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Foreword

Signal processing is an enabling technology crucial to all areas
of defence and security. It is called for whenever humans and
autonomous systems are required to interpret data (i.e. the sig-
nal) output from sensors. This leads to the production of the
intelligence on which military outcomes depend. Signal pro-
cessing should be timely, accurate and suited to the decisions
to be made. When performed well it is critical, battle-winning
and probably the most important weapon which you’ve never
heard of.

With the plethora of sensors and data sources that are
emerging in the future network-enabled battlespace, sensing
is becoming ubiquitous. This makes signal processing more
complicated but also brings great opportunities.

The second phase of the University Defence Research Col-
laboration in Signal Processing was set up to meet these com-
plex problems head-on while taking advantage of the oppor-
tunities. Its unique structure combines two multi-disciplinary
academic consortia, in which many researchers can approach
different aspects of a problem, with baked-in industrial collab-
oration enabling early commercial exploitation.

This phase of the UDRC will have been running for 5 years
by the time it completes in March 2018, with remarkable re-
sults. This book aims to present those accomplishments and
advances in a style accessible to stakeholders, collaborators and
exploiters.

Paul Thomas, Dstl
UDRC Phase 2 Project Technical Authority
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Chapter 1

Introduction

The University Defence Research Collaboration (UDRC) in
Signal Processing is an ongoing academic venture between the
UK Ministry of Defence (MOD) and the Engineering and Phys-
ical Sciences Research Council (EPSRC). This book describes
phase 2 of the UDRC, a 5-year £11.5M programme centred on
an £8M grant funded equally by EPSRC and MOD, which ran
from 2013 to 2018. The aims of the UDRC are to:

1. develop signal processing science and technology to ad-
dress military challenges,

2. develop a world class UK skills base in signal processing
for defence,

3. form a key component of the wider community of practice
in defence signal processing,

4. facilitate the rapid exploitation of science and technol-
ogy in the signal processing domain to address military
requirements.

Phase 2 followed the successful UDRC phase 1, which com-
menced in 2009, finished in 2013 and explored themes of detec-
tion, tracking, classification and multimodal fusion. The phase
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1. INTRODUCTION

2 project was larger both in scope and resource and addressed
the topic of Signal processing in a networked battlespace. The
aims of the UDRC accord well with the objectives of EPSRC,
which has the published mission to “Promote and support ...
high quality basic, strategic and applied research and related
postgraduate training in engineering and the physical sciences,
advance knowledge and technology and provide trained scien-
tists and engineers, which meet the needs of users and beneficia-
ries, thereby contributing to the economic competitiveness of
the United Kingdom” [1]. The UDRC’s technical aims further
align with the EPSRC’s Digital Signal Processing research area
under its Information Communication and Technology theme.

Through the UDRC, MOD’s Defence Science and Technol-
ogy Laboratory (Dstl) and EPSRC have formed a relationship
which benefits both parties as well as meeting the objectives
above. The access to deep technical research and senior aca-
demics in the UDRC helps maintain the vital technical currency
of MOD’s principal internal source of independent scientific
and technology advice. Additionally, the relationships formed
between UDRC academics, MOD stakeholders and defence in-
dustry are key to developing in the minds of the researchers an
understanding of real-world constraints and demands.

The UDRC phase 2 was composed of a pair of consortiums,
one based in Edinburgh (Edinburgh University and Heriot-
Watt University, joined in 2016 by Queen’s University Belfast:
the Edinburgh Research Partnership or ERP), and the other
originally made up of four universities (Loughborough, Strath-
clyde, Surrey and Cardiff: LSSC). LSSC became LSSCN in
2015 following the consortium lead Professor Jonathon Cham-
bers’ installation as Head of the Communications, Sensors, Sig-
nal and Information Processing Group at the School of Engi-
neering at Newcastle University. Edinburgh University is re-
sponsible for UDRC-wide coordination activities such as the
management of the website and organisation of the annual
conference. Each consortium had a steering group (known as
the Consortium Steering Group: CSG at LSSCN and Strate-

8
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Figure 1.1: UDRC phase 2; composition of each consortium and links
with funding bodies and industrial partners

gic Advisory Group: SAG at ERP) with representation from
senior academics, industry (both defence primes and small and
medium enterprises), Dstl and EPSRC, as well as independent
advisers with longstanding defence signal processing expertise.
This balance was important as it ensured that the projects
achieved the best combination of academic excellence, defence
relevance and a high likelihood of industrial exploitation. The
composition of each group is shown in table 1.1 and illustrated
in figure 1.1. The figure also shows the grant from EPSRC and
MOD distinct from subsequent MOD funding (see §1.2.1).

The UDRC phase 2 supported 24 academic staff, 28 Re-
search Associates (RAs) and 4 project management staff. Dur-
ing 2013 to 2018 over 20 PhD students have worked on UDRC
projects.

Each consortium’s programme of work covered a number
of individual projects. In most cases these were run by an

9



1. INTRODUCTION

Table 1.1: Composition of the steering groups of the LSSCN (Lough-
borough, Surrey, Strathclyde, Cardiff, Newcastle) and ERP (Edinburgh
Research Partnership) consortiums

LSSCN ERP
Independent  Prof. Moeness Amin Prof. Alfred O. Hero
expert(s) (Villanova U.) (U. Michigan)

Alan Gray

(ex Royal Signals, DERA)
Prof. Edward Stansfield
(ex Thales)

Industry Atlas Elektronik BAE Systems
Kaon Leonardo
Leonardo Roke
The Mathworks SeeByte
Prismtech QinetiQ
QinetiQ Thales
Thales

Texas Instruments

Government EPSRC EPSRC
Dstl Dstl
Universities ~ Loughborough Edinburgh
Strathclyde Heriot-Watt
Surrey Queen’s Belfast
Cardiff
Newcastle

RA with academic staff retaining control of the research direc-
tion. Each project was overseen by Dstl whose staff were tasked
with identifying exploitation routes via a MOD programme or
other route. Projects were grouped into research themes loosely
aligned to common sensor signal processing tasks. These tasks
ranged from processing which occurs close to the sensor front
end (e.g. compressive sensing), through higher level activi-
ties like detecting threats and anomalies, to implementations
in hardware. The list of projects grouped by research theme

10



1.1. Exploitation

Defence Procurement
. Other Research
Defence Industry
MOD Research

OD Advice
Application Identified

IDYD DY DTDEDID

Figure 1.2: The UDRC's exploitation model

is shown in table 1.2. More details of the work undertaken in
each theme is given in chapters 2 — 6.

1.1 Exploitation

The UDRC’s research activities are, by design, low Technology
Readiness Level (TRL 1 - 4). Exploitation of this kind of fun-
damental work often takes a long time and goes through many
steps of validation, concept refinement and benefit assessment.
Therefore, the traditional metric of military exploitation only
having occurred when the technology in question is in-service
in military equipment is too blunt to measure the utility of
UDRC research, and does not capture alternative exploitation
paths such as commercial exploitation and support to MOD
advice and decisions. The UDRC uses a richer model, as il-
lustrated in figure 1.2, to capture milestones along the path of
exploitation. The following describe select categories from the
figure in more detail.

11



1. INTRODUCTION

Table 1.2: Current exploitation stage of each of the UDRC phase 2
projects divided according to research theme (and associated chapter)
with exploitation routes identified. Key for exploitation stage column:
App. |d — application identified, MOD R. — MOD research, MOD Ad. —
MOD advice, D. Ind. — defence industry, D. Pr. — defence procurement.

Theme Cons. Project Stage Exploitation
Sensing and ERP Compressive sensing MOD R. Electronic
signal sepa- surveillance
ration
(Ch. 2) D. Ind. Radar imaging
D Pr. Raman spec-
troscopy
LSSCN Signal separation MOD R. Audio blind-
source separa-
tion
Beamforming D. Ind. Sonar arrays
MOD
Ad.
Multi-sensor LSSCN MIMO radar Industry Cognitive radar
methods
(Ch. 3) D. Ind. Radar ATR
ERP MIMO sonar MOD R. Underwater ob-
ject classification
D. Ind.
Sensor registration D. Ind. Deployable sen-
sor networks
Distributed detection  App. Id Tracking faint
targets
Sensor man- ERP Sensor management MOD R. Space situation
agement for tracking awareness
(Ch. 4) Maritime sensor
fusion
LSSCN Inference with do- D. Ind. CBR source term
main knowledge estimation
Uncertainty in game  Research Radar waveform
theory design
App. Id Multi-target
tracking
Threat LSSCN  Statistical anomaly  D. Ind. Maritime SA
refinement detection
(Ch. 5) MOD R.  Behaviour recog-
nition
Anomaly detection in ~ MOD R. Cyber defence
networks
ERP Anomalous be- MOD R. Wide-area mo-
haviour detection tion imagery
Implementation ERP Efficient computa- Research  Image classifica-
tion tion
(Ch. 6) Distributed algo- MOD R. Distributed ES
rithms
LSSCN  Low-complexity algo-  D. Ind. Large sonar ar-

rithms

rays
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1.1. Exploitation

Research: fundamental or applied research conducted in
universities. Funding will generally come from the Re-
search Councils. Exploitation at this level will mean a
continuation of the UDRC research in areas linked di-
rectly or indirectly with the UDRC.

Application identified: MOD, or industry partners, have
identified an exploitation route for UDRC research. Dstl
and industry work with researchers to understand the
implications of the chosen scenario for algorithm devel-
opment, and the effort involved in their transplant.

MOD advice: the use of UDRC outputs to provide advice
and guidance to MOD through studies, reports, technol-
ogy roadmaps, horizon scanning. Sources of finance in-

clude MOD Chief Scientific Adviser (CSA) funding.

MOD research: the research undertaken in the UDRC is
taken on and developed further, perhaps toward a stand-
alone or integrated demonstration, in an applied research
project. Sources of finance come from MOD CSA| includ-

ing Dstl funding and Defence and Security Accelerator
(DASA) projects.

Defence industry: the incorporation of UDRC technology
into a product manufactured by industry. Industry gen-
erally uses its own funding to engineer the system that
carries the UDRC output.

Defence procurement: UDRC research output exists, at
a high TRL level, in a product procured by MOD.

During UDRC phase 2, Dstl’s brief has been to understand
each project’s aims and match them to relevant military re-
quirements. Dstl has worked with academics to move towards
exploitation by using such things as real data, relevant scenar-
ios, real-world constraints or realistic noise and clutter models,
and made the link back to MOD capability advisers or require-
ments owners.

13



1. INTRODUCTION

As phase 2 matured and with projects developing at dif-
fering paces, individual project requirements became less ho-
mogeneous. Dstl has been proactive in matching opportunities
to the exploitation status of the research. In some instances
this meant supporting TRL-raising activities and technology
demonstration. There are other projects, however, where the
task amounted to understanding the academic concept so that
deep technical understanding informed advice to MOD. UDRC
— MOD interaction increasingly became supported by directed
contracts (see §1.2.1). This reflected the fact that Dstl’s job was
not just to ‘get the word out’ to prospective funding streams.
Rather MOD projects with a signal processing need have come
to know that the UDRC is a viable route by which novel tech-
nologies can be developed, and are keen to undertake direct
exploitation of UDRC research.

All UDRC phase 2 projects have undertaken ezploitation
campaigns. These time-bounded applications of academic re-
search (typically over the course of 12 — 18 months) to a particu-
lar problem area ensured UDRC researchers considered a real-
world scenario. Such campaigns brought benefit both MOD
and academic researchers by introducing diversity and impact
into the research programme and allowed Dstl to identify mul-
tiple relevant exploitation routes. Campaigns have been sup-
ported by data sets and metrics from the relevant application
area. Two illustrative examples of research applied in different
campaigns are:

e distributed data fusion for accurate registration of sen-
sors applied to sonobuoys and SAPIENT networked base
protection sensors (see §3.3);

e inference using domain knowledge has been shown by
UDRC researchers to better track ballistic missiles, and
is a method being developed for CBR source term esti-
mation overseen by Dstl’s Hazard Assessment Simulation
and Prediction Group (§4.1).

14



1.2. Defence development and advice

There are examples across all projects —looked at in more detail
in the following chapters. Exploitation campaigns are listed in
table 1.2 with an estimate of the position in the exploitation
model as shown in figure 1.2.

1.2 Defence development and advice

These activities support the strategic objective to exploit signal
processing science and technology to address military require-
ments.

1.2.1 Enabling contracts

Within the UDRC phase 2, in addition and in parallel to the
EPSRC grant, a flexible contract tasking framework between
Dstl and each consortium was established. This provides Dstl
with the ability to direct researchers from either consortium to
focus on emergent short-to-medium term defence-specific signal
processing problems. These projects are aimed at raising the
TRL of the research from 1 — 3 to 4 — 6. The objectives of this
contracting framework are:

e to further develop and refine research carried out under
the wider UDRC signal processing programme, to more
sharply focus on defence-specific problems;

e to provide support and assistance to the independent
technical review and assessment of signal processing el-
ements included in other parts of MOD’s research pro-
gramme by providing access to the deep technical exper-
tise within the academic consortiums.

These contracts, totalling over £750k, have allowed Dstl projects
rapid access to the output of UDRC research, for example to
modify and specify algorithms to a defence need, or to pro-
vide advice on the deployment of a technique in a particular
scenario. They represent additional value that the UDRC has

15
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Table 1.3: Projects let through the UDRC enabling contracts

Project title MOD exploitation University Academic Lead
Tracking and associa- Image  processing  Heriot-Watt Clark
tion: state of the art re- and tracking
view
Application of novel Space situation  Heriot-Watt Clark
track and association  awareness (SSA)
methods for space
situation awareness
Innovative underwater Maritime freedom Heriot-Watt Clark
track motion analysis  of manoeuvre
concepts
Raman spectroscopy of  Explosive sub- Edinburgh Davies
mixtures of chemicals stances  detection
and identification
(ESDI)

Tracking and associa- Image  processing  Heriot-Watt Clark
tion and tracking
Deconvolution of Ra-  ESDI Edinburgh Davies
man spectral mixtures
(phase 2: application)
Temporal anomaly de-  Undisclosed Heriot-Watt Robertson
tection
Mobile Ad-hoc Sensor  Electronic surveil- Edn'lburgh Thompson'

Heriot-Watt Sellathurai
Networks lance
Tracking techniques for ~ SSA Heriot-Watt Clark
tracking objects in geo-
stationary orbit
Self-localisation  tech- ~ Maritime situation  Heriot-Watt Clark
niques awareness
Raman spectral analysis ~ ESDI Edinburgh Davies
(phase 3: consultancy)
Temporal anomaly de-  Undisclosed Loughborough  Lambotharan

tection

O

f the projects.

added over and above its £8M base cost. Table 1.3 gives details

1.2.2 Knowledge Transfer Meeting

1

6

The UDRC Knowledge Transfer Meeting is an annual event,
held over the course of a day at Dstl Porton Down, which
facilitates two-way knowledge exchange between Dstl subject
matter experts and UDRC academics. The meeting evolved a
format by which the meeting is divided into two parts, with
university partners initially presenting their work in open ses-
sion. Subsequently, Dstl runs workshops where government and



1.3. Advancing science and technology

academic scientists brainstorm solutions to MOD problems of
current interest or future capability need. The outputs of the
workshops have been used as a basis to refresh UDRC tech-
nical challenges, and have also informed exploitation through
core research, enabling contracts or in understanding emerging
MOD signal processing requirements. During the five years,
workshops covered such topics as audio source separation, in-
formation fusion for classification, spectral unmixing, multiple-
input multiple-output methods, sensor registration, tracking of
extended targets and signal processing for data science.

1.3 Advancing science and technology

Alongside direct uptake by MOD, the UDRC has addressed its
first aim by facilitating the development of science and tech-
nology in the signal processing domain to tackle military chal-
lenges. Various activities have increased the interaction be-
tween academic and applied endeavours, furthering the state
of the art in signal processing when applied to defence prob-
lems.

1.3.1 Sensor Signal Processing for Defence
conference

The UDRC holds an annual open international conference: Sen-
sor Signal Processing for Defence (SSPD), continuing the prac-
tice established during phase 1. SSPD is an unclassified confer-
ence and provides an opportunity for signal processing scien-
tists from the international community to present their latest
findings to fellow researchers and practitioners, and publish
in peer-reviewed literature. The emphasis of the conference is
given to areas that play a substantial role in improving the per-
formance of military systems. Topics include, but are not lim-
ited to array signal processing; image processing; radar, sonar
and acoustic signal processing; multimodal signal processing;
multi-target tracking; data fusion; sensor management; source

17



1. INTRODUCTION

separation; target detection and identification; distributed sig-
nal processing; low size weight and power solutions.

Technical sponsorship is provided by the IEEE Signal Pro-
cessing Society and proceedings are indexed on IEEE XPLORE
[2]. There are defence and academic keynotes, and the confer-
ence also includes both industry and military panel discussions.
During UDRC phase 2 the SSPD has attracted high quality in-
ternational academic keynote speakers from, among others, the
US Army Research Laboratory, Australia’s DST Group, Ohio
State University, Fraunhofer FKIE, Delft University, the Uni-
versity of Naples, Villanova University. These have been in
addition to UK keynotes from MOD and Dstl.

1.3.2 UDRC Summer School

The UDRC runs an annual summer school. The aim is to offer
an excellent taught signal processing course pitched at Masters
level. The course attracts researchers in defence, industry, gov-
ernment and academia with interests in signal processing. Ex-
perience gained from the first UDRC summer school in 2013 in-
dicated that a limit of 50 students offers optimal conditions for
productive study, and so entrants must apply to attend. The
course is divided into four one-day modules allowing a range
of signal processing topics to be covered at pace. To ensure
that participants are equipped to apply this work to practical
solutions, the summer school is delivered through traditional
lectures and tutorials on set exercises supervised by leading
experts from across the UK signal processing community. In
addition, the school has included invited international speakers
discussing advanced topics. The objectives of the school are to:

e fill gaps in knowledge for signal processing engineering
research students and industrial and government practi-
tioners,

e facilitate the process of taking new theoretical develop-
ments into practical engineering applications,

18



1.3. Advancing science and technology

e stimulate new collaborations in this field,

e cducate and enthuse the next generation of signal pro-
cessing experts.

Phase 2 UDRC summer schools are listed in table 1.4. In all
years the school has been oversubscribed, and during the phase
2 period MOD alone has sent over 50 students. The course has
also proved popular with UK industry and has even seen at-
tendees from US and European government labs. The impact
on students is not only improved signal processing research
and development expertise but also a deeper appreciation of
techniques to address problems in topics with broad defence
application like detection and tracking, compressive sensing,
anomaly detection, and source separation. From a government
point of view this results in more effective oversight of con-
tracted work in these areas. Furthermore, attendees are made
aware of developments in the state of the art which allow gov-
ernment and industry projects to benefit from the latest algo-
rithmic developments in signal processing.

1.3.3 Theme Meetings and Challenge Workshops

Theme meetings are held twice a year; a list is given in table 1.5.
These are designed to bring researchers together to look deeply
at a set of problems linked by a common signal processing tech-
nical theme. These meetings have been ‘closed’, in that they
are restricted to members of the UDRC only and fall under the
terms and conditions of the consortium agreement. This allows
researchers to present findings and benefit from feedback at a
very early stage without consideration of intellectual property
or the need to prepare results for publication. Attendance and
presentation from industry partners and Dstl is invited and this
opportunity has been enthusiastically accepted. This has cre-
ated an atmosphere of collaboration focussed on realising the
potential benefits of the technology. Selected themed meetings
have been more open, when it was clear that the UDRC would

19
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Table 1.4: UDRC summer schools: dates, locations and topics covered

Dates Location Topic

22-26 Jun 2013 Heriot-Watt  Finite set statistics

23-27 Jun 2014  Heriot-Watt  Tracking;
Compressive sensing;
Anomaly detection;
Source separation

20-23 Jul 2015  Surrey Statistical signal processing;
Tracking;
Pattern recognition and classification;
Source separation

27-30 Jun 2016  Edinburgh Statistical signal processing;
Tracking;
Pattern recognition and classification;
Source separation

26-29 Jun 2017  Surrey Statistical signal processing;
Radar processing and tracking;
Machine learning;
Source separation and beamforming

benefit from interaction with another research community. For
example, the meeting on “Signal processing for autonomous
systems” in 2014 was held jointly with researchers from the
Autonomous Systems Underpinning Research (ASUR) project.
Similarly, the meeting on “Data science, signal processing and
defence” in November 2017 was hosted by the Alan Turing In-
stitute, a major focus for UK academia’s data science efforts.
Dstl ran Challenge Workshops during theme meetings. This
initiative consisted of presentations of military signal process-
ing problems together with data and a challenge objective. Re-
searchers competed against each other to provide the best solu-
tion to the Dstl problem before the challenge deadline (usually
8 — 12 weeks from the date of the themed meeting). The compe-
titions often began with a syndicated discussion session where
the UDRC researchers brainstormed ideas to address the prob-
lems. These sessions were valued by the participants for the
inspiration and problem awareness that they brought. Com-

20



1.3. Advancing science and technology

Table 1.5: Theme meetings during the UDRC phase 2

Date Location Theme

31 Oct 2013  Edinburgh Source separation and sparsity

28 May 2014  Surrey Anomaly detection

10 Nov 2014  Heriot-Watt Signal processing for autonomous sys-
tems

(joint with the ASUR project)
29 May 2015  Strathclyde MIMO and SAR
24 Nov 2015  Strathclyde Hardware and implementation
17 May 2016  Cardiff Image and video processing
23 Nov 2016  Heriot-Watt Space and tracking
(joint with the UK Astrodynamics
Community of Interest)
16 May 2017 Newcastle Underwater sensing, signal processing
and communications
29 Nov 2017  Alan Turing Data science, signal processing and de-
Institute fence
(joint with the Alan Turing Institute)

petition entries were assessed according to an openly available
marking scheme and winners were awarded a prize which, while
having negligible value, was nevertheless unique.

Results from the challenges were fed back by Dstl into
the originating MOD project, providing the researchers with a
chance to showcase potential solutions on a very short timescale.
While not a promised outcome, worthy entries often spawned
a follow-on project with Dstl, via the enabling contract mech-
anism (§1.2.1). Previous and current challenges are detailed in
table 1.6. Highlights from specific challenges are expanded on
in chapters 2 — 6.

1.3.4 UDRC publicity

The UDRC website [3] has been up and running since the in-
ception of the UDRC. Analysis shows that web site traffic is
generally evenly distributed throughout the year with increased
activity coincident with UDRC events — summer school regis-

21



1. INTRODUCTION

Table 1.6: UDRC Challenge Workshop subjects, deadlines, winners and
exploitation routes

Challenge Presented  Deadline Winner Exploitation

Spectral  de- Oct 2013 May 2014 V(V]gélinbur h) Non-disruptive

convolution g hazardous sub-
strance identifica-
tion

Cyber situa- Oct 2013 May 2014 Network  surveil-

tion awareness lance and cyber
defence

Wide-area May 2014  Apr 2015 B(?I)i:trig’t—Watt) Aerial surveillance

motion im-

agery anomaly

detection

Ground- May 2014 Oct 2014 Y(V?Egd}iz%ﬁlr’ h) IED detection

penetrating &

radar anomaly

detection

Underwater Nov 2014 Jan 2015 Y(VLIXJ’OU hborough) Maritime mine

Automatic & € countermeasures

Target Recog-

nition

Temporal Nov 2014 Mar 2015 Izirz)lﬁoﬁ}gziiﬁ’ h) Not disclosed

anomaly & &

detection

Synthetic May 2015 Oct 2015 Target detection in

aperture radar radar

processing

Golden Don- May 2015  Sep 2015 ?E“ziﬁﬁffh) Electronic surveil-

gle g lance

Raspberry Pi Nov 2015 Apr 2017 V(Vséi:thclydc) Electronic surveil-
lance

Occlusion de- May 2016 Nov 2016 Imagery process-

tection (set by ing

Roke)

Orbital object  Nov 2016 Jun 2017 SSA

tracking

22



1.3. Advancing science and technology

tration and conference submission in particular. Under two-
thirds of visitors are UK-based, indicating that there is signif-
icant international interest. The largest contributors among
these are France, USA, India and China. The most popular
page is the SSPD conference front page. The website contains
links to the phase 1 of the UDRC thus ensuring continuity with
previous work and researchers. This helps to foster a single
defence signal processing academic community. In December
2014 the first biannual UDRC Newsletter was sent out to all
those affiliated with the UDRC and those who have subscribed
to UDRC updates, informing the recipients of important dates
and links to events.

1.3.5 Non-defence applications of UDRC
research

Although the UDRC exists primarily to develop science and
scientists for defence-related applications, there are numerous
opportunities for the exploitation of the developed techniques
in areas outside the defence sphere. This chimes well with EP-
SRC’s broad remit, as well as MOD’s additional strategic pri-
ority to contribute to the UK’s prosperity and UK wealth cre-
ation. Non-defence applications of UDRC research are shown
in figure 1.3 together with a mapping from UDRC research
to application area. The areas align broadly with EPSRC’s
strategic themes. Mapping exercises such as this one provide
assurance to MOD’s civil-sector partners that the funded re-
search has a broad scope and strengthens the case for ongoing
collaboration and further funding opportunities.

The following chapters expose in detail the work undertaken
during phase 2 of the UDRC. Chapters are organised by re-
search theme as in table 1.2. The book concludes with a sum-
mary of highlights and makes recommendations for the future.
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Figure 1.3: UDRC research in areas broadly aligned with the EPSRC
strategic themes (columns). Horizontal arrows represent the research
output from ERP (blue) and LSSCN (red). Abbreviations are 1, under-
water robotics; 2, source separation; 3, micro-Doppler; 4, sensor regis-
tration; 5, anomaly detection.
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Chapter 2

Sensing and signal
separation

Extracting signals of interest and suppressing interference from
corrupted sensor measurements remain fundamental challenges
in many networked battlespace applications. Phase 2 of the
UDRC has sought to develop robust, low-complexity algorithms
for signal separation and broadband distributed beamforming.
The focus has been on low-rank and sparse representations,
and their fast implementation.

Sparse representations seek to approximate signals of in-
terest using a relatively small number of significant compo-
nents. They are integral to state-of-the-art processing for cod-
ing, source separation and compressive sensing. While the basic
framework of compressive sensing is well defined, its potential
in practical sensing and imaging scenarios still needs to be re-
alised. The UDRC has understood how these techniques can
incorporate sensor-specific signal structures within the sensing
strategy and accommodate sampling constraints imposed by
the sensing physics and operational use. The UDRC has inves-
tigated applications in compressive imaging, spectroscopy and
large array processing.
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2.1 Sparse representations and
compressive sensing
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Sparse signal modelling can overcome some of the conven-
tional limitations in sensing and imaging. UDRC research in
this area has focussed on radio frequency (RF) and spectro-
scopic signals.

In electronic surveillance (ES), conventional sampling tech-
niques for wideband sub-Nyquist radar ES are not practical be-
cause they are expensive and power hungry. UDRC researchers
have developed a new low-complexity sampling technique, in-
spired by compressive sensing technology, which can overcome
these obstacles.

Work focussed on exploiting sparsity for synthetic aperture
radar (SAR) looked at phase ambiguity of the radar returns
in SAR and proposed a novel technique which compensates for
these errors. This research continued from UDRC phase 1 and
is an essential element for volumetric SAR imaging. UDRC
researchers have also investigated the problem of SAR Ground
Moving Target Indication (GMTI), where the moving targets
are few with respect to the size of the scene. Moving objects
generate blurring and displacement in SAR images and such
artefacts have to be compensated for in forming the correct
static background image and to accurately locate the targets.

Sparse approximation has also been used for spectral de-
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2.1. Sparsity and compressive sensing

composition of Raman signals.! The immediate application of
this method is in hand-held Raman spectrometers. The aim
here has been to build a fast algorithm to identify mixtures of
elements. This algorithm was further developed for use on two
in-service spectrometers.

2.1.1 Compressive electronic surveillance

Conventional sensing systems often assume some general prop-
erties of the signals in order to decide how fast information
needs to be collected. This is normally based on the band-
limited property of the signals for which the Nyquist sam-
pling paradigm? tells us the minimum sampling rate. Unfortu-
nately, the Nyquist rate is often unattainable when signals vary
rapidly, as can be the case in ES applications. Equipment to
fulfil that requirement can be expensive, power hungry, heavy
and large.

For radar ES it is necessary to monitor a large segment of
the RF spectrum in order to detect and identify threats. Not
only is the design of extremely high rate analogue-to-digital
converters (ADCs) very difficult, but powerful processing units
to extract information are also required. In addition, reliable
and fast recovery and detection algorithms are needed in the
processing unit.

Moreover, radar ES signals are wideband and normally ex-
ceed the sampling rate and dynamic-range of standard ADCs.
To sample such signals one can use a bank of sub-Nyquist
ADCs, each delayed by a suitable time increment. This is
called a time-interleaved ADC [1]. The most important prac-

'Raman spectroscopy is a non-destructive means by which unknown
mixtures of chemicals can be identified. It relies on observing the spectro-
scopic response of a material when stimulated by monochromatic light.

2The Nyquist rate is a fundamental result in signal processing theory.
It states that any bandwidth-limited signal may be completely charac-
terised by sampling at a rate of twice the highest frequency in the signal.
It establishes a sufficiency criterion whereby additional sampling of a signal
is unnecessary.
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2. SENSING AND SIGNAL SEPARATION

tical issues with such a large bank of parallel channels are the
feasibility of implementation in terms of size, weight and power
(SWAP), and calibration. It is generally preferable to use only
a few channels to trade off accuracy against complexity.

Time sharing methods are techniques which use a single,
or a few parallel channels. In channelised time-sharing (also
called rapid frequency sweeping), a bank of bandpass filters is
used to consecutively sample the output of one or a few chan-
nels. The main drawback of channelised time-sharing methods
is that they only monitor a particular part of spectrum at any
time. This makes such techniques ineffective for the detection
of short-pulse signals.

Time-sharing techniques fit within the more general frame-
work of sub-Nyquist sampling methods. Time-sharing is one of
the simplest, but not the most effective, approaches. There ex-
ist other sub-Nyquist techniques for signal sampling [2]. These
techniques partially compensate for artefacts caused by sub-
Nyquist sampling by using a non-uniform periodic sampling
scheme. Since a linear reconstruction technique is used, some
error in the sampled signal remains.

The UDRC approach to the problem of sub-Nyquist sam-
pling is based on compressive sampling of signals [3], [4]. Differ-
ent variations of this method have been studied for continuous-
time signals [5]-[7]. One such framework, [7], was developed
and applied to the problem of wideband RF signal sampling,
targeted at radar ES applications. Most compressive sub-Nyquist
sampling techniques need some non-linear reconstruction tech-
niques. This leads to a problem because canonical reconstruc-
tion techniques are not always suitable for large scale problems
(like radar ES) owing to their high computational complexity.

The UDRC solution uses only a few ADCs; this is called
a multi-coset sampling system [7]. It is a low-complexity al-
gorithm for the recovery of full-band input signals. As an ap-
proach to wideband RF sampling it has potential in air or mar-
itime ES, with application to early warning, jammer detection
and the detection of target signatures. The advantage of this
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2.1. Sparsity and compressive sensing

method is in its low hardware cost, simple signal processing
and digital calibration capability.

The proposed ES system was tested with synthetic data
generated by a simulator produced by Thales UK, demonstrat-
ing good balance between performance and the complexity of
the hardware. In general, the trend in the latest generation of
ES systems is to have a higher computational complexity, but
significantly better performance. A comparison of the proposed
multichannel sub-Nyquist system (where there is a greater com-
putational budget) with the next generation of ES systems is
essential and is a recommended next step.

2.1.2 Volumetric SAR with compressive
processing

SAR is a widely used weather-independent day-or-night remote
sensing tool for high resolution imaging. Volumetric SAR imag-
ing is challenging as multiple passes of radar data must be
combined coherently to generate 3D-images. This process re-
quires very precise position measurement during multiple flight
passes, which is not easily achievable. Two important issues
are, (i) errors in the recorded locations and (ii) undersampling
in the height dimension. Both of these can be reformulated as
compressive sensing problems. In the first, the range estimation
errors can be interpreted as errors in pulse compressed signals.
Compensation for such errors can be tackled with sparse phase
recovery methods. The second issue is related to more conven-
tional compressive sensing where the properties of a compact
target (which only occupies a small part of the volumetric im-
age) are exploited.

The source of inaccurate range estimation is due to two
errors: in the platform location and in the scene topogra-
phy. Range estimation errors induce asynchronisation in the
dechirping process, i.e. a shift in the range direction. When
such an error is small, the final image will be blurred and can
be compensated for using conventional autofocus techniques.
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In multi-pass SAR image formation the error between passes
can be so large that a different correction method is needed.

The range estimation error appears as a structured phase
error in the phase history. This means that the received radar
pulses at different heights cannot be coherently integrated to
add the third dimension to SAR images. A new phase re-
covery technique for compensating the phase error has there-
fore been developed. The technique uses the Gerchberg-Saxton
algorithm [8]. The phase is gradually refined by alternating
between different representations of the data. This standard
technique has been modified for volumetric SAR because the
forward and backward operators are not orthogonal [9].

The basic method for correcting range estimation errors is
manual using a reference target in the scene [10]. The UDRC-
developed method provides an alternative for more realistic
situations when there is no reference target. This range error
calibration, through a phase recovery formulation, is a powerful
framework which shows good performance in comparison with
the more conventional manual correction approach. There is
also a potential for phase recovery in asynchronous SAR sys-
tems, e.g. SAR imaging for automotive sensing, which uses
relatively inexpensive sensors.

Another challenge in volumetric SAR is the anisotropic na-
ture of the target components. This property of the targets
only allows a limited integration of the radar pulses, otherwise
artefacts are generated. Identification of a particular target is
therefore possible only over a short aperture. Calibrated cir-
cular SAR pulses of some civilian cars from the US Air Force
Research Laboratory (AFRL) GOTCHA dataset [10] are shown
in figure 2.1. These images (which have 30 cm resolution and
are projected into 2D) are often good enough to detect the
number of car pillars. However, proper volumetric imaging of
the cars is only possible if enough pulses are integrated from
multiple passes to achieve vertical resolution and data such as
that in figure 2.1 can help to achieve this.

In the process of developing fast calibration techniques UDRC
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Figure 2.1: Cars and their SAR images at 0 m elevation: (a) Chevrolet
Impala LT, (b) Mitsubishi Galant ES and (c) Chevrolet HHR LT; data
from [10]

researchers also implemented fast forward-backward projections
to run on graphics processing units (GPUs). Such implemen-
tations accelerate the image reconstruction process and can be
used in other applications of compressive sensing in SAR.

