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ABSTRACT

Lee, Jang Joon Ph.D., Purdue University, December 2013. Digitally-Assisted RF IC
Design Techniques for Reliable Performance. Major Professor: Byunghoo Jung.

Semiconductor industries have competitively scaled down CMOS devices to attain

benefits of low cost, high performance, and high integration density in digital inte-

grated circuits. On the other hand, deep scaled technologies inextricably accompany

a large process variation, supply voltage scaling, and reduction in breakdown volt-

ages of transistors. When it comes to RF/analog IC design, CMOS scaling adversely

affects its reliability due to large performance variation and limited linearity. For

addressing the issues related to variations and linearity, this research proposes the

following digitally-assisted RF circuit design techniques: self-calibration system for

RF phase shifters and wide dynamic range LNAs.

Due to PVT variations in scaled technologies, RF phase shifter design becomes

more challenging with device scaling. In the proposed self-calibration topology, we

devised a novel phase sensing method and a pulsewidth-to-digital converter. The feed-

back controller is also designed in digital domain, which is robust to PVT variations.

These unique techniques enable a sensing/control loop tolerant to PVT variations.

The self-calibration loop was applied to a 7 to 13GHz phase shifter. With the cali-

bration, the estimated phase error is less than 2 degrees.

To overcome the linearity issue in scaled technologies, a digitally-controlled dual-

mode LNA design is presented. A narrowband (5.1GHz) and a wideband (0.8 to

6GHz) LNA can be toggled between high-gain and high-linearity modes by digital

control bits according to the input signal power. A compact design, which provides

negligible performance degradation by additional circuitry, is achieved by sharing

most of the components between the two operation modes. The narrowband and the



xv

wideband LNA achieves an input-referred P1dB of -1.8dBm and +4.2dBm, respec-

tively.
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1. INTRODUCTION

1.1 Motivation

1.1.1 The advent of digitally-assisted RF circuits

Semiconductor industries have competitively scaled down CMOS devices to at-

tain benefits of low cost, high performance, and high integration density in digital

integrated circuits. Fig. 1.1 shows how rapidly the advancement of CMOS scaling

has been progressed in the past two decades [1–3]. Commercial wireless SoCs in the

28nm technology node are prevailing in market, and it is also reported that 14nm

chipsets have been demonstrated. With CMOS scaling, RF and analog circuits have

also exploited the advantage of high speed and low noise properties provided by device

scaling. Unfortunately, deep scaled technologies accompany negative effects on RF

and analog circuit design, which turn down the merits of technology advancement.
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More prominent random-dopant fluctuations, line edge/width roughness, and gate di-

electric variations result in large process variations [4, 5]. Supply voltage scaling and

reduction in breakdown voltages of transistors limit linearity performance [6, 7]. In

addition, RF and analog circuit design suffers from low output impedance, mismatch,

gate leakage, and low voltage headroom [8, 9]. Such problems are more influential in

nanoscale CMOS technologies below the 90nm node.

Despite the issues of RF and analog circuit design in deep scaled technologies, RF

and analog circuits have to be integrated with digital baseband and processors in the

same process to maximize the benefits afforded by device scaling. In order to overcome

the issues, digital circuits are employed to maintain or improve the performance of

RF and analog circuits, so called digitally-assisted RF/analog circuit design. Digital

circuits are initially adopted for analog circuits [10–13] and gradually expanded for

RF circuits [14–17]. Digital circuits are mainly utilized for calibration to guarantee

reliable performance or for mode control to enhance dynamic range of RF and analog

circuits. For addressing the issues related to variations and linearity, this research

proposes the following digitally-assisted RF circuit design techniques: self-calibration

system for RF phase shifters and wide dynamic range LNAs.

1.1.2 Self-calibration system for RF phase shifters

Phase shifter is an essential building block in a phased-array system because phase

shifters enable directional beam-forming and electronic beam-steering in a phased

array. In a phased-array system, phase shifting can be performed in RF, LO, or IF

