7,450 research outputs found

    The Palomar Testbed Interferometer

    Get PDF
    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 um and active delay lines with a range of +/- 38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi

    Better 3D Inspection with Structured Illumination Part I: Signal Formation and Precision

    Full text link
    For quality control in the factory, 3D-metrology faces increasing demands for high precision and for more space-bandwidth-speed-product SBSP (number of 3D-points/sec). As a potential solution, we will discuss Structured-Illumination Microscopy (SIM). We distinguish optically smooth and rough surfaces and develop a theoretical model of the signal formation for both surface species. This model is exploited to investigate the physical limits of the precision and to give rules to optimize the sensor parameters for best precision or high speed. This knowledge can profitably be combined with fast scanning strategies, to maximize the SBSP, which will be discussed in paper part II.Comment: 7 pages, 5 figures, submitted to Applied Optics on April 17, 201

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    Rocket studies of solar corona and transition region

    Get PDF
    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined

    Advanced optical microscopies for materials: new trends

    Get PDF
    Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32166This article summarizes the new trends of Optical Microscopy applied to Materials, with examples of applications that illustrate the capabilities of the technique

    The Wide Field Imaging Interferometry Testbed

    Full text link
    We are developing a Wide-Field Imaging Interferometry Testbed (WIIT) in support of design studies for NASA's future space interferometry missions, in particular the SPIRIT and SPECS far-infrared/submillimeter interferometers. WIIT operates at optical wavelengths and uses Michelson beam combination to achieve both wide-field imaging and high-resolution spectroscopy. It will be used chiefly to test the feasibility of using a large-format detector array at the image plane of the sky to obtain wide-field interferometry images through mosaicing techniques. In this setup each detector pixel records interferograms corresponding to averaging a particular pointing range on the sky as the optical path length is scanned and as the baseline separation and orientation is varied. The final image is constructed through spatial and spectral Fourier transforms of the recorded interferograms for each pixel, followed by a mosaic/joint-deconvolution procedure of all the pixels. In this manner the image within the pointing range of each detector pixel is further resolved to an angular resolution corresponding to the maximum baseline separation for fringe measurements. We present the motivation for building the testbed, show the optical, mechanical, control, and data system design, and describe the image processing requirements and algorithms. WIIT is presently under construction at NASA's Goddard Space Flight Center.Comment: 7 pages, 3 figures, IEEE Aerospace Conference 200
    • …
    corecore