Fast synthetic aperture radar imaging with
back-projection: a project with industry

Through a contract with Leonardo (Selex ES at the time)
UDRC researchers prepared a SAR data processing pipeline.
This package took raw radar data, did pre-processing, motion
compensation, deskewing, and generated SAR images using

31



2. SENSING AND SIGNAL SEPARATION

Figure 2.2: Large-scale SAR image reconstruction using fast back-
projection with decimation in phase history

back-projection (BP). The algorithm is based on decimation
and application of BP to much smaller data. This approach
has been used in other domains (e.g. computational tomog-
raphy). The UDRC method extended the approach to apply
the decimation in phase-history or in the image domain. Each
approach has its advantages and may be selected to suit a par-
ticular setting.

The package was tested at a trial, imaging an airfield. As
the example related to a large scene, many reconstruction tech-
niques generated inaccurate outputs. In contrast, the UDRC-
developed fast BP algorithm performed well (see figure 2.2).
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2.1. Sparsity and compressive sensing

2.1.3 Sparsity-driven GMTI processing
framework with multi-channel SAR

GMTT techniques are of military interest as the ability to lo-
cate and identify moving targets is crucial for battlefield in-
telligence. GMTI in SAR is notoriously difficult, however, as
conventional processing methods tend to blur and shift moving
targets, often rendering them invisible. This work was origi-
nally motivated by introducing a priori information, i.e. spar-
sities, into conventional SAR and GMTI methods to enhance
their performance. The work undertaken by the UDRC even-
tually expanded into a processing framework with a complete
signal processing pipeline to realise multiple GMTT tasks.

Typical SAR-based GMTT tasks are image formation, tar-
get detection and the estimation of moving target states (e.g.
positions, velocities) using a spotlight SAR geometry (figure 2.3).
A terrain map is associated with the illuminated scene. The air-
borne platform uses multiple radar channels which are equally
placed along the flight path. There exist several challenges for
GMTTI missions in this scenario. Firstly, the moving targets
in SAR images will be misplaced and blurred. Therefore, tar-
get focussing and localisation methods need to be developed.
Secondly, conventional GMTI approaches have been proven to
work properly under homogeneous environments. However, for
non-homogeneous clutter, such as mountains with large terrain
variations and urban regions with strong building reflectors,
these methods miss detections and show large estimation er-
rors [11]. Here, extracting moving targets from strong clutter
is an open challenge. Thirdly, digital elevation model (DEM)
information can significantly influence the SAR and GMTTI ac-
curacies; a well-developed GMTI model has to consider the in-
corporation of elevation data. Lastly, typical SAR and GMTI
algorithms are widely known to be computationally expensive.
When introducing sparsity into the framework, both estima-
tion accuracy and computational load need to be considered.
The proposed framework aims to serve as a generic model for
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Figure 2.3: Spotlight airborne SAR geometry with multiple channels

tackling these problems which can also incorporate other SAR
imaging algorithms.

The target imaging problem was initially investigated by
UDRC researchers in [12]. This work was the starting point
for generalising the task as an optimisation problem and in-
vestigating how sparsity can be used to estimate the state of
targets and form SAR images. In this work, only two chan-
nels were modelled in extending the conventional algorithm
[13] to a sparsity-regularised optimisation problem. Based on
real GOTCHA GMTTI data [14], the experimental results show
acceptable velocity estimation and relocation accuracies. Sig-
nificant displacements for the target localisation were seen due
to elevation variations in the terrain.

Subsequent to the work in [12] which represented a sim-
plified target indication, a more complete algorithm was de-
veloped in [15] with a greater number of radar channels. The
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2.1. Sparsity and compressive sensing

©

(d)

Figure 2.4: (a) and (b) reconstructed SAR images (in dB) using range-
gated data (from [14]) to show the GMTI scene without and with the
DEM respectively; the red path shows the ground truth target trajectory;
(c) the extracted terrain map, the black circles show the target trajectory;
(d) the corresponding overhead image of the scene

new method mainly focussed on a well-defined model to re-
alise target detection without state estimation by separating
moving targets from background. By modelling the phase dif-
ferences between channels and utilising the sparsities of the
moving targets within an optimisation framework, the raw data
was decomposed into dynamic and stationary portions, and the
moving and static objects were processed separately. Simula-
tion results demonstrated the ability to separate moving targets
from strong clutter.

DEM information plays a vital role in SAR imaging with
significant elevation variations. In [16] the UDRC showed how
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the DEM can be utilised to enhance the localisation of moving
targets and improve the estimation of targets’ states. In par-
ticular, the processing of DEM data and how it fits into the
existing SAR algorithms was investigated.

The next stage of the work brought the UDRC-developed
SAR-based GMTI components together. These were struc-
tured as an end-to-end framework with comprehensive mod-
els and theoretically and experimentally proven algorithms. In
[17] a processing framework was proposed which separated the
moving targets from the clutter under multichannel SAR sce-
narios, and addressed the moving target imaging and velocity
estimation problems for GMTT applications along with a prac-
tical two stage processing implementation. The high-level data
structures, e.g. sparsity of the moving targets in the observed
scene, were exploited throughout the framework. The model
was sufficiently versatile to incorporate the DEM information,
which further improved the moving target relocation accuracy.
The framework was evaluated using the GOTCHA GMTT chal-
lenge data (see figure 2.4) and has shown better accuracy than
state-of-the-art GMTI methods, e.g. [18]-[20].

2.1.4 Raman spectral deconvolution

Raman spectroscopy is a field-proven method for identification
of liquid and solid chemicals which can be used as explosives or
chemical warfare agents. The information generated using this
method provides identification of the materials present by com-
parison with reference library spectra. Raman spectroscopy
permits non-contact analysis of materials, and established sys-
tems have extremely large reference libraries to increase the
probability of detection of unknown materials. Limitations
of currently available systems include identification of compo-
nents of complex real world mixtures due to interfering signa-
tures and low signal contributions.

The process of generating an identification response must
be fully automated without any user input as the systems may
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Figure 2.5: Example scenario where material identification may be of
use

be employed in physically stressful environments, an example
of which is seen in figure 6.4. There are a range of developments
underway to advance the hardware associated with hand-held
Raman spectrometers to improve performance and reduce the
size and cost of systems. An important aspect of this activity
is to generate efficient signal processing capabilities.

Raman spectra typically consist of: (i) spectral peaks from
the target which could be pure chemicals or mixtures, (ii) sys-
tem noise and, in some instances, (iii) sample fluorescence.?
It is only the spectral peaks which contain useful information.
Therefore signal processing approaches need to consider remov-
ing, or accounting for, system noise and fluorescence contribu-
tions.

The UDRC developed fast sparsity-based spectral deconvo-
lution algorithms suitable for hand-held and low-computational
power instruments, to provide near to real-time mixture decon-
volution.* The algorithms are simple to implement and mod-

3Fluorescence occurs upon absorption of the incident light, often in
coloured samples when using a visible-wavelength-based Raman system.
“In this context a spectral identity should be returned in under 60

37



2. SENSING AND SIGNAL SEPARATION

ular: different blocks of the processing chain can be replaced
if other methods perform better. Early exploitation of this
work was demonstrated through the licensing of the approach
by UDRC researchers at the University of Edinburgh to Snowy
Range Instruments (now Metrohm Raman), a manufacturer of
Raman spectrometers.

Figure 2.6 shows results of the novel low complexity spar-
sity based algorithm used to deconvolve the spectra using a
reference library. The algorithm is based on iteratively sub-
tracting the contribution of selected spectra and updating the
contribution of each spectrum. The core algorithm is called fast
non-negative orthogonal matching pursuit [21], which exploits
UDRC work on general non-negative sparse representations.
The iteration terminates when the maximum number of ex-
pected chemicals has been found or the residual spectrum has
negligible energy, i.e. of the order of noise. A backtracking
step removes the least contributing spectrum from the list of
detected chemicals and reports it as an alternative component.
This feature is particularly useful for chemicals that make small
contributions to the mixture, which are normally hard to de-
tect. The UDRC algorithm is easily reconfigurable to include
new library entries and optional preferential threat searches in
the presence of predetermined threat indicators [22].

The algorithm has been demonstrated for fingerprinting
chemical mixtures using a set of reference spectra. The algo-
rithm successfully managed to detect weak Raman scattering
chemicals with concentrations below 10%, which are conven-
tionally challenging on some hand-held Raman systems. The
running time of the algorithm is of the order of one second
using a single core of a desktop computer.

The spectral selection technique has the potential to ac-
commodate extra criteria to increase accuracy or sensitivity.
One such example is preferential spectral decomposition, when
the existence of one chemical influences the sensitivity to an-

seconds.
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Figure 2.6: Sparse Raman spectral decomposition for fingerprinting and
quantification. Panels indicate (from top): original mixture; recon-
structed spectrum from inferred mixture; two library components making
up the inferred mixture.

other (hard to detect) chemical. This is useful in detection of
composite explosives or mixed toxic chemicals.

Data challenge and enabling contracts: Raman
spectral decomposition

At the signal separation theme meeting in 2013, Dstl pre-
sented a Raman spectral decomposition challenge. This so-
licited novel, simple, approaches to identify whether the cur-
rent limits of established Raman mixture analysis were an accu-
rate reflection of the spectral information present. Limitations
placed on responses included:

e to be able to identify the components of a series of mix-
tures (not all components were present in the library),

e be easily reconfigurable to cope with new libraries,

e not to rely on time-consuming training algorithms,
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e to be technology agnostic with flexibility to adapt for
more complex scenarios in future iterations.

Two approaches were submitted to the challenge. The win-
ning contribution was based on convex optimisation [23]. A
simple low-order polynomial model for baseline correction, ex-
cluding peaks, and an innovative method for the detection of
an unknown spectrum was part of the winning approach. The
approach correctly identified the mixture components at all
concentrations, demonstrated that there is sufficient signal at
low concentrations to permit detection, and detected the pres-
ence of a component which was not in the reference library.
Following the success of the data challenge, the approach was
further developed under three enabling contracts.

1. A preliminary investigation of Raman spectral deconvo-
lution with spectra from different instruments confirmed
performance against a range of sources and expanded on
the results from the initial challenge. The additional data
prompted characterisation of baseline correction. Com-
putational complexity reduction was another aim of this
study, to provide a proof of concept demonstration that
this approach could be used on hand-held devices.

2. The focus of this work was on detecting even lower con-
centration components for specific chemicals where a cue-
ing chemical is present to indicate the presence of the
target chemical. In addition, adaptation of previously-
developed code into C was undertaken to permit a proof
of concept implementation onto a prototype Raman spec-
trometer.

3. The focus of this stage was a scoping study focussing on
different spectral shifts in a subset of Raman mixtures
which can impede spectral matching. Supporting work
was also undertaken in identifying computationally effi-
cient approaches for baseline correction.
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Further development of sparse methods for Raman
spectral decomposition

A fast decomposition algorithm with implementations in C and
Java was developed under the UDRC and associated enabling
contracts. It was tested with small to medium sized libraries
(fewer than 150 spectra) of sufficient size to identify whether
a threat material is present. The algorithm was tested inten-
sively with synthetically generated mixtures and a subset of
representative real-world mixtures. Adaptations to this fast
decomposition algorithm have been made. They are currently
only available as research code but include the following.

e Preferential spectral deconvolution: in the presence of a
trigger chemical, the associated threat spectrum has in-
creased weight. The modified algorithm has higher true
positive and smaller false negative rates for low concen-
tration spectral components.

e Light sparse decomposition: removes the low-order poly-
nomials associated with fluorescence before spectral de-
convolution. While this may seem a simple approach, it
performs in a similar manner to complicated baseline cor-
rection methods, but at a fraction of the computational
cost.

e Modified non-linear spectral deconvolution: accounts for
spectral shifts associated with shifted mixture compo-
nents. The method is limited to single peak shifts at
present.
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2.2 Signal separation and broadband
beamforming
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In this section the application of sparse signal separation
techniques is considered in the context of defence-related un-
derwater acoustics. The problem addressed here is that of us-
ing passive sensor arrays to detect and localise the direction of
moving targets. In passive systems one or more receiving sen-
sors are used to record ambient signals. Unlike active systems
there is no control over the strength of the received signal from
objects or clutter. There is potential for high levels of noise
in the recorded signal. In beamforming and source separation,
the task is to estimate the signal of interest, and the direction
of arrival (DOA) in the presence of interfering clutter and noise
with the aid of an array of sensors. These sensors are located
at different spatial positions and sample the wave propagating
through space.

The collected spatial samples are then processed to atten-
uate or null out the interfering signals and extract the target
signal. The specific spatial response of the array system can
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therefore be conceived of as beams pointing to the desired sig-
nals and nulls towards the interfering ones. In order to achieve
this spatial response a weighted combination of each sensor in
the array is used. Finding the optimal weight coefficients to
produce such an effect is the principal business of beamform-
ing. One of the goals of tailoring an array response is the re-
duction in the level of the so-called sidelobes of the main beam.
Sidelobes are artefacts of the beamforming process where the
array retains sensitivity to targets and interference outside of
the main beam. It is usual to require or desire small sidelobes
so that the signal of interest, in the main beam, is distinguished
from spatially separated targets, interferers and clutter

The beams used in beamforming depend not only on the
array’s geometry (the aperture) but also on the frequency of
operation. Sensitivity to a wide range of frequencies is a de-
sirable property in many defence-relevant scenarios. Targets,
especially faint ones, may exhibit a complicated response and
their detection and characterisation, or their distinction from
clutter, may hinge on the ability to observe them over a broad
frequency baseline. If array signals exceed a certain fractional
bandwidth, however, or span more than one octave, then the
pointing direction of the narrowband beams changes with fre-
quency. This disrupts the look direction, and requires the ex-
plicit enactment of broadband beamforming approaches which
account for the delays with which signals illuminate different
array elements. This significantly increases the dimensionality
of processing, thereby increasing the computational complex-
ity, and potentially negatively affects the numerical stability of
the solution. Dedicated, numerically efficient and robust ap-
proaches are therefore crucial for beamforming in broadband
array signals.

2.2.1 Bayesian broadband beamforming in sonar

The UDRC conceived a solution based on the adaptive sparse
sequential Bayesian approach originally proposed by Mecklenbrauker
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Figure 2.7: Direction of arrival of sources for tracks 1 to 5 of the Portland
03 dataset observed at 125 — 185Hz. The y-axis is DOA, positive up
and negative down ranging from —90° to 90°. The z-axis is time (s).

et al. [24] for underwater source separation and tracking. The
goal in this work was to de-noise, separate and track the DOA
of moving acoustic sources. This was done by extending the
classic method to a sequential maximum a-posteriori (MAP)
estimate of the signal over time. A sparsity constraint was en-
forced through the use of a sensible prior at each time step. An
adaptively-weighted cost function was sequentially minimised
using the new measurement received at each time step. This
gave a sparse output from the DOA estimation algorithm, and
reduced the amount of noise in the final DOA estimate.

UDRC researchers evaluated their approach on a dataset
supplied by Dstl (known as Portland 03). These data were col-
lected in Portland harbour off the South coast of England in
December 2003. The recordings were made with two parallel
32 element hydrophone arrays. The target source is a small
fishing vessel which travels past the arrays in a number of ways
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(including parallel and perpendicular paths). The vessel’s en-
gines were turned off between transits giving portions of the
data where no target acoustic source is present.

Figure 2.7 shows results of the UDRC method on broad-
band Portland 03 data covering 125Hz to 185Hz. It can be
seen that the DOA of the target acoustic source is accurately
localised and tracked through most of the sequence. There is a
stationary noise source in the data at approximately +40° and
at a number of places in the sequence this source is tracked.
This is always (at approximately 300s, 1000s, 1600s and 2200s)
when the engine of the target vessel was turned off. It can
also be seen that the angular resolution of the DOA estimate
is most accurate when the target source is directly broadside
of the array in the middle of each track.

As a result of this work several software toolboxes have been
generated and made available to the community:

1. Sparse analysis model based dictionary learning algorithms
(a Matlab toolbox) [25]

2. Sparse analysis model based multiplicative noise removal
(a Matlab toolbox) [26]

3. Sparse sequential Bayesian algorithms for DOA estima-
tion (a Matlab toolbox and demo)

The work undertaken by the UDRC has been conducted on
both simulated data and the Portland 03 dataset. Further
work will demonstrate how this method generalises to differ-
ent situations. A further research direction is the modification
of the sparse optimisation algorithm to improve DOA estima-
tion whilst keeping the number of active sensors to a minimum.
This is desirable in cases where sensors are unreliable, or their
cost to operate becomes burdensome.
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2.2.2 Signal separation for large sonar arrays

As a result of the UDRC work the researchers participated in
a TTCP® workshop on signal processing for large sonar arrays
in 2014, organised by Dstl. The objectives of the workshop
were to present technical papers on joint research, to discuss
progress and identify topics for potential future collaboration.
The UDRC researchers gave an introduction to broadband sig-
nal separation methods based on polynomial matrix decompo-
sitions (see §6.1). As an alternative to adaptive beamforming,
it was proposed that broadband signal separation techniques
could be used to separate out different signals and then apply
a Capon beamformer — which is optimal for a single source.

A subsequent meeting was convened later in 2014 with at-
tendees from the UDRC, Dstl and Thales Underwater Systems
(TUS). The main purpose was to identify technical approaches
which could be used to optimise the performance of large sonar
arrays which may contain many individual sensors (e.g. fig-
ure 2.8). A key challenge is to develop approaches that im-
plement adaptive beamforming across the full sensor array in
order to suppress correlated sources of noise. To achieve this,
low-complexity techniques and data reduction methods are re-
quired which can maintain optimal performance while overcom-
ing the processing challenges inherent in systems with such a
large number of sensors. Operator workload is also a significant
challenge in managing the information from large sonar arrays.
Broadband signal separation techniques offer a radically dif-
ferent approach for separating signals which could potentially
reduce workload if different signals can be reliably separated.

The meeting covered challenges, current methods and broached
a number of radical approaches. Outcomes from the meeting
were:

5The Technical Cooperation Program is a joint Australia, Canada,
New Zealand, UK and US initiative to foster international collaboration
on mutually-beneficial research in the defence sphere.
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2.2. Broadband signal separation

Figure 2.8: Starboard view of HMS Ambush, an Astute Class submarine,
underway during sea trials. The flank array is forward of the fin (or sail)
below the bow plane.

e Dstl made available passive array data to the UDRC re-
searchers.

e TUS supplied a passive array simulator, via Dstl, to the
researchers for algorithmic test and development.

e Strathclyde University and TUS explored ways of work-
ing together to advance this technology.

The scope and timescales for this final item were the subject of
a meeting at TUS, attended by Dstl and Strathclyde in 2016.
These included potential internships, secondments to TUS or
jointly-sponsored PhD schemes, and continuing joint applied
research [27]. As a result, UDRC researchers, with the support
of Dstl and TUS, sought and successfully secured a John An-
derson Research Award from Strathclyde University. This is
a prestigious PhD scheme, which runs for four years from Oc-
tober 2017. The subject is broadband signal separation tech-
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niques and it includes an internship at TUS beginning in March
2018.

2.2.3 Maritime Collaborative Enterprise

In 2015 UDRC researchers at the University of Surrey, partner-
ing with Atlas Elektronik UK, won funding from the Maritime
Collaborative Enterprise® (MarCE). The aim of the project was
to investigate the use of sparsity-based methods for sonar array
optimisation, derived from the source separation and broad-
band beamforming work being undertaken by the UDRC.

A convex sparse optimisation method was used to reduce
the number of sensors in the array while maintaining perfor-
mance, and also to demonstrate the ability to control sidelobe
level. The work was completed between September 2015 and
June 2016 and a report and a software package were delivered.
The key findings of the study were that in order to maintain a
response whilst reducing the number of sensors, the convex op-
timisation solution concentrates the active sensors in the centre
of the array with a few active sensors towards either end of the
array. While this retains a narrow main beam it can cause
significant grating lobes as the number of sensors is reduced.
In the case of an unshaded array (where all array elements are
equally responsive), the sparse configuration pattern concen-
trates errors in large sidelobes at -90 and 90 degrees. Addition-
ally, the UDRC researchers demonstrated that sidelobe levels
can be controlled by adding constraints to the optimisation. In
this particular case a decrease in the size of the first two side-
lobes is achieved. This could be extended in principle, however,
to control the array response in an arbitrary direction.

5The Maritime Collaborative Enterprise was a community of interest,
led by BAE Systems, which managed placement and execution of research
tasks on behalf of Dstl, relevant to MOD maritime stakeholders.
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Chapter 3

Multiple sensor
processing

The UDRC has developed novel signal processing methods for
multiple sensor systems, including spatially distributed and
multiple-input, multiple-output networks. The applications en-
compass radar, sonar and communication networks that, as
well as being spatially disparate, may also support distributed
processing. The UDRC methods work with active and passive
sensors improving performance and robustness and are suitable
for use in a cluttered networked battlespace.

3.1 MIMO sonar systems for
underwater acoustic sensing

Yan Pailhas, Yvan Petillot
Ocean Systems Laboratory, Heriot-Watt University

Gary Heald, Duncan Williams
Platform Systems Division, Dstl

Multiple-Input Multiple-Output (MIMO) refers to a system
of several transmitters and several receivers. A MIMO system
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Figure 3.1: Examples of (a) co-located MIMO and (b) spatially dis-
tributed MIMO systems

is distinguished from a multi-static system (merely meaning
that transmitters and receivers are not in the same place) by
its ability to simultaneously transmit and jointly process all re-
ceived signals. There are broadly two varieties of MIMO system
depending on the geometry of the antennas: co-located MIMO
where transmitters and receivers are sited near each other (fig-
ure 3.1a), and spatially distributed MIMO (figure 3.1b). This
work focusses on the latter and describes the properties and
possible applications for large distributed MIMO sonar sys-
tems. MIMO systems have been investigated over the past two
decades in wireless communications [1], before attracting the
interest of the radar community [2]. Studies of MIMO radar
have highlighted the many advantages of these systems, such as
diversity gain for target detection, Doppler estimation and im-
proved resolution for target localisation. It is only recently that
the sonar community has started to investigate MIMO systems.
The UDRC has demonstrated that large spatially distributed
MIMO sonar systems have advantages in terms of automatic
target recognition (ATR) and super-resolution for underwater
applications.
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3.1. MIMO sonar systems

3.1.1 Fundamental properties of MIMO systems

The theoretical study of MIMO systems cannot be approached
by conventional methods such as beamforming theory. The lo-
cation of the K transmitters and L receivers introduces K x L
unknowns into the problem and the deterministic approach in
beamforming cannot derive the most interesting characteristics
or properties of such a system. Instead, UDRC researchers de-
veloped an entirely generic new statistical framework to study
large MIMO systems. Two assumptions underpin the theory
of spatially-distributed MIMO systems.

e Independent views: this assumption is the definition, in
statistical terms, of the term spatially distributed. It sim-
ply means that the antennas are sufficiently far apart
from each other that each pair (one transmit and one re-
ceive) are statistically independent from all other pairs.
This assumption and its implications have been used by
UDRC researchers as tools to design practical MIMO sys-
tems.

e Orthogonal waveforms: this assumption is common in
MIMO theory. Orthogonality imposes a constraint on
the transmitted waveforms, thus ensuring that, at the re-
ceiver side, the components from different transmitters
can be isolated. Strictly, this hypothesis is false but or-
thogonality can be approximated reasonably well. The
UDRC has proposed a solution to this problem suited to
large MIMO sonar systems (§3.1.5).

3.1.2 Target recognition properties

Thanks to the statistical framework developed under the UDRC,
it has been shown that the response of a target contained within
one resolution cell is equivalent to a random variable [3]. The
independent views assumption ensures that all the observations
of the target (from each MIMO pair) are statistically indepen-
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dent. It can thus be shown that, with one MIMO snapshot
(i.e. K x L observations) and as long as the MIMO system is
large enough, it is possible to estimate the distribution of clas-
sification probabilities (the probability density function: PDF)
of the observed target. More formally, this concept can be in-
tegrated into a Bayesian framework as described in [4], and it
is possible to compute the probability of a target belonging to
a given class.

Even at low signal-to-noise ratio (SNR) and with relatively
few views, the UDRC work shows that a MIMO system shows
excellent target recognition. Furthermore, thanks to the large
number of independent observations, large spatially distributed
MIMO systems have ATR capability built into their core me-
chanics. It is important to note that the MIMO ATR capabil-
ity relies only on fundamental target properties and not on any
prior assumptions.

3.1.3 Super-resolution of MIMO systems

The second major MIMO property emerges when investigating
how to fuse the multiple views acquired by a large MIMO sys-
tem. One might expect the classical result that the average in-
tensity function of independent observations converges towards
a Rayleigh distribution. Rigorous calculations show, however,
that the average intensity probability function collapses into a
Dirac function [5]. Figure 3.2a illustrates this point graphi-
cally: as the number of independent observations approaches
infinity, the probability density function of the intensity av-
erage converges towards a Dirac distribution. The physical
consequences of this fundamental result are profound. As the
number of independent observations increases, the MIMO sys-
tem de-correlates the contribution of every scatterer within one
resolution cell. MIMO systems then overcome the limitation of
coherent systems and, with enough independent views, large
MIMO systems resolve the speckle within each resolution cell.
Super-resolution can therefore be achieved using large MIMO
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Figure 3.2: (a) Convergence of the average intensity function to a Dirac
function; (b) normalised MIMO image of a target with 4 scattering
points; (c) normalised CSAS image of the same target. The latter
method uses conventional processing techniques which cannot resolve
the scattering points unambiguously.

Systems.

To illustrate this point, figure 3.2b shows a MIMO image
created with a variant of the UDRC algorithm [4]. The target
has 4 scatterers located at a vertex of a square with size A/2
(where \ represents the wavelength). As the figure illustrates,
the 4 scatterers are resolved and the geometry of the target is
recovered. To compare, figure 3.2¢ plots a circular synthetic
aperture sonar (CSAS) image of the same target. CSAS max-
imises the virtual antenna aperture and provides the highest
resolution possible using synthetic antenna systems [6]. The
CSAS processing is not able to differentiate the 4 scatterers.
The coherent processing of the independent observations pro-
vided by a large MIMO sonar system can thereby surpass the
resolution of current sonar imaging systems.

3.1.4 Unlocking MIMO properties

This section further examines the two main assumptions made
previously; of independent views and orthogonal waveforms.
Far from being a burden, interrogating these assumptions leads
to the tools necessary to design and build practical MIMO
sonar systems.
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Independent views

Many sonar arrays exhibit a target response which is very sensi-
tive to view angle [7]. This observation gives the first indication
that multiple independent views across a large MIMO system
might be achievable. In order to ensure statistical indepen-
dence of all views, it is necessary to build mathematical tools
to measure independence. The independent views problem is in
essence the inverse problem of the signal correlation problem.
Correlation is usually calculated using the Pearson product-
moment correlation coefficient [8]. This correlation coefficient
has a number of flaws, however. It only measures linear cor-
relations between two random variables, it has been designed
for normal distributions, and it is not a real measure of in-
dependence. In [4], UDRC researchers introduced the MIMO
intercorrelation distance matriz, based on the distance corre-
lation to overcome these problems. This new distance matrix
can assess the level of independence between MIMO pairs as
a function of their geometry, which is essential when designing
large MIMO sonar systems.

Orthogonal waveforms

Mathematically, it is straightforward to prove that two finite
signals can never be entirely orthogonal. Several strategies
have been developed to find an approximation to the orthog-
onal waveform problem, including Time Division Multiple Ac-
cess (TDMA), Frequency Division Multiple Access (FDMA) or
Code Division Multiple Access (CDMA). The relatively slow
speed of sound in water makes the use of TDMA difficult for
large MIMO systems. Bandwidth is a scarce resource in sonar
systems and so FDMA is also not a viable option.

In [9], [10], UDRC researchers proposed a novel CDMA
waveform family: the Interlaced Micro-Chirp Series (IMCS),
which fits the requirement for large MIMO sonar systems. The
IMCS combines the coverage of the full frequency band for each
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waveform while having very low cross-correlation functions and
minimal sidelobes. The signal phase varies slowly and is suit-
able for the piezo-electric transducers found in sonar systems.

3.1.5 Applications of MIMO sonar systems
Harbour surveillance

The new MIMO paradigm developed by the UDRC leads natu-
rally to MIMO systems for underwater surveillance. Presently,
harbour surveillance is mainly performed using radar systems,
but the potential for heterogeneous threats, including divers
and autonomous underwater vehicles (AUVs), requires under-
water surveillance as well as a surface surveillance. In [11],
UDRC researchers developed a MIMO simulator capable of
handling complex, heavily cluttered and very shallow water en-
vironments similar to the ones that are found in harbours. Fig-
ure 3.3a shows an example scenario. The simulator is physics-
based and can accurately model seabed reverberation (see fig-
ure 3.3b for the intensity response of one MIMO pair), or multi-
path propagation.

The number of detections generated by a MIMO sonar sys-
tem can be large, preventing direct interpretation by an op-
erator. Algorithms to correlate the data in space and time
can be used to facilitate understanding of the scene. Due to
the complex nature of the harbour protection problem, robust
and reliable estimators are needed. In [12], UDRC researchers,
including those working on novel tracking and sensor manage-
ment methods, proposed a new multi-target tracker based on
the Hypothesised filter for Independent Stochastic Populations
(HISP; itself a UDRC-developed method, see §4.2.3). This fil-
ter is capable of performing target classification based on the
behaviour of different targets. Fish are assumed to swim in
a somewhat random fashion while boats or AUVs move more
directly. Figure 3.3c plots the result of the HISP tracker and
classifier. The filter tracked the objects of interest and classi-
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Figure 3.3: (a) Harbour surveillance scenario in a realistic environment;
(b) a synthetic sea floor MIMO response generated by the UDRC sim-
ulator; (c) position, trajectory, velocity and target classification of the
HISP-filter tracks (colour code: black = false alarm, green = fish, blue
= static object, yellow = boat, orange = AUV)

fied them correctly. As objects are distinguished by the filter,
trajectories are also naturally available, so that the AUV (the
threat in this scenario) can be seen to have been dropped by
the second boat [12].

New strategies for anti-submarine warfare

Traditional active sonar systems are pulsed active sonar (PAS).
With low duty cycles (typically 1% or lower), the receivers are
usually switched off during transmission to avoid the direct-
path energy which can saturate the system. Recently, con-
tinuous active sonar (CAS) systems have attracted a lot of
interest, especially in the anti-submarine warfare (ASW) com-
munity. Using IMCS pulses developed under the UDRC [13]
in an ASW scenario offers two main advantages over current
methods:

1. Decreased pulse repetition interval (PRI): several orthog-
onal pulses can be transmitted during one PAS PRI. If
the tracking is not continuous as in CAS, the potential
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hit on a target is multiplied by the number of pulses sent
during one PAS PRI period.

2. Multiple transmitters: several transmitters sending or-
thogonal pulses can be used in such scenarios, increasing
view diversity and overall coverage.

In many respects, a MIMO system is much more than the
sum of its parts. By jointly and coherently processing all
the received signals, the UDRC has shown that large MIMO
systems have inherent capabilities such as ATR and super-
resolution. By multiplying the number of transmitters and
receivers, MIMO systems also offer flexibility in terms of sys-
tem design and signal processing. The large number of degrees
of freedom of such systems can be used creatively to provide
practical and innovative solutions for problems as diverse as
harbour protection or anti-submarine warfare. It is also worth
mentioning that the MIMO framework presented here will be-
come increasingly relevant as the current trend in underwater
robotics for multi-vehicle collaboration increases. Sensing us-
ing MIMO technology will then bring access to a deeper un-
derstanding of the environment and facilitate autonomy for un-
derwater robotics.

3.2 MIMO and distributed radar sensing

Christos V. Ilioudis, Carmine Clemente, John Soraghan
Department of Electronic & Electrical Engineering, Strathclyde
University

Francis Watson
Cyber & Information Systems, Dstl

Inspired by the benefits gained from MIMO implementa-
tions in communications, MIMO radar systems have attracted
research interest due to the promise of significant performance
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increases when compared with phased array radars. As in the
previous section, MIMO radar systems are classified into two
main categories: co-located or distributed, depending on the
spatial distribution of their antennas. As a new concept, dis-
tributed sensing poses many challenges associated with em-
bodying the technology. These include designing the waveform
to optimise spectrum allocation and reduce complexity. Fur-
thermore, existing challenges in traditional radar systems can
be re-defined to take advantage of the extra degrees of freedom
provided by MIMO systems (such as in ATR). Three particu-
lar challenges in distributed sensing have been addressed by the
UDRC work: waveform diversity and spectrum sharing, robust
ATR and low-SWAP requirements.

MIMO systems are characterised by having multiple trans-
mitting and receiving antennae, with transmitters acting simul-
taneously. A graphical illustration of a MIMO radar system
composed of three transmitters and two receivers is shown in
figure 3.4. Such systems require the waveform of each trans-
mitter to be sufficiently different so that the receivers are able
to separate their respective pulses, (referred to as waveform
diversity: WD). While the problem of WD can be resolved
in theory by applying modulation schemes such as orthogonal
frequency-division multiplexing (OFDM), the limited available
bandwidth has to be separated for each transmitter. This can
lead to drawbacks such as range resolution degradation. A sim-
ilar problem to that of WD can arise when communication and
radar systems are operating in the same band. This problem
is more commonly known as spectrum sharing and, similarly
to WD, can lead to performance degradation. The challenge
is to design waveforms which are sufficiently diverse to use in
MIMO systems, without sacrificing radar performance.

Target recognition is an ever-present concern in radar sys-
tem design. In the past, recognition and classification of targets
was done manually by trained operators. Today more advanced
systems are able to perform some of these operations automat-
ically. There is a need to improve these algorithms to provide
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Figure 3.4: lllustration of a 3 x 2 MIMO radar system with diverse
waveforms

better accuracy and robustness for more complex targets in
rapidly changing and diverse environments.

The distance and relative velocity of a target can be found
using the echo of the illuminated target. Radial motion esti-
mates are acquired from shifts in frequency (i.e. the Doppler
effect). While the main Doppler shift is associated with the
bulk movement of the object, secondary motions such as ro-
tations and internal movements will introduce so-called micro-
Doppler on the returns. As micro-Doppler signatures can reveal
the internal structure of an object, they have the potential to
be discriminatory classifiers. Development of well-designed al-
gorithms of this type is very challenging, however, due to the
dependence of the signal on the phase and scale of the motion.

