were conducted 

on 68 similar rectangular panels having a center crack. The dimensions of the sample 

specimen were 558.8mm X 152.4mm X 2.54mm. The geometry of the experimental 

specimen is shown in Figure 6. The observations were recorded at specific crack lengths 

starting at an initial value of 9mm and stopping at a final value of 49.8mm. A total of 164 

discrete observations existed for each specimen. Observations were recorded at an 

increment of 0.2mm till 36.2mm crack length, at 0.4mm increment from 36.2mm to 

44.2mm and at an increment of 0.8mm for the remaining part of the experiment. The 

loading conditions of the experiment are summarized in table 1.  The alternating load was 

applied at a frequency of 20 Hz. The records obtained could also be interpreted in the form 

of CGR versus the SIF range. The CGR 
da

dN
 can be evaluated by finding the slope of the 

crack growth curve at specific points. 
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Table 1: Experimental Conditions [31] 
Maximum load 𝑃𝑚𝑎𝑥 5.25 kips 

Δ𝑃 = 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛 4.20 kips 

Stress Ratio 𝑅 =
𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥
 0.2 

It has been known that 
da

dN
 as a variable is of higher interest while modeling the crack 

growth process than the crack length. This is because
da

dN
 at any value of K is 

independent of the geometry under consideration [36]. Additionally, 
da

dN
 against K  also 

shows a linear behavior on the log-log scale, thus the logarithm of CGR against logarithm 

of SIF is used as the experimental observation dataset to construct the stochastic model in 

this study.  

 

Figure 6: Details of the Experimental Specimen [31] 
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Figure 7: Experimental Crack Length versus Number of Cycle Records [31] 

Several methods and their accuracy in determining CGR have been reported in literature 

[31]. These methods include finite difference methods and incremental polynomial 

methods. The predicted CGR from the model is integrated back to get the crack length and 

thus, the method used for calculation of the experimental CGR should be carefully 

selected. This method of calculation will determine the error that is inputted into the data. 

Incremental polynomial methods introduce higher errors as compared to finite difference 

methods and thus, in this research the secant method [31] is used for calculating the CGR.  

The average crack length ia  and the average number of cycle iN  at any point i  can be 

determined as follows: 
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The CGR at ia  and iN  can be determined as follows: 

 1

1

i i

i i i

a ada

dN N N

+

+

− 
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− 
  (4.2) 

The data can thus be represented in the form of 
da

dN
versus K . K can be calculated at 

the average crack length values 𝑎𝑖̅ using the following expression: 

 ( ).iK S a g a =     (4.3) 

Herein, S is the range of the stresses applied and ( )g a  is a correction factor that depends 

on the geometry of the specimen chosen. 

 max minS =  −   (4.4) 

 
( )

max/min

max/min
.

P

wt
 =   (4.5) 

where, max  and min  are the maximum and minimum stresses respectively, maxP  and minP  

are the maximum and minimum applied loads respectively, w  is the width of the plate 

and t  is the thickness of the plate. The following geometry correction factor ( )g a  is used 

to calculate Δ𝐾 in plates of finite width of 2w  [37] (Figure 8): 

 

1

22
( ) tan

2

w a
g a

a w




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=   
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  (4.6) 
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Figure 8: Finite width plate with a center crack [37] 

A plot of ln
da

dN

 
 
 

 against ( )ln K observations that are used for constructing the 

stochastic model have been shown in Figure 9. 

 

Figure 9: Log of crack growth rate versus log of stress intensity factor 

range from experimental data 
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4.2. Construction of PC representation 

The ensemble of these 68 sets of ln
da

dN

 
 
 

  against ln( )K  observations serve as the 

measurement data for the random process represented by 
68

1i i
Y

=
 . Each of these sets 

represents the fatigue crack growth process discretized over a n - finite subset of the 

indexing variable, in this case 163 values of ln( )K . Thus, each sample out of these 68 

sample sets can be represented by 1 2[ , ........ ]i i i T

i nY y y y= where 163n =  . Each of these 

components of iY  can be represented by a PCE given by Eq. (2.14). The steps followed 

for the PC construction are based on [25]. In order to construct the PC expansion, firstly a 

scaling of sample observations is carried out to get 1 2[ , ........ ]i i i T

i nX x x x=  supported on

[ 1,1]n−  . The relation between Y  and X  can be expressed as: 