(BB) domain. Among them, RF domain phase shifting has the following advantages

[18–21]. Since transmitted RF signal in a phased-array has a high pattern directivity,

it can reject interferers and hence, it can provide superior linearity. As a result,

phase shifting in RF domain would relax linearity requirements of the receiver. In

addition, while phase shifting in LO or IF (BB) requires multiple frequency conversion

components (i.e. mixers and LO distribution) or multiple IF (BB) stages, respectively,
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phase shifting in RF can share those stages. Therefore, it could eventually achieve

lower power and lesser complexity. However, RF phase shifter design becomes more

challenging along with scaled technologies. As devices are scaled down, phase shifters

are more sensitive to PVT variations. Consequently, small performance deviation

at high frequencies would introduce significant phase error. Such PVT variations

are drawbacks of phase shifting in RF domain. Phase and amplitude errors in a

phase shifter cause sidelobe growth and directivity reduction as illustrated in Fig. 1.2

and hence, Tx/Rx signal power and SNR would be reduced. As a result, multiple Rx

paths require higher gain, lower noise, lower distortion, and PAs in Tx demand higher

output power and higher linearity. Amplitude error would be easily compensated by a

VGA, but phase calibration is much difficult at high frequencies. For ∼10GHz phase

shifters, a phase needs to be sensed in sub-pico-second level.
 

 

Fig. 1.2. Sidelobe growth and directivity reduction in a phased array.

There have been calibration schemes for a phased-array system [22–27]. A con-

ventional post-calibration method are presented in [22]. The receiver front-end array

calibrates each path by measuring the output of test input signals. For measuring and

analyzing the output signals, external equipments are used. Another post-calibration

example are shown in [23,24], which relies on external test equipments for phase sens-

ing and control. An on-line calibration for RF phase shifters are introduced in [25];

however, it requires a reference signal with well-defined phase and amplitude. In ad-
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dition, the variations of the analog circuits in the feedback loop have not been taken

into account. A self-calibration method is presented in [26], but it also needs external

test equipments for sensing and complex DSP for control. Moreover, this method can

be applicable only to an LO phase shifting system. Such previous calibration methods

employ external test equipments or external signal source for calibration, and PVT

variations of the calibration circuits have not been properly addressed. Furthermore,

due to the difficulty in sensing a phase difference at high frequencies, on-line self-

calibration for RF phase shifters has not been reported. So far, there has been no

on-line self-calibration system for RF phase shifters in its true sense.
 

 

Fig. 1.3. Conceptual diagram of the proposed system.

In this work, we propose on-line self-calibration scheme for RF phase shifters

using a novel phase amplification and a new pulsewidth-to-digital converter. The

proposed self-calibration system enables 1) PVT-tolerant sensing and control loop 2)

on-chip calibration 3) lesser complexity and 4) wide bandwidth (7 to 13GHz) with

the calibration. Therefore, we can achieve a guaranteed performance of a RF phase

shifter despite process variability of scaled technologies. Fig. 1.3 shows a conceptual

diagram of a phased array with the proposed self-calibration. The self-calibration

procedure is as following:

1) A phase difference between a phase shifter and a reference is amplified and
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Fig. 1.4. Application of the prototype IC in a phased array. (a) In a
receiver and (b) In a transmitter.
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sensed and then, the amplified phase difference is represented by a pulsewidth of the

output signal.

2) The pulsewidth is converted to an 8-bit digital code, which is proportional to

the pulsewidth (i.e. phase difference) in low-frequency digital domain. Early adoption

of digital processing enables the feedback loop robust to PVT variations.

3) This 8-bit digital code is compared with a preset 8-bit digital code (i.e. desired

phase shift) and, based on this comparison, the phase shifter is calibrated.

Fig. 1.4(a) and (b) show the scope and application of the prototype IC in a

receiver and a transmitter in a phased-array system, respectively. In the prototype

IC, two phase shifters and the self-calibration system were implemented. One phase

shifter is for phase shift and the other one is for phase reference.

1.1.3 Wide dynamic range LNA design

Gain, bandwidth, NF, power, area, impedance matching, supply voltage, and

linearity are design parameters considered in LNA design. Unfortunately the op-

timization of individual design parameters does not go hand in hand, mandating

tradeoffs among them. One of the most difficult challenges for LNA design in modern

CMOS technologies is achieving high linearity. Device scaling in CMOS technologies

has provided a significant improvement in the transit frequency (fT ) of transistors,

enabling LNA design with improved performances except the linearity [28]. The scal-

ing in supply and breakdown voltages also adversely affects the linearity of CMOS

LNAs [6, 29]. To mitigate the linearity issue, two design approaches have been ap-

plied for LNA design in general. The one emphasizes the tradeoff among the design

parameters, and tries to improve the linearity at the minimal cost of other design

parameters [30–35]. The effectiveness of this approach is limited to relatively small

input power levels, and the front-end with this kind of LNAs can be saturated with

large input signals.
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Fig. 1.5. Conceptual diagrams of high-gain (HG) and high-linearity
(HL) operations. (a) Receiver block diagram for the proposed LNAs
and (b) Input power versus output power characteristic.