In contrast to some sensing systems, such as those based
on optical sensors, radar is able to operate in a wide range
of light and weather conditions. This has made it popular
in numerous military and commercial applications, and lower
SWAP requirements continue to drive the technology. The low
SWAP challenge is correlated with the spectrum sharing and
ATR problems. A conventional solution for a system perform-
ing both communication and radar operations is to be equipped

61



3. MULTIPLE SENSORS

with two separate sub-systems; one for each. A better option is
to build a single system to perform both operations and so en-
sure lower SWAP. Ensuring high robustness in ATR can lead to
computational heavy algorithms, however, and implementation
of these poses challenges for low-SWAP requirements.

3.2.1 Practical advantages of MIMO radar

The UDRC researchers have developed a class of waveforms
which are sufficiently diverse to be used in MIMO systems.
These waveforms require only low-cost, low-SWAP hardware,
such as software-defined radios (SDRs), and as such can be re-
alised on low-cost MIMO systems with many nodes, possibly
mounted on unmanned aerial vehicles (UAVs). A large MIMO
network, and the spatial diversity it brings, can aid detection of
low-observable objects, as well as improve the detection, classi-
fication and tracking of other targets in a larger field of regard.
As well as supporting MIMO systems, the same waveforms can
be used to encode communications, making radars multi-use.

UDRC researchers developed a classification algorithm which
is able to distinguish between walking and running pedestri-
ans. This scenario is challenging for a classification algorithm
due to the complex bulk and limb motion, so is a good test
of performance. As well as having utility in the automotive
industry, this classification technique has been further devel-
oped and demonstrated in the defence sphere by application
to helicopter classification [14] and ballistic missile detection
and classification, in work funded by the Centre for Defence
Enterprise! (CDE) [15].

n 2016 the Centre for Defence Enterprise became the Defence and
Security Accelerator
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3.2.2 Fractional Fourier Transform based
waveform diversity and communicating
radar

To address the challenge of WD in radar systems, a novel wave-
form design based on the Fractional Fourier Transform (FrFT)
was developed. While a complete definition of the FrFT is out-
side of the scope of this work, in essence FrF'T can encode input
signals into different chirp-like sub-carriers. These sub-carriers
occupy different bandwidth slots in different time intervals, fol-
lowing a linear trend. Properly designed, the sub-carriers can
be distinguished from one another even if they overlap in both
time and frequency. This allows for flexible waveform design
as any signal can be encoded in the sub-carriers. In the UDRC
work information-carrying signals are employed to enable the
dual functionality of the same system.

For a MIMO system, a different sub-carrier can be assigned
to each transmitter. This allows each receiver to distinguish the
source of each pulse and apply appropriate processing, even in
cases where transmitters are active simultaneously. Alterna-
tively, if only one transmitter is employed, then sub-carriers
can be combined to carry more information in one waveform.
This is also called the communicating radar (Co-Radar) wave-
form. An illustration of the synthesis of a Co-Radar waveform
with four sub-carriers is given in figure 3.5. The time-frequency
profiles of 4 information-containing signals, S, S, S3 and Sy,
are illustrated in the upper part of the figure. Those signals
are used as inputs to FrF'Ts of different orders (described as F
blocks), to generate sub-carriers of different time-frequency oc-
cupancy, S7, Sy, S% and S) respectively (lower part of figure).
At this stage, these sub-carriers can be used independently by
different transmitters or be combined to form a Co-Radar wave-
form if one transmitter is operating.

The prototype of the FrF'T Co-Radar system consists of a
mono-static radar that generates the FrF'T waveforms, sends
the pulses and performs basic radar tasks, and a separate com-
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Figure 3.5: Multiplexing of four data modulated signals using FrFTs of
different orders to form a Co-Radar waveform

munication receiver that demodulates the pulses [16]. The en-
tire system is implemented in an SDR, to allow for real-time
novel waveform design and processing. Figure 3.6a shows the
communication performance of the FrF'T Co-Radar in different
configurations evaluated on real data (solid lines), and com-
pared to simulated data (dashed lines). The system is able to
achieve good communication performance, in agreement with
the simulated results. Figure 3.6b shows the spectrogram of a
walking person generated from radar returns using Co-Radar
waveforms of 8 sub-carriers. When the person is moving to-
wards and away from the radar, negative and positive Doppler
shifts are clearly evident.

3.2.3 Micro-Doppler based ATR

As has been seen above, observations of the micro-Doppler sig-
nature of a target can provide discriminative characteristics
which can lead to reliable classification of the target. As an ex-
ample consider the returns from a person walking and running.
Due to the different motion of the limbs, each target will in-
troduce distinct frequency shifts in the returned signal, making
the classification of two similar targets possible. These differ-
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performance. (b) Spectrogram obtained from FrFT Co-Radar pulses
with eight sub-carriers: person walking towards the radar approximately
between 4 — 8 seconds, and away from it between 0 — 4 seconds and
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ent frequency shifts are shown clearly by the spectrograms of
a walking and running individual in figure 3.7.

The problem with using the spectrogram as an input to the
classifier is that if the target is captured at a different phase of
their motion, the time-frequency profile will not be the same.
To mitigate this issue, the frequency-verses-time spectrogram
can be Fourier transformed in time to provide a frequency re-
currence profile. This is referred to as a cadence velocity dia-
gram (CVD), and is invariant to the phase of the pedestrian’s
motion. Figure 3.8 shows CVDs generated from the two spec-
trograms in figure 3.7. Additionally, after the CVD is gener-
ated, feature extraction is undertaken using Krawtchouk (Kr)
moments. The Kr moments are a set of moments formed using
Krawtchouk polynomials and are widely used for image pro-
cessing. Kr moments are scale, rotation and translation invari-
ant, making them very attractive for feature extraction [17].
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Moreover, the proposed technique has low computational cost,
and so has the benefit of allowing real-time implementation in
low SWAP hardware [17]. A similar concept has been applied
by UDRC researchers for helicopter and ballistic missile classi-
fication [14], [15].
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3.2.4 Further exploitation of algorithms for
MIMO radar

Having successfully developed a proof of concept demonstrator
for the Co-Radar system, the current direction is toward its
implementation in automotive platforms. In particular, the Co-
Radar waveform is to be extended to a continuous wave design
to allow higher data rates and to cope with the challenges of
fast changing channels.

Future plans regarding the micro-Doppler ATR include its
commercialisation and application in autonomous systems for
accident prevention, autonomous systems for pedestrian mon-
itoring and intrusion detection in security systems. To enable
adaptation to this variety of applications, the implementation
of techniques such as unsupervised machine learning will be
investigated.

The research undertaken by the UDRC has been used as a
basis to secure the additional following funding:

e Persistent surveillance from the air: UDRC researchers
at Strathclyde University won funding in October 2015
to develop their communicating radar concept for ap-
plication to medium altitude long endurance (MALE)
UAVs. The project was part of the persistent surveillance
from the air CDE call. It addressed the issue of spec-
trum sharing between communication and radar while
conforming to the low-SWAP requirements of MALESs.
The UDRC researchers presented the final demonstration
of their work at a ‘marketplace’ event in London in April
2016. This project drew on fundamental research in the
UDRC, and both informed and collaborated with phase
1 follow-on work undertaken by University College Lon-
don on cognitive radar. See [18] for a video description
of the innovation and a description of its application to
the problem as defined in the CDE call.

e Defence against airborne threats: This project, answering

67



3.

MULTIPLE SENSORS

68

a CDE call from the UK Missile Defence Centre (MDC),
sought to demonstrate the potential of exploiting radar
micro-Doppler signatures in order to provide discrimina-
tion of ballistic missiles from clutter. It addressed the
need to develop robust, low complexity techniques for
classification in missile defence systems. The project led
to a practical instance of the micro-Doppler based classi-
fier. The outputs were fed back into the MDC (see §7.3.1
for details of next steps). In all, Strathclyde University
now have four ongoing contracts with MDC to provide
consultancy on various aspects of BMD research.

e Joint communication-radar operations in automotive ap-

plications An industry-funded project on the extension of
the Co-Radar concept to automotive applications. The
funds fully support a PhD studentship at Strathclyde
University and are designed to investigate the WD and
spectrum sharing challenges in modern intelligent trans-
port systems. The project will extend the existing FrFT
based communication-radar scheme to cope with the chal-
lenges and requirements associated with automotive sys-
tems.

o GNSS-based UAV monitoring system using passive ob-

servations (GUAPQ) Following the UDRC researchers’
victory at the European Satellite Navigation Competi-
tion (see §7.1), funding was secured for the development
of a GNSS-based UAV monitoring system. The project
looked at developing low-cost, low SWAP and easy to
deploy UAV monitoring solutions. This has been aug-
mented by funding from the EPSRC Impact Acceleration
Account and UK Satellite Applications Catapult. The
aim for the current stage of funding is a preliminary the-
oretical and experimental analysis, de-risking, and busi-
ness development for the GNSS based UAV monitoring
technology. It will report experimental results and de-
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velop a business plan to take the technology forward.

e Simulation of micro-Doppler signatures. Two projects
are ongoing, funded by a consumer electronics manufac-
turer, to develop the micro-Doppler signature models to
extract target kinematic models.

3.3 Distributed multi-sensor processing

Murat Uney, Steven Herbert, Kimin Kim, James R. Hopgood,
Bernie Mulgrew
School of Engineering, University of Edinburgh

Paul Thomas, Jordi Barr
Cyber & Information Systems Division, Dstl

Many military applications rely on multiple networked sen-
sors (e.g. figure 3.9). They can increase sensing coverage and
accuracy, and enhance communication potential. Typically in
real defence scenarios they are sparse, low-bandwidth, hetero-
geneous combinations of complex data sources. In order to
operate robustly in a changing environment, these networks
must be scalable, fault-tolerant and flexible. The UDRC has
developed sensor network concepts that mitigate the need for
a specific fusion centre to provide robustness and flexibility in
changing environments and minimise the communication over-
head.

With multiple sensors and one fusion centre the major choices
for detection are (i) global, where all the data is fused; (ii) dis-
tributed, where the decision metrics are fused. Alternatively,
in the absence of a fusion centre, distributed and decentralised
detection (DDD) can be undertaken, where each node makes a
decision based on its own data and side information from neigh-
bouring sensors. With the latter, what might initially be a poor
detection decision at a particular node will improve with com-
munication opportunities and as information propagates back
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Figure 3.9: An example of a distributed sensor network (after [19] and

[20])

and forward across the network. This also has military benefits
such as reduced reliance on critical nodes, reduced bandwidth
and better scalability when adding nodes to the network.

The UDRC team has developed both distributed and cen-
tralised algorithms for processing multiple sensor data streams.
The distributed algorithms aim to trade-off the need for a sin-
gle, potentially fragile, processing centre against losses in ac-
curacy and latency. As a counterpoint, centralised processing
algorithms capable of scaling with the number of sensors for
cases in which it is feasible to collect the network-wide data at
a fusion centre have also been investigated. Integral to each
approach is a consideration of the capabilities and limitations
of the communication links between the sensors in the network.
The team adopted a network-centric approach for distributed
multi-sensor processing and linked it to the sparse processing
and sensor management aspects of the UDRC.
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3.3.1 Networks of sensors in defence systems

This work has application in any of the scenarios in which the
military makes use of networked sensors. The theory is there-
fore very valuable as an underpinning technology which can
be brought to bear in a number of applications. The UDRC
algorithms provide new means for automatic calibration in net-
works of sensors, which has advantages in terms of scalability
and the ability to cope with realistic uncertainties. One par-
ticularly useful application is sensor localisation in GPS-denied
environments. The level of abstraction facilitates use in a wide
range of sensing modalities (e.g. radar, sonar, lidar). During
the UDRC phase 2 three specific examples have focussed the
researchers’ output on practical implementations.

Sonobuoys for anti-submarine warfare

Sonobuoys are unattended underwater sensors, usually anchored
to the seabed and operating at varying depths in the water col-
umn. Such sensors suffer from significant drift in all dimensions
due to changes in underwater conditions. UDRC researchers
adapted their methods for registration of passive sensors and
used this problem as an early motivating scenario. The output
was used to inform Dstl’s work under the Maritime Freedom of
Manoeuvre programme.

Maritime multi-sensor fusion

Large maritime platforms like the Type 23 frigate (T23), its
successor the Type 26 (T26), and the Type 45 destroyer (T45),
are equipped with a multitude of sensors. By representing the
ship as a networked system of heterogeneous sensors, UDRC
researchers cast the problem as a DDD task. This will have
extension to future ‘fleet’ sensing tasks (i.e. those involving
multiple ships and other platforms) as well as off-board sen-
sors such as those borne on unmanned air systems (UAS). Ex-
ploitation has been through Dstl’s Maritime programmes as
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well as the MarCE industry partnership. Dstl has provided
ship-borne multi-sensor data for which time-dependent uncer-
tainties in sensor position and orientation can be significant.
This is a problem of current interest; Dstl has identified the
geo-spatial and temporal referencing (G&TR) aspects as those
that benefit most from this technology and the developed algo-
rithms are aimed at insertion points in GT&R systems for the
T26 and T45.

SAPIENT

Sensing for Asset Protection using Integrated Electronic Net-
worked Technology (SAPIENT) is a concept for networked au-
tonomous sensor modules that communicate low bandwidth de-
tection and classification messages rather than raw data. SAPI-
ENT is being developed by Dstl under CSA funding towards a
number of user scenarios including base protection, anti-vehicle
area denial and counter-UAS. In all these scenarios accurate
knowledge of the location and orientation of the sensors is crit-
ical to the ability to fuse the messages. Low-cost, autonomous
self-localisation is a critical enabler that would avoid lengthy
manual surveying of the sensors and allow such systems to be
deployed at high tempo.

UDRC researchers, in collaboration with Cubica Technolo-
gies, won DASA funding to demonstrate their algorithms for
sensor localisation and orientation in a network of radar and
lidar sensors. The efficacy of these algorithms has been tested
in networks of commercial off-the-shelf (COTS) sensors used in
perimeter protection applications. Low-cost, autonomous self-
localisation capability is crucial in efficient deployment of these
networks.

Additional applications

Reliable detection and localisation of small aircraft such as
drones is a topic of increasing defence interest. The approaches
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developed here are capable of providing low false alarm rate de-
tection and accurate localisation of these vehicles. Analogous
issues arise in the maritime domain in the detection of small
maritime craft. In both instances there is uncertainty charac-
terised by a non-stationary background, high false alarm rates
and large numbers of other vessels. Novel and efficient track-
before-detect (TBD) approaches? developed by the UDRC are
capable of addressing these challenges.

3.3.2 Distributed detection, registration & fusion

The UDRC research into distributed multi-sensor processing
had two main research thrusts. The first considered sensor
platforms which exchange high-level information (e.g. target
location) over a network. The prerequisite to fusion of such lo-
cal information is its calibration to a global frame of reference.
This task is conventionally carried out either manually or by
using dedicated calibration sensors, such as GPS receivers. The
UDRC team developed scalable algorithms for sensor calibra-
tion which do not require such dedicated sensors. These reg-
istration methods use target information and enable sensor lo-
calisation in GPS-denied or other restricted environments. The
second thrust focused on signal processing with geographically
dispersed transmitter and receiver networks. The UDRC team
developed theoretical tools and algorithms which achieve sub-
stantial improvements in detection performance and resource
management for such networks.

2Track-before-detect algorithms seek to dispense with the detection
process. Instead they operate directly on the sensor output, be that an
image, intensity map, radar I/Q or any low-level datum. The benefit is
that targets at low SNR which may have escaped beneath a detection
threshold can be found through what is, in effect, a longer integration.
The downside is that TBD methods need to process larger data sets and
tend therefore to be much more computationally expensive.
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Distributed fusion and registration

In multi-sensor fusion operations, it is commonly assumed that
the sensors are registered onto a common reference frame. In
practice, however, registration can be non-existent or poorly
calibrated and prone to drift, thus leading to decreases in target
track and identity accuracy. Existing solutions to the problem
have a number of shortcomings. They do not employ realistic
models that capture all uncertainties in the problem. They also
fail to scale well with the number of sensors (see, for example,
[21], [22]).

UDRC researchers have shown that it is possible to jointly
identify and track a varying number of targets in scenarios us-
ing real data with high false-alarm rates in real time, perform-
ing registration onto a common reference frame. Each platform
maintains its own estimates of the targets in the scene, and
fuses information from neighbouring sensors when communi-
cation permits, trading off accuracy against latency. These
results are theoretically well-grounded and scalable for net-
work self-calibration problems. The method exploits the mea-
surements of the targets collected from the surveillance region.
These quantify target parameters with varying degrees of un-
certainty. The algorithm then uses them to locate nodes with
respect to the origin of a network coordinate system.

In general, the computational cost of jointly processing data
from all nodes grows exponentially [23]; at every scan, mea-
surements are due to targets and false alarms. The number
and assignment of these is unknown. It is therefore advanta-
geous to filter uncertainties locally at the sensor platform. This
ensures communication only of essential information and pre-
vents unnecessary use of network resources [21]. The UDRC
calibration and localisation algorithm uses local filter outputs
and thereby provides a substantial improvement in scalability
with the network size. This is possible, however, only if one can
trade-off the exact solution of the problem with well-engineered
approximations. For localisation, finding such approximations
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is non-trivial, and has been the focus of this work.

Self-localisation using pseudo-likelihoods

In order to address issues of scalability, the UDRC team devel-
oped a modelling framework that approximates the intractable
exact model of the multi-sensor calibration problem by combin-
ing local models. As a result a configuration of sensor calibra-
tion parameters (e.g. sensor locations) is evaluated based solely
on individual single sensor data streams. No joint processing is
required. This key feature uses message passing. Sensor local-
isation is found by exploring possible sensor configurations to
find the most likely one. This search is performed efficiently by
creating samples in those regions of the space containing likely
values.

The first family of the approximate models are built upon
novel structures referred to as dual-term separable likelihoods.
UDRC researchers first introduced these in [24]. In [25], it was
proved that this approximation is accurate provided that the
sensors are able to locate the objects in their field-of-view. Ex-
tensions of this work are capable of giving useful output when
the sensor fields of view overlap only partially [26]. A sec-
ond family of approximate models [27] has been shown to be
an accurate approximation for parameter estimation in multi-
sensor state space models [28]. In order to exploit this method
when there are multiple objects, extra attention needs to be
paid to data association uncertainties. Key to scalable infer-
ence using this model is an empirical Bayesian interpretation
of hypothesis-based local filtering [28].

The self-localisation algorithms use Monte Carlo methods
within a variational inference technique known as belief propa-
gation (BP). Monte Carlo BP iteratively generates new location
samples until these samples accumulate around the most likely
configuration. Efficiency in sampling is achieved by exploiting
the fact that one of the sensor platforms is at the origin of the
coordinate system. Starting from this sensor, pairwise likeli-
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Figure 3.10: A MIMO view of distributed staring array radars emitting
orthogonal probing waveforms. ULA stands for Uniform Linear Array.

hoods are used to find adequate prior distributions based on
data. This technique, referred to as empirical Bayes, improves
the sample efficiency and convergence properties of BP.

Detection with geographically distributed sensors

The second research thrust aims to address the challenge of
detecting manoeuvring low SNR objects using modified TBD
methods. Geographically distributed transmitter elements pro-
vide the benefit of sensing diversity by illuminating an object
from different aspect angles [29]. UDRC research has con-
sidered MIMO configurations composed of components with
a co-located omni-directional transmitter and a staring array
receiver. Each pair can be treated as a standalone radar and
they coexist by transmitting orthogonal probing waveforms [30]
(see figure 3.10).

Detection is a statistical hypothesis testing problem, the
solution to which assesses the content of received signals con-
taining reflected versions of the transmitted waveform. Such
tests span a time window, the length of which should be long
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enough to collect sufficient signal to rule out the noise only
hypothesis. For dim objects a longer time window is needed.
Target manoeuvres complicate this search. In order to locate
the correct signal samples for the detection test, the trajectory
of the object needs to be estimated.

Geographical diversity leads to many reflections at any re-
ceiver whose data can be integrated for detection. In order to
make use of these reflections, however, accurate temporal cal-
ibration of the transmitter is required. This level of synchro-
nisation is extremely difficult to achieve with geographically
distributed transmitter elements. Existing methods often make
unrealistic assumptions and cannot guarantee an acceptable de-
gree of detection performance in the case of manoeuvring low
SNR targets. There are also few accurate algorithmic methods
for finding the synchronisation of non co-located transmitter-
receiver pairs.

The UDRC approach evaluates statistical detection tests
on measurements over arbitrary time windows [31]. One chal-
lenge addressed by the UDRC algorithm is that the reflection
strength corresponding to the hypothesised target also needs to
be estimated. The UDRC team showed that this quantity can
be found using the measurements from staring array receivers.
This is key as the number of measurements collected is often
not sufficient for an accurate estimate of the target strength
[32] which results in failure to detect reliably. A new method
for synchronisation in spatially-separated MIMO systems using
the object trajectory as a reference has been presented in [33].

3.3.3 Adaptive waveform design in MIMO active
sensing

UDRC research addressed the problem of how to construct
a radar waveform for a MIMO array to best estimate target
parameters. Typically, in MIMO radar (and sonar) systems
the received signal is a non-linear function of the target pa-
rameters. The researchers extended existing work on this sub-
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ject to incorporate this non-linearity into general active sensing
MIMO arrays. A MIMO active sensing system adaptively de-
signs the transmit waveforms such that the location angles of
a known number of targets are estimated with minimum ex-
pected variance. This is referred to as minimum mean squared
error (MMSE) design in signal processing literature.

An accepted mathematical formulation for this problem ex-
ists, though it only provides approximations for the optimal
waveform design. The primary purpose of the UDRC research
for this application was to derive exact MMSE waveforms for
active sensing systems, and to apply these in simulations based
on real-world systems and scenarios of interest. The theoretical
expression for MMSE adaptive waveform design was derived
in [34]. This expression leads to challenging implementation
questions, as its evaluation is computationally expensive. The
UDRC solution reduced computational load using a novel sam-
pling strategy [34].

Numerical simulations of one and two target scenarios showed
that the MMSE adaptive waveform method outperforms both
the non-adaptive method, and an existing approximate method
for MMSE waveform design when targets are static [34]. Fur-
ther preliminary results indicate that this improvement holds
in the case where targets are moving, and that the gain may
be even greater.

Having achieved its primary objective, this work progressed
to ask the question of whether MMSE is the best optimisation
metric for adaptive waveform design in MIMO systems. One
outcome of this analysis was that, in the case where the pa-
rameters associated with one target are relatively uncertain,
minimising the largest eigenvalue of the error covariance ma-
trix for the target parameters is a better optimisation method
than a MMSE criterion [35]. The researchers speculated that in
order to optimise waveform design, real-world MIMO systems
may require a higher degree of waveform control than current
technology permits.
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3.3.4 Extending and exploiting multi-sensor
processing systems

Automatic calibration has been demonstrated on real data col-
lected using a SAPIENT-compliant network of radar and lidar
sensors. The theory and algorithms developed by the UDRC
exploit Monte Carlo methods within BP to generate candidate
sensor configurations and evaluate their efficacy. The differ-
ences in likelihood, however, are typically negligible for almost
all configurations. The UDRC researchers have used this fact
to develop novel sampling strategies to improve efficiency. This
approach has the potential to allow rapid deployment and ro-
bust operation of sensor networks in many different scenarios.
Further research of this type will extend the range of applica-
tions.

The modelling approach for detection problems anticipates
a number of interesting research directions. For example, the
extraction of signal features (e.g. Doppler) for target classifi-
cation. The UDRC algorithm can track target reflections for
comparatively long time periods which aids robust feature ex-
traction. Integration of this capability with detection allows
automatic discrimination of objects of interest (e.g. drones
from birds).

A further research direction relates to the fusion of data
from different sensing modalities and resolutions. The exist-
ing literature on multi-modal sensor fusion largely considers
the combination of information at a decision level. The UDRC
model allows for fusion from different sensors at the data or in-
formation level. Contributions in this area could have a signif-
icant impact in sensing applications including those for multi-
sensor autonomous systems.

The work undertaken on radar waveform design has moti-
vated two further research directions. Firstly, developing better
methods for optimisation in adaptive waveform design. In par-
ticular, finding features of the derived adaptive waveform that
enable a step improvement in the optimisation and reduce the
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computational load. Secondly, the UDRC research has shown
that the effectiveness of adaptive waveform design is dependent
on the validity of the target model. It is therefore necessary to
investigate whether existing statistical characterisations of the
target are sufficient for adaptive waveform design.
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Chapter 4

Object detection,
localisation and sensor
management

Acquiring timely situation awareness in the networked bat-
tlespace hinges on appropriate tasking of sensors, summarised
in figure 4.1. In order to do this effectively, the states of sen-
sors, targets, the environment and other context must be well
estimated. The precision of these estimates is often not as im-
portant as a quantification of the uncertainty in our knowledge.

In many cases where there is freedom to alter the states of
sensors, interventions that lower the uncertainty and improve
situation awareness can be made. This is called sensor man-
agement and can be thought of as an optimisation over many
dimensions (e.g. sensor field of view, sensor location, process-
ing location, bandwidth, processor resources) which can vary
between missions. As the state-space scales up to many sen-
sors and many targets this optimisation quickly becomes in-
tractable. Sensor management is also a strong function of our
knowledge of target dynamics and the constraints imposed by
the environment, mission, and doctrine, amongst other things.
In defence, these decisions are generally made by a human. If
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Figure 4.1: A graphic showing target locations together with an estimate
of the uncertainty in their location (dashed ellipses). The sensor has a
range of options each of which will affect the uncertainty in different
ways. Effective sensor management hinges on quantified prediction of
the potential effect of each putative measurement.

situation awareness is to be realised autonomously, then re-
search must address the interface between sensing, tracking,
control and decision making.

4.1 Incorporating domain knowledge
using Bayesian inference

Michael Hutchinson, Cunjia Liu, Miao Yu, Wen-Hua Chen
Department of Aeronautical & Automotive Engineering, Uni-
versity of Loughborough

Paul Westoby
Chemical, Biological & Radiological Division, Dstl

Jordi Barr
Cyber € Information Systems Division, Dstl

Domain knowledge and contextual information is used by
all humans when making inference decisions (e.g. tracking,
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classification). This is currently less true of machines which
have tended to apply fixed rules or algorithms in a particular
situation with limited opportunity to transfer these methods
into new areas. When combining or fusing data and informa-
tion, Bayes rule is a powerful statistical tool that tells one how
to combine measurements produced by some presumed process
(called the likelihood) with prior information and evidence (the
actual measurements) in a rigorous and optimal way.

Prior x Likelihood
Evidence

Posterior probability = (4.1)

Bayes rule is of practical value to humans and autonomous sys-
tems alike, but there is currently no general approach for the
incorporation of domain knowledge into practical Bayesian in-
ference machines. The UDRC aimed to establish a framework
by which all information and data available to agents in a net-
worked environment can be incorporated into situation aware-
ness and decision making. New signal processing algorithms
adaptive to operational environments have been developed by
exploiting domain knowledge. Extensions have been made to
sensor platforms operating in a networked environment by fus-
ing different types of information. This work has produced
research outputs which have been applied to a number of dif-
ferent domains.

Firstly, the UDRC used domain knowledge to reduce un-
certainties in object tracking. This is achieved by making use
of knowledge that may be difficult to capture, represent or ex-
ploit in both the modelling and signal processing stages of ex-
isting approaches. In the context of moving object tracking,
constraints are due to road networks, terrain and other geo-
graphical information, as well as particular sensor properties
and characteristics (e.g. blind zones in GMTI radar).

Secondly, an object may have different and predictable stages
or modes of its movement (e.g. stop, acceleration, constant mo-
tion for a ground vehicle, or the boost, coast and re-entry stage
of a ballistic missile). So-called Markov Jump models can repre-
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sent the behaviour of a wide range of moving objects and their
distinct operational modes. Switches from one mode to another
are affected by many domain-specific factors, including inter-
actions with the environment or other objects, or the nature of
the moving object. The current Markov Jump models are not
able to capture these aspects of domain knowledge — something
a human does almost instinctively. UDRC researchers have de-
veloped a new modelling approach, referred to as State Depen-
dent Transition (or Hybrid Markov Jump) to model the depen-
dency of the modes, their transitions, and physical constraints
on the operational environment. Based on these new modelling
approaches, a Bayesian tracking framework was proposed to de-
velop context-aware tracking algorithms. Efficient implemen-
tations have been developed. Several case studies have been
investigated to demonstrate the efficiency of the proposed mod-
elling and tracking algorithms, including UAV-mounted GMTI
radar tracking ground moving vehicles [1], [2], ballistic missile
tracking and stage estimation [3], [4], and multiple target track-
ing [5]. Detailed numerical and simulation studies have shown
improved performance in comparison with existing approaches.
The rest of this section consists of a more in-depth examina-
tion of a single application where domain knowledge is used to
increase inference accuracy using a Bayesian framework. The
example is drawn from sensing for the location and classifica-
tion of Chemical, Biological and Radiological (CBR) releases.

4.1.1 CBR source term estimation using
autonomous vehicles

Hazardous substances released into the atmosphere pose both
an immediate and delayed risk to human health. A prompt and
accurate prediction of where the material will disperse and de-
posit is therefore required to enable first and specialist respon-
ders to undertake appropriate mitigation strategies. Hazard
predictions, however, require accurate knowledge of the release
parameters (the so-called source term), as well as the local me-
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teorological information. In many situations this information
may be unknown, or highly variable. CBR sensor readings will
indicate the presence of a hazardous material and this must be
turned rapidly into a warning in order to ensure the safety of
personnel in the vicinity and maintain operational tempo. This
currently requires either a static network of pre-deployed CBR
sensors, which can be costly and necessitate substantial plan-
ning, or the manual collection of sensor measurements, which
places responders at risk. The utility of unmanned autonomous
vehicles with integrated CBR sensors is that they provide a
reconnaissance and survey capability for obtaining real-time,
targeted — i.e. most informative — measurements without en-
dangering personnel.

The work undertaken during UDRC phase 2 has devel-
oped an algorithm to autonomously guide an unmanned ve-
hicle to the most informative measurement locations in order
to simultaneously search for and estimate the parameters of a
hazardous release. Domain knowledge is incorporated by way
of meteorological information and an atmospheric dispersion
model to forecast the spread of the hazardous material. The
known or estimated physical properties of the source can also
be used.

The UDRC method can be used independently, or as a sup-
plement to a static network of sensors that may be deployed
around a specific area of interest, such as the perimeter of a
military base. The UDRC phase 2 work concluded with an ex-
perimental result, the first of its kind in the literature, where a
robot equipped with a gas sensor was guided by the algorithm
to estimate the source term of a release.

The need for autonomous CBR source term
estimation

A system capable of automated collection of informative CBR
sensor data will enhance situation awareness through more ac-
curate reconstruction of the source term. This results in better
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hazard predictions that enhance decision-making under CBR
threats, maintain operational tempo, and ultimately save lives.
Such a system could be used independently or in concert with
an existing Dstl source-term estimation (STE) capability (de-
signed for continuous monitoring of static CBR sensors and col-
lectors), to provide protection of military or civilian personnel
and assets or areas of interest. Deployment of such a system
on a lightweight, low-burden, mobile platform, e.g. a UAV,
enables forward deployment of an STE capability, providing
real-time CBR situation awareness at the tactical level. This
allows the tactical commander to adopt alternative courses of
action, enhancing survivability and avoiding contamination of
critical assets.

It is envisaged that the technology be used by trained spe-
cialists for the following;:

e reconnaissance and survey of an area to identify and char-
acterise a suspected CBR release, or to eliminate the pos-
sibility of a potential hazard;

e routine monitoring of the air in and around a specific area
of interest (e.g. military base, city, major event);

e reactive deployment of autonomous vehicles to collect ad-
ditional data in response to a static sensor alarm;

e data gathering to quantify and monitor contamination
levels of a known CBR release, e.g. a forensic investiga-
tion following a strike on a chemical facility or a toxic
industrial accident.

The capability could be further enhanced to include non-CBR
data. The use of Intelligence, Surveillance and Reconnaissance
(ISR) assets, for example, would enable target acquisition ca-
pabilities to further refine estimated release locations via iden-
tification of a suspect vehicle at or near the inferred release
location. Integration of all-source information will reduce the
uncertainty in the estimated source terms and improve the haz-
ard prediction accuracy.
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CBR source-term estimation research

An autonomous search and estimation algorithm was devel-
oped by UDRC researchers to guide a robot to localise and
characterise a source of hazardous material. Estimation of the
source term is strongly influenced by domain knowledge and is
a function of the release location (e.g. latitude and longitude),
the release mass rate (in kgs™'), the diffusivity and average
lifetime of the dispersing material, as well as the wind speed,
wind direction and other meteorological parameters. See [6] for
a more complete description. To expedite the inference, mete-
orological measurements are used to provide a starting point
(i.e. a prior) for wind speed and direction.

Using the UDRC algorithm, the robot, beginning from an
arbitrary location and equipped with a simple concentration
sensor, navigates its way through the environment collecting
measurements of the hazard at set time intervals. At each time
step the robot will choose from an admissible set of actions
and move to the location that is expected to yield the most
informative data [7].

A probabilistic framework was used to estimate the source
parameters accommodating the large uncertainties in the haz-
ard concentration readings from the sensor [7]. The state of
knowledge regarding the source parameters was represented by
a posterior probability distribution which was continuously up-
dated in response to new sensor data, using Bayes’ rule (equa-
tion 4.1).

The initial prior distributions of the source parameters were
assumed to be given; either provided through sensory data or
by user input. If information concerning the source term was
available prior to the search, it could be used by way of an ap-
propriate distribution to represent the prior knowledge of the
release. However, in the absence of information, as will nor-
mally be the case, the prior can be set to an uninformative
distribution. In subsequent iterations, the prior distributions
were replaced to reflect the information gained from the pre-
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vious sequence. The Bayesian estimation of the source term
parameters was implemented in a recursive fashion, using a
sequential Monte Carlo algorithm [7].

The next step was to choose the manoeuvre that is ex-
pected to be the most informative from an admissible set of
actions. The reward or utility function for sensor planning
was inspired by the literature on optimal experiment design.
The purpose of the reward function is to represent the infor-
mation gained on the estimated source term parameters given
the next sensor reading. Different functions can be adopted.
However, since the future measurement is generally unknown,
it was suggested that the optimal sensor placement should be
the one that maximises the expected utility of the subsequent
measurement. The experimental design problem was adapted
to direct a mobile sensor, where the choice of the next experi-
ment is the movement of the sensor. The value of the expected
utility was approximated by importance sampling techniques,

e.g. [8].