 ( )
1

( ) 1
2

nY a b a X
 

= + − + 
 

  (4.7) 

Therefore,  
68

1i i
X

=
 can be obtained as: 

 ( )
1

2 1i i nX Y a
b a

  
= − −  

−  
 ,   1.....68i =   (4.8) 

The values of a  and b  can be given by: 

 
1 2

1 2

[ , ,...... ]

[ , ,...... ]

T

n

T

n

a a a a

b b b b

=

=
 ,   163n =   (4.9) 

Where, 1 2 68min( , ,....... )i i i ia y y y=  and 1 2 68max( , ,....... )i i i ib y y y= , 1......163i = . 
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Following this, using the 68 observations available for each component 
163

1j j
x

=
, a 

normalized marginal histogram is constructed for each component. The marginal PDF is 

obtained by linear interpolation of this histogram [38]. Once the marginal PDF is 

available, the PC coefficients for each of the 163 components are determined using 

Eq.(2.19). For the construction of PC expansion, the underlying variables are assumed to 

be uniform random variables and hence Legendre polynomials are the orthogonal 

polynomial basis chosen. Each component is then represented by the following expansion:  

 
0

( )
Pd

j ki k j

k

x c
=

=     (4.10) 

The number of terms P  retained in the expansion is a function of the order m  of the 

polynomial and a convergence analysis is carried out to decide m . The expansions in this 

case have been truncated at an order 8m = . The results of the convergence analysis are 

summarized in table 2 and table 3. The mean squared errors for the mean vector and SRCC 

matrix calculated for different choices of PC order for the scaled observations X  are 

plotted in Figure 10 and Figure 11. Similarly, the mean squared errors for the mean vector 

and SRCC matrix calculated for different choices of PC order for the sample observations 

Y are plotted in Figure 10 and Figure12. The marginal probability density functions of 

ln
da

dN

 
 
 

 estimated from PC samples at selected values of ln( )K  has been plotted in 

Figure 13.   
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Table 2: Relative Mean Squared Error in PC predictions of X against 

Experimental Data 
PC ORDER SRCC MATRIX (%) MEAN VECTOR (%) 

2 0.06057 

0.0960968 

0.0761691 

0.0582915 

0.0551144 

0.0550572 

0.0550927 

0.0550693 

0.0551033 

0.0550929 

0.0550866 

0.0550636 

0.0550619 

0.0550573 

1.7072 

3 0.09609 1.2607 

4 0.07616 0.4456 

5 0.05829 0.3137 

6 0.05511 0.2928 

7 0.05506 0.2845 

8 0.05509 0.2829 

9 0.05506 0.2818 

10 0.05510 0.2811 

11 0.05509 0.2802 

12 0.05508 0.2799 

13 0.05506 0.2804 

14 0.05506 0.2794 

15 0.05506 0.2791 

 

 

Table 3: Relative Mean Squared Error in PC predictions of Y against 

Experimental Data 
PC ORDER SRCC MATRIX (%) MEAN VECTOR (%) 

2 0.06057 

0.0960968 

0.0761691 

0.0582915 

0.0551144 

0.0550572 

0.0550927 

0.0550693 

0.0551033 

0.0550929 

0.0550866 

0.0550636 

0.0550619 

0.0550573 

2.237E-04 

3 0.09609 1.353E-04 

4 0.07616 5.901E-05 

5 0.05829 3.581E-05 

6 0.05511 3.231E-05 

7 0.05506 3.185E-05 

8 0.05509 3.142E-05 

9 0.05506 3.142E-05 

10 0.05510 3.137E-05 

11 0.05509 3.118E-05 

12 0.05508 3.118E-05 

13 0.05506 3.115E-05 

14 0.05506 3.100E-05 

15 0.05506 3.096E-05 
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Figure 10: Graphical Plot of MSE in SRCC Matrix of X and Y against 

Experimental Data 

 

Figure 11: Graphical Plot of MSE in Mean Matrix of X against 

Experimental Data 
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Figure 12: Graphical Plot of MSE in Mean Matrix of Y against 