The other debinds the LNA design metrics to address the linearity issue [36–47]. In

this approach, when the input signal is weak, the receiver performance mainly relies

on the noise and gain performances and the effect of linearity is minimal. When

the input signal is strong, it is the other way around. Based on the design metric

debinding approach, the proposed LNA operation is divided into two modes: high-

gain and high-linearity modes as shown in Fig. 1.5. The high-gain mode focuses on

noise and gain performances, but minimally considers linearity. The high-linearity

mode focuses on input intercept points (IIP3) and P1dB, but pays less attention to

noise and gain performances. The two operation modes are controlled in a digital
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manner. With the design metric debinding approach, we tried to overcome the issues

of this type of LNAs, which will be discussed below.

Such dual-mode design can be easily implemented by using two LNAs support-

ing high-gain and high-linearity modes respectively, in parallel, and by enabling one

of the two according to the input power level. However, in addition to the obvious

area penalty, this bulky design consisting of two independent LNAs suffers from in-

creased parasitic, degrading its performance at high frequencies. For this reason, a

reconfigurable design that shares most of the components among the multiple oper-

ation modes is preferred. However, sharing components poses challenges because of

the strong correlation between the design parameters. The design examples in [42]

and [43] provide multiple gains focusing on low-frequency (<1 GHz) applications. The

designs presented in [40] and [47] provide multiple gain modes for narrowband (5.75

GHz) and wideband (0.1 to 6 GHz) applications, respectively, but need relatively high

power dissipation. Additionally, good input impedance matching for large input sig-

nals is lacking in the existing multi-/dual-mode LNA designs. Good input impedance

matching for large input signals is important since the reflected signal could be strong

enough to cause interference in nearby devices and be reflected again back to itself

degrading signal quality [48]. Another important design consideration that has not

been fully explored in the existing designs is the forgiveness for errors in the mode-

transition point estimation. Since the transition among different gain modes relies on

the measured signal power in many cases, there must be enough overlap in terms of

the receiver performance between the adjacent gain modes to compensate for errors

in power sensing.

In this work, we present a dual-mode (positive-gain and attenuation modes) de-

sign approach that provides a low-power and wide dynamic range operation while

effectively addressing the input impedance matching issue for large and small signals

alike and the forgiveness for power sensing errors. The design approach is applied to

a narrowband LNA working at 5.1 GHz and a wideband LNA working from 0.8 to 6

GHz. The narrowband LNA is based on the inductively source degenerated topology
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and the wideband one is based on the resistive feedback topology presented in [49].

The reconfigurable design, sharing most of the components between the two operation

modes, also achieves negligible performance degradation at high frequencies.

1.2 Outline of Dissertation

This dissertation is organized in the following manner. Chapter 1 provides the

motivation and brief overview of the research presented in this dissertation. Chapter

2 focuses on the design of the self-calibration system for RF phase shifters. Chapter

2 starts with the design of a main phase shifter, which is calibrated by the pro-

posed system, in Chapter 2.1. The proposed phase sensing method including a novel

phase amplification technique is presented in detail in Chapter 2.2. Then, in Chapter

2.3, the design and performance of the proposed PVT-tolerant pulsewidth-to-digital

converter is described. Chapter 2.4 introduces a decision algorithm and circuit im-

plementation, which is essential to properly sense a right phase shift. In Chapter

2.5, the overall system architecture and performance including a digital controller is

discussed. Chapter 3 presents the design of the proposed wide dynamic range LNAs.

Chapter 3.1 introduces previous multi-/dual-mode LNA designs. The 5.1GHz nar-

rowband LNA and the 0.8 to 6GHz wideband LNA designs are discussed in detail in

Chapter 3.2 and 3.3, respectively. The experimental results of the narrowband and

the wideband LNAs are shown in Chapter 3.4. Finally, Chapter 4 summarizes and

concludes the dissertation.
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2. SELF-CALIBRATION SYSTEM FOR RF PHASE

SHIFTERS

2.1 Main Phase Shifter Design

Before discussion of the proposed self-calibration loop, the main RF phase shifter

design in the proposed system is presented. There have been several phase shifting

methods in RF domain: switched-delay line [50], loaded-line [51], reflection-type [52,

53], high-pass/low-pass [54–56], by-pass/low-pass [19,57,58], and I/Q-vector-sum [23,

26, 59–61]. Among those techniques, as shown in Fig. 2.1, I/Q-vector-sum phase

shifter generates a desired phase shift by using weighted sum of I and Q signals. The

phase shift (θ) and amplitude (R) of the phase shifter can be expressed by,

θ = tan−1

(

Q0

I0

)

(2.1)

R =

√

I0
2 +Q0

2 (2.2)
 

 

I

Q

I
0

Q
0

θ

R

Fig. 2.1. Sum of weighted I and Q signals to generate a phase shift.