The sensor control strategy undertook the full search using
a single framework which balanced exploration and exploita-
tion, incorporating the estimates of the source parameters. The
emergent behaviour was characterised by explorative behaviour
when the posterior distributions were less informative, and ex-
ploitative behaviour, i.e. moving towards the source, as the
posterior distributions became more informative. In the case
of a continuous, ongoing release this approach naturally guides
the robot towards the source location, as the posterior estimate
becomes more certain. An example can be seen in figure 4.2.
Here the route taken by the mobile sensor is shown along with
the posterior distribution for release location at four discrete
points in time.
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X (m) ’ x (m)

Figure 4.2: An illustrative STE search using an autonomous robot. Pan-
els show time steps: (a) 7, (b) 32, (c) 58, and (d) 65. The green dot
represents the current position of the robot having followed the blue line
and made observations at positions indicated by the blue dots. The true
location of the source is shown by the black dot and the small pink dots
represent the random samples from the estimation algorithm.

Technology demonstration via the Defence and
Security Accelerator

The fundamental research conducted by UDRC researchers was
used as the basis for a proposal which won DASA funding un-
der a themed call for Autonomy in Hazardous Scene Assess-
ment (AHSA). The project was called Autonomous Bayesian
search for hazardous sources. Whilst also contributing to the
development of the STE algorithm, the emphasis of the AHSA
project was on verifying the approach in a live demonstration
under experimental conditions.

In the live demonstration, smoke released from burning in-
cense sticks was used to simulate a hazardous release in an
indoor area. A TurtleBot robot was used as an unmanned
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Figure 4.3: Photographs from the start (top) and end (bottom) of an
illustrative run with two sources.

ground vehicle, and was equipped with a low-cost metal oxide
sensor to measure smoke concentration. Smoke measurements,
position coordinates and velocity commands were shared be-
tween the robot and a ground control station using the Robot
Operating System, a standard tool used in research robotics.

Figure 4.3 shows photographs taken at the start and end
of the demonstration. In this example, the incense sticks are
positioned on the left-hand side of the room. The starting
position of the TurtleBot (top right corner of the picture) can
be seen in the top image of figure 4.3, while the final position
can be seen in the bottom image, along with the path the robot
took.

The posterior density estimates of the source parameters for
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Figure 4.4: Posterior density estimates of the location (z and y coordi-
nates) and the scaled release rate, A, after an illustrative run with two
sticks. The blue curve indicates the posterior estimate with the dashed
green lines representing the mean and standard deviation of the esti-
mate. The vertical red line (for = and y) indicates the truth, and the
red curve (for A) represents the prior distribution.

the demonstration run are shown in figures 4.4 and 4.5. The
experiments were run several times to ensure that the system
was reliable under the experimental conditions shown and re-
lease location estimates were consistently found to be within
10cm of the true source location.

In addition to demonstrating the autonomous STE capabil-
ity, the AHSA project also explored implementation issues on
a UAS. The study, with project partner Swarm Systems Ltd,
addressed mechanical integration, electronics integration, com-
munications, control and specialist module design. The system
used in the study was the Owl 4 Nano AV, which is a small
quadrotor system weighing less than 200g. The study assessed
the feasibility and system design issues of adding a chemical
concentration sensor to the existing on-board sensor suite of
electro-optical (EO) visible-band and IR cameras mounted on
a single axis gimbal. The study also reviewed low-cost concen-
tration sensors suitable for integration onto the platform.

The successful live demonstration and promising UAS inte-
gration study lead to satisfactory completion of the first phase
of the AHSA project. On the strength of the phase 1 demon-
stration and outputs, funding was secured for phase 2 of AHSA,
where the system will be demonstrated running on a UAV in
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Figure 4.5: The source parameter estimates at the end of the experiment:
(a) wind direction ¢g, (b) wind speed Uy, (c) diffusivity Dy and (d)
lifetime 79. The red line indicates the prior and the blue curve is the
estimate.

an outdoor environment.

4.1.2 Outputs of theoretical and applied STE
research

A state-of-the-art information-theoretic technique to estimate
the source term of a hazardous atmospheric release has been
developed and tested in experimental conditions. Previously
in the literature, testing of these algorithms had been lim-
ited to simulations, historical datasets, or experiments using
a thermal source. This work marks the first implementation of
an autonomous source estimation algorithm in which a mobile
sensor platform was guided in real-time using information the-
oretic principles. The results of the experiments demonstrate
successful use of the system, and how the location of a dis-
persing source can be estimated using a low cost gas sensor in
relatively short time. The following actions and recommenda-
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tions will improve the performance of the system, extend its
capabilities and work toward an operational STE capability.

Phase 2 of AHSA will develop the system to operate in
three-dimensional space in order to run on-board an air-
borne platform instead of a ground vehicle. Outdoor field
trials using a UAV will be undertaken.

Phase 2 AHSA will also explore the feasibility of mount-
ing a chemical agent sensor on-board a UAV. This should
include assessment of the impact of UAV rotor blades on
observed concentration levels.

The algorithm should be adapted to infer instantaneous
and finite duration continuous releases that have occurred
in the immediate past, in addition to the current infinite
duration (i.e. continuing) releases.

The ability to operate efficiently in cluttered or urban en-
vironments should be increased. This will involve several
steps to improve the source estimation and UAV path-
planning algorithm.

Methods to integrate the system with existing STE capa-
bilities designed to support static sensor networks should
be explored.

The ability to identify and map the boundary of a con-
tamination zone, rather than the source of the hazard
would be a valuable and straightforward addition to the
algorithm.
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4.2 Multi-object estimation and sensor
management
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When sensors can be adjusted in real time, considerable
choice regarding the collection of future measurements exists.
Some metric is therefore necessary that evaluates the outcome
of different sensing choices and its assessment is central to au-
tonomous sensor management. A commonly used quantity for
this purpose measures the potential reduction in uncertainty
in the estimated target state, thereby providing information on
the value of each putative measurement. State-of-the-art ap-
proaches to sensor management conventionally fall into two dis-
tinct types, based on either information-theoretic or task-based
metrics. The first type assumes the objective of maintaining
information that is as extensive and as complete as possible.
The second type focuses on parameters that are specifically ex-
tracted to be well matched to the user’s task. UDRC phase 2
research has developed solutions pertinent to metrics of each
type.

Of course, where to point the sensors requires an appropri-
ate estimate of sensor states as well as multiple target states.
The development of multiple-target detection and tracking al-
gorithms (also sometimes referred to as filters) initially arose
from the extension of single-target algorithms to the multi-
object case. In multi-object state estimation, the unknown
data association between the targets and the measurements is
hypothesised, and single-target filters are run in parallel for ev-
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ery association hypothesis [9]. This data association scheme in-
volves combinatorial mathematics, and scales very poorly with
the size of the tracking problem: in the general case, the com-
plexity of these solutions increases rapidly with the number of
targets and collected measurements. As an example, in the
case of 5 targets and 5 ambiguous detections the number of
possible target-detection associations at a single point in time
can be over 30 million.

An alternative approach, proposed in the early 2000s, called
Finite Set Statistics (FISST) [10], [11], represents the whole
population of targets as a single set of objects, rather than a
collection of individual tracks. The FISST framework allows
for the rigorous modelling of multi-object detection and track-
ing problems, accounting for all sources of uncertainty (e.g.
target dynamics, sensor measurement noise, probability of de-
tection, false alarm rate). The FISST framework has proven
far less computationally demanding than approaches that re-
quire explicit data association and is able to handle complex
multi-target, multi-sensor tracking scenarios with thousands of
targets in real time. While well adapted to large scale scenarios,
the first generation of multi-target tracking techniques derived
from FISST lacked a measure of uncertainty in the local esti-
mate (i.e. in any desired region of the surveillance scene) of
the number of targets. This makes them unsuitable for use in
principled sensor management algorithms.

The work undertaken in UDRC phase 2 took FISST as a
framework and sought to incorporate second-order statistical
information, i.e. uncertainty estimates. In order to achieve
this, the fundamentals of the theory were revisited through the
more general point process theory; novel statistical tools were
introduced for the description of multi-target states, and new
filtering solutions developed to exploit those tools.
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4.2.1 Autonomous sensor management for
defence

Efficient sensor management algorithms are useful in a range
of congested and contested military domains, especially where
sensor use is constrained. They are also applicable to sensors
with a field of view that is small with respect to the surveillance
area so complete coverage is not possible without reorientation.
Examples of this type of problem occur in radar and EO sens-
ing. Networks of sensors where reconfiguration, relocation or
activation of sensing nodes are considerations for an operator
(e.g. electronic surveillance) are also situations which will ben-
efit from this research.

The sensor management algorithms developed under the
UDRC phase 2 are relevant to analyses of populations where
estimating target identity over the whole course of scenario may
not be of primary interest, but where the number of objects is
significant. This is a good description of swarms of drones
— of interest in counter UAS scenarios, or for space situation
awareness (SSA), where the density of orbiting debris rather
than its individual composition, may be of primary concern.
The research described in this section is also well suited to si-
multaneous tracking and sensor registration in the above-water
maritime domain.

Autonomy is an important exploitation route for sensor
management algorithms. Indeed, future autonomous systems
cannot function without the capacity to decide when and where
to make sensor measurements. Furthermore, without adequate
consideration of the efficiency and effectiveness of these ob-
servations a system may compromise its situation awareness,
posing a risk to its mission or itself. These considerations are
compounded where autonomous systems work in groups shar-
ing information.
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4.2.2 Theoretical advances in estimation and
sensor management

Higher-order statistics for multi-target tracking

Recent progress in multi-object filtering has led to algorithms
that compute the so-called first-order moment of multi-object
distributions [12]. This allows the number of targets in an arbi-
trarily selected region to be estimated. In the UDRC phase 2,
researchers developed explicit methods for the computation of
second-order statistics for multi-object filters [13]. This quanti-
fies the level of uncertainty in target state and number in arbi-
trary regions and so makes information-theoretic sensor man-
agement methods possible.

Describing the output of the filters with higher-order mo-
ments allows for a more subtle analysis of the acquired infor-
mation. Extracting second-order information is particularly
important in applications where the confidence in the acquired
information about the observed system is at least as impor-
tant as the information itself. Sensor management problems
can therefore be solved autonomously, with information-based
decisions focusing attention on regions where the expected gain
in the acquired information would be greatest.

Current first-order moment methods are unsatisfactory in
situations where little is known a priori about the populations
of objects to be estimated. An example is provided by a sensor
whose false alarm rate is roughly constant, but where unpre-
dictable ‘bursts’ of false alarms sometimes occur (automated
detection algorithms on cameras on UAVs sometimes behave
like this). In these instances the estimated number of targets
is not well tracked. UDRC researchers addressed this prob-
lem by developing a method based on the Panjer distribution.
This derives from the theory of multi-target point processes and
offers more flexibility than commonly used distributions (e.g.
Poisson) in the description of the size of a population of objects.
Results, shown in figure 4.6, demonstrate that while Poissonian
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Figure 4.6: Mean error and variance bounds in the number of estimated
targets (y) for two (PHD) filters with varying degrees of Poissonian
clutter, and the UDRC-developed filter with negative binomial (NB)
clutter. Top: the x-axis shows the number of simulated clutter points.
Bottom: the x-axis represents time in a scenario where the clutter has
a NB distribution with mean 9.5 and variance 190.

filters behave well when the actual clutter rate corresponds to
the free parameter (1), the UDRC-developed filter is able to
give good cardinality estimates over a range of clutter densi-
ties. In cases where sensor false alarm rate is unpredictable,
the mean and variance of the cardinality error for the UDRC
filter is smaller than the other filters, indicating it gives more
stable estimates [14].

Joint estimation of target states and sensor
calibration

There are many multi-object tracking problems that require
estimation of parameters which are common to all objects or
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related to the sensor profile. Examples of these include reg-
istration of multiple sensors, estimating clutter profiles, and
autonomous vehicle self-localisation. Typically, these param-
eters are estimated separately from the states of the targets,
which can lead to systematic errors or overconfidence in the es-
timates. The UDRC team developed methods of estimating the
multi-target state jointly with parameters common to multiple
targets or related to the sensor configuration, using first order
moment methods as a basis. Initially studied for target track-
ing applications [15], this method has been applied to the joint
triangulation of multiple objects and calibrating cameras [16],
estimating sensor drift in microscopes [17] and telescopes [18§],
distributed multi-sensor localisation [19], and clutter-rate esti-
mation [20]. It has also been developed, in collaboration with
Dstl, for jointly calibrating a camera and a radar based on ship-
ping traffic in a maritime surveillance application (see §4.2.3).

Estimation of object spawning events

Tracks which split to form other tracks create issues for many
estimation algorithms. A real example of this problem is the
risk posed to space-based assets through the fragmentation of
orbiting objects. Early identification of such events is clearly
critically important to reduce the risk from collisions. The
tracking of objects created during such fragmentation poses
a challenge for current multi-target trackers. By exploiting
their understanding of point process theory, the UDRC re-
searchers proposed the first principled derivation of the Car-
dinalised Probability Hypothesis Density filter, a first-order
FISST-based filter, with arbitrary spontaneous birth and spawn-
ing processes. This has been applied to spawning target pro-
cesses relevant to SSA [21].
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Sensor management for uncertain populations of
targets

An information-theoretic solution to the sensor management
problem, building on estimation work, was proposed by the
UDRC in [22]. The metric developed can be tailored so as
to put emphasis either on specific regions within the surveil-
lance area or on specific tracks from within a population. This
capability is not currently available to other multi-object fil-
ters. For sensor management purposes a distinction is made
between previously observed and yet to be detected objects,
thus providing a principled distinction between the sensing ac-
tions aimed at exploitation (‘tracking mode’) and exploration
(‘search mode’). This has clear applications for operators con-
cerned with maintaining track custody in situations where new
targets are expected to emerge. Second-order statistics describ-
ing the object number when evaluated over arbitrary regions in
the surveillance area were also proposed as metrics by which to
undertake sensor management [13]. The variance inherent in
these estimates provides a measure of reliability for the results,
making them a particularly useful choice for sensor manage-
ment.

4.2.3 Applications of sensor management
algorithms

Multi-object estimation for space situation awareness

The detection and tracking of orbiting objects is required for
the assessment of potential collisions, sensor scheduling, data
downlink, among many other tasks. Current catalogues, how-
ever, are deterministic in nature and provide estimates of ob-
jects without an associated measure of uncertainty [23]|. This is
despite the fact that neither the orbital dynamics nor the sen-
sors’ observation processes are well quantified. Choosing how
and when to make observations of orbiting objects is particu-
larly challenging. This is compounded by size of the estimation
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problem. NASA maintains a catalogue of around 30,000 orbit-
ing objects, thought to be just a fraction of the true number of
objects in orbit. This congestion is set to increase as the bar-
riers to space entry drop, with non-state actors now routinely
launching satellites.

The combinatorics make the implementation of traditional
track-based approaches particularly challenging in orbit. Pre-
viously developed FISST-based solutions avoid explicit data
associations and can therefore handle multi-object estimation
problems on a much larger scale. They do not, however, main-
tain individual information on each target (i.e. tracks). Many
applications in the context of SSA, however, require the classi-
fication of individual objects and the propagation of individual
information as accurately as possible — for the assessment of
collision events, for example. It also may be important to know
whether particular objects are man-made, can be remotely con-
trolled, and who has responsibility for their control.

UDRC researchers adapted their multi-object estimation
and sensor management architecture to SSA. They sought to
retain the advantages of track-based approaches (propagation
of individual information on identified objects) whilst exploit-
ing the advantages of their population-based methods (princi-
pled solutions, scalability). Two filtering solutions were devel-
oped. The filter for Distinguishable and Independent Stochas-
tic Populations (DISP) [24] maintains hypotheses for possible
data associations and propagates individual tracks. It also pro-
vides a rigorous probabilistic description of the population of
targets and gives well-defined probabilities of existence to ev-
ery track. The DISP filter also allows for the representation of
groups of objects indistinguishable from one another; for ex-
ample, a cloud or orbital debris following a collision can be
represented as indistinguishable objects. Individual tracks will
be initiated from this population when information on specific
individuals is available (typically, once the cloud of debris is
observed by a sensor). The DISP has been successfully illus-
trated on a small-scale SSA scenario [25]. It is not, however,
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scalable to large-scale SSA scenarios such as the maintenance
of a comprehensive catalogue of objects in near-Earth orbit.

To address the larger-scale problem the researchers devel-
oped a principled approximation of the DISP filter, the fil-
ter for Hypothesised and Independent Stochastic Populations
(HISP) [26]. The HISP filter relies on the same modelling as-
sumptions as the DISP filter, and further assumes that the
data association between the targets and the observations is
moderately ambiguous. This is well-suited to SSA, where the
distance between the orbiting objects is usually much larger
than the resolution of the sensors. The HISP filter has linear
complexity with the number of objects and observations, while
maintaining individual tracks with associated probabilities of
existence [27]. It is therefore much more scalable and can be
applied to the full near-Earth catalogue of objects.

UDRC researchers established collaborations with the UK
Space Agency (UKSA) and the network of sensors used for
space surveillance in the UK. They worked with data from
the Chilbolton Advanced Meteorological Radar (CAMRa) fa-
cility on the Chilbolton Observatory, proposing the first au-
tomated processing algorithm for Chilbolton radar data, de-
tecting and tracking objects in the raw data obtained from the
facility [28]. They also proposed a bespoke model for the Satel-
lite Laser-Ranging facility at the Herstmonceux Observatory,
and designed the first automated processing algorithm for this
sensor [29]. EO data, supplied by Dstl, of satellites on short
observation arcs were also processed. The researchers deployed
their simultaneous tracking and registration algorithms to cor-
rect for sensor drift and jitter (see figure 4.7) [18]. The UDRC
also provided advice to Fylingdales early-warning surveillance
radar. A report was delivered on potential enhancements in
capability that could be made by exploiting advances in sensor
calibration, multi-target tracking and object orbit estimation
with uncertainty.
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(a) Sensor observations (b) Filter output

Figure 4.7: (a) Detections from images of the close passage of asteroid
2007HA through a background star field. (b) tracking results assuming
Brownian sensor drift. Black crosses denote inferred stationary objects,
red crosses the track of the object of interest. The tracked object entered
from the right. Figure reproduced from [18].

Maritime surveillance and sensor management

Maritime navigation radars usually take a number of seconds to
perform a full sweep of the region they are observing, whereas
on-board optical systems typically have much faster update
rates. By exploiting the high update rate and fusing EO mea-
surements with radar, target tracks can be updated and main-
tained more frequently. The development of sensor fusion algo-
rithms for maritime environments must be driven by the need
to aid decision-making in the command room where operators
are under pressure to respond to threats on a short timescale.
Integration of information from multiple sensors can aid the op-
erator by reducing the amount of human attention required for
each sensor and improving knowledge of individual targets. It
is crucial therefore that the sensor models that underpin target
detection, identification, and tracking are accurate enough to
ensure that fusion from multiple sources enhances rather than
corrupts the global picture.

Sponsored by the Platform Systems Division at Dstl, as well
as working via an enabling contract, the UDRC worked to de-
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ploy methods for multi-object tracking and sensor registration
by fusing information from radar and EO sensors in maritime
surveillance scenarios. The methods are based on the fully
probabilistic methods for estimating multiple targets and sen-
sor registration parameters developed under the UDRC. The
key outcome was a demonstration of radar-camera registration
based on measurements from boats in the Solent. The sensors
were land-based. This was the first practical demonstration
of autonomous calibration of heterogeneous sensors observing
moving targets. It demonstrated a new capability that was pre-
viously unavailable to operators and this enhanced capability
will help inform MOD’s roadmap for future maritime surveil-
lance operations.

An enabling contract addressed maritime multi-sensor cal-
ibration. Marine vessels are subject to large and non-linear
variability which must be corrected in order to allow reliable
tracking and handover of off-board targets. This problem is
not addressed widely in the literature, and is mainly incorpo-
rated into solutions in an ad hoc manner. If, in the real world,
the set of sensors is incorrectly calibrated, any fusion in the
multi-sensor multi-target tracking algorithm could lead to the
total loss of useful tracking information. Possible calibration
or registration errors could include incorrect calibration dur-
ing sensor manufacture, incorrect alignment during installation
and setup, and uncontrollable factors, such as the weather in
harsh environments.

UDRC researchers developed a method for jointly estimat-
ing and tracking multiple targets from a maritime radar and an
infra-red search and track (IRST) system while jointly register-
ing the sensors onto the same reference frame for fusion. The
data used for registration estimation are bearings-only mea-
surements collected by the IRST on non-cooperative targets.
The main challenge in this work is that the offset angle between
the radar and the IRST is unknown and must be estimated re-
cursively along with the target states. Targets that have been
observed in the surveillance region are used to estimate this off-
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set angle. The solution builds on work undertaken in the core
UDRC and the resulting framework is general, computation-
ally inexpensive, and can be applied to a number of different
sensor registration and tracking problems.

Performance analysis of multi-object tracking
algorithms for image analysis

Through an enabling agreement, Dstl’s Advanced Imagery Pro-
cessing project sought to develop novel efficient methods for
detecting and tracking low contrast targets in large, cluttered
and congested images. A novel method of target detection
from images was applied by UDRC researchers to discover
potential measurements originating from targets. Two meth-
ods for multi-target tracking were then applied to the result-
ing detections to initiate target trajectories: a first-order mo-
ment method, and the second-order filter originating from core
UDRC work. The accuracy of each detection method was quan-
tified by measuring the number of detections, missed detections
and false alarms at each time step. This was repeated for a
range of target SNR and image sizes. The tracking accuracy
was determined using standard multi-target set metrics.

The methods were compared on simulated and real data of
different scenarios, varying false alarm rates. The second-order
filter showed significant advantages in terms of estimation of
the number of targets, in lower signal and higher noise situa-
tions. The power of the second order filter lies in the additional
parameter that propagates more information than the first or-
der filter. It typically has a lower variance in the estimated
number of targets. It also responds quickly to changes in tar-
get number. The filters were demonstrated to Dstl in a range of
different scenarios. It was shown that they have similar perfor-
mance across scenarios, though these do not probe all possible
configurations and it is anticipated that the second-order filter
would perform better in scenarios with higher clutter variance.
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4.2.4 Further exploitation of tracking and sensor
management algorithms

A wide variety of tracking applications will benefit from the
advent of second-order multi-object filters. Multi-object de-
tection and tracking problems currently addressed using first-
order methods should be assessed for suitability against second-
order methods. The improved accuracy must be balanced against
the potential increased computational cost. In cases where
more computationally-heavy methods are used, reduced com-
plexity methods should be tested and loss in tracking perfor-
mance measured using standard tracking metrics.

The efficiency of the HISP filter could be improved. Most
of the tasks performed by the HISP filter are currently under-
taken independently for each track; a parallel implementation
of the filter would thus improve the computational efficiency
of the algorithm significantly. This would have immediate ex-
ploitation potential in SSA.

Multi-target tracking methods which exploit higher order
statistics should be developed for application to sensor man-
agement scenarios. The newly developed Panjer filter should
be further incorporated into the sensor management scheme.
Quantitative analysis of the variance-based information-theoretic
metric as a means to select from sensing options is required.

All SSA sensor models should be integrated into a multi-
object architecture. This could provide a single UK SSA multi-
object detection and tracking architecture. The multi-object
tracking architecture should be flexible enough to allow for the
selection of either the DISP filter, the HISP filter, or other
tracking solutions, depending on the scale of the problem to be
addressed. Data from the Fylingdales early warning radar fa-
cility should be analysed. This is part of the UK space surveil-
lance network, and covers a large portion of the near-Earth
space over the UK. It would provide a potent addition to the
sensors processed so far, could perform surveillance tasks over a
large field of view and cue other sensors focussing on one object
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at a time (e.g. the Herstmonceux or Chilbolton sensors).

4.2.5 Royal Academy of Engineering Industrial
Fellowship

Daniel Clark
February 2017 — May 2017

Dr Daniel Clark was seconded to Dstl for 3 months in early
2017 under a Royal Academy of Engineering Industrial Fellow-
ship. During his placement he worked with a number of differ-
ent teams with a broad range of application interests, including
space surveillance, maritime surveillance, biological data analy-
sis and groups with interests in image processing. Daniel’s time
at Dstl was spent working with Dstl scientists to demonstrate
technological worth, to provide expertise in areas of potential
capability enhancement, and direction for future research in
sensor fusion and tracking. This has helped identify new av-
enues of research and areas of potential collaboration between
Daniel’s group and Dstl.

Daniel worked as a regular Dstl team member which gave
him unprecedented access to the full range of MOD’s data and
operating constraints. He was thus able to provide focussed
and relevant advice. In turn, Daniel was able to incorporate a
new understanding into his work, informing and improving his
future contributions to defence science. There continues to be
strong potential for collaboration on a wide range of applica-
tions and exploitation opportunities.
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4.3 Game-theoretic solutions for
resource allocation and tracking

Anastasios Deligiannis, Abdullahi Daniyan, Gaia Rossetti, San-
garapillai Lambotharan

Wolfson School of Mechanical, Electrical & Manufacturing En-
gineering, Loughborough University

Jordi Barr
Cyber € Information Systems Division, Dstl

The application of game theory could provide revolution-
ary solutions to the military tasks of sensor and resource man-
agement. In abstract, games can be thought of as a series
of strategic decisions, in which a player’s action at any point
is determined in the context of alternatives available to other
players. They can be cooperative or adversarial. Crucially,
players are often required to make decisions in the absence of
communication with, or knowledge of, other player’s strategies.
This has obvious parallels with scenarios where own forces must
maximise an outcome but are unable to communicate (e.g. co-
operative identification of a target), or where the unpredictable
actions of an adversary cannot be well-modelled (e.g. mitiga-
tion of RF spectrum denial techniques).

Game theory provides a formal mathematical framework
for analysing conflict and cooperation between intelligent ra-
tional decision makers. An important concept in game theory
is Nash equilibrium [30], [31], a balanced state in a game where
no player has any incentive to deviate from their chosen strat-
egy after considering all of their opponent’s potential strategies.
This means that at the Nash equilibrium, no player can ben-
efit by unilaterally deviating from their strategy. Practically,
decisions can be made which, while not optimal, will have a
predictable impact.
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Table 4.1: Simple cooperative sensor game payoffs. Rows give actions
available to sensor 1 and columns actions for sensor 2. Each pair of
numbers give the rewards for (sensor 1, sensor 2).

Sensor 2 observes
Target 1 Target 2

Target 1 (10,10) (1,4)

Sensor 1 observes Target 2 (4,1) (5.5)

A pair of toy examples which demonstrate, in small part,
this power and nuance are provided by the following simple
games. They involve two illuminating sensors, who cannot
communicate with one another, tasked with detecting two tar-
gets in a scene. One target is high value, the other less so. In
the first instance it is presumed that if both sensors go after the
same target then their cooperative illumination will increase
the chances of detection, since bi-static or MIMO techniques
can be used (see e.g. chapter 3). If only one sensor points at
a target, the chances of detection for that target are reduced.
This game is summarised in table 4.1 using arbitrary payoffs’.
Target 1 is higher value than target 2. In this instance there are
a pair of Nash equilibria, where both sensors point at the same
target. Although observing target 2 is sub-optimal, no benefit
would be derived by either sensor unilaterally altering its strat-
egy. It’s worth noting that the ‘socially optimal’ outcome isn’t
always an equilibrium state. This can be seen by way of a sec-
ond example where sensors interfere with each other, reducing
the benefit of observing the same target. This is enumerated
in table 4.2 simply by reducing the joint reward for observing
the same target?

It is evident from table 4.2 that the socially optimal out-

' This is a variant of the canonical coordination game, stag hunt.
2Based on the prisoner’s dilemma
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Table 4.2: Simple interfering sensor game payoffs. Rows give actions
available to sensor 1 and columns actions for sensor 2. Each pair of
numbers give the rewards for (sensor 1, sensor 2).

Sensor 2 observes
Target 1 Target 2

Target 1 (3,3) (14

)
Sensor 1 observes Target 2 (4,1) (2,2)

come is for both sensors to observe target 1. This is not an equi-
librium state, however. Only where both sensors observe target
2 will no player derive benefit by switching to observe target
1. This is the only Nash equilibrium in this game. Therefore,
regardless of the other player’s action, a player in this game
should observe target 2 even though mutual cooperation would
provide a better utility for both players. This is the best out-
come for each player given that they do not know what the
other will do. The power of game theory is that it provides
principled methods to arrive at such equilibria and so derive
beneficial strategies in the absence of communication.

4.3.1 Exploiting game theory for defence

Game theoretic ideas have applications in radar, where wave-
forms can be chosen for a particular purpose (e.g. to max-
imise the detection of a target). These choices must often be
made in the absence of communication with allies or in the
presence of adversaries. This concept has its most potent ex-
ample in radar jamming, an adversarial game where players
seek to minimise their detectability or maximise their chances
of detecting an adversary. Wider applicability is possible in
multi-function radar, adaptive beamforming, passive bi-static
or multi-static design under uncertainty, imperfect sensor mea-
surements and radar clutter. These applications are all relevant
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to the DE&S Future Combat Air System (FCAS) programme
where decisions on individual sensing options will need to be
made autonomously and in the presence of adversaries.

Game theory can also be used for resource allocation and
detection in sensor networks. Here, tactics to dynamically op-
timise detection performance in a network where nodes (adver-
sarial or coalition) are unaware of each other’s strategies, but
react to each other’s actions, must be derived.

UDRC researchers have used game theory for analysing in-
teraction of sensors in a network and to develop distributed
resource allocation techniques. As in the toy examples, the so-
cially optimal outcome can be obtained if there is cooperation
between sensors, and in these cases, a centralised resource allo-
cation based on convex optimisation® will provide this solution.
However, a centralised approach to resource allocation may not
be desirable or feasible if there is no communication between
sensors or if the communication links are intermittent or inse-
cure. The UDRC work therefore focussed on autonomous de-
centralised resource allocation schemes and used game theory
as the means to address these problems. As has been seen, the
game-theoretic method may not necessarily provide the glob-
ally optimal solution. It is designed, however, to provide a ro-
bust solution. In addition to resource allocation techniques, the
UDRC team also developed game-theoretic methods for sensor
detection-to-track association for multi-target tracking. This
problem is a combinatorial optimisation problem (c.f. §4.2).
Game theory was shown, by UDRC researchers, to provide an
efficient method to solve this problem and to outperform many
other methods in terms of computational complexity [32], [33].

3Optimisation of a so-called convex function, where there is a single
maximum or minimum
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Game theoretic resource allocation techniques

UDRC researchers developed distributed resource allocation al-
gorithms using methods based on so-called potential games®.
These were tested on waveform allocation problems and showed
improved performance measured in terms of signal to distur-
bance ratio compared to benchmark techniques [34], [35]. The
uniqueness of an equilibrium was proved in [34] for a scenario
where allied, non-communicating radars aim to select optimal
waveforms by maximising signal to disturbance ratio. This
demonstrated sensors interacting strategically without the need
to exchange any information. To quantify the performance, a
sensor network consisting of three groups of radars was sim-
ulated. The radars within the same group could coordinate
their waveform allocation, but they could not communicate
with radars in other groups.

The UDRC has also developed power allocation techniques
for distributed sensors [36], [37]. The researchers performed
extensive Nash equilibrium analysis to demonstrate existence
and uniqueness of equilibrium power allocation. This rigor-
ous mathematical analysis demonstrated that an active sensor
could use signals transmitted by others in the same group as
signals of opportunity [38]. Hence, without explicit coordi-
nation, certain sensors need not illuminate targets but could
act purely passively, thus deriving military benefit through
resource saving and maintaining covertness. Specifically, in
the case when exactly n radars in a group of M achieve the
desired signal-to-interference-plus-noise ratio (SINR), then at
least M —n radars in that cluster remain inactive. The sensors
that are inactive are determined only by the target and clutter
characteristics, and are independent of the actions of the other
groups and the corresponding clutter. This observation leads
to the conclusion that the identity of the illuminating source is
not part of the game. This observation was key for the proof of

4This is a game in which the incentive of each player can be expressed
by the same mathematical function.
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Nash equilibrium [38]. UDRC researchers showed that at the
Nash equilibrium one of the radars in each group opts to re-
main silent, i.e. zero transmission power, but uses signal from
the other radar in that group as the signal of opportunity to
obtain the desired SINR for target detection [39].

Multiple sensors and multiple targets

Beamforming techniques for two-dimensional phased-MIMO ar-
rays have been developed in [40], [41]. The UDRC further ex-
tended the power allocation and beamforming methods for a
sensor network with multiple targets, consisting of both surveil-
lance and tracking sensors using non-cooperative, partially co-
operative and Stackelberg game® methods [42]. The primary
objective of each player is to minimise its transmission power
while attaining an optimal beamforming strategy and satisfy-
ing a certain detection criterion for each of the targets. Initially,
UDRC researchers considered a strategic non-cooperative game,
where there is no communication between the various players.
Here each sensor selfishly determines its optimal beam and
power allocation. This was refined into a more coordinated
game incorporating a pricing mechanism. Introducing a price
in the utility determination for each player enforced a minimi-
sation in the interference induced in other sensors and increased
the social utility of the system. Subsequently, the UDRC team
formulated a Stackelberg game by adding a surveillance sensor
to the system model, which played the role of the leader, with
the remaining sensors as followers. The leader applied a pricing
policy for interference charged to the followers aiming at maxi-
mizing its profit while keeping the incoming interference under
a certain threshold. The proof of the existence and uniqueness
of the Nash equilibrium for each scenario was also presented in
[42].

5A Stackelberg game is a type of leader-follower game; a game in which
one player (the leader) makes a move which is observed by the other players
(followers) who then react to this move.
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Robust waveform design for cognitive radars

The UDRC team developed robust waveform techniques for
multi-static cognitive radars in a signal-dependent clutter en-
vironment [43], [44]. In cognitive radar design second order
statistics related to clutter are often assumed to be known.
This is unrealistic, as exact knowledge of the clutter param-
eters is difficult to obtain in practical scenarios. Hence this
work addressed waveform design in the presence of uncertainty
in the clutter environment, and developed both worst-case and
probabilistic robust waveform design techniques. As existing
methods in the literature are over-conservative and generic,
UDRC researchers proposed a new approach which directly in-
corporated uncertainty in the radar cross-section and Doppler
parameters of the clutter. Using appropriate (Taylor series)
approximations, a clutter-specific stochastic optimisation was
made that, while maximising the SINR of a particular radar,
was able to ensure the other radars in the network reliably
achieve a desired SINR [45].

