486 research outputs found

    Synthetic Aperture Interferometric Imaging Using a Passive Microwave Coding Device

    No full text
    International audience—There has been growing interest in the use of microwave synthetic aperture radiometers since their could solve the trade-off between the image resolution and the antennas aperture size. Compared to classical techniques, SAIR (Synthetic Aperture Interferometric Radiometer) can reach a large field of view (FOV) and high imaging rate. Nevertheless, the architecture of a conventional radiometer still bulky and costly. In this paper, a passive combining technique is proposed to reduce the hardware complexity as well as the dimensional requirements of the receiving antennas. Experimental results are presented to highlight the effectiveness of the proposed technique

    Computational polarimetric microwave imaging

    Get PDF
    We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target---often applied in microwave computational imaging schemes---is thus extended to retrieve the susceptibility tensors, and hence providing additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure

    Phaseless computational imaging with a radiating metasurface

    Full text link
    Computational imaging modalities support a simplification of the active architectures required in an imaging system and these approaches have been validated across the electromagnetic spectrum. Recent implementations have utilized pseudo-orthogonal radiation patterns to illuminate an object of interest---notably, frequency-diverse metasurfaces have been exploited as fast and low-cost alternative to conventional coherent imaging systems. However, accurately measuring the complex-valued signals in the frequency domain can be burdensome, particularly for sub-centimeter wavelengths. Here, computational imaging is studied under the relaxed constraint of intensity-only measurements. A novel 3D imaging system is conceived based on 'phaseless' and compressed measurements, with benefits from recent advances in the field of phase retrieval. In this paper, the methodology associated with this novel principle is described, studied, and experimentally demonstrated in the microwave range. A comparison of the estimated images from both complex valued and phaseless measurements are presented, verifying the fidelity of phaseless computational imaging.Comment: 18 pages, 18 figures, articl

    Photonic wideband phased array: an optical time steered antenna based on a new true time delay unit

    Get PDF
    L’attività di ricerca svolta durante il corso di dottorato e descritta dettagliatamente all’interno della tesi è stata diretta al progetto di una innovativa rete ottica di formazione del fascio per antenne a schiera a banda larga esenti dal fenomeno del beam squint. La rete di formazione del fascio proposta è basata sull’utilizzo di un chip ottico integrato modulare che consente di realizzare il True Time Delay implementando switched delay lines. Le caratteristiche del sistema ne consentono l’utilizzo in architetture ad array e a subarray, e la sua modularità rende possibile, in principio, il pilotaggio del sistema radiante, integrando in un unico componente le linee di ritardo di ciascun elemento della schiera. Nella sua prima parte la tesi di dottorato introduce alle antenne ad alte prestazioni richieste dalle moderne applicazioni, focalizzando l’attenzione sui Phased Array, sistemi radianti destinati a svolgere un ruolo di primo piano grazie alla loro flessibilità e potenzialità. Un’analisi ragionata delle soluzioni proposte in letteratura viene, quindi, proposta al fine di evidenziare i principi di funzionamento e le principali problematiche connesse all’implementazione di reti ottiche di formazione del fascio. Inoltre, vengono descritte e discusse le architetture ottiche utilizzate sia per il controllo della fase che per il controllo del ritardo. Successivamente viene presentata la nuova unità ottica integrata di tipo True Time Delay. Le configurazioni di utilizzo del chip ottico studiate e messe a punto durante gli anni del corso di dottorato vengono presentate nel dettaglio, chiarendo le scelte e le strategie di progetto utilizzate in modo da ottimizzare le prestazioni del sistema. Viene presentato il progetto di un prototipo di antenna a schiera basato sul nuovo modulo True Time Delay e un modello accurato dell’intero sistema, implementato allo scopo di verificare il funzionamento dell’antenna e determinarne le prestazioni. Il modello sviluppato tiene in conto delle reali caratteristiche dei dispositivi disponibili in commercio da utilizzarsi all’interno della rete e del sistema radiante, degli inevitabili errori realizzativi relativi a ciascun componente e delle caratteristiche peculiari del nuovo modulo di ritardo. Per compensare gli effetti degli errori suddetti è stata prevista all’interno della rete un’unità di compensazione. Per rendere semplice ed efficace determinarne i parametri è stato sviluppato un algoritmo evolutivo capace di sfruttare al meglio le potenzialità dell’unità così da evitare inutili complessità. Infine, viene proposta una nuova architettura, interamente ottica, di una rete di formazione del fascio per antenne a schiera capaci di irradiare sia fasci somma che fasci differenza beam squint free