Experimental Data 

 

Figure 13: Evolution of marginal PDF's of logarithm of crack growth 

rate estimated from PC model 
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Once the PC expansions for each of the component has been constructed, digital 

realizations of X can be generated. This requires generation of correlated uniform random 

variables that have the same SRCC matrix as the one obtained from the experimental 

samples. This can be done using a normal copula technique. However, the applicability of 

this technique is restricted to positive-definite correlation matrices. If the SRCC matrix of 

X  is not positive definite, then its non-positive definiteness is removed [39] and a new 

positive-definite correlation matrix is constructed such that the normal copula technique 

can be applied. This technique is known as augmented normal copula technique and has 

been used herein. These random variables are then incorporated into the PC expansions to 

generate samples of X . The digital realizations of X  are then used to get the digital 

realizations ofY .  

 

Figure 14: Confidence bounds of simulated log of crack growth rate 

versus log of stress intensity factor range using PC model 
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Figure 14 represents the predicted ln
da

dN

 
 
 

 over ( )ln  using the resulting PC 

expansion. The plot shows the mean, 5% and 95% confidence bounds. Additionally, a 

comparison of the two marginal PDF’s obtained from the PC realizations and experimental 

samples is done at each value of the indexing variable and the relative MSE is computed. 

The minimum error observed is 0.4212% while a maximum error of 12.24% is observed.  

The PC coefficients are available for the n -finite subset of indexing variable ln( )K for 

which the experimental measurements are available. The experimental test specimens 

usually have larger crack or flaw sizes; thus, observations are available for larger values 

of K . Since the initial crack sizes observed in practice are smaller, the digital realizations 

obtained from the PC model need to be extrapolated to model the behavior observed at 

smaller values of K .    

4.3. Application Problem 

The constructed PC model can be integrated into the reliability framework to obtain the 

optimum maintenance and repair schedule for any system. Herein, to demonstrate the 

applicability of the reliability framework a simple problem is considered. The problem 

comprises obtaining an optimal inspection plan for an Al 2024-T3 aluminum alloy 

rectangular plate with a crack in the center. This has been done because the analytical 

geometry function for calculation of SIF for such a geometry is already known. More 

complex geometries could have been adopted at a higher computational cost. For such 

geometries, the SIF could be calculated using finite element alternating method, boundary 

element method or extended finite element method [9]. It is essential to note that this 
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geometry in spite of being very elemental is equivalent to a crack present in a pressure 

vessel or a crack emerging from a rivet hole [9].  

The dimensions of the plate are the same as considered by Virkler et.al [31] and is given 

by 558.8mm X 152.4mm X 2.54mm. The initial crack length has been modeled as a 

random variable. The maximum design life for the component is taken as 10 years with 

1.75 X 105 load cycles acting each year. A maximum and minimum stress of 60MPa and 

12MPa respectively has been considered for loading. The random variables characterizing 

the problem have been summarized in Table 4.  

Table 4: Random variables characterizing the application problem 
Variable Mean Variance Distribution Reference 

Initial Crack 

Length 0 ( )a mm  

1.5 0.5625 Lognormal [9] 

Fracture 

Toughness 

( )ICK MPa m   

25 12.25 Normal [40] 

Yield Strength 

( )y MPa   

332 1102.24 Normal [41] 

4.4. Implementation of lifecycle optimization 

The constructed PC model gives simulated samples of the natural logarithm of CGR with 

respect to natural logarithm of SIF range. In order to get the crack length versus number 

of cycle’s records, the CGR needs to be integrated in terms of the number of cycles. 

Herein, the CGR is integrated over every 1000 cycles. The forward Euler method is 

adopted for carrying out the integration [42]. The integration could have been done over 

a smaller number of cycles, however that increases the computational burden immensely 
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and is thus avoided. Since the number of cycles is a function of time, the crack length at 

any time can hence be known. Thereby, the PC model is used to obtain the crack evolution 

in time and through this time evolution of crack, the uncertainty in the process is 

incorporated into the limit state function. The limit state function as described previously 

is a random function, and thus there is a likelihood associated with occurrence of the 

failure event at any time t  . The probability of failure event can be found out using Monte 

Carlo simulations.  