Game theoretic data association for multi-target
tracking

UDRC researchers developed a game theoretic approach to
solve the data association problem for a varying number of
targets in multi-target tracking scenarios [32], [33]. This algo-
rithm used a filtering method to generate initial track hypothe-
ses. The game theoretic method was then used to perform tar-
get to track association. The use of a game theory allows for
computationally tractable data association in very complicated
scenarios.

The UDRC team developed two tracking methods based on
sequential Monte Carlo methods to produce state estimates of
multiple targets [47], [48]. A further innovative multi-target
tracking algorithm was developed, allowing multiple extended
targets to be tracked [49]. This is particularly useful for tar-
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Figure 4.8: Results of game-theoretic data association. Solid black lines
(visible beneath the coloured lines) represent the true flight paths on
the range and radial velocity maps obtained from a live flight tracker
[46]. The coloured lines denote the output of the tracker and the game-
theoretic data association method.

gets with irregular shapes or extensions which produce multiple
detections per scan.

To obtain target to track associations the problem of data
association was formulated as a game between multiple and
varying numbers of tracks (the players). To exercise the method,
a passive radar experiment was devised. Aeroplanes were de-
tected using signals of opportunity (TV transmitters) together
with a low-cost antenna and an SDR to capture the signals.
The UDRC technique achieved good target to track association
in [33]. Figure 4.8 shows results obtained from the experiment.
Notice that there are a total of six targets throughout the dura-
tion of the experiment. Three of the targets (cyan, green, red)
have a U-like trajectory in range correspond to targets moving
in a straight line past the closest point to the passive radar
receiver. Zero (radial) velocity (bottom graph) corresponds to
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when targets are closest in range to the transmit-receive set-up.
The other three targets have irregular trajectories indicating
targets moving away after having taken off, or taking position
to land at a local airport. The range and radial velocities of
the true flight path (black) and the target-state-estimate after
game-theoretic data association (GTDA: coloured) are shown.
These results demonstrate that the proposed GTDA technique
is able to properly associate the target state estimates of dif-
ferent targets with their corresponding tracks [32].

4.3.2 Enabling contract on temporal anomaly
detection

Researchers at Loughborough participated in and won the tem-
poral anomaly detection challenge set during the anomaly de-
tection workshop in 2014 (see table 1.6). They were subse-
quently contracted to develop that submission further in col-
laboration with Dstl’s Counter Terrorism and Security Divi-
sion. Their solution used model-based spectral estimation and
machine learning methods to automatically detect anomalies in
temporal data. The new methods employed various statistical
measures, including higher-order statistics based on support
vector machines, to detect anomalies without any prior knowl-
edge of their characteristics (i.e. in the absence of any sig-
natures). The techniques proposed by the UDRC researchers
were able to determine the start and end times of the anomalies
(as required) and their frequencies with the desired accuracy.
The algorithms demonstrated the ability to detect anomalies in
low-to-moderate SNR environments, and when the underlying
frequency of the signal drifted.
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Chapter 5

Threat refinement

This chapter describes the development of algorithms for au-
tomatic detection of anomalies from multi-dimensional, under-
sampled and incomplete datasets. The challenge in this work
is to identify and classify behaviours as normal or abnormal,
safe or threatening, from an irregular and often heterogeneous
sensor network. Many defence and civilian applications can be
modelled as complex networks of interconnected nodes with un-
known or uncertain spatio-temporal relations. The behaviour
of such heterogeneous networks can exhibit dynamic properties,
reflecting evolution in both network structure (new nodes ap-
pearing and existing nodes disappearing), as well as inter-node
relations.

The UDRC work has addressed not only the detection of
anomalies, but also the identification of their nature and their
statistical characteristics. Normal patterns and changes in be-
haviour have been incorporated to provide an acceptable bal-
ance between true positive rate, false positive rate, performance
and computational cost. Data quality measures have been used
to ensure the models of normality are not corrupted by unreli-
able and ambiguous data. The context for the activity of each
node in complex networks offers an even more efficient anomaly
detection mechanism. This has allowed the development of ef-
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ficient approaches which not only detect anomalies but which
also go on to classify their behaviour.

5.1 Statistical anomaly detection in
communication networks

Francisco J. Aparicio Navarro, Jonathon A. Chambers
School of Engineering, Newcastle University
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gineering, Loughborough University
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Cyber-security affects Internet users every day, and cyber
crime has become one of the largest and fastest-growing cat-
egories of crime [1]. The Internet connects billions of active
devices [2] including critical infrastructure, ranging from finan-
cial services to healthcare, transportation, and energy. All of
these devices are exposed to a plethora of sophisticated, poten-
tially damaging, and frequently untraceable cyber threats.

Providing strong and reliable network security mechanisms
has become critical in many areas of society, and especially
so in the context of national security, as parts of the Nation’s
core infrastructure are constantly targeted by cyber attackers.
These range from the relatively unsophisticated using meth-
ods like distributed denial of service (DDoS) attacks, to more
able adversaries, so-called advanced persistent threats (APTs),
who have the resources and patience to mount longer-term,
more focussed, sustained campaigns. Moreover, defence users
often operate their networks in hostile environments where the
threat to information and the relative technical advantage is
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ever-changing [3]. Therefore, new and more robust detection
mechanisms need to be developed to detect previously unknown
threats and to ensure information integrity, availability and
confidentiality.

Traditional security mechanisms, such as cryptography pro-
tocols, firewalls or antivirus, are not efficient enough to provide
robust protection against APTs. Network intrusion detection
systems (NIDS) have become fundamental in providing an ex-
tra level of assurance, identifying evidence of cyber attacks.
NIDS are tools to identify activities which deviate from the
normal behaviour of the network. Great effort has been made
by researchers and private companies to increase the detection
efficiency of NIDS. The use of data mining techniques and data
fusion has contributed to this undertaking. Nevertheless, net-
works still frequently fall victim to cyber attacks.

As part of the UDRC phase 2, researchers have used sta-
tistical pattern recognition and anomaly detection methods to
develop an advanced NIDS that could define the architecture
of the next generation of detection systems. This NIDS in-
cludes reasoning engines supported by modules that assess the
quality of the analysed dataset, manage contextual and non-
contextual information about the network, handle uncertainty
and deal with incongruent decisions between detection compo-
nents.

5.1.1 Varieties of network intrusion detection
system

A NIDS is commonly categorised as either misuse or anomaly-
based. A misuse NIDS is a reactive system that uses a signature
database of known indicators of attacks. This type of NIDS
is generally very accurate when detecting attacks for which
there exist signatures, but cannot identify new types of threat
(i.e. zero-day attacks) and variants of known attacks. An
anomaly-based NIDS constructs a reference from normal be-
haviour and flags anything that deviates significantly from this
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reference. Because of their statistical nature, current anomaly-
based NIDS tend to raise a high number of false alerts. They
are, however, potentially able to detect zero-day attacks.

Sophisticated cyber attackers try to replicate the behaviour
of legitimate network users and systems in their intrusion at-
tempts. Metrics for the detection of cyber attacks tend to be
more efficient when they correlate well with the attacks. NIDS
can make use of any measurement from the network and al-
though there might be NIDS that produce accurate detection
results by analysing only a single metric, this is not generally
the case. The utilisation of an appropriate number of met-
rics and their combined use in a multi-layered approach helps
improve the accuracy of the NIDS.

The need for training datasets is critically important. There
are three scenarios in which this need becomes particularly ev-
ident. Firstly, using supervised NIDS requires labelled train-
ing data to learn the difference between malicious and non-
malicious network traffic. Secondly, labelled datasets help to
evaluate the performance of a NIDS. The labels provide the
ground truth needed to compare the detection result with the
correct answer. Parameters such as the detection rate provide
quantifiable evidence of the effectiveness of a NIDS. Thirdly, a
similar need for labelled datasets arises when feature selection
(FS) techniques are used. These techniques require ground-
truthed data to be able to evaluate the relevance of each met-
ric. Unfortunately, collecting such data from real networks is
often impossible. Even in controlled environments, assuring
that a dataset is correctly labelled is difficult. Datasets are
currently annotated through post-collection analysis, which is
time-consuming and requires intensive human involvement.

Current NIDS only use measurable network traffic informa-
tion from the protected system or signatures of known attacks
during the intrusion detection process. These systems do not
generally take information available from outside the network
into account [4]. The next generation of NIDS should incor-
porate available high-level information (e.g. contextual infor-
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mation, situation awareness and expert judgment on network
behaviour) within the intrusion detection process. A NIDS
should be able to adapt its detection characteristics based not
only on the measurable network traffic, but also on the context
in which this system operates, and the information provided
by the network administrator and network users.

The nature of cyber attacks has shifted from short one-off
attacks toward more sophisticated longer, multi-stage attacks
[5]. This type of attack requires the implementation of a num-
ber of steps in order to succeed. The main difficulty in detecting
them resides in the fact that the different stages that compose a
multi-stage attack may not be malicious when implemented in-
dependently. Also, the time between the stages may make the
steps that compose a multi-stage attack appear uncorrelated.
The stealthy manner in which these attacks are implemented
makes them difficult to identify using current NIDS. Figure 5.1
represents the idea of generating an improved NIDS through
the combined use of information generated by different intru-
sion detection components distributed throughout the network
and the contextual information provided by the network ad-
ministrator.

5.1.2 Defence and security need for advanced
network intrusion detection

For defence exploitation, research must cover one or more of
the three main information security concepts — confidentiality,
integrity, and availability. The NIDS developed under UDRC
phase 2 aims to improve upon all three by detecting abnormal
behaviour associated with unauthorised system use. Within
current cyber defence, once a threat or abnormality is detected
it is passed to a network defence analyst for review. Usually, an
analyst will be given more events to process than is practical;
reducing false alarms is therefore critical. The application of
context-aware algorithms and those that aim to reduce false
alarms, such as the UDRC NIDS, is key to reducing cognitive
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Figure 5.1: Schematic representation of the combined use of information
from different NIDS and contextual information provided by the network
administrator. This is an example of an attacker inside a local network.

burden on analysts.

The applicability of non-signature-based techniques within
communication networks is two-fold: the detection of error for
optimisation of network infrastructure, and the detection of
non-normal network activity to aid cyber defence analysis. For
cyber defence within MOD, methods that aid the detection of
unknown threats that can mutate across fixed and wireless net-
works enable better confidentiality, integrity, and availability.

The UDRC-developed NIDS is capable of being deployed
against insider threats as well as external attackers. It is cur-
rently developed to TRL 5 and could be exploited in many
sectors; examples outside the defence and security sector in-
clude mobile device manufacturers, Internet service providers
that operate open hotspots, and antivirus software companies.
The NIDS has been developed in the C programming language
and could therefore be integrated with embedded systems and
user devices.
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Figure 5.2: Schematic structure of the UDRC NIDS: metric extraction,
signature and anomaly-based modules, data fusion process, addition of
contextual information, dataset labelling process. BPA stands for belief
propagation algorithm.

5.1.3 Network intrusion detection research
solution

The NIDS designed by the UDRC tackles the previously de-
scribed issues, with the objective of providing a stronger level
of protection in communication networks. Figure 5.2 shows the
schematic structure of the NIDS, including metrics from net-
work traffic, signature and anomaly-based detection modules,
the data fusion process, the addition of contextual information,
and the dataset labelling process.

This NIDS built upon unsupervised anomaly-based meth-
ods developed under UDRC phase 2 [6] which are able to detect
different types of attacks in real-time. The system comprises
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a cross-layer architecture to make a collective decision on the
presence of cyber attacks. The NIDS uses the Dempster-Shafer
(DS) theory of evidence [7]. DS is able to combine informa-
tion from multiple and heterogeneous sources. It is suitable
for detecting zero-day attacks because it does not require prior
knowledge, and has the ability to manage uncertainty, which
allows a large range of problems to be tackled.

The NIDS assigns a belief value for each of the possible
states of the system (i.e. network traffic can be classified as
malicious or non-malicious) using three unsupervised and self-
adaptive statistical approaches [6]. These approaches, which
autonomously adapt to the current characteristics of the net-
work without manual intervention from an administrator, re-
quire relatively little traffic to create the reference normal be-
haviour used by the NIDS to identify the presence of cyber
attacks.

Initially, the NIDS was solely an anomaly-based system,
and did not take advantage of the use of signatures. However, in
[8] UDRC researchers extended the architecture of the system
to enable the combination of both misuse and anomaly-based
approaches. This hybrid NIDS showed high accuracy and an
ability to detect previously known and unknown attacks. In
addition, the system was also able to generate new signatures
using the anomaly-based approach, which can then be used by
the misuse detection system.

In [9], [10] the UDRC presented a novel statistical approach
to automatically generate labelled network traffic datasets us-
ing the outcome of the proposed unsupervised NIDS. Initially,
the NIDS analyses an unlabelled dataset and classifies each
data instance as malicious or non-malicious. This approach
considers as correct only those cases that provide strong sup-
port to one of the possible system outcomes. Hence, the re-
sulting labelled datasets are subsets of the originally unlabelled
datasets. The labelled datasets can then be used to train semi-
supervised techniques, such as the one-class support vector ma-
chine (SVM) [11] for FS [9], and as ground truth to evaluate
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other NIDS. In experiments, the dataset labelling approach was
proven empirically to be highly accurate, especially when small
and relatively homogeneous datasets are used. Further exper-
iments showed that an intelligent use of uncertainty provided
a significant increase in the accuracy of the labelling approach
when larger and much less homogeneous datasets were anal-
ysed. In the latest experimental evaluation, this approach gen-
erated a labelled dataset comprising 588880 instances, less than
1% of which were incorrectly labelled.

In order to continue improving the efficiency of NIDS, UDRC
researchers have developed different approaches by which con-
textual information can be added to the detection process [12]-
[14]. These have made use of the pattern-of-life of network use
as the main source of contextual information. A fuzzy cogni-
tive map (FCM) [15] has been used to fine-tune the detection
techniques used by the NIDS. An FCM is a tool used for pre-
diction and decision making which can model human cognition,
allowing network administrators and users to contribute their
knowledge. An FCM adapts to dynamic systems that evolve
over time, and handles contradictory pieces of information bet-
ter than probabilistic algorithms [16]. An FCM also provides a
useful mathematical framework to calculate the degree of influ-
ence that one action in a system may have upon that system.
Additionally, fuzzy degrees of influence are assigned using lin-
guistic variables, which makes FCM an excellent solution for
human-machine interaction.

All of the approaches that have been developed to add con-
textual information by the UDRC through the use of an FCM
are based on the generation or modification of the belief values
used in the DS data fusion process. This high-level information
can be added into the detection process at different stages, as
shown in figure 5.2. The experiments that have been conducted
test the effect of applying the contribution of the FCM before,
during, and after the DS data fusion process. The results that
have been presented in [13] confirm that the use of high-level
information through an FCM improves the effectiveness of the
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NIDS by reducing the number of false alarms. For example, the
use of pattern-of-life provides an improvement of 10% when all
metrics are combined, and a peak improvement of up to 36%,
depending on the particular combination of metrics. The re-
sults confirm that adjusting the detection process prior to the
data fusion makes best use of the pattern-of-life.

The UDRC-developed NIDS has proven to be highly effec-
tive in detecting different types of threats, ranging from injec-
tion attacks to virtual jamming, as well as port scanning, in
different types of networks (i.e. Ethernet and Wi-Fi). Initial
experimental evaluation has been conducted on WiMAX and
LTE network traffic.

A number of network traffic datasets have been made pub-
licly available [17], [18]. These datasets have been gathered
from different networks, both fixed and wireless, deployed at
Loughborough University. Given the scarcity of publicly avail-
able network traffic datasets, making the datasets available is
an important output of the UDRC work.

Future work will examine novel methods to extract and
characterise high-level information more efficiently. For ex-
ample, different types of contextual information (e.g. social
media) should be tested to understand whether more contex-
tual sources improve NIDS performance, and which work best.
Additionally, it is critically important to integrate and evaluate
the UDRC NIDS with existing security systems in an enterprise
environment in order to evaluate its efficiency against existing
technologies.
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The proliferation of sensors has resulted in rapidly increas-
ing volumes of data being collected, filtered, manipulated and
presented to analysts. To maintain an advantage in modern
war-fighting this data needs to be processed quickly in order to
give the appropriate military decision maker salient informa-
tion in a timely fashion. There is an increasing suite of sensors
which capture, or have the potential to capture, huge volumes
of data. Examples with applications across defence include:

e Full motion video (FMV), often capturing multiple modal-
ities, e.g. visible and infrared, simultaneously at high
frame rates.

e Wide area motion imagery (WAMI), often at low frame
rates, but covering very large areas with very high pixel
counts which enables behaviour to be observed across
complex scenes.
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e Spectral imagery, where each pixel in the scene has some
wavelength sensitivity, further sub-divided into:

— Multi-spectral imagery, where light is collected in
many more bands than the usual small number, al-
lowing a greater discrimination between objects in
the scene.

— Hyper-spectral imagery, in which many measure-
ments with relatively high spectral sensitivity are
collected across an image, potentially enabling the
identification of material in the scene by comparison
with library spectra.

e Ground moving target indication (GMTI), extracting mov-
ing objects from radar sensors, often covering very large
areas for significant periods of time allowing patterns and
activities to be observed.

While analysts are highly capable of understanding and an-
swering known intelligence questions they cannot be expected
to extract all available information from such sensors. Anomaly
detection techniques provide a means to rapidly filter and pri-
oritise large volumes of data for further investigation. Anomaly
processing techniques roughly divide into two groups; those
which look for statistical outliers from a learnt model, and those
which conform to modelled scenarios pre-defined as anomalous
(or as a threat, and therefore of interest to the analyst). The
second category is an example of pattern matching, and whilst
a powerful technique, requires that the user has a detailed un-
derstanding of the behaviour they wish to identify. The former
technique, on the other hand, assumes no knowledge of threat
behaviours, providing a generic means to identify unexpected
observations within the background or within normality. The
link between what constitutes anomalous behaviour and threat
behaviour is unclear, however; often it is context which allows
an analyst to identify when an anomaly becomes a threat.
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Despite much interest in developing automated surveillance
techniques, very little work has addressed the challenges that
must be overcome before wide-area surveillance based anomaly
detection can be achieved. Not least is the sheer volume of
data that must be processed and represented in an efficient
way. Many current techniques focus on small scenes with few
moving targets. Online and adaptive algorithms for learning
common target motion are also scarce in the literature, and
the ability to detect anomalies from partial target trajectories
as they evolve is rarely considered.

The work undertaken in UDRC phase 2 focussed on the
development of novel techniques to understand large volumes
of data, exploiting contextual information to drive data under-
standing. By applying contextual understanding to observed
behaviours within data, patterns can be understood and outlier
points identified. This increases the ability to exploit salient
information in light of contextual understanding.

5.2.1 Exploitation potential of context-driven
anomaly detection

Anomaly detection provides a means to filter and prioritise
data, allowing analysts to focus on the key step of identifying
threats. With the increasing persistence of real-time, multi-
sensor surveillance capabilities there is a natural exploitation
route into areas such as ISR, cyber, social monitoring, big data
and smart cities. The context-driven approaches developed un-
der the UDRC phase 2 are relevant to the analysis of large
volumes of data where targets are seeking to hide their pres-
ence within a benign population. The driver here is to identify
those behaviours which are not representative of normality and
cannot be fully explained by background understanding. This
applies to persistent monitoring scenarios and has a strong link
with the work on sensor management detailed in chapter 4.
Autonomy is an important exploitation route for context-
driven behaviour monitoring and anomaly detection. Future
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autonomous systems will need to be able to derive their own
understanding of the world, observing and responding to the
local signals and context in order to provide a capability which
can adapt to different operational environments. Without the
ability to modify their own behaviour detection, the situation
awareness of autonomous systems is likely to be significantly
degraded.

5.2.2 Visual features for improved
behaviour-based target tracking

Video target tracking algorithms are fundamental to a wide
range of defence and civilian applications, including automated
surveillance, traffic monitoring, human-computer interaction
and virtual reality. Existing algorithms tend to consider tar-
gets as point processes (see e.g. the PHD filter [19]), or as
re-identifiable objects following known (e.g. Kalman filter [20])
or unknown motion models (e.g. mean-shift [21]). These ap-
proaches, however, ignore the richness in video data, which
contains other features and context with the potential to vastly
reduce computational requirements. For example, pedestrians
tend to exhibit ad hoc obstacle avoidance behaviour but to
model all possible motion eventualities has high model com-
plexity. In the Kalman filter, for example, tracking error will
increase when rapid changes in target motion occur, which in
dense scenes increases the possibility of data association errors.
In such cases some prior information — a so-called intentional
prior (e.g. a detected feature, such as the direction in which a
pedestrian is looking) that could be used to predict a change
in motion, is appealing.

Automatic head pose, or gaze direction, estimation has be-
come an important feature in applications of computer vision
to surveillance of human behaviour, with significant works ded-
icated to head pose extraction from low-resolution surveillance
video [22], [23]. These current methods rely on motion priors to
smooth head pose estimates, assuming a person’s head points
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Figure 5.3: Examples of pedestrian head pose on a benchmark surveil-
lance dataset. The head pose has been classified into 8 directions and is
used as a contextual signal to inform an intentional prior which enhances
tracking performance.

in the direction that they walk, rather than vice versa, which
reduces the information potential of this rich visual feature.
Deep learning is a relatively new area of machine learning
that replaces hand-crafted features with efficient algorithms for
unsupervised hierarchical feature extraction. Key to its success
is its ability to learn concepts at different levels of abstraction.
The most useful features are automatically identified and used
for learning higher-level concepts, from which a robust classifier
can then be learnt using a final stage of supervised learning.
Novel work under the UDRC has demonstrated that Deep
Belief Networks (DBNs) — a form of deep learning — can discrim-
inate between head pose angles without utilising motion priors
[22]. UDRC researchers demonstrated that integrating head
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pose as an intentional prior improves tracking performance (see
figure 5.3). The greatest benefits were observed when tracking
targets through occlusions, where predictions based on a tar-
get’s last observed head pose were found to be significantly
more reliable than approaches which don’t take into account
this additional context. More recent UDRC research on deep
learning has shown that head pose based intentional priors can
be robustly extracted from video data — even in low resolu-
tion surveillance data — and used to improve pedestrian target
tracking [22], [23].

More broadly, intentional priors can be considered a spe-
cial case of behaviour based tracking, feeding back information
about how a target is behaving to improve the underlying tar-
get tracking. Other examples exist. For coastal surveillance
applications the search and mapping strategies of AUVs could
be improved. Better operating formations (e.g. bounding over-
watch) could aid infantry tracking in complex urban environ-
ments.

5.2.3 Developing automated anomaly detection
for wide area surveillance

One of the key benefits of wide-area visual surveillance is that
large areas can be monitored remotely, and this is providing
new opportunities for battlefield understanding. With the on-
coming prevalence of manned and unmanned aircraft equipped
with both high resolution and broad area sensors, the ability to
monitor increasingly large areas in great detail brings numerous
technical challenges.

Of particular interest to the UDRC has been how wide area
surveillance signals can be processed in such a way as to iden-
tify salient aspects both online and in real time. For example,
existing wide area motion imagery systems are capable of cap-
turing ~ 200 Megapixelss~! and may cover areas from 6 — 50
km? at the rate of several Hz [24]. Automated algorithms are
crucial in order to reduce analyst information overload. Fur-
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thermore, the provision of automated processing paves the way
for a pro-active, rather than reactive capability.

Techniques for automated surveillance are often based on
anomaly detection algorithms. The key insight behind anomaly
detection is that for most surveillance tasks examples of nor-
mal behaviour are abundant, while examples of actual events of
interest are scarce and hard to define. Anomaly detection tack-
les these issues by inverting the problem; that is by attempt-
ing to model normality, abnormal or anomalous behaviour can
be identified by its poor fit to this pattern. Of course, the
anomalies detected are only relevant to the underlying model
of normal behaviour, and thus only an indicator that this model
cannot explain the observations. Whether that anomaly is gen-
uinely interesting or merely dull but infrequent must still be
determined. Completely automated surveillance is thus still
challenging to achieve. Nevertheless, the ability to filter surveil-
lance data by saliency is an important capability, particularly
for wide-area surveillance, where the number of targets under
observation could be in the thousands. Any algorithm that
can produce a significant reduction in the number of candidate
threats offers clear potential for reducing information overload.

Phase 2 of the UDRC has considered many of these prob-
lems in the context of WAMI surveillance (see figure 5.4). A key
principle of the UDRC approach is that normal behaviour can
rarely be modelled globally, and thus both spatial and tempo-
ral context are of high importance. At the spatial level, trajec-
tory clustering techniques inspired by [26] and [27] have been
developed to model targets. The vast quantity of observed
data is ‘wrapped up’ into more compact distributions repre-
senting unique trajectories. Not only can target behaviour be
matched to existing clusters in real time, but online learning
is also performed allowing the underlying model to be refined
and adapted in response to changing scene behaviour.

Many environments are too complex to be modelled using
spatial context alone. When, as well as where, target activity
normally occurs is important. Using kernel density estimation
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Figure 5.4: A snapshot from the US AFRL WAMI data set from the
Wright-Patterson Air Force base. Patterns of behaviour derived from
object detection and tracking in the red box are shown in the inset, top
right. The data is available publicly from [25].

techniques adapted from [28] temporal activity distributions
can be learnt for each spatial cluster in a highly scalable way,
suitable for an online, persistent surveillance platform.

Combining these techniques has provided a real-time and
online anomaly detection algorithm that is capable of learning
from, and detecting anomalies within, large streaming datasets
such as WAMI. Moreover, this work provided the first algo-
rithm able to learn spatio-temporal motion patterns over large
areas, making it suitable not only for anomaly detection of
land, sea and air targets, but also capable of mapping activity
in unknown regions.
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5.2.4 A deep learning strategy for wide-area
surveillance

In the technical literature there are currently no methods that
can effectively solve the tracking across cameras problem and
therefore enable the design of reliable and affordable surveil-
lance systems. There is a substantial gap between research
related to re-identification frameworks and the requirements
for real world deployable re-identification systems [29].

The UDRC has considered wide area surveillance networks
with unknown, unconstrained topologies and non-calibrated
cameras. One of the main unsolved issues in this context is the
problem of long-duration occlusion of targets. This is a chal-
lenging problem because it combines several non-trivial sub-
problems [30] such as variation in lighting and pose, changing
viewpoint, camera settings, background clutter and imperfect
pedestrian detection [31].

The above aspects negatively affect a tracking system on
different levels, from detection to the ability to accurately re-
identify unique targets from one camera view to another. Many
popular approaches to multiple-entity tracking are based on dy-
namical models or multiple-hypothesis projections. UDRC re-
searchers have developed a cross camera tracking method rely-
ing only on re-identification performed by a sub-system (track-
let association) with high-quality feature extraction capability.

Current data-driven state-of-the-art re-identification archi-
tectures are limited because they are static, meaning that they
stop learning after their training phase. This does not take into
consideration the realistic and very likely possibility that the
environment where the learning machine is deployed evolves:
for example the sensor spatial distribution may change but the
re-identification algorithm would retain the old view of the net-
work of cameras. Making a deep architecture context aware
by changing according to the variable network statistics can
achieve better re-identification. The motivation for the UDRC
research comes from the practical need to operate over large
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areas where dense, complete sensor coverage is infeasible.

The UDRC has developed a unified framework to tackle
the long occlusion problem, generating trajectories and using
a deep-learning-based re-identification scheme. An iterative
adaptive interaction is created between the tasks of tracklet
building and re-identification, the effect of which is to boost
both steps, thus improving tracking ability when targets dis-
appear. The reason for using deep learning is that, aside from
early techniques relying on hand-crafted features [32] or cross-
camera transformations [26], it is the only method which has
shown an ability to learn complex discriminative mappings that
generalise well [33]-[36]. The following advantages of the pro-
posed unified framework have been identified:

e topology independence: the progressive estimation of the
network distributions based on the output tracks allows
the estimation of unknown, unconstrained topology;

e unsupervised learning of the spatial-temporal relation-
ships of the network;

e fault tolerant behaviour;

e context-awareness, incremental learning of network statis-
tics, and adaptive classification performance;

e modularity, allowing improved algorithms to be integrated
as they are developed;

e flexibility, allowing the integration with any dynamic model
for intra-view tracking.

Re-identification decisions taken by a deep learning convolu-
tional neural network! (CNN), applied on image pairs, can

!Convolutional neural networks are a class of deep neural networks
that have been demonstrated to be well adapted to object classification in
imagery.
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benefit from the extra information coming from network con-
text. Network context provides information related to the dis-
tribution of transition probabilities for entities moving between
camera views within the sparse network. The network context
information can be used to condition the CNN, incorporating
the additional information to enhance re-identification perfor-
mance.

More accurate re-identification, in turn, will enable pro-
duction of less sparse and more reliable trajectories which will
be used to improve the estimated network distribution. This
cycle incrementally refines at each iteration. At each new re-
identification step, the information coming from the predicted
track patterns combines with and conditions the information
coming from each re-identification.

The UDRC methods propagate probabilities backwards
through the layers of the network, using a fast gradient tech-
nique, to encode additional environmental awareness into the
weights of the CNN. This means the CNN will progressively
adapt itself to take into account the current spatio-temporal
distribution of cameras. This is a significant difference from
existing CNNs which are static after they have been trained.

The overall system is set to have the re-identification mod-
ule initially bootstrapped to the track building process. That
is, an adaptive boosting mechanism where the CNN output
forms an informative input in the next iteration. By iterat-
ing, the whole process of trajectory extraction is more likely to
converge to the ground truth. One fundamental step toward a
workable solution is to ensure that the re-identification module
is highly accurate, relying initially only on appearance based
re-identification.

Taking inspiration from [37] UDRC researchers identified
the opportunity to improve the current state of the art of re-
identification CNNs, mitigating the problem of the changing
camera viewpoint. This is particularly severe in outdoor net-
works with multiple disjoint cameras. A direct effect of the
viewpoint variability is that, in feature space, a pair of images
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Figure 5.5: The use of the modified loss function during CNN training
provides a more discriminative feature space and enhances performance
for re-identification across cameras. Using a standard approach the test
image A is incorrectly associated with image B and C due to the similar
viewpoint. The UDRC technique correctly re-identifies the person in
image A as the person in image D.

of the same person shot by different cameras may appear more
distinct from each other than a pair of images of different indi-
viduals captured by the same camera (see e.g. figure 5.5). To
tackle this problem, a state-of-the-art CNN [38], was trained
using a new loss function that jointly increases the inter-class
discriminative power of the deep features and their intra-class
compactness.

Compared to metric learning techniques like the joint Bayesian
scheme [39] the UDRC approach shows a bigger improvement
over the Euclidean distance baseline. This is because the UDRC
approach influences the building of the feature space instead of
merely learning a function over it after the CNN weights have
been computed. On two of the largest image-based datasets for
person re-identification, CUHKO03 [40] and Market-1501 [35] the
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UDRC methods improve the state-of-the-art.

5.2.5 Multi-spectral single photon counting lidar

This work focusses on signal processing and algorithm develop-
ment for penetrative sensing using full-waveform light detection
and ranging (FW-lidar). Discrete return lidar systems provide
a series of echoes that reflect from objects in a scene. In con-
trast FW-lidar systems measure the intensity of a laser light
reflected from objects continuously over a period. Measure-
ments made at different wavelengths provide a multi- or hyper-
spectral lidar (MSL) data set. See figure 5.6 for a schematic.
Targets have different spectral reflectance due to their geom-
etry and chemical composition. FW-MSL measurements thus
provide highly distinguishable target information. Extracting
this information by processing FW-MSL is challenging, how-
ever. Involved processing is required to convert such measure-
ments to 3D point clouds which reveal spatial distribution, and
the material identification provided by spectra. As the com-
putational complexity of the solutions is necessarily high, the
UDRC research looks to develop effective and fast approaches
which use intelligent resource allocation. The algorithms pro-
duced are divided into two types.

1. Those which find abnormal regions in large lidar datasets
(fast anomaly detection). The aim here is to process the
raw FW-MSL measurements (photon counts) to detect
spectral anomalies. This is a precursor to finding in-
teresting signals, worthy of more detailed sampling and
analysis to detect man-made objects, e.g. vehicles under
foliage, or mines underwater.

2. Those which characterise structure in anomalous regions
(peak modelling and discrimination). More complex algo-
rithms have been developed to convert FW-MSL signals
into 3D point cloud data which reveal hidden structure.
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Figure 5.6: Operational principle & scenario for single photon counting
sensing

Anomaly detection and classification in aerial laser
scanning data

Research has been conducted to detect spectral and tempo-
ral anomalies in FW-MSL data samples. An anomaly is de-
fined as a full waveform temporal and spectral signature that
does not conform to a prior expectation, represented using a
learnt subspace (a dictionary) and set of coefficients that cap-
ture co-occurring local-patterns using an overlapping tempo-
ral window. An optimisation scheme has been proposed for
subspace learning based on stochastic approximations. The re-
ward function is augmented with a discriminative term that
represents the subspace’s separability properties and supports
anomaly characterisation. The algorithm detects man-made
objects hidden in dense vegetation and allows tree species clas-
sification [41].

The 3D points in figure 5.7 are extracted from photon his-
tograms. The UDRC algorithm, called SPeED [42], not only
extracts peaks but classifies them simultaneously. The results
are compared with the approach in [43], which is robust to
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Figure 5.7: Results from a classification of the ground surface into veg-
etation and man-made objects (houses, roads, tarmac) using spectral
and geometric properties of the multi-spectral lidar. Left to right: re-
gion scanned as part of aerial trial; classification result at 1550nm; result
at 1064nm and (right) combined multi-spectral result.

noise but is not suitable for practical applications due to its
time complexity. This was addressed in [44] but parameter
tuning makes that a less attractive proposition. The SPeED
algorithm, on the other hand, improves the true positive rate
by a factor of 1.4 and shows a two-hundredfold decrease in
computational time when processing an individual waveform.

Underwater single photon counting

The focus for the second type of algorithm was on processing
underwater lidar measurements [45] and developing algorithms
that simultaneously detect and classify peaks in FW-MSL data.
Here the key has been to combine geometric and spectral fea-
tures; fast non-linear sparse representation is learnt for signal
characterisation [46], [47].