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Front-end receiver for miniaturised ultrasound imaging

    Get PDF
    Point of care ultrasonography has been the focus of extensive research over the past few decades. Miniaturised, wireless systems have been envisaged for new application areas, such as capsule endoscopy, implantable ultrasound and wearable ultrasound. The hardware constraints of such small-scale systems are severe, and tradeoffs between power consumption, size, data bandwidth and cost must be carefully balanced. To address these challenges, two synthetic aperture receiver architectures are proposed and compared. The architectures target highly miniaturised, low cost, B-mode ultrasound imaging systems. The first architecture utilises quadrature (I/Q) sampling to minimise the signal bandwidth and computational load. Synthetic aperture beamforming is carried out using a single-channel, pipelined protocol in order to minimise system complexity and power consumption. A digital beamformer dynamically apodises and focuses the data by interpolating and applying complex phase rotations to the I/Q samples. The beamformer is implemented on a Spartan-6 FPGA and consumes 296mW for a frame rate of 7Hz. The second architecture employs compressive sensing within the finite rate of innovation (FRI) framework to further reduce the data bandwidth. Signals are sampled below the Nyquist frequency, and then transmitted to a digital back-end processor, which reconstructs I/Q components non-linearly, and then carries out synthetic aperture beamforming. Both architectures were tested in hardware using a single-channel analogue front-end (AFE) that was designed and fabricated in AMS 0.35μm CMOS. The AFE demodulates RF ultrasound signals sequentially into I/Q components, and comprises a low-noise preamplifier, mixer, programmable gain amplifier (PGA) and lowpass filter. A variable gain low noise preamplifier topology is used to enable quasi-exponential time-gain control (TGC). The PGA enables digital selection of three gain values (15dB, 22dB and 25.5dB). The bandwidth of the lowpass filter is also selectable between 1.85MHz, 510kHz and 195kHz to allow for testing of both architectural frameworks. The entire AFE consumes 7.8 mW and occupies an area of 1.5×1.5 mm. In addition to the AFE, this thesis also presents the design of a pseudodifferential, log-domain multiplier-filter or “multer” which demodulates low-RF signals in the current-domain. This circuit targets high impedance transducers such as capacitive micromachined ultrasound transducers (CMUTs) and offers a 20dB improvement in dynamic range over the voltage-mode AFE. The bandwidth is also electronically tunable. The circuit was implemented in 0.35μm BiCMOS and was simulated in Cadence; however, no fabrication results were obtained for this circuit. B-mode images were obtained for both architectures. The quadrature SAB method yields a higher image SNR and 9% lower root mean squared error with respect to the RF-beamformed reference image than the compressive SAB method. Thus, while both architectures achieve a significant reduction in sampling rate, system complexity and area, the quadrature SAB method achieves better image quality. Future work may involve the addition of multiple receiver channels and the development of an integrated system-on-chip.Open Acces

    FPGA Based Diagnostics for the Mega-Amp Spherical Tokamak Upgrade

    Get PDF
    Terrestrial fusion power is a low carbon alternative to conventional power sources with reduced waste and proliferation concerns relative to fission power. The complexity of fusion research devices means that many high performance diagnostics are necessary to investigate the underlying physics of the environment. Field Programmable Gate Array technology provides a powerful and flexible option when designing bespoke instrumentation

    GigaHertz Symposium 2010

    Get PDF
    corecore