66 research outputs found

    Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid

    Full text link
    Sub-Nyquist time frequency packing technique was demonstrated for the first time in a super channel field trial transmission over long-haul distances. The technique allows a limited spectral occupancy even with low order modulation formats. The transmission was successfully performed on a deployed Australian link between Sydney and Melbourne which included 995 km of uncompensated SMF with coexistent traffic. 40 and 100 Gb/s co-propagating channels were transmitted together with the super-channel in a 50 GHz ITU-T grid without additional penalty. The super-channel consisted of eight sub-channels with low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness and reduced complexity with respect to higher order formats. At the receiver side, coherent detection was used together with iterative maximum-a-posteriori (MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully transmitted between Sydney and Melbourne within four 50GHz WSS channels (200 GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8 dB, comparable to the OSNR of the installed 100 Gb/s channels. The system reliability was proven through long term measurements. In addition, by closing the link in a loop back configuration, a potential SE*d product of 9254 bit/s/Hz*km was achieved

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    Tecnologias coerentes para redes ópticas flexíveis

    Get PDF
    Next-generation networks enable a broad range of innovative services with the best delivery by utilizing very dense wired/wireless networks. However, the development of future networks will require several breakthroughs in optical networks such as high-performance optical transceivers to support a very-high capacity optical network as well as optimization of the network concept, ensuring a dramatic reduction of the cost per bit. At the same time, all of the optical network segments (metro, access, long-haul) need new technology options to support high capacity, spectral efficiency and data-rate flexibility. Coherent detection offers an opportunity by providing very high sensitivity and supporting high spectral efficiency. Coherent technology can still be combined with polarization multiplexing. Despite the increased cost and complexity, the migration to dual-polarization coherent transceivers must be considered, as it enables to double the spectral efficiency. These dual-polarization systems require an additional digital signal processing (DSP) subsystem for polarization demultiplexing. This work seeks to provide and characterize cost-effective novel coherent transceivers for the development of new generation practical, flexible and high capacity transceivers for optical metro-access and data center interconnects. In this regard, different polarization demultiplexing (PolDemux) algorithms, as well as adaptive Stokes will be considered. Furthermore, low complexity and modulation format-agnostic DSP techniques based on adaptive Stokes PolDemux for flexible and customizable optical coherent systems will be proposed. On this subject, the performance of the adaptive Stokes algorithm in an ultra-dense wavelength division multiplexing (U-DWDM) system will be experimentally evaluated, in offline and real-time operations over a hybrid optical-wireless link. In addition, the efficiency of this PolDemux algorithm in a flexible optical metro link based on Nyquist pulse shaping U-DWDM system and hybrid optical signals will be assessed. Moreover, it is of great importance to find a transmission technology that enables to apply the Stokes PolDemux for long-haul transmission systems and data center interconnects. In this work, it is also proposed a solution based on the use of digital multi-subcarrier multiplexing, which improve the performance of long-haul optical systems, without increasing substantially, their complexity and cost.As redes de telecomunicações futuras permitirão uma ampla gama de serviços inovadores e com melhor desempenho. No entanto, o desenvolvimento das futuras redes implicará vários avanços nas redes de fibra ótica, como transcetores óticos de alto desempenho capazes de suportar ligações de muito elevada capacidade, e a otimização da estrutura da rede, permitindo uma redução drástica do custo por bit transportado. Simultaneamente, todos os segmentos de rede ótica (metropolitanas, acesso e longo alcance) necessitam de novas opções tecnológicas para suportar uma maior capacidade, maior eficiência espetral e flexibilidade. Neste contexto, a deteção coerente surge como uma oportunidade, fornecendo alta sensibilidade e elevada eficiência espetral. A tecnologia de deteção coerente pode ainda ser associada à multiplexação na polarização. Apesar de um potencial aumento ao nível do custo e da complexidade, a migração para transcetores coerentes de dupla polarização deve ser ponderada, pois permite duplicar a eficiência espetral. Esses sistemas de dupla polarização requerem um subsistema de processamento digital de sinal (DSP) adicional para desmultiplexagem da polarização. Este trabalho procura fornecer e caracterizar novos transcetores coerentes de baixo custo para o desenvolvimento de uma nova geração de transcetores mais práticos, flexíveis e de elevada capacidade, para interconexões óticas ao nível das futuras redes de acesso e metro. Assim, serão analisados diferentes algoritmos para a desmultiplexagem da polarização, incluindo uma abordagem adaptativa baseada no espaço de Stokes. Além disso, são propostas técnicas de DSP independentes do formato de modulação e de baixa complexidade baseadas na desmultiplexagem de Stokes adaptativa para sistemas óticos coerentes flexíveis. Neste contexto, o desempenho do algoritmo adaptativo de desmultiplexagem na polarização baseado no espaço de Stokes é avaliado experimentalmente num sistema U-DWDM, tanto em análises off-line como em tempo real, considerando um percurso ótico hibrido que combina um sistema de transmissão suportado por fibra e outro em espaço livre. Foi ainda analisada a eficiência do algoritmo de desmultiplexagem na polarização numa rede ótica de acesso flexível U-DWDM com formatação de pulso do tipo Nyquist. Neste trabalho foi ainda analisada a aplicação da técnica de desmultiplexagem na polarização baseada no espaço de Stokes para sistemas de longo alcance. Assim, foi proposta uma solução de aplicação baseada no uso da multiplexagem digital de múltiplas sub-portadoras, tendo-se demonstrado uma melhoria na eficiência do desempenho dos sistemas óticos de longo alcance, sem aumentar significativamente a respetiva complexidade e custo.Programa Doutoral em Engenharia Eletrotécnic