A novel, highly discriminative spectral-depth representa-
tion was developed to characterise different target signatures
underwater. Several custom made realistically scaled examples
of known and unknown targets have been investigated using
the FW-MSL system [45]. Using the proposed spectral depth
representation, sparse codes are optimised for maximum dis-
crimination between different materials and mines, demonstrat-
ing classification accuracies of 97.8% and 98.7%, respectively.
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Figure 5.8: Underwater experiment with targets detected behind foliage.
Left: original image, middle: inset segmented into different target types,
right: 3D reconstruction and object classification. Targets are colour
coded for purposes of illustration.

Combining depth with spectral data, the approach is very ef-
fective at discriminating targets of different shapes, but with
similar spectral response, or conversely of similar shape but
having different spectra (see figure 5.8). This work has been
the first to report the analysis and discrimination of multi-
spectral underwater single photon counting lidar signals as an
alternative to acoustic mine countermeasures.

5.3 Automated statistical anomaly
detection and incongruence
determination
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The problem of anomaly detection in machine perception
has received substantial interest over the last decade. As the
notion of an anomaly depends on the user and context, various
systems with different perspectives have been proposed to ad-
dress this problem. Conventionally, an anomaly is defined as
an outlier from some known distribution [48], [49] and classical
approaches that adhere to this view have been summarised in
surveys such as [50]-[53]. The applications described in this
section rely on fundamental research into incongruence mea-
sures developed under UDRC phase 2 [54]-[57].

5.3.1 Anomaly detection in tracks from shipping

UDRC researchers developed their incongruence detection meth-
ods and adapted them for the automatic detection of anoma-
lous shipping tracks. Maritime anomaly detection is an im-
portant aspect of maintaining a recognised maritime picture
as it aids sea traffic control and collision avoidance. It also
contributes to navigation surveillance and detection of illegal
marine activity such as piracy, drug smuggling or terrorism.
In this study, the UDRC concentrated on the case of detect-
ing anomalous shipping tracks traced by ferries, by using ship-
ping data collected via Automatic Identification System (AIS)
messaging, though the method is generally applicable to any
large database of tracks. AIS reporting is compulsory for ships
over 300 tonnes? and provides information about position along
with other details to aid identification. It is important to note
that although the AIS messages can be transmitted every sec-
ond, due to the vagaries of the system (such as faulty or in-
correctly programmed equipment), rules mandating different
transmission rates in different locations (e.g. more reporting in
ports and congested seaways) and environmental effects affect-
ing range and background noise, the data received is almost

2In this case computed by way of gross tonnage which is actually a
measure of internal volume rather than mass.
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never complete or synchronised. The UDRC-developed meth-
ods cope with the messy and incomplete nature of AIS data.
The particular data used in this case was collected by Thales
UK in the Solent area between July and August 2012, and con-
sists of various vessels occupying the region of interest. Ferries
were selected from this data to more easily prove the method.

The method used displacement information (i.e. location),
and vessel direction (heading). Gaussian processes (GPs), a
flexible machine learning method for regression and classifica-
tion, was used to model the distance function over the nor-
malised duration of a single trip between two ports. The ap-
proach differs from a recent study [58] in terms of exploiting
overall trip duration in addition to velocity during regression.
Another novelty presented in this work was the use of a ‘data-
cleansing system’, where unlabelled training data, which may
be corrupted by anomalies, is cleansed of outliers by using a
median absolute deviation method based on time grids, prior
to GP modelling. This allows the use of training data with-
out making unrealistic assumptions about the reliability of AIS
records.

In addition to the displacement of a vessel normalised over
time within a single trip, the UDRC approach uses the direc-
tion of travel at a given location. For this, a second set of
outlier detectors utilise spatial grids superimposed on the re-
gion of interest and model heading information by employing
Markov chains. The final combination is then obtained by fus-
ing the decisions of the two classifiers such that if either of the
classifiers detects a test track as anomalous, then it is taken as
anomalous.

The performance of the proposed approach is assessed by
way of the tracks that are classified as anomalous as a function
of those that are labelled normal by the algorithm. The results
are presented in figure 5.9 for an example test set; the tracks
labelled anomalous are shown as darker lines against the normal
tracks in a lighter colour. A 93% detection rate for anomalies
with 2% false positive rate (FPR) is obtained. It is possible to
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Figure 5.9: Smoothed spatial distribution of a set of ferry tracks (yellow).
Anomalies identified by the UDRC method are shown in red.

detect all anomalies with FPR=6%. Anomalies can be detected
in speed and heading as well as in location.

Further improvements on the algorithm are to be carried
out by considering different kernels for the GP regression. Ker-
nels are functions which represent the correlation between points
in the native space of the measurement, and so a kernel tuned to
vessel behaviour will better fit the problem and provide higher
discriminative ability. The current model tests a completed
ferry trip for anomaly detection, whereas an online detection
framework is to be developed for real-time detection of anoma-
lous behaviour. Also, use of feature parameters over and above
location, heading and speed is to be tested.

5.3.2 Activity recognition and anomaly detection
in video

The recognition of human activities and the discovery of anoma-
lous behaviour in video is an important research topic, with
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Figure 5.10: The system proposed for human action and activity recog-
nition and anomaly detection in video.

many applications in the fields of surveillance, security and dig-
ital media. Modern ISR platforms generate many more still and
moving images than can be viewed, analysed and interpreted
by human operators, so potentially useful intelligence can be
missed. Consequently there is a need for automated interpreta-
tion of video to track people and vehicles and to recognise and
detect behaviour associated with threats. UDRC researchers
have developed a workflow that combines several established
and novel techniques for activity recognition in video at in-
creasing levels of abstraction, resulting in improved results in
automated interpretation of video.

This section describes the resulting system. It comprises
four steps: (i) extraction of low-level features from the input
stream; (ii) efficient mid-level representation of the extracted
features; (iii) action recognition; (iv) high-level activity recog-
nition (see figure 5.10). Each of these steps is outlined in the
following paragraphs.

Feature extraction

There are currently three main approaches to feature extraction
from video footage.

1. Objects of interest in a scene are detected and tracked;
then their tracks are analysed to understand activities
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(e.g. [59]).

2. Use of hand-crafted local space-time feature vectors (e.g.
[60], [61]).

3. Features are learnt from data using machine learning ap-
proaches, of which deep learning variants (e.g. [62], [63])
have gained a lot of recent interest.

When solving an activity recognition problem all available ap-
proaches have strengths and weaknesses. The object detection
approach can simplify the activity recognition problem into
one of trajectory analysis. However, clutter and occlusions are
likely to obscure detections and there are cases when it is un-
certain what the object of interest is and what it looks like.
Moreover, the method’s efficiency relies on the performance of
the object tracker.

Local space-time features utilise manually-defined descrip-
tors and have the advantage of encoding motion and appear-
ance without the need for object detection. On the other hand,
they typically produce high-dimensional data which impose a
significant computational burden.

So-called deep features are learnt automatically from videos
and thus alleviate the need for manually defined descriptors.
However, a large amount of training data are required for this
method to work robustly.

In the context of defence applications two canonical exam-
ples are instructive.

e Wide area surveillance (e.g. WAMI datasets such as [25]),
where large numbers of targets (> 500) are observed si-
multaneously. Given that the target type is known, their
shapes are similar and their trajectories are normally con-
strained (as they follow a road structure), there exist re-
liable systems for target detection and tracking. This is
a trajectory analysis problem.
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e Close-up surveillance (e.g. FMV), where one or more
targets (typically < 10) are present at a given time. In
this case, activity recognition involves the detection of
internal motion of the targets, such as gestures or facial
expressions. This task can be aided by the derivation of
local spatio-temporal features. Machine learning can also
be used if a large amount of training data are available.
When multiple targets are present, a hybrid approach can
be adopted, i.e. first detect the targets and then extract
local features from the detection windows. This eases the
computational burden as it limits the feature extraction
area.

Mid-level representation

Recent work has shown that pooling techniques, such as bags-
of-features and Fisher vectors [64] can enhance the performance
of various feature types. Pooling can solve practical problems,
e.g. handling vectors of different length (often occurring in
trajectory analysis) or discovering underlying structures in the
data.

Action recognition

Action recognition is achieved by classifying the results of the
mid-level representation stage. Prominent choices for this stage
are SVMs [65] and random forests (RFs) [66] for supervised
classification (when training data are available), k-means and
Gaussian mixture models for unsupervised classification and
Hidden Markov models (HMMs) [67] and their variants, when
there are temporal dependencies in the data.

High-level activity recognition

An activity is typically represented as a sequence of its con-
stituent actions. Most activity analysis frameworks developed
to date focus on relatively simple tasks. Algorithms for more
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complicated activities have been proposed in [68] and more re-
cently in [69]. Both of these methods assume that the structure
of the modelled activities is given a priori by experts. Although
this is a reasonable assumption when considering complicated
activities, automatic learning of the model’s structure is a de-
sirable property, as the variability in task execution may render
the task of manual structure definition overly time consuming.
Additionally, model-based methods rely on accurate recogni-
tion of an activity’s constituent actions.

To address the shortcomings of previous approaches, UDRC
researchers proposed a new algorithm for activity recognition
in [70]. It can model activities whose exact structure is not pre-
viously known. It is capable of efficiently representing the nat-
ural hierarchy of complex activities and encoding the tempo-
ral relations between their constituent actions. The algorithm
combines a discriminative feature classifier based on RFs and
a generative classifier for temporal analysis, for which a hier-
archical HMM is used [71]. The discriminative feature facility
checks the existence or absence of the steps required for the
execution of an activity, while the generative model encodes
the ordering of these steps. The UDRC algorithm can be ap-
plied to any task which involves complex activities, as all of its
components are learnt automatically from training data.

The proposed algorithm can be used to detect parts of ac-
tivities which are erroneous or anomalous. When such proto-
activities are present in the training dataset, this is achieved by
building separate model parts corresponding to the erroneous
aspects. In the absence of such data, the UDRC-developed
method can detect anomalies by assessing the confidence scores
assigned to various parts of activities during the classification
process [55].

Applications to WAMI and FMV

For the problem of wide area surveillance the Wright Patterson
Air Force Base 2009 WAMI dataset [25] has been processed. In
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Figure 5.11: Examples of actions detected by the UDRC-developed ac-
tion recognition algorithm on FMV data

these data, trajectories from a vehicle detection and tracking
algorithm were provided. For the mid-level representation, a
grid was placed on the area of interest and the trajectories
were converted to vectors of equal length with the bag-of-words
algorithm.

FMYV footage is available as part of the WASABI dataset
[72] and the public UCF-ARG dataset [73]. For these data,
action recognition was performed as follows: (i) humans in the
scene were detected with the Faster R-CNN deep learning de-
tector [74] which was trained with 4000 samples, (ii) action
recognition was achieved in a supervised manner with the tem-
poral segment network (TSN) deep learning framework [62].
TSNs extract low-level deep features based on motion and ap-
pearance and the mid-level representation was acquired by fea-
ture pooling. Finally, the assignment of input data to classes,
representing human actions, was achieved by performing av-
erage pooling and a softmax activation on a fully connected
layer. The action recognition facility was complemented with
an action recognition component based on handcrafted features
extracted with the improved dense trajectories method [60] to
augment the system’s performance. Examples of actions de-
tected by the system are shown in figure 5.11.

UDRC researchers have also worked with the publicly avail-
able Breakfast dataset [75] to demonstrate complex action and
activity recognition from videos. In this dataset the goal is
twofold: first, to recognise simple actions (such as cut fruit,
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take bowl); second, to recognise high level, complex activities
(such as prepare salad) by utilising the detected actions. The
Breakfast dataset poses several challenges. It comprises a large
number of videos (~1700) and the temporal localisation and
recognition of actions is hard due to the variety of environ-
ments, camera angles and participants.

To detect actions from video, low-level local features were
first extracted with improved dense trajectories [60] and Fisher
vectors were used for the mid-level representation. Action
recognition and temporal localisation was performed with HMMs
implemented with the HTK toolkit [76]. Finally, the UDRC al-
gorithm from [70] was used for activity recognition. It provides
temporal extent for each detected action (i.e. its start and end
point within the video), class (e.g. pour water, stir milk) and
a detection score. The HTK toolkit was used to build two
classifiers: a contextual classifier, which performs recognition
by utilising information regarding each action’s neighbouring
actions, and a non-contextual classifier which performs action
recognition without considering neighbours.

References

[1] T.J. Mowbray, Cybersecurity: Managing systems, conducting testing, and
investigating intrusions. John Wiley & Sons, 2013.

2] A. Nordrum. (Aug. 2016). Popular internet of things forecast of 50 billion
devices by 2020 is outdated, ieee spectrum: Technology engineering and
science news, [Online]. Available: http://spectrum. ieee . org/tech-
talk/telecom/internet/popular-internet-of - things-forecast-of-
50-billion-devices-by-2020-is-outdated.

[3] M. Stone. (Feb. 2017). Guidance — Defence information strategy, Ministry
of Defence and Joint Forces Command, [Online]. Available: https://www.
gov . uk / government / publications / defence - information - strategy /
latest-amendment.

[4] A. Sadighian, S. T. Zargar, J. M. Fernandez, and A. Lemay, “Semantic-
based context-aware alert fusion for distributed intrusion detection sys-
tems,” in International Conference on Risks and Security of Internet and
Systems (CRiSIS), 2013, pp. 1-6.

[5] M. Ussath, D. Jaeger, F. Cheng, and C. Meinel, “Advanced persistent
threats: behind the scenes,” in Annual Conference on Information Science
and Systems (CISS), 2016, pp. 181-186.

157



5. THREAT REFINEMENT

[6] K. G. Kyriakopoulos, F. J. Aparicio-Navarro, and D. J. Parish, “Manual
and automatic assigned thresholds in multi-layer data fusion intrusion de-
tection system for 802.11 attacks,” IET Information Security, vol. 8, no.
1, pp. 42-50, 2014.

[7]  G. Shafer, A mathematical theory of evidence. Princeton University Press,
1976.

[8] D. Santoro, G. Escudero-Andreu, K. G. Kyriakopoulos, F. J. Aparicio-
Navarro, D. J. Parish, and M. Vadursi, “A hybrid intrusion detection sys-
tem for virtual jamming attacks on wireless networks,” Measurement, vol.
109, pp. 79-87, 2017.

[9] F.J. Aparicio-Navarro, K. G. Kyriakopoulos, and D. J. Parish, “Automatic
dataset labelling and feature selection for intrusion detection systems,” in
IEEE Military Communications Conference (MILCOM), 2014, pp. 46-51.

[10] ——, “Empirical study of automatic dataset labelling,” in International
Conference for Internet Technology and Secured Transactions (ICITST),
2014, pp. 372-378.

[11] K. Ghanem, F. J. Aparicio-Navarro, K. G. Kyriakopoulos, S. Lambotharan,
and J. A. Chambers, “Support vector machine for network intrusion and
cyber-attack detection,” in Sensor Signal Processing for Defence (SSPD)
Conference, London, 2017, pp. 1-5.

[12] F.J. Aparicio-Navarro, K. G. Kyriakopoulos, D. J. Parish, and J. A. Cham-
bers, “Adding contextual information to intrusion detection systems using
fuzzy cognitive maps,” in IEEE International Multi-Disciplinary Confer-
ence on Cognitive Methods in Situation Awareness and Decision Support
(CogSIMA ), 2016, pp. 187-193.

[13] F. J. Aparicio-Navarro, J. A. Chambers, K. G. Kyriakopoulos, Y. Gong,
and D. J. Parish, “Using the pattern-of-life in networks to improve the
effectiveness of intrusion detection systems,” in IEEE International Con-
ference on Communications (ICC), 2017, pp. 1-7.

[14] F.J. Aparicio-Navarro, K. G. Kyriakopoulos, Y. Gong, D. J. Parish, and J.
A. Chambers, “Using pattern-of-life as contextual information for anomaly-
based intrusion detection systems,” IEEE Access (in press), pp. 1-14, 2017.

[15] C. D. Stylios and P. P. Groumpos, “Modeling complex systems using fuzzy
cognitive maps,” IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 34, no. 1, pp. 155-162, 2004.

[16] R. E. Jones, E. S. Connors, and M. R. Endsley, “Incorporating the human
analyst into the data fusion process by modeling situation awareness using
fuzzy cognitive maps,” in International Conference on Information Fusion
(FUSION), 2009, pp. 1265-1271.

(17]  Loughborough University. (2018). Man-in-the-middle, de-authentication
and rogue AP attacks in 802.11 networks, [Online|. Available: https :
//figshare.com/s/9c116e0422eb5ddbe9ba.

(18] ——, (2018). Loughborough University — network traffic with port scan-
ning attack, [Online]. Available: https://figshare.com/s/4bd0fe2dab7e09ce61dc.

158



References

[19] R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget
moments,” Aerospace and Electronic Systems, IEEE Transactions on, vol.
39, no. 4, pp. 1152-1178, 2003.

[20] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the ASME — Journal of Basic Engineering, vol. 82,
no. Series D, pp. 3545, 1960.

[21] D. Comaniciu and P. Meer, “Mean Shift: A robust approach toward fea-
ture space analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 5, pp. 603—619, May 2002.

[22] S. S. Mukherjee et al., “Instantaneous real-time head pose at a distance,”
in IEEE International conference on image processing, 2015, pp. 3471—

3475.

[23] ——, “Watch where you’re going! Pedestrian tracking via head pose,” in
IEEE International conference on computer vision theory and applica-
tions, 2016.

[24] A.Basharat et al., “Real-time multi-target tracking at 210 megapixels/second
in wide area motion imagery,” in Applications of Computer Vision, IEEE
Winter Conference on., 2014.

[25] US Air Force Research Laboratory Sensor Data Management System. ().
The Wright Patterson Air Force Base 2009 WAMI data set.

[26] W. Hu et al., “A system for learning statistical motion patterns,” Pattern
Analysis and Machine Intelligence, IEEE Transactons on., vol. 28, no. 9,
pp. 14501464, 2006.

[27]  C. Piciarelli and G. Foresti, “On-line trajectory clustering for anomalous
events detection,” Pattern Recognition Letters, vol. 27, no. 15, pp. 1835—
1842, 2006.

[28] M. Kristan et al., “Online discriminative kernel density estimator with
gaussian kernels,” Cybernetics, IEEE Transactions on., vol. 44, no. 3,
pPp. 255-265, 2014.

[29] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang, “End-to-end deep learning
for person search,” ArXiwv preprint arXiv:1604.01850, 2016. arXiv: 1604 .
01850 [cs.CV].

[30] L. Zheng, H. Zhang, S. Sun, M. Chandraker, and Q. Tian, “Person re-
identification in the wild,” ArXiv preprint arXiw:1604.02531, 2016. arXiv:
1604.02531 [cs.CV].

[31] L. Zheng, Y. Huang, H. Lu, and Y. Yang, “Pose invariant embedding
for deep person re-identification,” ArXiv preprint arXiv:1701.07732, 2017.
arXiv: 1701.07732 [cs.CV].

[32] R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning for
person re-identification,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2013, pp. 3586-3593.

[33] W. Li and X. Wang, “Locally aligned feature transforms across views,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 3594-3601.

159



5.

THREAT REFINEMENT

[34]

[35]

[36]

37]

[42]

[43]

[44]

[45]

[46]

[47]

160

D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep metric learning for person re-
identification,” in Pattern Recognition (ICPR), 22nd International Con-
ference on, IEEE, 2014, pp. 34-39.

W. Li, R. Zhao, T. Xiao, and X. Wang, “Deep filter pairing neural network
for person re-identification,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 152—159.

R. R. Varior, B. Shuai, J. Lu, D. Xu, and G. Wang, “A Siamese long short-
term memory architecture for human re-identification,” 135-153, 2016.

D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person re-identification
by multi-channel parts-based CNN with improved triplet loss function,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 1335-1344.

Y. Wen, K.Zhang, Z.Li, and Y.Qiao, “A discriminative feature learning
approach for deep face recognition,” in European Conference on Computer
Vision, Springer, 2016, pp. 499-515.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revisited: a
joint formulation,” in Computer Vision—-ECCYV, Springer, 2012, pp. 566—
579.

P. S. Chhabra, A. M. Wallace, and J. R. Hopgood, “Anomaly detection
in clutter using spectrally enhanced ladar,” in SPIE Defence + Security,
International Society for Optics and Photonics, Apr. 2015, DS115-5.

P. Chhabra and A. Wallace, “Simultaneous peak extraction and discrim-
ination of small foot-print penetrative lidar signals,” IEEE Transactions
on Geoscience and Remote Sensing (In Preparation), 2018.

S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Bayesian analy-
sis of lidar signals with multiple returns,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 29, no. 12, pp. 2170-2180, 2007.

J. Ye, A. M. Wallace, A. A. Zain, and J. Thompson, “Parallel Bayesian
inference of range and reflectance from ladar profiles,” Journal of Parallel
and Distributed Computing, vol. 73, no. 4, pp. 383-399, 2013.

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace,
J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using
time-correlated single-photon counting,” Optics Ezpress, vol. 23, no. 26,
pp- 33911-33926, 2015.

P. S. Chhabra, A. Maccarone, A. McCarthy, A. M. Wallace, and G. S.
Buller, “Discriminating underwater lidar target signatures using sparse
multi-spectral depth codes,” in Sensor Signal Processing for Defence (SSPD)
Conference, Edinburgh, 2016.

P. S. Chhabra, A. M. Wallace, and J. Hopgood, “Improved image discrim-
ination using fast non-linear orthogonal dictionary learning,” in European
Stgnal Processing Conference, IEEE, 2017.



References

(48]

[49]
[50]
[51]
[52]

(53]

[54]

[55]

[56]

[57)

(58]

[59]

[60]

[61]

(62]

D. Agarwal, “Detecting anomalies in cross-classified streams: a Bayesian
approach,” Knowledge and Information Systems, vol. 11, no. 1, pp. 2944,
Jan. 2007.

F. J. Anscombe, “Rejection of outliers,” Technometrics, vol. 2, no. 2,
pp. 123-146, 1960.

M. Markou and S. Singh, “Novelty detection: A review - part 1: Statistical
approaches,” Signal Processing, vol. 83, no. 12, pp. 2481-2497, 2003.

——, “Novelty detection: A review - part 2: Neural network based ap-
proaches,” Signal Processing, vol. 83, no. 12, pp. 2499-2521, 2003.

V. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artif. Intell. Rev., vol. 22, no. 2, 2004.

M. Agyemang, K. Barker, and R. Alhajj, “A comprehensive survey of nu-
meric and symbolic outlier mining techniques,” Intell. Data Anal., vol. 10,
no. 6, 2006.

J. Kittler and C. Zor, “A measure of surprise for incongruence detection,”
IET Conference Proceedings, pp. 6—, 2015.

J. Kittler, C. Zor, I. Kaloskampis, Y. Hicks, and W. Wang, “Error sensitiv-
ity analysis of delta divergence - a novel measure for classifier incongruence
detection,” Pattern Recognition, vol. 77, pp. 30 —44, 2018.

J. Kittler and C. Zor, “Delta divergence: A novel decision cognizant mea-
sure of classifier incongruence,” CoRR, vol. abs/1604.04451, 2016. arXiv:
1604.04451. [Online]. Available: http://arxiv.org/abs/1604.04451v2.

M. Ponti, J. Kittler, M. Riva, T. E. de Campos, and C. Zor, “A deci-
sion cognizant Kullback-Leibler divergence,” Pattern Recognition, vol. 61,
pp. 470-478, 2017.

K. Kowalska and L. Peel, “Maritime anomaly detection using gaussian
process active learning,” in 15th International Conference on Information
Fusion, Jul. 2012, pp. 1164-1171.

I. Kaloskampis, Y. A. Hicks, and D. Marshall, “Automatic analysis of
composite activities in video sequences using key action discovery and hi-
erarchical graphical models,” in Proceedings of 2nd IEEE Workshop on
Analysis and Retrieval of Tracked Events and Motion in Imagery Streams
(IEEE ARTEMIS 2011), 2011, pp. 890-897.

H. Wang and C. Schmid, “Action recognition with improved trajectories,”
in IEEE International Conference on Computer Vision (ICCV), 2013,
pp. 3551-3558.

J. C. Niebles, C. Chen, and L. Fei-Fei, “Modeling temporal structure of
decomposable motion segments for activity classification,” in Proceedings
of the 11th European Conference on Computer Vision (ECCYV), Heraklion,
Crete, Greece, 2010, pp. 392—405.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool,
“Temporal segment networks: towards good practices for deep action recog-
nition,” in ECCV, 2016.

161



5.

THREAT REFINEMENT

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[75]

[76]

162

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in IEEE Inter-
national Conference on Computer Vision (ICCV), 2015, pp. 4489-4497.

F. Perronnin, J. Sanchez, and T. Mensink, Improving the Fisher kernel for
large-scale image classification. Springer Berlin Heidelberg, 2010, pp. 143~
156.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, pp. 273-297, 1995.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32,
2001.

L. Rabiner, “A tutorial on Hidden Markov Models and selected appli-
cations in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2,
pp- 257286, 1989.

Y. Shi, Y. Huang, D. Minnen, A. Bobick, and I. Essa, “Propagation net-
works for recognition of partially ordered sequential action,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR), vol. 2, 2004.

N. N. Vo and A. F. Bobick, “From stochastic grammar to Bayes network:
Probabilistic parsing of complex activity,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2014, pp. 2641-2648.

I. Kaloskampis and Y. A. Hicks, “Human activity recognition by combin-
ing discriminative and generative classifiers,” in 11th International IMA
Conference on Mathematics in Signal Processing, 2016, pp. 1-4.

S. Fine, Y. Singer, and N. Tishby, “The hierarchical Hidden Markov Model:
Analysis and applications,” Machine Learning, vol. 32, no. 1, pp. 41-62,
1998.

DST Group. (2017). Fact sheet: wide area surveillance activity based in-
telligence, [Online]. Available: https : / / www . dst . defence . gov . au/
publication/wide-area-surveillance-activity-based-intelligence.

U. of Central Florida. (2013). UCF-ARG dataset, [Online]. Available: http:
//crcv.ucf.edu/data/UCF-ARG.php, 2013. [Online;accessed6Sep2017].

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149,
2017.

H. Kuehne, A. Arslan, and T. Serre, “The language of actions: Recover-
ing the syntax and semantics of goal-directed human activities,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014,
pp. 780-787.

M. I. L. Machine Intelligence Laboratory of the Cambridge University En-
gineering Department. (2016). The Hidden Markov Model toolkit (HTK),
[Online]. Available: http://htk.eng.cam.ac.uk/.



Chapter 6

Implementation

This chapter explores efficient practical design and implemen-
tation of signal processing algorithms. In academic literature
on signal processing, the focus is on powerful algorithms that
provide high performance, but typically at the cost of increasing
complexity. In practical implementations, the limiting factor
of algorithm complexity must be borne in mind. System de-
signers need to find approaches that are capable of providing
acceptable performance within the limits of hardware and soft-
ware platforms. The UDRC has explored these issues in detail,
addressing the trade-off between system performance and the
complexity and processing capabilities of the device or network
being used.

The development of low-complexity algorithms for efficient
processing of high-dimensional data is important in many do-
mains (e.g. array processing in radar or sonar, or pattern recog-
nition in large data). Through the development of lower dimen-
sional representations the UDRC has made gains in reducing
the computational cost of key signal processing tasks. The
associated algorithm performance increase and more efficient
data representation can provide a means to develop processing
systems that operate on smaller and lighter processing plat-
forms.
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6.1 Low-complexity algorithms and
efficient implementation

Keith Thompson, Stephan Weiss
Department of Electronic & Electrical Engineering, Strathclyde
University

Tan K. Proudler
Wolfson School of Mechanical, Electrical € Manufacturing En-
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George Jacob
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In recent years the potential for so-called polynomial ma-
triz' algorithms to provide elegant solutions for broadband sen-
sor array processing problems has become widely accepted.
The UDRC has further contributed to the state of the art
by increasing the computational efficiency of these algorithms.
These improvements are now being implemented on hardware
to allow high-performance broadband processing to be under-
taken on low-power systems, deployable on lightweight and mo-
bile platforms.

For some time now radar and sonar users have benefited
from narrowband? sensor array processing to estimate threat
bearings (i.e. DOA), form beams, mitigate interference and

!A polynomial matrix is a generalisation of a scalar matrix in which
each element is represented as a polynomial function. They can be used
to extend matrix representations to higher-dimensional data.

2When a sensor is sensitive only to a very limited range in frequency,
algorithms can assume that all signal power exists at a single frequency.
This simplifies their derivation somewhat.

164



6.1. Low-complexity algorithms

counter jamming. Despite the fact that processing require-
ments are computationally demanding and application exten-
sions to portable or autonomous systems have been challenging,
several mature methods exist [1].

The switch from narrowband processing to broadband is not
straightforward (see §2.2) and this has discouraged users from
exploiting the rich source of information obtainable through
broadband array signal processing. Chapter 2 described how
the UDRC research has addressed the signal processing re-
quirements for a broadband sensor system. Polynomial ma-
trix representations, pioneered by the UDRC research team,
have enabled the narrowband problem to be transformed into
a broadband problem in a robust way. In addition, UDRC re-
searchers have adapted the algorithms with the aim of imple-
menting these on platforms with low SWAP. This is extremely
pertinent to processing requirements for autonomous platforms
(e.g. UAVs) and man-portable systems. The development of
low-complexity algorithms has brought the exploitation of this
technology into scope for military systems designers. An ex-
ample of this is the performance gains seen in sonar array ap-
plications.

The development of field programmable gate array (FPGA)
technology has made the implementation of polynomial matrix
algorithms on low-SWAP platforms achievable at a reasonable
cost. An FPGA is a programmable integrated circuit device
that allows any circuit (derived from an algorithm) to be im-
plemented in custom hardware. FPGAs are especially suitable
for low production volume electronic systems typical of those
found in defence. They enable very fast, highly parallel process-
ing, as separate dedicated hardware can be used to calculate
different parts of an algorithm. They are made up of banks of
programmable logic (a blank slate) on which the circuit design
is synthesised, along with dedicated fast multiplier blocks, fast
block RAM memory, and assorted interfaces and peripherals.
They consume relatively little power, with power usage scaling
linearly with the amount of programmable logic utilised by the
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design on the device. As the FPGA is reconfigurable, a vari-
ety of test designs can be explored using the same device, and
the design may also be updated to improve performance and
include new features.

6.1.1 Broadband sensor array processing with
polynomial matrix representations

Sensor arrays form the basis for an increasingly wide variety
of applications, including MIMO communications, radar and
sonar systems, and are concerned with gathering and combin-
ing data from a collection of sensors to perform estimation
of signal and environmental parameters through spatial and
temporal processing (see e.g. chapters 2 and 3). The incom-
ing signal data can be formed into measurement, analysis and
steering vectors, allowing signal data from neighbouring sen-
sors, and previous time intervals to be compared through the
computation of a covariance matrix. This covariance matrix
captures correlations within the data (and also at multiple time
instances), allowing underlying information about the environ-
ment and scenario to be extracted through application of linear
signal processing techniques.

Matrix decomposition techniques, where a large matrix can
be broken down to reveal the dominant contributing factors,
are especially important in this field. In particular, eigenvalue
decompositions (EVDs), have proven optimal for many nar-
rowband problems. EVD allows a Hermitian matrix (a square
matrix of complex numbers, with the symmetric property that
it is equal to its conjugate transpose) to be factorised [2]. Such
a factorisation allows subspace decompositions to be revealed
that are useful in data compression and DOA applications. In
the narrowband case, the propagation delay characterised by
signals travelling across the sensor array can be modelled suffi-
ciently as a phase shift between the signals detected. However,
in the broadband case this method no longer holds. Instead,
the scenario may be modelled using time delays between the
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signals detected at multiple array sensor elements.

In recent years, researchers have sought to develop new
techniques for tackling broadband sensor array processing. The
UDRC has investigated the use of polynomial matrix tech-
niques to tackle this objective, as these representations provide
an elegant representation of the data which has greater flexi-
bility and allows full time delays to be modelled rather than
just phase shifts. Traditional broadband processing techniques
have typically adopted a divide-and-conquer approach where
the spectrum of interest is divided into multiple frequency bins
before established narrowband techniques are applied. This
may lead to a lack of coherence or discontinuities in results
computed as a function of frequency.

6.1.2 Improving the computational efficiency of
PEVD algorithms

The foundation of the research conducted by the UDRC dur-
ing phase 2 has been the development of new, more compu-
tationally efficient, iterative polynomial eigenvalue decompo-
sition (PEVD) algorithms [3]. PEVD algorithms are an ex-
tension of classic EVD algorithms to the case of polynomial
matrices. The EVD is a powerful tool for factorising Hermi-
tian matrices, and is widely-used in array processing problems
to reveal subspace decompositions. The research conducted
by the UDRC resulted in PEVD algorithms that offer better
computational performance (in terms of diagonalisation of the
matrix) in both reduced execution time and a lower number of
iterations required to reach the same threshold [4]. Further-
more, the new algorithms have delivered benefits by reducing
the order of the matrices that are returned. This is especially
important if the decomposition is ultimately to be deployed in
hardware. Further refinements include a divide-and-conquer
scheme for tackling large matrix problems [5], more efficient
restricted matrix element search spaces, integration of approx-
imate EVD methods, and truncation methods. These have
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offered notable computational improvements.

A number of different iterative PEVD algorithms have been
developed under the UDRC phase 2, including sequential-matriz-
decomposition (SMD) [4], and multiple-shift SMD [6], which
build on the second-order sequential best rotation (SBR2) al-
gorithm [3], the progenitor of this new body of work. The
newer SMD family of algorithms allows diagonalisation to a
much greater degree than the original SBR2 algorithm. The
SMD algorithms achieve this by transferring more energy per
iteration from the off-diagonal elements. This has been shown
to lead to a significant increase in performance of the resul-
tant algorithm in terms of convergence. In addition to greater
diagonalisation performance, the SMD algorithms also allow
the order of the output matrices to be constrained relative to
the original SBR2 algorithm. This is important for practical
hardware implementation.

The SMD algorithms are more complex to calculate than
the SBR2 owing to a full EVD operation being required on
each iteration of the algorithm. Therefore, further develop-
ments have been made to address this complexity by employ-
ing EVD approximation methods including cyclic-by-row rota-
tions [7], and new truncation methods [8] to restrict growth in
the length of the output matrices. These developments have
allowed the greater diagonalisation power of the SMD meth-
ods to become competitive with the simpler SBR2 methods in
terms of computational complexity.