To this end, 100,000 trajectories of the stochastic process are generated using the PC 

model. Similarly, the random variables given by table 4 are also sampled. Using the 

information available on the initial crack size and the trajectories of the stochastic process, 

the trajectories of crack evolution in time are obtained. For any given value of 1,t t , the 

timing of inspection events is known. At the time of inspection, the probability of failure 

can be approximated numerically as the ratio of number of failed samples to the total 

number of samples. After an inspection event, the component is brought back to its 

original state, which is the crack length is reset by resampling and new crack growth 

trajectories are generated from that time onwards. However, if the component fails then 

not only the crack growth histories are regenerated but the material properties are also 

resampled. As mentioned previously, the decision at the time of next inspection event will 

be dependent on the past inspection event and all these scenarios can be taken into account 

through an event tree. The total expected lifecycle cost associated with a specific value of 

 1,t t can be determined through the methodology described in Section 3.2.1. The initial 
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cost of the system is taken as 1. The cost factors associated with different events used for 

the evaluation of the total expected lifecycle costs are summarized in Table 5.  

Table 5: Multiplicative cost factors used for calculation of total 

expected lifecycle cost [1] 

Event Cost factor Value 

Inspection 
inspc  0.025 

Repair 
repc   0.25 

Failure 
fc   50 

 

To obtain the optimal maintenance schedule, the total expected lifecycle costs need to be 

evaluated at different values of  1,t t  and compared. Thus, an exhaustive search is 

carried out. This exhaustive search enables in studying the complete design space.  The 

values of total expected life-cycle cost are evaluated over a grid of design variables 1,t t

, where  1 1 / 12, 4.5t  years and  0.5,5.25t   years. An increment of 0.25 years is taken 

for each variable, giving a complete grid of 18 X 20 points. For this grid, the response 

surface associated with the objective function was constructed. This plot is shown in 

Figure 15.  

Using this plot, the minimum expected cost could be identified that would satisfy the 

constraint function as well. In this study, the threshold on maximum probability of failure 

has been considered as 0.05 or 5%. Thus, the optimal schedule will not only confirm that 

the maximum probability of failure during the lifetime never exceeds this value but will 

also correspond to the least total expected lifecycle cost. 
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Figure 15: Response Surface for objective function (total expected cost) 

The minimum total expected cost is found as [ ]ETE C = 1.6387 at    1, 2.83,2.75t t =

years. The corresponding value of ,maxfP is 0.0179. In order to better visualize the variation 

of total expected lifecycle cost with t  at a given value of 1t , the slice of the surface 

corresponding to 1 2.83t =  years has been plotted in Figure 16. 

However, exhaustive search is not an ideal way of finding the optimal solution. This 

method has a high computational cost and is not feasible if the resolution of the grid has 

to be increased. The construction of response surface for the above mentioned grid takes 

about 30 hours using computing resources provided by Texas A&M High Performance 
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Research Computing. Thus, a surrogate model is adopted to perform the gradient based 

optimization. 

 

Figure 16: The variation of total expected cost with inspection intervals 

at optimum value of t1 

4.5. Optimization under uncertainty via surrogate model 

A Gaussian process regression model is used to construct the surrogate models for the 

objective and the constraint function based on the methodology described in Section 3.3. 

The predictive capability of the Gaussian process depends exclusively on the suitability 

of the chosen kernel or covariance function. In this study, the matern 5/2 kernel function 

has been chosen. A root mean squared error of 0.12 is reported for the Gaussian surrogate 

model constructed for the total expected cost surface. Figure 17 can be used to verify the 

performance of the model constructed for total expected cost surface. The predicted 
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response is shown by the diagonal line, while the vertical distance of the observations from 

the line is a measure of the error in prediction at that point.  

 

Figure 17: Predicted versus Actual Plot (Total Expected Lifecycle Cost) 

The reconstructed surface for the total expected cost has been shown in Figure 18. 

Similarly, the reconstructed surface for the maximum probability of failure is shown by 

Figure 19. 
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Figure 18: Response Surface of Total Expected Cost (Objective 

Function): Exact (top) and reconstructed with Gaussian process 

regression model (bottom) 
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Figure 19: Response Surface of Probability of failure (Constraint 

Function): Exact (top) and reconstructed with Gaussian process 

regression model (bottom) 
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These surrogate or meta-models are now used for solving the gradient-based optimization. 

