1,902 research outputs found

    Energy-Efficient Start-up Power Management for Batteryless Biomedical Implant Devices

    Get PDF
    This paper presents a solar energy harvesting power management using the high-efficiency switched capacitor DC-DC converter for biomedical implant applications. By employing an on-chip start-up circuit with parallel connected Photovoltaic (PV) cells, a small efficiency improvement can be obtained when compared with the traditional stacked photodiode methodology to boost the harvested voltage while preserving a single-chip solution. The PV cells have been optimised in the PC1D software and the optimal parameters modelled in the Cadence environment. A cross-coupled circuit with level shifter loop is also proposed to improve the overall step up voltage output and hybrid converter increases the start-up speed by 23.5%. The proposed system is implemented in a standard 0.18-ÎĽm CMOS technology. Simulation results show that the 4-phase start-up and cross coupled with level-shifter can achieve a maximum efficiency of 60%

    Energy-Efficient Start-up Power Management for Batteryless Biomedical Implant Devices

    Get PDF
    This paper presents a solar energy harvesting power management using the high-efficiency switched capacitor DC-DC converter for biomedical implant applications. By employing an on-chip start-up circuit with parallel connected Photovoltaic (PV) cells, a small efficiency improvement can be obtained when compared with the traditional stacked photodiode methodology to boost the harvested voltage while preserving a single-chip solution. The PV cells have been optimised in the PC1D software and the optimal parameters modelled in the Cadence environment. A cross-coupled circuit with level shifter loop is also proposed to improve the overall step up voltage output and hybrid converter increases the start-up speed by 23.5%. The proposed system is implemented in a standard 0.18-ÎĽm CMOS technology. Simulation results show that the 4-phase start-up and cross coupled with level-shifter can achieve a maximum efficiency of 60%

    Digitally-Assisted RF IC Design Techniques for Reliable Performance

    Get PDF
    Semiconductor industries have competitively scaled down CMOS devices to attain benefits of low cost, high performance, and high integration density in digital integrated circuits. On the other hand, deep scaled technologies inextricably accompany a large process variation, supply voltage scaling, and reduction in breakdown voltages of transistors. When it comes to RF/analog IC design, CMOS scaling adversely affects its reliability due to large performance variation and limited linearity. For addressing the issues related to variations and linearity, this research proposes the following digitally-assisted RF circuit design techniques: self-calibration system for RF phase shifters and wide dynamic range LNAs. Due to PVT variations in scaled technologies, RF phase shifter design becomes more challenging with device scaling. In the proposed self-calibration topology, we devised a novel phase sensing method and a pulsewidth-to-digital converter. The feedback controller is also designed in digital domain, which is robust to PVT variations. These unique techniques enable a sensing/control loop tolerant to PVT variations. The self-calibration loop was applied to a 7 to 13GHz phase shifter. With the calibration, the estimated phase error is less than 2 degrees. To overcome the linearity issue in scaled technologies, a digitally-controlled dual-mode LNA design is presented. A narrowband (5.1GHz) and a wideband (0.8 to 6GHz) LNA can be toggled between high-gain and high-linearity modes by digital control bits according to the input signal power. A compact design, which provides negligible performance degradation by additional circuitry, is achieved by sharing most of the components between the two operation modes. The narrowband and the wideband LNA achieves an input-referred P1dB of -1.8dBm and +4.2dBm, respectively

    A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS

    Get PDF
    This paper reports a 6-to-18 GHz integrated phased- array receiver implemented in 130-nm CMOS. The receiver is easily scalable to build a very large-scale phased-array system. It concurrently forms four independent beams at two different frequencies from 6 to 18 GHz. The nominal conversion gain of the receiver ranges from 16 to 24 dB over the entire band while the worst-case cross-band and cross-polarization rejections are achieved 48 dB and 63 dB, respectively. Phase shifting is performed in the LO path by a digital phase rotator with the worst-case RMS phase error and amplitude variation of 0.5° and 0.4 dB, respectively, over the entire band. A four-element phased-array receiver system is implemented based on four receiver chips. The measured array patterns agree well with the theoretical ones with a peak-to-null ratio of over 21.5 dB

    The impact of transistor aging on the reliability of level shifters in nano-scale CMOS technology