An important aspect of the work on polynomial matrix
techniques has been the development of the divide-and-conquer
SMD approach for tackling larger-scale problems. The PEVD
algorithms operate on a space-time covariance matrix that is
estimated through computing the correlation of sensor array in-
puts, where the number of sensor inputs (V) dictates the size
of the matrix to be decomposed (N x N). Therefore, for large
arrays of sensors (such as those found in sonar applications)
this will result in very large data structures. Furthermore, the
potential for partitioning of data to perform parallel process-

168



6.1. Low-complexity algorithms

ing is non-trivial. This restriction has motivated a new strategy
for exploitation of the algorithms in custom parallel hardware,
where large matrices can be first be divided, before a PEVD
algorithm can be applied (the conquer step) in parallel (i.e.
using multiple PEVD threads).

6.1.3 Practical realisations of PEVD

In order to demonstrate the potential utility of the new more
powerful polynomial matrix algorithms, a number of applica-
tions of these methods have been considered. Two important
topics in sensor array processing are DOA and beamforming
[1]. DOA estimation is a well-established problem where the
direction of unknown signal sources must be determined from
analysis of signals propagating across array elements. Such in-
formation is of great importance in analysing the nature of the
environment. Beamforming is a spatial filtering technique used
to determine the optimal directivity of an array of sensors to
facilitate either the transmission, or reception of a signal (c.f.
§2.2). Beamforming can loosely be understood as the inverse
of DOA determination, where instead of finding the angle of
an incoming signal, the desire is to optimise the power of the
transmission to a particular angle, or to maximize the recep-
tion of a signal at an angle of interest, or even to block it
out by null-pointing. All of this is achieved by forming beams
through constructive interference of the contributions from in-
dividual sensor array elements. For both these applications,
the research conducted by UDRC during phase 2 has sought
to leverage the added flexibility of the polynomial matrix algo-
rithms to deliver broadband solutions.

In addition to applications for polynomial matrix algorithms,
UDRC researchers have investigated how these algorithms should
be adapted for implementation on FPGA hardware. The work
carried out by UDRC researchers has shown how the PEVD
algorithms can be implemented on an FPGA device, and how
the algorithm can both be computed and accelerated on a low-
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Figure 6.1: Broadband angle of arrival estimation with polynomial MU-
SIC algorithms, using SBR2 (left) and SMD (right). The more powerful
diagonalisation performance of SMD, evident by way of the stronger lin-
ear features on the right, leads to better estimation resolution for the
same computational cost.

power device.

Multiple signal classification (MUSIC) [9] is a well-established
and powerful algorithm used for the estimation of frequency
and emitter DOA. Various methods have been proposed to ex-
tend the original MUSIC algorithm from narrowband to broad-
band problems [10]. A notable such approach is the coher-
ent signal subspace (CSS) [11] method, which transforms the
broadband problem into a narrowband one, through the use of
focussing matrices to appropriately align covariance matrices
across narrowband frequency bins. The focussing matrices of
the CSS approach pre-steers (from approximate knowledge) the
array data so that the sources of interest appear in the vicin-
ity of the array’s broadside, where array response vectors for
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Figure 6.2: Broadband beamforming with a polynomial matrix-based
Capon beamformer. The axes show angle in degrees (cross range) and
normalised frequency (down range). The z-axis shows the logarithmic
gain, measured in decibels. This solution shows good main-lobe response
as well as sidelobe suppression over a range of frequencies.

all temporal frequencies approximately coincide. In contrast to
this approach, the UDRC developed a polynomial MUSIC ap-
proach using polynomial space-time covariance matrices [10],
[12], an example of which is shown in figure 6.1. The signal
subspaces created by iterative PEVD algorithms are exploited
by polynomial MUSIC. The subspaces may then be applied di-
rectly to the broadband array data, to identify source angles
across a broadband frequency range.

Broadband beamforming has also been successfully demon-
strated as an application of polynomial matrix factorisations.
UDRC researchers have formulated and solved a polynomial
matrix-based Capon beamformer [13]-[15]. The gain response
of a Capon beamformer design with look direction towards 30
degrees in the presence of three interferers is shown in figure 6.2.
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6.1.4 Future PEVD theory and implementation

The polynomial matrix algorithm design and applications have
been published in IEEE academic journals and conference pro-
ceedings. Furthermore, with support from UDRC industrial
partner, The Mathworks, the PEVD algorithms have been made
available openly in the first Matlab toolbox for PEVD algo-
rithms. This was first released in late 2014, is available at
[16] and is also linked to the Mathworks File Exchange. The
FPGA hardware demonstrator is to be published in conference
or journal proceedings, with a version taken up by Dstl. Sub-
stantial progress is continuing to be made in polynomial matrix
algorithm implementation. Enhanced metrics are accuracy and
computational speed. The cultivation of new application areas
is also being pursued.

Funding from Leonardo has been secured to support a PhD
studentship to develop novel techniques for efficient direction of
arrival estimation of broadband sources. This will specifically
address the computational cost versus accuracy challenges asso-
ciated with broadband source localisation. The method builds
on novel and computational efficient methods for direction of
arrival estimation based on polynomial matrices.

The work carried out by the UDRC on polynomial matrix
algorithms has successfully addressed a number of problems
that had previously been impossible to solve. However, proof
of convergence in terms of minimising off-diagonal energy has
been difficult to establish. Different algorithms often return
different solutions. As a result, recent efforts have focussed on
how the existence and uniqueness of the decomposition may
be demonstrated. This is of particular value from a theoret-
ical perspective, but has also led to a greater understanding
that shall enable the creation of a new family of parahermi-
tian, rather than polynomial, matrix EVD algorithms that ad-
dress the long-standing problems of source permutation in blind
source separation.
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6.2 Efficient computation of complex
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Calum Blair, Cristian Rusu, Loukianos Spyrou, John Thomp-
son
School of Engineering, University of Edinburgh

Paulo Garcia, Heba Shoukry, Pat Chambers, Andrew Wallace,
Mathini Sellathurai

School of Engineering & Physical Sciences, Heriot-Watt Uni-
versity

Jack Harris, Joe Kornycky, Paul Thomas
Cyber € Information Systems Division, Dstl

Efficient and robust sensor processing algorithms are re-
quired in a range of applications in the military domain. When
platforms are distributed across a geographical area (e.g. as in
electronic surveillance) issues around the positioning of sensors
and the fusion of data arise. In this section, practical imple-
mentation constraints are explored in a series of defence-related
signal processing problems. Firstly, binary image classification
algorithms have been extended to provide a confidence score
indicating the reliability of the classifier. Next, a novel low-
complexity approach, based on sparse transforms, has been de-
veloped and applied to image coding. This has application to
a variety of other signal processing problems. Thirdly, UDRC
researchers have addressed efficient signal processing in a net-
work of wireless sensors, evaluating how the performance of the
network scales with the number of available sensors, and the
optimal number of sensors to achieve a desired performance.
Finally in this section, the UDRC has evaluated efficient signal
processing on FPGAs, showing how performance and resource
use of these devices can be traded off against energy consump-
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tion. Examples of this type of problem occur in strategic radar
and EO sensing. Networks of sensors where reconfiguration,
relocation or activation of sensing nodes are considerations for
an operator are also avenues for exploitation.

6.2.1 Improving the reliability of image-based
object detectors

Object detectors in imagery typically work by processing the
pixels within a region of interest in order to extract relevant
features including shape, colour or texture. These features can
then be classified using a machine learning technique whose
number include SVMs, decision trees (e.g. Adaboost) or vari-
ous deep learning techniques. Learning methods use an object
model, learnt during a training phase, which expresses a rep-
resentation of how the object is expected to appear in the test
image. The features calculated from a test sample are then
compared to the object model. This produces a yes or no deci-
sion about whether the object is present in that region. As well
as a binary decision, the classification stage can produce a con-
fidence score. Using additional training samples, this can be
converted to a probability value which expresses the classifier’s
belief that a particular object is present. This allows compar-
isons between different classifiers to be made, and probabilities
of detection can be passed to subsequent algorithms.

Many of the recent advances in detection capability have
focused on improving the accuracy of the decision maker, at-
tempting to reduce false positives (background wrongly iden-
tified as an object of interest) and false negatives (objects of
interest missed). State-of-the-art detectors are generally sig-
nificantly more confident about the presence or absence of an
object in a region than they should be, and areas of significant
uncertainty (around 50% probability that an object is present
at all) are under-represented. This makes object detectors un-
reliable; if an autonomous system or human operator depends
upon a detector which returns positives (true or false) with
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Figure 6.3: An overconfident person detector algorithm. True positives
(green boxes) and false positives (red boxes) are both detected with
100% confidence. See [17] for details of the classification algorithms.
The image comes from [18].

overconfidence, the subsequent decision will be faulty (see fig-
ure 6.3 for an example).

Introspective classifiers which provide both decision infor-
mation and probabilistic confidence information are particu-
larly useful for data fusion techniques that analyse and combine
information from multiple sources [19]. For example, WAMI
sensors can provide continuous surveillance data for large areas
to look for objects, people, or vehicles of interest. Introspective
classifiers can provide a reliability measure to assist higher level
data fusion algorithms to assess whether a particular target has
been reliably classified in order to make threat assessment de-
cisions. Similarly, in military countermeasure scenarios, relia-
bility estimates can help electronic systems to assess the actual
threat posed from a contact received at a particular sensor

The UDRC has developed improved classification techniques
based on Gaussian Process classifiers (GPCs). These model
the distribution of features in the two classes of interest (ob-
ject and background) and have been shown to identify ambigu-
ous regions which contain uncertain detections more reliably,
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while achieving similar levels of accuracy [17]. They also gener-
ate probabilistic classifications. However, GPCs require many
more computations than equivalent techniques (Adaboost or
SVMs). To mitigate this, UDRC researchers first used faster
classifiers (Adaboost) to process the whole image to generate
preliminary confidence scores. High-scoring regions which may
contain objects of interest were then processed with the GPC
to generate accurate, reliable detections in a fraction of the
time taken to process the entire image. In addition, GPC cal-
culations have been accelerated using GPUs to further reduce
processing time [20].

Reliable object detection in video and imagery is a challenge
in many military and security applications. Applying a fast
and relatively accurate detector (Adaboost) followed by using
a slower, more introspective GPC allows a substantially faster
detection rate coupled with a significant gain in accuracy, reli-
ability and user transparency. This can be utilised effectively
throughout many sensing modalities to perform monitoring or
surveillance tasks which rely on object detection.

6.2.2 Learning fast sparsifying transforms

Dictionary learning methods are a class of algorithm that have
seen many applications in signal processing; for example, im-
age processing, wireless communications and machine learning.
The key idea of this approach is to learn a very specific trans-
form known as an overcomplete dictionary for a particular task,
like coding or classification, from the data itself. Such numeri-
cally efficient dictionaries are particularly useful in low-SWAP
and low-cost implementations. While the dictionary learning
problem is computationally complex in general, it has been
extensively studied and good algorithms to tackle it exist. Al-
ternating minimisation methods [21] have been shown to work
well in practice and also enjoy some theoretical performance
guarantees. UDRC researchers have extended this strategy by
employing an alternating optimisation procedure. While learn-
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Figure 6.4: Fast transforms learnt in an image denoising application.
Left: original image, middle: noisy version that has half the pixels re-
moved, right: the reconstruction from the noisy image using the UDRC
transforms. (Original image available at [25].)

ing a dictionary they construct two objects: the dictionary and
the representation of the data in the dictionary.

Learnt dictionaries with low computational complexity can
bridge the gap between the classical transforms preferred in
power limited hardware or battery operated devices, and the
overcomplete, computationally cumbersome, learnt dictionar-
ies that provide state-of-the-art performance in many machine
learning tasks. As an example UDRC developed effective learnt
transformations for image coding. They chose to focus on these
data since here there are well known transforms (like the dis-
crete cosine transform) that are well suited for natural image
representation. The resultant computationally-efficient dictio-
naries’ representation performance sits between that of the
classical methods and that of computationally complex learnt
dictionaries. Moreover, the UDRC methods are able to build
transformations that are simultaneously better (in terms of rep-
resentation error) and faster (in terms of the number of opera-
tions performed) than current methods [22]-[24]. See figure 6.4
for an example of fast transforms applied to an image denoising
example. The UDRC method builds very efficient dictionaries
that are not orthogonal. The lack of the orthogonal structure
leads to more complicated algorithms to compute the change
of representation basis of given data.
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Future work will take account of the practical difficulties of
implementing these algorithms in highly specialised hardware
(such as DSP processors or FPGAs). Another line of research
is to construct transformations that perform additions and sub-
tractions but no multiplications. This may extend the role of
learnt transforms to scenarios where strict hardware and energy
consumption constraints are imposed.

6.2.3 Selection and scheduling algorithms for
sensor networks

Sensor networks can be extensible and cost effective tools to
measure and monitor physical phenomena like the electromag-
netic environment or the concentration of pollutants. Modern
wireless sensor networks may be composed of a large number
of heterogeneous sensors each with its own (possibly limited)
power supply capable of performing measurements, processing
the result and communicating it to neighbouring sensors in the
network.

The UDRC has developed scheduling algorithms based on
convex optimisation relazxations to construct scheduling schemes
for sensor networks composed of power limited, heterogeneous,
sensors. They have shown how the algorithms schedule the
network and provide theoretical guarantees that describe the
estimation accuracy of the network.

An example sensor network with 10 measurement nodes and
a master node is shown in figure 6.5 (left). Each node in the
network is able to perform a (noisy) measurement at a known
cost (measured as energy consumed). The topology of the net-
work imposes strict transmission energy costs (in the example
in the figure, data from node 7 is forwarded through nodes 6
and 1 before arriving at the master node). In this scenario
the cost of performing the measurement is proportional to the
quality of the measurement, as quantified by its SNR. Given
these operational costs, the goal has been to schedule the op-
eration of the network over multiple iterations such that the
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Figure 6.5: Left: network with 10 measurement nodes and a master
node (labelled M). Right: trade-off curve for the network showing the
relationship between algorithmic error estimate (MSE) and energy con-
sumption (measured in Watts). Increasing the energy on the z-axis
implies that more sensor measurements are taken, which reduces the
MSE (and vice-versa).

estimation accuracy of the network and its power consumption
are traded off against each other.

Using all nodes in the network offers the highest quality es-
timates but at the cost of the highest power consumption. The
plot in figure 6.5 (right) shows trade off obtained by the algo-
rithms developed in [26] and [27] where the estimation accuracy
is measured by the mean squared error (MSE). If a modest in-
crease in the level of the MSE is allowed, significant energy
savings can be made. Alternatively, without an energy model
or in the case of homogeneous sensor nodes, the network can be
scheduled over a fixed number of time instances such that all
nodes are activated approximately the same number of times,
thus balancing the utilisation of the network. In this fashion
no nodes are activated excessively while others are never used.
This work has been extended to a network composed of 100
sensors [28].
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6.2.4 Communications electronic warfare and
electronic surveillance

The increasing sophistication of cellular technologies culminat-
ing in the release of fifth generation (5G) technologies will result
in a number of challenges to communications electronic war-
fare (CEW) and electronic surveillance in the coming years.
An example of one of these challenges is where the increasingly
contested and congested electromagnetic environment will neg-
atively affect new MIMO communication techniques. As part
of the solution to mitigate these issues it will become standard
to ‘get among’ the signals (i.e. sensing will no longer be carried
out at a stand-off distance). To do this the sensors will need
to be deployed nearer, or among, target emitters. Distributed
sensor networks will therefore be standard.

A mobile ad hoc sensor network (MASNET) is a number
of sensors networked together and used collaboratively to de-
tect and process radio signals. This could comprise multiple
units of the same type or combinations of sensors with differ-
ent processing capabilities. An example MASNET for wireless
communications signals is shown in figure 6.6. MASNETS have
the advantage over static sensor networks that they can be de-
ployed in various scenarios and cope with changing conditions.
MASNETS also have applications in electronic surveillance.

In the operating environment, there are different informa-
tion flows: sensor-to-sensor communications (i.e. information
being exchanged between different sensors in the MASNET),
target-to-target communications (i.e. the target network com-
municating with other nodes in the same network), and am-
bient sensing of radio transmissions by the MASNET sensors.
Moreover, there are a number of parameters that influence the
performance and capabilities of the MASNET:

e the number of sensors and targets and distance between
them,

e the type of radio environment in which the MASNET is
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Figure 6.6: An example MASNET comprising sensors and transmitters.
Sensors are not necessarily connected directly to transmitters. An ex-
ample of a potential information flow is shown by the arrows.

operating,

e the type of wireless transmissions being used by the tar-
gets,

e sensor management strategies that can affect the detec-
tion, localisation and decoding of the transmissions.

Optimum and collaborative signal processing techniques are
crucial to the operation of all distributed sensor networks. Such
networks need to detect, position fix and decode signals collab-
oratively. UDRC researchers assessed MASNET performance
for various scenarios. The results are reported in [29] for an
urban environment where sensors and the target are geographi-
cally interspersed. They showed that detection and localisation
confidence increases with number of sensors. This is expected
as larger numbers of sensors increase the chances of having a
sensor with sufficient received signal power to be able to de-
tect a target. Likewise, the higher the power transmitted by
the target the fewer sensors are needed to detect it because
the likelihood of a sensor receiving enough power to detect is
increased. Simulations were carried out using the WINNER2
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channel framework [30] which allowed realistic estimation of
performance.

This work helped to bound the achievable performance of
real MASNET configurations that are used for sensing in wire-
less communication environments. The analysis made use of
both stochastic propagation models and realistic ray-tracing
characterisations of EM environments. This provides MOD
with estimates of the number of sensors required to achieve
performance targets in wireless communications and sensing
applications.

MASNET enabling contract

The question of how many sensors are needed for accurate sens-
ing of a signal in the electromagnetic environment was further
addressed by the UDRC in a MASNET enabling contract de-
signed to exploit the UDRC’s fundamental signal processing
results. Work carried out in the enabling contract influenced a
series of field trials carried out by Dstl’s CEW project, begin-
ning in early 2018.

The aim of the enabling contract was to characterise the
use of a MASNET in two generic but bounded scenarios: rural
and urban. The focus was on understanding how a MASNET
can pick-up emissions passively from a network of adversary
radios, rather than on the network connections between the
MASNET sensors themselves. An appreciation of how raw data
can be combined together from the sensors was necessary. In
general this needs to be undertaken in a way such that signal
detection, position fixing and demodulation can be done jointly
— i.e. at the data level, rather than the decision level. The
project comprised three stages.

1. Mathematical modelling A series of mathematical mod-
els helped to answer some of the questions above. The
rural and urban models used were statistical in nature
and assumed typical fading parameters. At this stage
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there was no need to understand specific rural or urban
geometries, e.g. where buildings are located.

. Simulation and statistical analysis The work from the
previous stage was verified using RF simulations (for ex-
ample, using ray tracing or finite element modelling).
Commercial simulation software or previously developed
software was used (so that the UDRC researchers could
focus on the issues highlighted above and not on software
creation). Unlike the previous stage, in these simulations,
specific geometries were assumed and used.

. Real-world verification and robustness testing Real-world
RF recordings were taken to verify the simulations from
the previous stage. This included, for example, a series
of impulse response measurements taken from typical UK
urban and rural environments. Co-channel interference
was not recorded live. Impulse response measurements
were taken using a channel sounder and receiver combi-
nation. These measurements were then used to pseudo-
model (a combination of real world impulse responses
and modelling software) different scenarios and add in
co-channel or noise in post-processing.

The results demonstrated that the proposed Euclidean Dis-
tance Matrix approach could outperform the widely used Least
Squares algorithm, especially when a small number of sensors
were used in multipath scenarios [29].

6.2.5 Power reduction techniques for FPGA

resource management

FPGASs require careful power management, and to contribute
to this endeavour the UDRC has developed the concept of prior
knowledge guided approximation. This is based on a statis-
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tical model of the impact of approximations® on power con-

sumption, which contrasts with empirical methods that cur-
rently prevail in FPGA engineering. UDRC researchers used
Kullback-Leibler (KL) divergence-based metrics* to evaluate
approximation errors and assess whether these are within ac-
ceptable variance bounds [31]. The model uses prior knowledge
to ensure sufficient accuracy where access to ground truth is im-
possible by dynamically modifying the level of approximation.

To optimise data requirements within FPGA implementa-
tions, UDRC researchers have developed methods for the al-
location of on-chip memory to minimise resource usage and
power consumption. They have contributed to the realisation
of power-efficient sensor systems fully contained on FPGAs.
These methods generate on-chip memory architectures which
reduce FPGA memory resource usage and power consumption
by approximately 35% for video processing and tracking ap-
plications [32]. They have combined sensing algorithm imple-
mentation with platform integration, algorithm hardware and
software integration with sensors and network connectivity [33].

This work is unique in that it implements a supervisor block
which is able to make trade-offs between accuracy and power
consumption and, crucially, do this at run-time with no knowl-
edge of the ground truth. This could have significant impact
upon power usage in a scenario with deployed military sensors
that must conserve processing power. Additionally, the general
principles established here could easily be used in other accu-
racy trade-offs; most notably the accuracy against time trade-
off which is always critical for ISR applications. In this scenario
the intelligent algorithm would recognise situations where the

3 As examples the researchers implemented bit width reduction (float-
ing point to fixed point), and look up tables of basic mathematical func-
tions (sine, cosine, arctangent, square root). However, this general princi-
ple could be extended to more sophisticated approximations such as trun-
cation of the order of polynomials or limits on Taylor expansions.

4The Kullback-Leibler divergence is a distance-like metric which enu-
merates the difference between a pair of probability distributions.
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need for a fast approximate answer is greater than the need for
a highly accurate answer that is too late to be actionable, and
therefore adjust the signal processing accordingly.
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Chapter 7

Highlights and future

This chapter draws out some of the overarching highlights of
the UDRC phase 2. It examines outcomes, looks at next steps,
and — in anticipation of UDRC phase 3 — makes recommenda-
tions for the future.

7.1 Consortium activities

The consortiums originally comprised six universities, Edin-
burgh and Heriot-Watt in one and Loughborough, Surrey, Strath-
clyde and Cardiff in the other. In 2015 Professor Jonathon
Chambers, LSSC consortium lead, took up the position of Head
of the Communications, Sensors, Signal and Information Pro-
cessing (ComS2IP) Group at the School of Electrical and Elec-
tronic Engineering at Newcastle University. The EPSRC grant
moved with him and the work on network anomaly detection
(85.1) went to Newcastle. The LSSC became the LSSCN con-
sortium. In 2016 Neil Robertson secured a professorship at
Queen’s University Belfast, bringing them into the ERP con-
sortium.

Both consortiums sought industry advice from defence primes,
QinetiQ, Leonardo (formerly Selex ES) and Thales. In addi-
tion, the ERP Strategic Advisory Group (SAG) included rep-
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resentation from BAE Systems and SeeByte. LSSCN’s Con-
sortium Steering Group (CSG) included Texas Instruments,
Prismtech and Steepest Ascent. The latter was acquired in
2013 by The Mathworks who assumed their position on the
CSG. In April 2014 Atlas Elektronik joined the LSSCN. Chem-
ring Technology Solutions (formerly Roke Manor Research and
later Roke again) joined the ERP SAG in May 2014. Kaon,
a systems development and consultancy company, joined the
LSSCN CSG in November 2016. The list of industry partners
at the close of the UDRC phase 2 is given in table 1.1.

During the course of UDRC phase 2 Professor Mike Davies
of Edinburgh, ERP consortium director, and Professor Wen-
Hua Chen of Loughborough were elected Fellows of the IEEE.
Prof. Davies was additionally elevated to Fellow of the Royal
Academy of Engineering, Fellow of the European Signal Pro-
cessing Society, and Fellow of the Royal Society of Edinburgh.

Prof. Chambers was invited by the IEEE in 2015 to serve
on the committee which selects the recipient to receive the Jack
S. Kilby signal processing medal.! This is the highest honour
bestowed in the field by the IEEE and the committee includes
10 world-leading practitioners.

Professor Josef Kittler, Distinguished Professor and founder
of the University of Surrey’s Centre for Vision, Speech and Sig-
nal Processing (CVSSP), was awarded the Chinese Government
Friendship Award in 2016 for his contribution to the develop-
ment of research programmes in pattern recognition and artifi-
cial intelligence at Jiangnan University. It is the highest award
made to foreign experts in China.

Yan Pailhas of Heriot-Watt University (HWU) won the
2016 A. B. Wood award for young researcher of the year in
the field of sonar. The A. B. Wood medal and attendant prize
is awarded in alternate years to acoustics researchers based in
Europe (even years) and in the USA and Canada (odd years).

!Jack S Kilby remains the only signal processing scientist to have been
awarded a Nobel prize.

190



7.1. Consortium activities

It is aimed at younger researchers whose work is associated with
the sea.? Yan presented the medal lecture at the Acoustic and
Environmental Variability, Fluctuations and Coherence confer-
ence in December 2016 at the Moller Centre in Cambridge.

A UDRC team based at Strathclyde University won the
UK and overall European award at the 2016 European Satel-
lite Navigation Competition for GUAPO (project title: Passive
bistatic detection/classification of UAVs using GNSS satellites
as sources) [1]. The innovation was the development of a pas-
sive bistatic radar system which was used to detect UAVs,
with the aim of monitoring sensitive areas such as restricted
airspace.

The team secured an EPSRC Impact Accelerator Account
in collaboration with the Satellite Applications Catapult® from
January to March 2017, and will further benefit from Strath-
clyde University funding to develop the idea further. They will
then apply for Defence Accelerator funding or for an Innovate
UK Emerging Technology project.

In 2016 Carmine Clemente secured a Chancellor’s Fellow-
ship in Sensors Systems and Asset Management at the Univer-
sity of Strathclyde and was appointed lecturer in the Depart-
ment of Engineering. Carmine started his signal processing
career as a PhD student in the UDRC during phase 1. His
elevation from student to staff has been completed under the
auspices of the UDRC and can be regarded as a very visible ef-
fect of that commitment to build a UK-based signal processing
skills base. Also in 2016, Mehrdad Yaghoobi, RA on the ERP
was promoted to lecturer at Edinburgh. This followed his role
in the successful commercialisation of sparsity-based signal sep-

2 Albert Beaumont Wood became one of the first two research scientists
at the Admiralty to work on anti-submarine defence. He designed the first
directional hydrophone and made many contributions to the science of
underwater acoustics.

3The Satellite Applications Catapult, established in May 2013 by In-
novate UK, is a company created to foster growth across the economy
through the exploitation of space.
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aration algorithms for Raman spectroscopy with Metrohm Ra-
man (see §2.1.4), as well as imaging SAR work with Leonardo.
Daniel Clark of Heriot-Watt secured a Royal Academy of En-
gineering industrial fellowship for a three-month secondment
to Dstl from April to July 2017. There he provided expertise
and consulted on tracking and sensor management for applica-
tions in space situation awareness, maritime sensor fusion and
imagery intelligence (see §4.2.5).

Domenico Gaglione and Christos Ilioudis, then PhD stu-
dents at Strathclyde University, were awarded first and third
place respectively at the best student paper competition at
the IEEE International Radar Conference 2015 in Washing-
ton. This is one of the most prestigious prizes that early
stage researchers can win at one of the most important interna-
tional radar conferences. Domenico’s contribution was entitled
Model-based sparse recovery method for automatic classifica-
tion of helicopters [2] while Christos presented the paper Per-
formance analysis of fractional waveform libraries in MIMO
radar scenario [3].

Puneet Chhabra from Heriot-Watt was chosen as a finalist
for the UK ICT Pioneers in 2015. This is a unique partnership
between EPSRC and their key stakeholders, which recognises
the most exceptional UK doctoral students in ICT-related top-
ics who can demonstrate the commercial potential and impact
of their research to business. The competition is open to all
UK students in the final two years of their doctoral training,
culminating in a showcase and award ceremony in London. In-
dustry judges and sponsors of the competition were from EP-
SRC, Dstl, Hewlett Packard Enterprise, Facebook, BCS (The
Chartered Institute for IT), Samsung and BT [4].

7.1.1 Related research funding

Both consortiums have successfully attracted investment as a
result of their UDRC output. This amounts to extra signal
processing research funding and infrastructure attributable to
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Figure 7.1: Inflow of funding from various sources to UDRC phase 2
consortiums as a result of UDRC research.

UDRC research, to the benefit of MOD and wider UK industry.
For both consortiums, awards from grants, industry contracts
and MOD-directed funding amount to around £30M. These
funds cover more than 70 individual projects from sources in-
cluding the British Council, EPSRC, the EU, MOD, US/UK
multidisciplinary university research initiatives, the UK Space
Agency, as well as coming from across various industry sectors
including defence, automotive, entertainment and autonomy.
See figure 7.1 for a pictorial representation.

7.1.2 Publicity

UDRC phase 2 has featured in the Financial Times [5], Her-
ald newspaper [6] and Forbes [7] outlining the impact of the
UDRC research. In each, Professor Mike Davies, ERP consor-
tium lead, gave an insight into the importance of developing

193



7. HIGHLIGHTS AND FUTURE

new software to process information acquired from the range
of sensors present in the modern battlefield, from traditional
radar and sonar, to ubiquitous mobile phones.

In May 2015, the UDRC featured in the MOD Defence Con-
tracts Bulletin (DCB) [8]. The DCB is published in association
with Defence Equipment and Support (DE&S) and the Defence
Infrastructure Organisation (DIO) - key agencies of MOD pro-
curement. DCB is aimed at organisations that engage with
MOD as suppliers, as well as by MOD’s own buying commu-
nity. The article was written to inform customers in procure-
ment of the benefits of the UDRC’s collaborative approach,
and promoted the approach as an example of best practice in
MOD-directed low-TRL research. It also highlighted several
specific examples of research pull-through that are already be-
ing exploited by government and industry.

Aspects of UDRC research have been reported on the BBC
[9], in Professional Security Magazine [10], The Daily Record
[11], Process Engineering [12], Technology Networks [13], The
Scotsman [14], Laboratory Talk [15], Eureka! [16], Edinburgh
News [17], Chemicals Technology [18], Gradcracker [19], Holy-
rood [20] and FutureScot [21].

7.2 Facilitating industrial exploitation

The UDRC has spawned a number of collaborative opportuni-
ties with industrial partners, ranging from joint proposals for
MOD funding, to industrial studentships, secondments, and li-
censing agreements for the use of UDRC algorithms. These
interactions are crucial to ensure that UDRC research is com-

mercialised and made available to wider UK industry as well
as MOD.
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7.2.1 Intellectual property and licensing
arrangements

In accordance with the Government’s aims for exploitation of
the output of research work funded by the Research Councils,
the institutions within the consortiums are expected to claim
title to the intellectual property resulting from their work and
exploit the results. The MOD has standard industry-approved
rights to use the results of the research. UDRC phase 2 re-
searchers have filed for patent protection to cover two inven-
tions.

e A method of analysing radio frequency signals using sub-
Nyquist sampling, (Edinburgh), filed 31st May 2014 [22].

e Aerial object monitoring system, (Strathclyde) UK patent
application number GB1718885.5 [23].

Edinburgh University have licensed the UDRC-developed
algorithm for separating components of spectral mixtures to
Metrohm Inc. Metrohm’s latest generation of Raman spec-
trometers incorporate this algorithm. See section 2.1.4 for more
detail.

The ERP consortium secured a contract for consultancy
and licensing of SAR imaging software to SEA Ltd. The soft-
ware was licensed to SEA for 2014 and 2015. The consultancy
involved the delivery of a white paper on the potential for com-
pressive sensing to be used in 3D low-frequency SAR.

7.2.2 Sensor Signal Processing and Security
Laboratory, Strathclyde University

In part due to the continuity of phase 1 and 2 UDRC research,
and with EPSRC funding, the Sensor Signal Processing and
Security Labs opened in Strathclyde in 2015. This establish-
ment fosters a collaborative radar research environment and
hosts international visitors. In 2015 Professor Chris Baker from

195



7. HIGHLIGHTS AND FUTURE

Ohio State University (OSU) and Professor Antonio di Maio
of the University of Naples visited. Industry partners include
Leonardo (formerly Selex-ES), QinetiQ, Thales, BAE Systems,
Texas Instruments, National Instruments, and Tannoy. Un-
der a reciprocal arrangement the Strathclyde RA, Carmine
Clemente, spent 3 weeks at OSU, in 2015 and two PhD stu-
dents, Christos Ilioudis and Domenico Gaglione, were invited
to present their work at the nearby US Air Force Research
Laboratory.

7.2.3 Robotarium

Robotarium is a joint venture between Edinburgh and Heriot-
Watt supported by EPSRC and industry centred on a capital
equipment investment of £7.2M. The vision is for a national
UK facility for research into the interactions between robots,
environments, people and autonomous systems. It harnesses
the expertise of over 30 principal investigators of international
standing from 12 cross-disciplinary research groups and insti-
tutes from the School of Engineering and Physical Sciences and
the Department of Computer Science at Heriot-Watt Univer-
sity, and the Schools of Informatics and Engineering at the
University of Edinburgh.

The facility includes an EPSRC Centre for Doctoral Train-
ing in robotics and autonomous systems which trains innovation-
ready postgraduates. The strategic aim of the Centre is to
supply the urgent need for skilled, industry and market aware
researchers in robotics and autonomous systems. Centre part-
ners include global companies in the oil and gas, assisted living,
transport, defence, medical and space sectors.

7.2.4 Industry events

The UDRC Industry Day was held at Heriot-Watt University
on the 27th June 2014 with the aim of raising awareness of
the work done in UDRC and its exploitation potential to in-
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dustry. Case studies of UDRC-industrial collaboration and po-
tential funding mechanisms that can support further exploita-
tion were explored. The day was structured around interac-
tive sessions from UDRC and case studies from industry con-
tributors. Subjects included networked MCM using collabora-
tive unmanned systems (SeeByte and Heriot-Watt University),
Faster SAR-MTTI (Selex ES and Edinburgh). Collaborations
between Strathclyde and Selex ES and Strathclyde and Math-
works were also explored. There were also presentations by the
CDE, the Technology Strategy Board (the predecessor of Inno-
vate UK?) and the Knowledge Transfer Network in Electronics,
Sensors and Photonics.?

In each of 2014, 2015 and 2016 the LSSCN CSG meetings
were preceded by an industrial show-and-tell afternoon. The
aim of these events was to see state-of-the-art signal processing
solutions on real-time devices in an industrial setting. They
also facilitated UDRC-industrial contacts and started the pro-
cess of identifying new avenues for exploitation of UDRC re-
search. Talks, posters and demonstrations covered, amongst
other things, embedded multi-core systems for image process-
ing and tracking, system design and implementations in SDR,
micro-Doppler classification, methods of tracking and identi-
fying space debris, and communicating radar. Contributions
came from The Mathworks, Texas Instruments, National In-
struments and Lockheed Martin as well as the UDRC universi-
ties. A phased-array toolbox available from Mathworks which
is based, in part, on work done during the phase 1 of the UDRC
was demonstrated in 2015.