The optimization has been carried out for 4 different thresholds on the maximum 

probability of failure. The values are  , 0.05,0.01,0.005,0.001f thresholdP = . The accuracy of 

the optimum solution is dependent upon the approximation accuracy of the surrogate and 

the result obtained is an approximation of the true optimum. Table 6 summarizes the 

optimum results and corresponding minimum total expected lifecycle cost obtained for 

different thresholds on maximum probability of failure through exhaustive search method. 

Similarly, Table 7 summarizes the results obtained for the same thresholds on maximum 

probability of failure through gradient- based optimization. The results obtained through 

both the methods are comparable.  

Table 6: Optimization Results for different values of thresholds on maximum 

probability of failure using exhaustive search method 

,f thresholdP   1t  in years t  in years [ ]ETE C   

0.05 2.83 2.75 1.639 

0.01 2.33 2.5 1.817 

0.005 2.08 2.25 1.840 

0.001 1.58 1.75 2.073 

Table 7: Optimization Results for different values of thresholds on maximum 

probability of failure using gradient-based optimization 

,f thresholdP   1t  in years t  in years [ ]ETE C   

0.05 2.80 2.79 1.649 

0.01 2.45 2.53 1.708 

0.005 2.20 2.28 1.819 

0.001 1.60 1.77 2.096 
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Figure 20: The sensitivity of t1 with respect to the thresholds on 

maximum probability of failure 

 

Figure 21: The sensitivity of Δt with respect to the thresholds on 

maximum probability of failure 



 

53 

 

 

Figure 22: The sensitivity of E[CET] with respect to the thresholds on 

maximum probability of failure 

The sensitivity of 1,t t and [ ]ETE C to different thresholds on the maximum probability of 

failure has been plotted in figure 20, figure 21 and figure 22 respectively. It is clearly 

evident from the results obtained that the total expected lifecycle costs increase when the 

threshold is reduced. The time between the inspections also decreases correspondingly. 

This can be explained by the fact that the structure would now require more frequent 

inspection and maintenance activities to stay within the prescribed threshold on 

probability of failure. Thus, it can be seen that there is a compromise between a higher 

reliability and the minimum total expected lifecycle costs.  
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5. CONCLUSIONS 

 

This research develops a framework that uses a reliability-based approach to address the 

lifecycle management of components subjected to fatigue-induced damage. The crack 

growth process is highly uncertain and the uncertainty is efficiently captured by modeling 

it as polynomial chaos expansions. Through the PC representations, the uncertainty is 

propagated into the model predictions and hence into the limit state functions. The 

optimum solution corresponds to minimum total expected lifecycle costs that include the 

costs of inspections, repairs and failures. This analysis takes into account the time value 

of money and different repair scenarios. The optimum results are defined in terms of time 

to first inspection and the time between consecutive inspections. A computationally 

efficient optimization strategy is proposed to solve the stochastic optimization associated 

with the optimal scheduling. This strategy uses Gaussian process regression models as 

surrogates for the objective and constraint function. This considerably reduces the 

computational burden of the problem. The sensitivity of the optimal solution to different 

thresholds on the maximum probability of failure is also examined. It is observed that the 

total expected lifecycle costs increase when the target value of maximum probability of 

failure is reduced. Thus, there is always a trade-off between higher reliability and 

minimum total expected lifecycle costs. The proposed framework shows immense 

potential of integrating economic and risk aspects of design. This framework makes no 

prior assumptions and its predictive capability completely relies on the quality of the input 

data. Most importantly, the proposed reliability-based framework can be readily modified 
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to address the lifecycle optimization of any system be it bridges, ships or girders. The 

applicability of the framework is also not limited to just deterioration due to fatigue. It can 

be extended to any time-dependent deterioration mechanism that causes damage-induced 

structural failure over lifetime like corrosion or corrosion-fatigue. The universal nature of 

this framework makes it a very efficient and robust tool.   