    Get PDF
    On-chip level shifters are the interface between parts of an Integrated Circuit (IC) that operate in different voltage levels. For this reason, they are indispensable blocks in Multi-Vdd System-on-Chips (SoCs). In this paper, we present a comprehensive analysis of the effects of Bias Temperature Instability (BTI) aging on the delay and the power consumption of level shifters. We evaluate the standard High-to-Low/Low-to-High level shifters, as well as several recently proposed level-shifter designs, implemented using a 32 nm CMOS technology. Through SPICE simulations, we demonstrate that the delay degradation due to BTI aging varies for each level shifter design: it is 83.3% on average and it exceeds 200% after 5 years of operation for the standard Low-to-High and the NDLSs level shifters, which is 10 Ă— higher than the BTI-induced delay degradation of standard CMOS logic cells. Similarly, we show that the examined designs can suffer from an average 38.2% additional power consumption after 5 years of operation that, however, reaches 180% for the standard level-shifter and exceeds 163% for the NDLSs design. The high susceptibility of these designs to BTI is attributed to their differential signaling structure, combined with the very low supply voltage. Moreover, we show that recently proposed level-up shifter design employing a voltage step-down technique are

    Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits

    Get PDF
    We demonstrate a time-multiplexed row-column addressing scheme to drive thermo-optic phase shifters in a silicon photonic circuit. By integrating a diode in series with the heater, we can connect NĂ—MN \times M heaters in an matrix topology to NN row and MM column lines. The heaters are digitally driven with pulse-width modulation, and time-multiplexed over different channels. This makes it possible to drive the circuit without digital-to-analog converters, and using only M+NM+N wires. We demonstrate this concept with a 1Ă—161 \times 16 power splitter tree with 15 thermo-optic phase shifters that are controlled in a 3Ă—53 \times 5 matrix, connected through 8 bond pads. This technique is especially useful in silicon photonic circuits with many tuners but limited space for electrical connections

    A Charge Pump Architecture with High Power-Efficiency and Low Output Ripple Noise in 0.5 ÎĽm CMOS Process Technology

    Get PDF
    The demand of portable consumer electronic devices is skyrocketing day-by-day. Such modern integrated microsystems have several functional blocks which require different voltages to operate adequately. DC-DC converter circuits are used to generate different voltage domains for different functional blocks on large integrated microsystems from a single voltage battery-operated power supply. Charge pump is an inductorless DC-DC converter which generates higher positive voltage or lower voltage or negative voltage from the applied reference voltage. A charge pump circuit uses switches for charge transfer action and capacitors for charge storage. The thesis presents a high power-efficiency charge pump architecture with low output ripple noise in the AMI N-well 0.5 µm CMOS process technology. The switching action of the proposed charge pump architecture is controlled by a dual phase non-overlapping clock system. In order to achieve high power-efficiency, the power losses due to the leakage currents, the finite switch resistance and the imperfect charge transfer between the capacitors are taken into consideration and are minimized by proper switching of the charge transfer switches and by using different auxiliary circuits. To achieve low output ripple noise, the continuous current pumping method is proposed and implemented in the charge pump architecture. The proposed charge pump can operate over the wide input voltage range varying from 3 V to 7 V with the power conversion efficiency of 90%. The loading current drive capability of the proposed charge pump is ranging from 0 to 45 mA. The worst case output ripple voltage is less than 25 mV. To prove the concept, the design of the proposed charge pump is simulated rigorously over different process, temperature and voltage corners

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz

    Design and Simulation of an 8-Bit Successive Approximation Register Charge-Redistribution Analog-To-Digital Converter

    Get PDF
    The thesis initially investigates the history of the monolithic ADCs. The next chapter explores the different types of ADCs available in the market today. Next, the operation of a 4-bit SAR ADC has been studied. Based on this analysis, an 8-bit charge-redistribution SAR ADC has been designed and simulated with Multisim (National Instruments, Austin, TX). The design is divided into different blocks which are individually implemented and tested. Level-1 SPICE MOSFET models representative of 5ÎĽm devices were used wherever individual MOSFETs were used in the design. Finally, the power dissipation during the conversion period was also estimated. The supply voltage for the ADC is 5V and the clock frequency is 500KHz
    • …
    corecore