In both 2015 and 2016 Edinburgh University hosted an
AIMday. The AIMday concept is a series of single-day meet-

“Innovate UK is a public body reporting to the Department for Busi-
ness Energy and Industrial Strategy, which seeks to promote growth in the
UK economy by supporting business-led innovation.

5The Knowledge Transfer Networks are an Innovate UK initiative
which look to build links between established businesses and markets and
the latest discoveries and new ideas, to benefit the UK economy.
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ings focussed on making contacts between companies or organ-
isations and academic researchers from specific sectors (in the
UDRC case, sensor systems and signal processing). The meet-
ings’ stated intent are to match industry challenges with aca-
demic expertise. Industry questions are submitted in advance
and used as a starting point for discussion.

The 2016 AIMday was opened by Dstl, who summarised the
achievements of the UDRC. Members of the UDRC leadership
team were present in most of the industry-led workshops. The
event was judged by the Dstl attendees to be a useful engage-
ment mechanism with industry, using a novel format to catalyse
discussions at a technical level about industrial problems.

7.2.5 The polynomial-matrix eigenvalue
decomposition toolbox for Matlab

With LSSCN addressing efficient implementations, the CSG
recommended the realisation of one algorithm as a sample im-
plementation in software. An iterative algorithm for polyno-
mial matrix eigenvalue decomposition (PEVD) was chosen, as
this was of importance to several activities across the consor-
tium, in particular broadband source separation and subspace
techniques (see §2.2.2 and §6.1). This has been packaged up
as a toolbox for use with Matlab and has been promoted with
the help of LSSCN’s industrial partner The Mathworks for use
by the wider Matlab community. The toolbox is available at
[24]. To date there have been over 100 downloads. The authors
(Dr Stephan Weiss and Prof. John McWhirter, supported by
Jamie Corr and Zeliang Wang) delivered a tutorial based on
the toolbox at the IEEE Sensor Array and Multichannel Sig-
nal Processing workshop held in Brazil on 10th-13th July 2016.
The PEVD toolbox was also showcased at the first international
workshop on polynomial matrix decompositions and their ap-
plications (§7.4.7).
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7.2.6 PhD CASE studentships and EngD

studentships

During the course of UDRC phase 2 the ERP consortium se-
cured 8 EPSRC Collaborative Awards in Science and Engineer-
ing (CASE) or Engineering Doctorate (EngD) studentships.
These are not funded by the UDRC but address UDRC prob-

lems.

The studentships have a significant industrial focus, with

the business partner taking the lead in directing the student’s
research. The projects are:

7.3

“Target detection and classification from an airborne mo-
bile platform” with Leonardo (formerly Selex ES) at Ed-
inburgh University

“Adaptive waveform design in a crowded spectrum” with
Leonardo at Edinburgh

“Contextual anomaly detection” with Roke at HWU

“Multiple vehicle collaboration” with Seebyte at HWU,
started in September 2016

“Fast Lidar imaging systems for cars” with ST Micro-
electronics at HWU and Edinburgh, started in September
2016

“Real-time implementations of tracking algorithms and
estimation of algorithms for radar systems” with Leonardo
at Edinburgh, started in September 2016

“Non-linearity in the RF sensing chain” with Leonardo,
started in September 2017

“Wireless channel models for Fifth Generation wireless
systems” with The Mathworks

Advice and consultancy

UDRC academics have provided signal processing expertise to
people and projects in MOD, wider Government and indus-
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try. These have ranged from exploratory workshops covering
a broad range of topics to more focussed and in-depth efforts
which look at a particular defence need. In many cases the
latter formed the basis for follow-on contracts using enabling
agreements or industry funding. During phase 2 UDRC aca-
demics consulted on a number of MOD problems including
array signal processing, novel tracking algorithms, temporal
anomaly detection and intelligence fusion.

7.3.1 Missile Defence Centre

In 2014 the LSSCN consortium was approached by the Missile
Defence Centre (MDC) to consider potential novel techniques
to mitigate the threat posed from ballistic missiles. The con-
sortium put forward an integrated surveillance system concept
that offered early detection and tracking of missiles, and novel
target characterisation techniques for kill assessment.

The concept is underpinned by the spectrum of potential
ballistic missile threats: short, medium and intermediate-range
missiles; single or multiple missile attacks; and static or mobile
launch sites. UDRC researchers proposed a networked multi-
modal sensor environment to provide the maximum informa-
tion in order to make informed real-time kill assessment. The
concept is based around local and central fusion of informa-
tion from widely distributed networked sensors, including low
earth-orbit satellites, early warning radars, and other legacy
systems. In addition the UDRC team proposed the concept of
augmenting these systems with relatively low cost multi-static
radars and MIMO radar technology. A key part of the concept
was the use of micro-Doppler analysis to identify targets from
clutter.

Strathclyde University secured a contract through a CDE
themed call to adapt radar micro-Doppler techniques developed
during UDRC phase 2 to the problem of target classification for
ballistic missile defence. The project demonstrated the ability
to provide reliable discrimination of warheads from other ob-
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jects such as debris and spent stages, accurate orientation of
the warhead at the predicted instant of impact, and a determi-
nation via changes in signature for kill-assessment purposes.

Other work has been carried out at Heriot-Watt University
on space situation awareness under an enabling contract (see
§4.2.3). Applied research related to ballistic missile tracking
has taken place at Loughborough University (see §4.1). The
next steps for MDC-sponsored research consider the following
topics.

e Joint radar waveform and filter bank design for ballistic
targets classification This activity will investigate the po-
tential capabilities of a joint transmitting radar waveform
design and receiver filter bank for the specific purpose
of ballistic missile classification. Both the micro-Doppler
and high resolution range profile radar modes will be con-
sidered in the analysis.

o Missile launch detection from small satellites This ac-
tivity looks at assessing the detection of thermal anoma-
lies (fires) from near- and medium-IR images collected on
board small satellites, in order to detect potential missile
launches. Using a small platform (e.g. a CubeSat) pro-
vides advantages in terms of cost and potential number
of sensors available. It introduces, however, constraints
in terms of the sensor capabilities. It is likely that only
a low spatial resolution imager would be available on-
board, thus there is a need to develop reliable detection
algorithms able to detect thermal anomalies on a sub-
pixel scale. Constant false alarm ratio detectors, known
for their reliability and low computational cost will be
developed in this task, together with a system functional
design.
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7.3.2 Warfare in the information age

Warfare in the information age (WitIA) is the title of a let-
ter written by General Sir Richard Barrons, Commander Joint
Forces Command (JFC) in 2014. The letter outlined his think-
ing on how the information age is changing warfare, emphasised
the extent to which some of the UK adversaries were exploit-
ing the potential of information to deliver military operations
in new, more effective ways, and made the case for change to
ensure that UK Armed Forces were both able to exploit the
opportunities and counter the threats presented by the infor-
mation age.

Following General Barrons’ letter, Dstl were tasked to con-
duct a study in order to help JFC deepen their understanding
of how the information age has changed warfare, generate op-
tions to respond and to develop a plan to enable JFC to ’oper-
ationalise’ the vision outlined in WitIA. As part of that effort
Dstl organised a WitIA conference at Porton Down in 2016.
The brief was to showcase technologies which have significant
potential to make an impact on information-age warfare. At
this event the UDRC presented selected highlights from their
work on compressive sensing and sparsity, anomaly detection
in networks and WAMI, tracking and sensor management, as
well as efficient implementation.

7.3.3 Network and Information Sciences
International Technology Alliance

The UK /US International Technology Alliance in Network and
Information Sciences (NIS-ITA) was formed in May 2006 to
undertake fundamental (TRL 1-2) research in network and in-
formation sciences. Following a successful first 5-year phase,
the NIS-ITA program was extended to 10 years in May 2011
with a research programme focussed on network sciences. The
NIS-ITA is a joint MOD/Dstl and US Army Research Labo-
ratory programme, involving an IBM-led consortium of twenty
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four industry and academic organisations from the two coun-
tries. The NIS-ITA concluded in 2015 and its mantle has been
assumed by the US/UK DAIS ITA project [25].

In 2014 the UDRC and NIS-ITA held a joint meeting. Over
40 experts attended from across the two communities with the
aim of exploring topics of common interest and identifying spe-
cific actions to enable joint working. As a result of this meeting,
several opportunities for collaboration were identified. These
included using UDRC algorithms on the NIS-ITA experimental
network, studying how algorithm performance degrades with
decreasing network connectivity, mapping algorithms to dis-
tributed architectures, exploring local distributed and central
processing, and doing distributed anomaly detection.

7.3.4 CCS innovation day

The Technology Concepts strand of Dstl’s C4ISR, Concepts and
Solutions (CCS) project held an academic workshop in Decem-
ber 2014. A number of UDRC academics took part. The work-
shop drew from the CCS “Engine Room” community as well
as from UDRC. The first session of the workshop introduced
eight military topics. These were derived from an endorsed
list of capability gaps, issues and systems concepts which were
areas of interest to the CCS project. The attendees selected
three topics for further exploration in the workshop.

1. Networking for multiple platforms and sensors to enable
maritime situational awareness and understanding Fu-
ture maritime operating environments will see a prolifer-
ation of unmanned vehicles and associated sensors. This
is both an opportunity and a risk for maritime situational
awareness and understanding.

2. Multi-dimensional persistent wide-area surveillance 1t is
challenging to maintain PWAS in an operational theatre
across ‘all-frequencies and all sources’, fuse relevant in-
formation and present it in a defined, consistent format.
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The absence of such processing results in a reduction in
the operational effectiveness of deployed formations, and
a increase in the operational risk.

3. Low-cost ISR to mitigate the more contested and cluttered
airspace of the future The issue is how to make use of a
greater number of low cost and reduced capability ISR air
platforms. The future battlespace will be more cluttered
and constrained. In the air, the ability to operate will
be contested. High capability ISR assets are likely to be
high value targets.

Each of the topics was discussed in syndicate and plenary ses-
sions, looking at barriers and enablers, systems issues and
timescales. The results of these discussions were used to in-
form the next round of concept planning for the CCS project
in 2015 and eventually the Dstl response to the WitIA memo
(see §7.3.2).

7.3.5 Astrodynamics Community of Interest

In 2016 Dstl presented the UDRC concept and relevant UDRC
work at the Astrodynamics Community of Interest (ACI) work-
shop at the University of Warwick. The ACI comprises univer-
sities, industry, the UK Space Agency and Dstl. ACI members
subsequently participated in the UDRC themed meeting on
space and tracking in November 2016. Throughout the course
of UDRC phase 2 Dstl and the ACI supported the SSA work
led by Heriot-Watt University by providing funding, advice and
exploitation routes.

7.4 Development of signal processing
science

This section provides a brief summary of some academic high-
lights emerging from the UDRC. A full list of journal papers
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and conference proceedings is available at mod-udrc.org.

During the course of the phase 2, UDRC researchers have
produced over 300 publications. Dstl vetted each one to ensure
that no sensitive information was disclosed. Approximately two
thirds of submissions have been in conference proceedings and
the rest in peer-reviewed academic journals. All conferences
have been IEEE indexed, which means they are high calibre
with competitive submissions and robust review. All journals
are internationally renowned with expert reviewers. There have
also been examples of significant contributions to signal pro-
cessing science undertaken by the UDRC consortiums working
together. The most obvious of these were the annual SSPD
conferences and the UDRC summer schools, though other ex-
amples include SPAWC 2016 (§7.4.5), and the Universities of
Newcastle and Heriot-Watt jointly securing a £1.3M EPSRC
grant. This latter project, entitled USMART - smart dust for
large scale underwater wireless sensing is a 3 year collabora-
tion also including the University of York to develop affordable
technology for large scale, smart wireless sensing networks to
be deployed in the oceans.

7.4.1 Signal Processing for Defence at ISCCSP

The LSSCN consortium organised a special session entitled
“Sensor Signal Processing for Defense” at the 6th International
Symposium on Communications Control and Signal Processing
(ISCCSP), sponsored by the IEEE Signal Processing Society,
in Athens in May 2014. The symposium was attended by ap-
proximately 150 delegates and the structure of the special ses-
sion, chaired by Prof. Jonathon Chambers (LSSCN consortium
lead), was:

e Analysis dictionary learning based on Nesterov’s gradient
with application to SAR image despeckling; Jing Dong,
Wenwu Wang (University of Surrey)
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e Reuse of fractional waveform libraries for MIMO radar
and electronic countermeasures; Carmine Clemente, Chris-
tos Ilioudis, Domenico Gaglione, Keith Thompson, Stephan
Weiss (University of Strathclyde), Ian Proudler (Lough-
borough University), John J Soraghan (University of Strath-
clyde)

e Game theoretic power allocation technique for a MIMO
radar network; Anastasia Panoui, Sangarapillai Lamboth-
aran, Jonathon Chambers (Loughborough University)

e Estimating adaptive coefficients of evolving GMMs for
online video segmentation; loannis Kaloskampis, Yulia
Hicks (Cardiff University)

This successful activity highlighted the work of the UDRC in-
ternationally and increased interest and attendance at subse-
quent SSPD events.

7.4.2 International Conference on Pattern
Recognition Applications and Methods,
2014

Professor Josef Kittler (LSSCN, Surrey) delivered an invited
keynote at this conference held on March 6-8 2014 in Angers,
France. The conference was on ” Applications of pattern recog-
nition techniques to real-world problems”. Prof. Kittler’s keynote
covered his UDRC work on anomaly detection methods and
classifier incongruence determination.

7.4.3 Electronic Warfare Symposium

Prof. Chambers was invited to deliver the keynote address
at the 2015 Electronic Warfare Symposium at the Defence
Academy of the United Kingdom at Shrivenham. The talk
was entitled “The University Defence Research Collaboration
(UDRC): an agent for change in ES”. The presentation was
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well received, and UDRC researchers were subsequently invited
to participate in a classified RF EW technical conference at
Cranfield University.

7.4.4 International workshop on compressed
sensing theory

Professor Mike Davies, ERP consortium lead, was invited to
give a keynote talk at the international workshop on com-
pressed sensing theory and its applications to radar, sonar and
remote sensing (CoSeRa 2016) in Aachen, Germany in 2016.
Prof. Davies spoke on the UDRC work on compressive sens-
ing for SAR imaging. The title was “Sparse signal separation
and imaging in synthetic aperture radar”. This meeting also
included Dstl radar representation.

7.4.5 International workshop on signal
processing advances in wireless
communications

UDRC academics were successful in bringing the The 17th
IEEE international workshop on signal processing advances in
wireless communications (SPAWC 2016) conference to Edin-
burgh in 2016. This conference brought together researchers,
industrial and academic, to share advances in signal process-
ing in wireless communications and wireless technology. The
co-chairs were Professor Mathini Sellathurai (Heriot-Watt) and
Prof. Chambers. Professor John Thompson (Edinburgh) was
the tutorial session chair.

7.4.6 Mathematics in signal processing

There was significant UDRC representation at at the IMA
international conference on mathematics in signal processing
in Birmingham during December 2016. Prof. Chambers was
the conference co-chair and Prof. Davies was invited to give
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the keynote talk, “Exploiting structure and sparsity in defence
signal processing: from spectral decomposition to radar com-
pressed sensing”. Professor Sangarapillai Lambotharan (Lough-
borough) also gave an invited talk, on “Game theory and its
applications in wireless communications and sensing systems.”

7.4.7 Polynomial matrix workshop

The first international workshop on polynomial matrix factori-
sation (PMF) techniques and applications workshop was held
at Chicheley Hall from the 25th to 26th August 2016. The
workshop was attended by 20 participants from around the
world.

Matrix diagonalisation is a common element in solutions to
linear systems and becomes computationally expensive with
large systems and the need for fast solutions. Finding low
cost solutions has been the main driver behind the interest in
PMF. The workshop introduced PMF and PEVD (c.f. §7.2.5):
a specific form of PMFs. The solutions to PEVDs were dis-
cussed and the popular iterative algorithm SBR2 focussed on.
An improved multiple shift sequential SBR2 (MS-SBR2) was
presented; SBR2 is considered a fast way of carrying out a
PEVD at a reasonable computational cost. The participants
also discussed applications and various papers on this sub-
ject were presented. They included MIMO channel equalisa-
tion in communications, broadband MIMO, signal separation,
blind source separation, angle of arrival estimation including
broadband minimum variance distortionless response (MVDR)
beamforming and broadband sonar arrays.

Narrowband solutions and applications are well established
and transforming them to the broadband domain has been chal-
lenging. PEVD is an effective way to apply or solve broad-
band beamforming and equalisation problems. The workshop
demonstrated how to transform an existing narrowband solu-
tion to an effective broadband solution. Two examples were
shown, including a narrowband sidelobe cancellation problem
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transformed to broadband by using the PEVD. The other showed
a narrowband MVDR beamforming being transformed into a
broadband MVDR application by using the PEVD.

7.4.8 Joint trials between UDRC and CMRE

In September and October 2016, UDRC researchers at Heriot-
Watt participated in the ONMEX’16 and the MANEX'16 tri-
als. These trials were organised by the NATO Centre for Mar-
itime Research and Experimentation (CMRE), and took place
respectively in the Bay of Hyeres, close to Toulon in France and
in Framura in Italy. Broadband sonar data was collected with
the Hydrason BioSonar ultra-wideband sonar array. This novel
hardware relies in part on research outputs from the UDRC
phase 2.

In total more than 20 missions were performed. An au-
tonomous underwater vehicle traveled over 175km inspecting
around 13km? of seafloor. The general scope of these trials
was to collect a substantial data set using a wideband multi-
beam sonar (WBMBS) system and three sidescan sonars to
study issues of coherence. The WBMBS has sensitivity over
a very broad range in frequency (20 — 180kHz). It also has
a very wide beam pattern (40° @60kHz). In a similar way to
SAS systems, the WBMBS sees every point in the scene numer-
ous times. It is therefore particularly well adapted to measure
spatial coherence. The multi-element aspect of the WBMBS
enables, via adaptive processing, maximisation of the signal
over reverberation ratio, and thereby a cleaner measurement
of the coherence of a particular point in the scene. The aim
of the trial was to carry out repeated measurements at differ-
ent grazing angles and aspects in a number of environments to
assess the limit of coherence loss and its dependency on look-
angle, frequency, seabed type. A special emphasis was placed
on man-made targets present in the environment and polygonal
or circular target re-acquisition was performed. The trials de-
livered a vital data set which addresses fundamental questions
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about coherence, as well as material to develop recognition al-
gorithms based on coherence processing.

7.5 UDRC Data Centre

Dstl hosts the UDRC Data Centre, a repository of a broad
range of unclassified defence-related data gathered from a va-
riety of sensors observing many different types of target and
environment. At the end of phase 2 the size of the repository
was in excess of 80TB. A catalogue is available at [26].

The overarching goal of the Data Centre is to support the
fourth objective of the UDRC to facilitate the rapid exploita-
tion of signal processing science and technology to address mil-
itary requirements. It also aims to provide a mechanism by
which data can be shared between academic collaborators for
the advancement of signal processing research. This is in line
with the Prime Minister’s Transparency Agenda, under which
MOD has published its Open Data Strategy. MOD is commit-
ted to ensuring that the maximum value is derived from data by
ensuring its re-use within the Department, across government,
and wherever feasible, by the public and developer community.
Dstl has sought, where possible, to make the data published
by the UDRC Data Centre compliant with the standards laid
down in the policy, taking into account protective marking and
commercial sensitivities.

During phase 2 of the UDRC there were 63 transfers of
data to academic and industry institutions, covering releases to
develop algorithms, as well as more short-term technical chal-
lenges. More efficient release processes to UDRC researchers
have been developed. The average time between request and
data release was around 2 weeks (a similar timescale as is in-
volved in paper clearances).

At SSPD 2015 conference Dstl presented a data challenge
centred on FMV. The challenge included 370GB of data from
an airborne platform and asked researchers from the whole
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community (not just UDRC) to demonstrate automated meth-
ods of annotating video streams. These activities are cur-
rently undertaken by intelligence analysts, but are potentially
amenable to image processing, target recognition and machine
learning algorithms. Challenges such as these came to be the
preferred method for distribution of unclassified data in that
a single process covered release to all parties, and necessary
bureaucracy was minimised. It also ensured that recipients
were motivated to develop solutions which address issues in
the data directly, and seek early engagement with Dstl who are
able to understand and affect the proposed method. A number
of such releases have since been made to the UDRC project
manager who manages and maintains the onward distribution
list. Where possible, available data sets have been advertised
on the UDRC website [26].

7.6 Summary and the next stage

This book has described the research and development con-
ducted under phase 2 of the University Defence Research Col-
laboration (UDRC) in Signal Processing. UDRC phase 2 was
a b-year, £11.5M programme centred on an £8M joint venture
between MOD and the Engineering and Physical Sciences Re-
search Council (EPSRC). It began in 2013, and was entitled
Signal processing in a networked battlespace.

The UDRC phase 2 was originally composed of six univer-
sities formed into two consortiums. This later became eight
universities. During its term it has been delivered by 24 aca-
demic staff, 28 Research Associates, over 20 PhD students and
4 project management staff, as well as a number of Dstl tech-
nical experts and project managers. Jointly, the consortiums’
programmes of work were made up of many individual projects
covering all aspects of signal processing research. Each project
addressed a number of technical challenges in defence-oriented
signal processing.
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The UDRC will continue to provide MOD with direct ac-
cess to a talent pool that is deployable on MOD problems at
short notice. During phase 2 experts were consulted in depth
on a wide range of defence signal processing challenges. Partic-
ular breakthroughs were made in the topics of array processing,
novel tracking, anomaly detection and intelligence fusion.

A total of 12 enabling agreements were let with Dstl, repre-
senting over £750k worth of funding to further develop UDRC
innovations for UK military use. The core UDRC phase 2 grant
has been instrumental in securing a further £30M from other
government and industry sources, advancing and exploiting sig-
nal processing R&D in both the defence and civil sectors.

Exploitation of phase 2 technology will continue and var-
ious mechanisms exist to do this. The most direct approach
is to allocate MOD funding to further develop phase 2 tech-
nologies. More complex and innovative options are available.
Dstl and Innovate UK have discussed using Knowledge Transfer
Partnerships (KTPs) to facilitate exploitation from academia
to industry. In mechanisms like this an industrial partner re-
cruits an employee to work on bringing in a new technology
from an academic partner, the knowledge residing in the new
recruit. An academic panel oversees the transfer. Government
provide some degree of matched funds toward the total project
costs. More broadly, schemes exist which cover transfers of al-
gorithms, recruitment of individuals, as well as other means of
nurturing technical staff in an industrial setting. Whatever the
mechanism for exploitation, it’s clear that Dstl will continue to
be engaged in assessing the totality of the work under phase 2
to provide recommendations for work to carry forward.

The UDRC phase 2 has been highly successful, delivering
an integrated programme of research, with engagement from
strategic industrial partners who provided commercial driving
force, and have brought research outputs closer to exploitation.
A number of instances of UDRC research have already been ap-
plied directly to MOD signal processing problems to the bene-
fit of the UK and its international partners. There have been
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over 300 publications in phase 2, some in the most significant
peer reviewed journals such as IEEE Transactions. Examples
of breakthroughs are found in fields such as low-frequency syn-
thetic aperture radar imaging, micro-Doppler technologies for
target detection and multi-target tracking algorithms.

Toward the end of 2015, Dstl and EPSRC entered into di-
alogue regarding a successor programme to the UDRC phase
2. In no small part due to the successes of the past five years,
EPSRC and Dstl agreed to continue UDRC with a phase 3
programme under the title Signal processing in the informa-
tion age. Both parties, moreover, have a strong desire to see
the current research continue to be exploited beyond the end
of the present funding term, to derive ongoing benefit from the
world-leading signal processing research undertaken during this
phase.

As MOD and EPSRC look to the future, they should seek
to build on the vibrant collective built by UDRC phase 2, the
goal being to sustain and fortify the UK’s hard-won defence sig-
nal processing talent. It is recommended that future research
programmes should follow the lead of the UDRC and promote
deep technical expertise, facilitate knowledge exchange between
researchers and practitioners and encourage greater participa-
tion in a growing community of practice. These factors will
serve to further strengthen the UK defence signal processing
community which has benefited greatly from the phase 2 of the
UDRC.
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Glossary

ADC
AFRL
AIS

APT

ASW

ATR

AUV

AV
Broadband

Capon
beam-
former
CB
CBR
CDE

CEW
CMRE

CNN

COTS

CSA

Analogue-to-Digital Converter

US Air Force Research Laboratory

Automatic Identification System: a system used in mar-
itime situation awareness in which vessels report infor-
mation regarding their state at periodic intervals, or in
response to queries from a transmitter. The reporting
period varies according to location. AIS is mandatory
(under the International Maritime Organization’s Inter-
national Convention for the Safety of Life at Sea) for all
vessels with over 300 gross tonnage. It is employed by
many others besides.

Advanced Persistent Threat: a category of cyber at-
tacker

Anti-Submarine Warfare

Automatic Target Recognition

Autonomous Underwater Vehicle

Autonomous Vehicle

Indicating a signal whose power is distributed over a
wide range in frequency

A type of MVDR beamformer; an adaptive beamformer
whose goal is to minimise the received signal’s variance

Chemical and Biological

Chemical, Biological and Radiological

Centre for Defence Enterprise: a MOD-funded innova-
tion scheme, superseded in 2016 by the Defence and
Security Accelerator (DASA)

Communications Electronic Warfare

NATO Centre for Maritime Research and Experimenta-
tion

Convolutional Neural Network: a deep variant of an ar-
tificial neural network. CNNs have been successfully ap-
plied to object recognition and image processing tasks
in recent years.

Commercial Off-the-Shelf: indicating that the technol-
ogy is available for purchase in the civil sector

MOD Chief Scientific Adviser

219



GLOSSARY

CubeSat

DASA

DBN
DDoS

DEM
DE&S

DOA
DSP pro-

cessor

EO
ES
EVD

EW

FISST

FMV

FPGA

FrFT
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A  miniature low-cost satellite equipped with a
lightweight and relatively inexpensive payload. Cube-
Sats may be launched as secondary payloads and in
large numbers making them extremely good technology
demonstration platforms.

Defence and Security Accelerator: a MOD-funded in-
novation scheme designed to steward innovations which
can provide advantage to defence and national security
from inception to application

Deep Belief Network: a neural network based machine
learning technique that exploits deep learning methods
Distributed Denial of Service: a type of (relatively un-
sophisticated) cyber attack

Digital Elevation Model

Defence Equipment and Support: an arm’s length body
of MOD tasked with buying and supporting the equip-
ment and services that the Royal Navy, British Army
and Royal Air Force need to operate effectively
Direction of Arrival

Digital Signal Processing processor: a specialised mi-
croprocessor whose architecture is optimised to the re-
quirements of digital signal processing

Electro-Optical

Electronic Surveillance

Figenvalue Decomposition: a matrix manipulation
where a matrix may be decomposed into a canonical
form to reveal its dominant factors

Electronic Warfare

Finite Set Statistics: an alternative approach to multi-
target tracking schemes which seeks to avoid the curse
of dimensionality by representing collections of objects
as sets

Full Motion Video: video streams typically with small
fields of view, high spatial resolution, and high frame
rates.  Contrast with Wide-Area Motion Imagery
(WAMI).

Field Programmable Gate Array: a programmable in-
tegrated circuit device that allows an algorithm to be
implemented efficiently in hardware

Fractional Fourier Transform: a generalisation of the
Fourier transform in which signals are represented not
only with respect to time or frequency, but a fractional
combination of both



Gaussian The basis for a machine learning method for regression

Process and classification of signals. Gaussian Processes assume
that observations are drawn from a stochastic process, a
set of functions, whose random variables are multivari-
ate Gaussian distributed.

GMTI Ground Moving Target Indication: a type of radar sens-
ing mode sensitive to targets moving radially with re-
spect to the sensor. It is capable of covering very large
areas for significant periods of time allowing patterns
and activities to be observed.

GPS Global Positioning System: a set of US military
satellites providing signals which allow accurate self-
localisation to those with receivers. More generally, any
similar system of global navigation satellites, e.g. EU’s
Galileo, Russia’s GLONASS.

GPU Graphics Processing Unit: a processor originally de-
signed for the swift rendering of graphics, characterised
by its parallel processing capability. Many algorithms
can be adapted to exploit this parallelisation to achieve
huge computational savings.

HISP Hypothesised Filter for Independent Stochastic Popu-
lations: a UDRC-developed state estimation method
based on point process theory which has been applied to
space situation awareness and underwater target track-
ing

HSI Hyper-Spectral Imagery: a hybrid imaging and spec-
tral sensor where each pixel in an scene delivers a spec-
trum. This enables spatially-diverse material identifica-
tion. Compare with (in general) lower spectral resolu-
tion but higher spatial resolution of MSI.

IEEE The Institute of Electrical and Electronics Engineers
Innovate At one time known as the Technology Strategy Board,
UK Innovate UK is a public body reporting to the De-

partment for Business, Energy and Industrial Strategy,
which seeks to promote growth in the UK economy by
supporting business-led innovation.

INU Inertial Navigation Unit

1R Infrared

IRST Infrared Search and Track

ISR Intelligence, Surveillance and Reconnaissance

ISTAR Intelligence, Surveillance, Target Acquisition and Re-
connaissance

JFC Joint Forces Command
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LTE

MarCE

MAP

MASNET
MDC

MMSE
MSI

MUSIC

MVDR
Narrowband

NATO
NIDS
NIS-ITA

Nyquist

sampling

OFDM
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Long-Term Evolution: a standard for high-speed wire-
less communication for mobile devices

Maritime Collaborative Enterprise: a community of in-
terest and contracting framework managed by BAE Sys-
tems which undertook research and development, on be-
half of Dstl, of relevance to MOD maritime stakeholders.
Maximum A Posteriori: refers to a number of statistical
methods that rely on finding the maximum point in the
posterior probability distribution.

Mobile Ad Hoc Sensor Network

Missile Defence Centre: a UK government /industry con-
sortium undertaking R&D into aspects of ballistic mis-
sile defence.

Minimum Mean Squared Error

Multi-Spectral Imagery: imaging in many spectral
bands. This allows greater discrimination of objects
than using panchromatic, or standard colour imagery.
Compare with HSI where each pixel produces a full spec-
trum. In general MSI will have better spatial resolution
but poorer spectral resolution than HSI.

Multiple Signal Classification: an algorithm for the es-
timation of DOA of multiple overlapping signals
Minimum Variance Distortionless Response

In signal processing, a signal whose bandwidth occupies
a small range in frequency

North Atlantic Treaty Organisation

Network Intrusion Detection System

Network and Information Sciences International Tech-
nology Alliance: a UK/US collaboration formed in May
2006 to undertake fundamental (TRL 1-2) research in
network and information sciences

A fundamental result in signal processing stating that
any bandwidth-limited signal may be completely char-
acterised if samples are taken at a rate of twice the
highest frequency component in that signal or higher.
It establishes a sufficiency criterion whereby additional
sampling of a signal yields no new information.
Orthogonal Frequency Division Multiplexing: a tech-
nique to allow waveforms to share the same spectrum
without interfering. A practical method that is in use
in communications to allow multiple users to occupy
parts of the spectrum simultaneously.



PDF Probability Density Function: a function describing how
the probability of an outcome, P(z1,...,zy), depends on
the variables z1, ..., x»n

PEVD Polynomial Eigenvalue Decomposition: an extension of
EVD methods to polynomial matrices

Polynomial An extension of a matrix in which each element is rep-

matrix resented as a polynomial function, rather than a scalar
value

PWAS Persistent Wide-Area Surveillance

RF Radio Frequency

SA Situation Awareness

SAPIENT  Sensing for Asset Protection using Integrated Electronic
Networked Technology: a concept for networked au-
tonomous sensor modules that communicate low band-
width detection and classification messages rather than
raw data, being developed by Dstl under CSA fund-
ing and addressing scenarios including base protection,
anti-vehicle area denial and counter-UAV

SAR Synthetic Aperture Radar

SAS Synthetic Aperture Sonar

SBR2 Second-order Sequential Best Rotation: a PEVD algo-
rithm

SDR Software Defined Radio

SINR, Signal to Interference and (or plus) Noise Ratio

SMD Sequential Matrix Diagonalisation: an iterative PEVD
algorithm developed under UDRC phase 2

SNR Signal to Noise Ratio

SSA Space Situation Awareness

SVM Support Vector Machine: a machine learning approach
to classification problems

SWAP Size, Weight and Power

TBD Track-before-detect: these algorithms dispense with a

detection process and instead operate directly on sensor
output. Targets at low SNR which may have escaped
beneath a detection threshold can be found. TBD meth-
ods are generally more computationally expensive than
methods with a detection step.

TRL Technology Readiness Level: a measure of the matu-
rity of a technique, method or product where high in-
dicates something repeatedly field-proven or commer-
cially available, and low suggests something untested or
unfielded, perhaps only accessible as a benchtop demon-
stration or paper study
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TTCP

UAS
UAV
WAMI

WiMAX

WitIA

Zero-day
attack
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The Technical Collaboration Program: a joint Aus-
tralian, Canadian, New Zealand, USA and UK collabo-
ration to advance defence-related research and develop-
ment, and promote mutual reliance between the nations
Unmanned Air System

Unmanned Aerial Vehicle

Wide Area Motion Imagery: video, often rendered at
low frame rates, but covering very large areas with very
high pixel counts enabling behaviours to be observed
across complex scenes. Contrast this with FMV.
Worldwide Interoperability for Microwave Access: a
family of wireless communication standards

Warfare in the Information Age: the title of a letter writ-
ten by General Sir Richard Barrons, Commander Joint
Forces Command (JFC) in 2014 outlining his thinking
on how the so-called information age is changing warfare
A type of cyber attack characterised by its appearance
in the wild prior to the vulnerability on which it is based
becoming generally known
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Signal Processing
in a Networked
Battlespace

Signal processing, the extraction
and interpretation of data from
Sensors, is a critical enabler for

decision-making in a variety

of domains, such as defence,
health, finance, safety and the
automotive industry. In recognition
of its strategic importance, the

UK Ministry of Defence and the
Engineering and Physical Sciences
Research Council jointly funded

a 5-year, £8M academic project
starting in 2013. Five years on, this
book reports the achievements of
that highly successful endeavour.
It tracks the impact of a concerted
effort to advance the state-of-
the-art in fundamental signal
processing theory and shows

how early consideration of direct
links to industry resulted in strong
exploitation of the research into
industrially-relevant concepts.
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