    Transmissores-recetores de baixa complexidade para redes óticas

    Get PDF
    Traditional coherent (COH) transceivers allow encoding of information in both quadratures and the two orthogonal polarizations of the electric field. Nevertheless, such transceivers used today are based on the intradyne scheme, which requires two 90o optical hybrids and four pairs of balanced photodetectors for dual-polarization transmission systems, making its overall cost unattractive for short-reach applications. Therefore, SSB methods with DD reception, commonly referred to as self-coherent (SCOH) transceivers, can be employed as a cost-effective alternative to the traditional COH transceivers. Nevertheless, the performance of SSB systems is severely degraded. This work provides a novel SCOH transceiver architecture with improved performance for short-reach applications. In particular, the development of phase reconstruction digital signal processing (DSP) techniques, the development of other DSP subsystems that relax the hardware requirement, and their performance optimization are the main highlights of this research. The fundamental principle of the proposed transceiver is based on the reception of the signal that satisfies the minimum phase condition upon DD. To reconstruct the missing phase information imposed by DD, a novel DCValue method exploring the SSB and the DC-Value properties of the minimum phase signal is developed in this Ph.D. study. The DC-Value method facilitates the phase reconstruction process at the Nyquist sampling rate and requires a low intensity pilot signal. Also, the experimental validation of the DC-Value method was successfully carried out for short-reach optical networks. Additionally, an extensive study was performed on the DC-Value method to optimize the system performance. In the optimization process, it was found that the estimation of the CCF is an important parameter to exploit all advantages of the DC-Value method. A novel CCF estimation technique was proposed. Further, the performance of the DC-Value method is optimized employing the rate-adaptive probabilistic constellation shaping.Os sistemas de transcetores coerentes tradicionais permitem a codificação de informação em ambas quadraturas e em duas polarizações ortogonais do campo elétrico. Contudo, estes transcetores utilizados atualmente são baseados num esquema intradino, que requer dois híbridos óticos de 90o e quatro pares de foto detetores para sistemas de transmissão com polarização dupla, fazendo com que o custo destes sistemas seja pouco atrativo para aplicações de curto alcance. Por isso, métodos de banda lateral única com deteção direta, também referidos como transcetores coerentes simplificados, podem ser implementados como uma alternativa de baixo custo aos sistemas coerentes tradicionais. Contudo, o desempenho de sistemas de banda lateral única tradicionais é gravemente degradado pelo batimento sinal-sinal. Nesta tese foi desenvolvida uma nova arquitetura de transcetor coerente simplificada com um melhor desempenho para aplicações de curto alcance. Em particular, o desenvolvimento de técnicas de processamento digital de sinal para a reconstrução de fase, bem como de outros subsistemas de processamento digital de sinal que minimizem os requerimentos de hardware e a sua otimização de desempenho são o foco principal desta tese. O princípio fundamental do transcetor proposto é baseado na receção de um sinal que satisfaz a condição mínima de fase na deteção direta. Para reconstruir a informação de fase em falta causada pela deteção direta, um novo método de valor DC que explora sinais de banda lateral única e as propriedades DC da condição de fase mínima é desenvolvido nesta tese. O método de valor DC facilita a reconstrução da fase à frequência de amostragem de Nyquist e requer um sinal piloto de baixa intensidade. Além disso, a validação experimental do método de valor DC foi executada com sucesso em ligações óticas de curto alcance. Adicionalmente, foi realizado um estudo intensivo do método de valor DC para otimizar o desempenho do sistema. Neste processo de otimização, verificou-se que o fator de contribuição da portadora é um parâmetro importante para explorar todas as vantagens do método de valor DC. Neste contexto, é proposto um novo método para a sua estimativa. Por último, o desempenho do método de valor DC é otimizado recorrendo a mapeamento probabilístico de constelação com taxa adaptativa.Programa Doutoral em Engenharia Eletrotécnic