 

56 

 

6. REFERENCES 

 

 

[1]  M. K. &. J. N. D.M. Frangopol, "Probabilistic models for life-cycle performance of 

deteriorating structures :review and future directions," Progress in Structural 

Engineering and Materials, vol. 6, no. 4, pp. 197-212, 2004.  

[2]  D. S. &. M. H. Faber, "Computational aspects of risk-based inspection planning," 

Computer-Aided Civil and Infrastructure Engineering, vol. 21, pp. 179-192, 2006.  

[3]  D. S. &. M. H. Faber, "Risk based inspection planning for structural systems," 

Structural Safety, vol. 27, pp. 335-355, 2005.  

[4]  D. Y. Y. &. D. M. Frangopol, "Probabilistic optimization framework for 

inspection/repair planning of fatigue-critical details using Bayesian networks," 

Computers and Structures, vol. 198, pp. 40-50, 2018.  

[5]  Y. D. &. D. M. Frangopol, "Risk-informed life-cycle optimum inspection and 

maintenance of ship structures considering corrosion and fatigue," Ocean 

Engineering, vol. 101, pp. 161-171, 2015.  

[6]  R. T. &. E. C. H.O Madsen, "Probability-based cost benefit analysis of fatigue, 

design and inspection," in Marine structural Inspection, Maintenance and 

Monitoring Symposium, Arlington, 1991.  



 

57 

 

[7]  K. L. &. A. E. D.M. Frangopol, "Reliability of reinforced concrete girders under 

corrosion attack," Journal of Structural Engineering, vol. 123, no. 3, pp. 286-297, 

1997.  

[8]  D. D. G. &. D. S. S. Dr. E. Nikolaidis, Engineering Design Reliability Handbook, 

CRC Press, 2004.  

[9]  W. J. &. A. T. B. Gomes, "Optimal inspection planning and repair under random 

crack propagation," Engineering Structures, vol. 69, pp. 285-296, 2014.  

[10]  M. V. G. S. &. H. J. P. Beaurepaire, "Reliability-based optimization of maintenance 

scheduling of mechanical components under fatigue," Computer Methods in Applied 

Mechanics and Engineering, Vols. 221-222, pp. 24-40, 2014.  

[11]  M. V. &. G. Schueller, "Design of maintenance schedules for fatigue prones mettalic 

components using reliability based optimization," Computer Methods in Applied 

Mechanics and Engineering, vol. 199, no. 33-36, pp. 2305-2318, 2010.  

[12]  P. P. &. F. Erdogan, "A critical analysis of crack propagation laws," Journal of Basic 

Engineering, vol. 85, no. 4, pp. 528-533, 1963.  

[13]  N. a. K. R. Vikram, "Review on Fatigue Crack Growth and Finite Element Method," 

International Journal of Scientific \& Engineering Research, vol. 4, no. 4, pp. 833-

843, 2013.  

[14]  H. G. a. S. Dore, "Probabilistic Description of fatigue crack growth in polycrystalline 

solids," Engineering Fracture Mechanics, vol. 21, no. 6, pp. 1151-1168, 1985.  



 

58 

 

[15]  J. W. Provan, Probabilistic Fracture Mechanics & Reliability, Dordrecht: Springer, 

1987.  

[16]  J. Y. &. S. Manning, "A simple second order approximation for stochastic crack 

growth analysis," Engineering Fracture Mechanics, vol. 53, no. 5, pp. 677-686, 

1996.  

[17]  F. K. &. J. Bogdanoff, "A critical analysis of some probabilistic models of fatigue 

crack growth," Engineering Fracture Mechanics , vol. 14, pp. 59-89, 1981.  

[18]  H. G. &. J. Provan, "Micromechanics theory of fatigue crack initiation and 

propagation," Engineering Fracture Mechanics , vol. 13, no. 4, pp. 963-977, 1980.  

[19]  M. G. &. F. Penta, "A gamma process model for the analysis of fatigue crack growth 

data," Engineering Fracture Mechanics, vol. 142, pp. 21-49, 2015.  

[20]  K. O. a. A. S. Kiremidjian, "Stochastic modeling of fatigue crack growth rate," 

Engineering Fracture Mechanics, vol. 29, no. 3, pp. 317-334, 1988.  

