189 research outputs found

    WideSee: towards wide-area contactless wireless sensing

    Get PDF
    Contactless wireless sensing without attaching a device to the target has achieved promising progress in recent years. However, one severe limitation is the small sensing range. This paper presents WideSee to realize wide-area sensing with only one transceiver pair. WideSee utilizes the LoRa signal to achieve a larger range of sensing and further incorporates drone's mobility to broaden the sensing area. WideSee presents solutions across software and hardware to overcome two aspects of challenges for wide-range contactless sensing: (i) the interference brought by the device mobility and LoRa's high sensitivity; and (ii) the ambiguous target information such as location when employing just a single pair of transceivers. We have developed a working prototype of WideSee for human target detection and localization that are especially useful in emergency scenarios such as rescue search, and evaluated WideSee with both controlled experiments and the field study in a high-rise building. Extensive experiments demonstrate the great potential of WideSee for wide-area contactless sensing with a single LoRa transceiver pair hosted on a drone

    Distance Estimation Between Transceivers Over Short Distances

    Get PDF
    Three methods for determining distances between a user and a fixed coordinate system are considered. One system is based on 802.11g packet communications, another on HF radio carrier frequency interference, and the final system on a signal transmitted over a radio channel. Emphasis is placed on the use of these systems in indoor, building-sized environments. Tests are performed to examine the effectivness and potential of these methods. None of the suggested methods are determined to be usable. Reasons for their failure are examined

    UWB Pulse Radar for Human Imaging and Doppler Detection Applications

    Get PDF
    We were motivated to develop new technologies capable of identifying human life through walls. Our goal is to pinpoint multiple people at a time, which could pay dividends during military operations, disaster rescue efforts, or assisted-living. Such system requires the combination of two features in one platform: seeing-through wall localization and vital signs Doppler detection. Ultra-wideband (UWB) radar technology has been used due to its distinct advantages, such as ultra-low power, fine imaging resolution, good penetrating through wall characteristics, and high performance in noisy environment. Not only being widely used in imaging systems and ground penetrating detection, UWB radar also targets Doppler sensing, precise positioning and tracking, communications and measurement, and etc. A robust UWB pulse radar prototype has been developed and is presented here. The UWB pulse radar prototype integrates seeing-through imaging and Doppler detection features in one platform. Many challenges existing in implementing such a radar have been addressed extensively in this dissertation. Two Vivaldi antenna arrays have been designed and fabricated to cover 1.5-4.5 GHz and 1.5-10 GHz, respectively. A carrier-based pulse radar transceiver has been implemented to achieve a high dynamic range of 65dB. A 100 GSPS data acquisition module is prototyped using the off-the-shelf field-programmable gate array (FPGA) and analog-to-digital converter (ADC) based on a low cost solution: equivalent time sampling scheme. Ptolemy and transient simulation tools are used to accurately emulate the linear and nonlinear components in the comprehensive simulation platform, incorporated with electromagnetic theory to account for through wall effect and radar scattering. Imaging and Doppler detection examples have been given to demonstrate that such a “Biometrics-at-a-glance” would have a great impact on the security, rescuing, and biomedical applications in the future

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Constrained Localization: A Survey

    Get PDF
    International audienceIndoor localization techniques have been extensively studied in the last decade. The wellestablished technologies enable the development of Real-Time Location Systems (RTLS). A good body of publications emerged, with several survey papers that provide a deep analysis of the research advances. Existing survey papers focus on either a specific technique and technology or on a general overview of indoor localization research. However, there is a need for a use case-driven survey on both recent academic research and commercial trends, as well as a hands-on evaluation of commercial solutions. This work aims at helping researchers select the appropriate technology and technique suitable for developing low-cost, low-power localization system, capable of providing centimeter level accuracy. The article is both a survey on recent academic research and a hands-on evaluation of commercial solutions. We introduce a specific use case as a guiding application throughout this article: localizing low-cost low-power miniature wireless swarm robots. We define a taxonomy and classify academic research according to five criteria: Line of Sight (LoS) requirement, accuracy, update rate, battery life, cost. We discuss localization fundamentals, the different technologies and techniques, as well as recent commercial developments and trends. Besides the traditional taxonomy and survey, this article also presents a hands-on evaluation of popular commercial localization solutions based on Bluetooth Angle of Arrival (AoA) and Ultra-Wideband (UWB). We conclude this article by discussing the five most important open research challenges: lightweight filtering algorithms, zero infrastructure dependency, low-power operation, security, and standardization

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance
    • …
    corecore