    Minimization of Interchannel Interference E ects in Nyquist-WDM Systems

    Get PDF
    ABSTRACT: The need of increasing the capacity of current deployed optical networks to perform terabits transmissions has been driven to the development of superchannel systems, (principally based on Nyquist-WDM) to be carried out in flexible grid or gridless scenarios. Nevertheless, one of the main issues to be mitigated in these systems is the interchannel interference (ICI), whose effect is intensified when the spectral channel spacing is reduced (for further spectral efficiency increment). In this thesis, we present a study of the ICI effects in Nyquist-WDM systems by means of BER calculation as a function of several system parameters such as: frequency channel spacing, roll-off factor of the digital pulse-shaping filter, laser's linewidth, transmission distance, mark probability of the pseudo-random bit sequence, optical-to-signal noise ratio, among others. Besides, two methods enabling ICI mitigation are proposed: on one hand, a method based on FEC-coded sequence distribution among optical carriers for applications of multiple carriers (superchannels) as a single entity, and on the other hand, a method to perform nonsymmetrical demodulation (NSD) based on the k-means algorithm enabling time-varying distortions mitigation. In contradiction of techniques for ICI mitigation in recent art, these proposals avoid the use of multiple-input multiple-output equalizers or training sequences. Specifically, for NSD approach, information of adjacent channels is not required

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Subcarrier Multiplexing Based Transponder Design

    Get PDF
    This thesis presents the design and demonstration of high-speed transponders using analogue implemented subcarrier multiplexing (SCM) technique to simplify digital signal processing (DSP) for different applications. A 144-Gb/s filter bank multicarrier (FBMC) transceiver is numerically demonstrated for 2-km standard single mode fibre (SSMF) transmission. Without nonlinear or chromatic dispersion (CD) compensation nor channel equalization, the FBMC system outperforms the orthogonal frequency division multiplexing (OFDM) counterpart, and the transmission penalty for the 8-subcarrier FBMC system is 2.4 dB. For amplifier-free 80-km transmission, a 134-Gb/s coherent transceiver utilizing heterodyne detection and doubly differential (DD) quadrature phase shift keying (QPSK) is numerically demonstrated. Without CD compensation nor carrier recovery, transmission penalty and performance degradation for frequency offsets within ±2 GHz is negligible. To further improve interface rate, a 200-Gb/s DD QPSK transceiver using hybrid-assisted tandem single sideband (TSSB) modulation and digital coherent detection is numerically verified. However, guard bands and QPSK used in both transponders result in low spectral density, and conventional DD decoding degrades receiver sensitivity by 7 dB. To overcome these problems, a 209-Gb/s coherent transponder utilizing DD two amplitude/eight-phase shift keying (2ASK-8PSK) and 11-tap multi-symbol DD decoding is experimentally demonstrated, with an implementation penalty of 5.9 dB and a performance penalty of 1 dB for 100-km transmission. For long-haul application, a 62-GBaud SCM 16-ary quadrature amplitude modulation (16QAM) transceiver employing a single in-phase quadrature (IQ) mixer, simple transmitter-side DSP, and sub-band detection is demonstrated, giving spectral efficiency of ~2.7 b/s/Hz/polarization and OSNR penalty of 6.6 dB. By resorting to hybrid-assisted TSSB modulation, the aggregate symbol rate of the SCM transmitter is improved to 86 GBaud. With sub-band coherent detection and a 31-tap multi-input multi-output (MIMO) equalizer, an implementation penalty of 2 dB and spectral efficiency of ~3.6 b/s/Hz/polarization are achieved