[21]  K. O. &. A. Kiremidjian, "A stochastic model for fatigue crack growth rate data," 

Journal of Engineering for Industry, vol. 109, pp. 13-18, 1987.  

[22]  R. G. Shigehiro Sakamoto, "Polynomial chaos decomposition for the simulation of 

non-Gaussian nonstationary stochastic processes," Journal of Engineering 

Mechanics, vol. 128, no. 2, pp. 190-201, 2002.  

[23]  R. G. &. P. Spanos, "Spectral techniques for Stochastic finite elements," Archives of 

Computational Methods in Engineering, vol. 4, no. 1, pp. 63-100, 1997.  



 

59 

 

[24]  O. L. M. &. O. Knio, Spectral Methods for Uncertainty Quantification: with 

Applications to Computational Fluid Dynamics, Springer Science & Business 

Media, 2010.  

[25]  R. G. &. S. F. Sanjoy Das, "Polynomial chaos representation of spatio-temporal 

random fields from experimental observations," Journal of Computational Physics, 

vol. 228, pp. 8726-8751, 2009.  

[26]  M. Rosenblatt, "Remarks on a multivariate transformation," The Annals of 

Mathematical Statistics, vol. 23, no. 3, pp. 470-472, 1952.  

[27]  T. Anderson, Fracture Mechanics: fundamentals and applications, CRC Press, 1991.  

[28]  K. L. &. A. E. D.M Frangopol, "Life-cycle cost design of deteriorating structures," 

Journal of Structural Engineering ASCE, vol. 123, pp. 1390-1401, 1997.  

[29]  K. P. Murphy, Machine Learning: A Probabilistic Perspective, Massachusetts: MIT 

Press, 2012.  

[30]  C. R. &. C. Williams, Gaussian Processes for Machine Learning, 

Cambridge,Massachusetts: MIT Press, 2006.  

[31]  B. H. &. P. G. D.A. Virkler, "The statistical nature of fatigue crack propagation," 

Journal of Engineering Materials and Technology, vol. 101, pp. 148-153, 1979.  

[32]  A. T. B. &. W. J. d. S. Gomes, "Stochastic fracture mechanics using polynomial 

chaos," Probabilistic Engineering Mechanics, vol. 34, pp. 26-39, 2013.  



 

60 

 

[33]  Z. A. Kotulski, "On effieciency of identification of a stochastic crack propagation 

model based on Virkler experimental data," Archives of Mechanics, vol. 50, no. 5, 

pp. 829-847, 1998.  

[34]  F. P. &. G. M. Grasso, "A four-parameters model for fatigue crack growth analysis," 

Frattura ed Integrità Strutturale, vol. 26, pp. 69-79, 2013.  

[35]  S. T. &. s. P. Asok Ray, "Stochastic modeling of fatigue crack propagation," Applied 

Mathematical Modeling, vol. 22, pp. 197-204, 1998.  

[36]  B. H. &. P. G. D.A. Virkler, "The statistical Nature of fatigue crack propagation," 

Air Force Flight Dynamics Laboratory, West Lafayette, 1978. 

[37]  J. B. &. S. Rolfe, Fracture and fatigue control in structures: Applications of fracture 

mechanics, Philadelphia: ASTM, 1999.  

[38]  L. E. P. &. F. T. U. Yanni Kouskoulas, "A Computationally Efficient Multivariate 

Maximum-Entropy Density Estimation (MEDE) Technique," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 42, no. 2, pp. 457-468, 2004.  

[39]  L. V. &. S. Boyd, "Semidefinite Programming," SIAM Review, vol. 38, no. 1, pp. 

49-95, 1996.  

[40]  W. Schutz, "Treatment of fracture toughness data for design purpose," in Practical 

Applications of Fracture Mechanics, AGARD-AG-257 , H. Liebowitz(ed.), 1980.  

[41]  C. Proppe, "Probabilistic analysis of multi-site damage in aircarft fuselages," 

Computational Mechanics, vol. 30, pp. 323-329, 2003.  



 

61 

 

[42]  F. A. V. N. H. K. Matthew J. Pais, "Enabling high-order integration of fatigue crack 

growth with surrogate modeling," International Journal of Fatigue, vol. 43, pp. 150-

159, 2012.  

 

 