    Equalização digital para sistemas de transmissão ópticos coerentes

    Get PDF
    This thesis focus on the digital equalization of fiber impairments for coherent optical transmission systems. New efficient and low-complexity equalization and mitigation techniques that counteract fiber nonlinear impairments are proposed and the tradeoff between performance and complexity is numerically assessed and experimentally demonstrated in metro and long-haul 400G superchannels-based transmission systems. Digital backpropagation (DBP) based on low-complexity split-step Fourier method and Volterra series nonlinear equalizers are experimentally assessed in an uniform superchannel system. In contrast with standard DBP methods, these techniques prove to be able to be implemented with larger step-sizes, consequently requiring a reduced number of multiplications, and still achieve a significant reach extension over linear equalization techniques. Moreover, given its structure, the complexity of the proposed Volterra-based DBP approach can be easily adjusted by changing the nonlinear filter dimension according to the system requirements, thus providing a higher flexibility to the nonlinear equalization block. A frequency-hybrid superchannel envisioning near-future flexible networks is then proposed as a way to increase the system bit-rate granularity. The problematic of the power-ratio between superchannel carriers is addressed and optimized for linear and nonlinear operation regimes using three distinct FEC paradigms. Applying a single FEC to the entire superchannel has a simpler implementation and is found to be a more robust approach, tolerating larger uncertainties on the system parameters optimization. We also investigate the performance gain provided by the application of different DBP techniques in frequency-hybrid superchannel systems, and its implications on the optimum power-ratio. It is shown that the application of DBP can be restricted to the carrier transporting the higher cardinality QAM format, since the DBP benefit on the other carriers is negligible, which might bring a substantially complexity reduction of the DBP technique applied to the superchannel.A presente tese foca-se na equalização digital das distorções da fibra para sistemas óticos de transmissão coerente. São propostas novas técnicas eficientes e de baixa complexidade para a equalização e mitigação das distorções não lineares da fibra, e o compromisso entre desempenho e complexidade é testado numericamente e demonstrado experimental em sistemas de transmissão metro e longa distância baseados em supercanais 400G. A propagação digital inversa baseada no método de split-step Fourier e equalizadores não lineares de séries de Volterra de baixa complexidade são testadas experimentalmente num sistema baseado em supercanais uniformes. Ao contrário dos métodos convencionais utilizados, estas técnicas podem ser implementadas utilizando menos interações e ainda extender o alcance do sistema face às técnicas de equalização linear. Para além disso, a complexidade do método baseado em Volterra pode ser facilmente ajustada alterando a dimensão do filtro não linear de acordo com os requisitos do sistema, concedendo assim maior flexibilidade ao bloco de equalização não linear. Tendo em vista as futuras redes flexı́veis, um supercanal hı́brido na frequência é proposto de modo a aumentar a granularidade da taxa de transmissão do sistema. A problemática da relação de potência entre as portadoras do supercanal é abordada e optimizada em regimes de operação linear e não linear utilizando paradigmas diferentes de códigos correctores de erros. A aplicação de um único código corrector de erros à totalidade do supercanal mostra ser a abordagem mais robusta, tolerando maiores incertezas na optimização dos parâmetros do sistema. O ganho de desempenho dado pela aplicação de diferentes técnicas de propagação digital inversa em sistemas de supercanais hı́bridos na frequência é tamém analizado, assim como as suas implicações na relação óptima de potência. Mostra-se que esta pode ser restringida à portadora que transporta o formato de modulação de ordem mais elevada, uma vez que o benefı́cio trazido pelas restantes portadotas é negligenciável, permitindo reduzir significativamente a complexidade do algoritmo aplicado.Programa Doutoral em Telecomunicaçõe
    corecore