I/Q-vector-sum type is also an active design approach and it is widely used with

the merits of small area, decent gain, and fine digital control [59]. Fig. 2.2(b) shows

the schematic of the I/Q-vector-sum phase shifter, which is adopted in the proposed
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system. The strength of I and Q signals are controlled by current DACs, which are

named as DI and DQ in Fig. 2.2(b). In addition, the quadrant of a phase shift, from

0◦ to 360◦, is determined by the switches of SW1 to SW4. They control the positive

or the negative path of I and Q signals.
 

 

 

 

(a)
 

 

 

 

I+ I+

I-

Q+ Q+

Q-

SW1 SW2

DI

SW3 SW4

DQ

outp outm

(b)

Fig. 2.2. Main phase shifter. (a) Quadrature all-pass filter and (b)
IQ-vector-sum RF phase shifter.

However, this type of phase shifter requires I and Q signals. To obtain I/Q

signals from an input differential signal, a quadrature-all-pass filter (QAF) is often

used [59–61]. The schematic of a QAF is shown in Fig. 2.2(a). A QAF is reported

to provide wideband property; however, since it consists of L and C, it is inherently

frequency-dependent. In addition, a QAF shows relatively large phase and amplitude
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variation between I and Q signals, because a QAF is affected by capacitive loading

and also suffers from process variation of the passive components of R, L, and C.

According to [59], with L (±5%), C (±5%), R (±10%) variations and ±3σ statistical

variation, phase error of ±15◦ and amplitude mismatch of 1.2 ± 0.3dB are reported

in 8 to 18GHz. Here, it should be noted that performance metrics of a phase shifter

are RMS phase error (θ∆,RMS) and RMS amplitude (gain) error (A∆,RMS), and those

are defined as [59],

θ∆,RMS (deg) =

√

√

√

√

1

N − 1
×

N
∑

i=2

|θ∆i|
2 (2.3)

where N is number of phase shifts and θ∆i is the i-th phase error from the ideal i-th

phase shift.

A∆,RMS (dB) =

√

√

√

√

1

N
×

N
∑

i=1

|A∆i|
2 (2.4)

where A∆i = Ai − Aave. The Ai is the i-th insertion gain and Aave is the average

insertion gain. The maximum phase error and amplitude error are also often used.

The maximum phase error and amplitude error are defined as the maximum values

of θ∆i and A∆i, respectively. The 4-bit I/Q-vector-sum phase shifter in [59] shows the

RMS phase error of 3◦ to 7◦ from 7 to 13GHz in single chip measurement under one

ambient condition.

 

I+
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In-

R1

R1

L

L

C

C

R2

R2

Fig. 2.3. Modified QAF schematic.

In the proposed self-calibrated phased-array, we adopted the conventional QAF

and 4-bit IQ-vector-sum phase shifter as main phase shifters. Since the QAF in Fig.
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Table 2.1
Component values of the modified QAF

R1 L C R2

Value 12.5 Ω 0.78 nH 240 fF 106 Ω
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Fig. 2.4. Simulation results of the modified QAF. (a) I and Q ampli-
tude, (b) I and Q phase, and (c) S11.

2.2(a) provides input impedance matching to differential 50Ω [59], we modified the

QAF as in Fig. 2.3 to match differential 100Ω for test purpose. In addition, our

target frequency is 7 to 13GHz and the corresponding component values of the QAF
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Fig. 2.5. Binary 8-bit current-steering DAC. (a) Schematic and (b)
Layout (140µm× 85µm).

are listed in Table 2.1. Fig. 2.4 shows the performance of the modified QAF. From 7

to 13GHz, the I/Q phase error and the amplitude error of the QAF are 4◦ and 1.9dB,

respectively. Hence, these errors should be properly compensated in the phase shifter

design by adjusting the strength of I and Q signals. However, this compensation is

typically performed for one process corner and one ambient condition. Considering

process and temperature variations, the errors would be even worse and the phase

shifter performance would not be guaranteed. As shown in Fig. 2.4(c), the S11 of

the QAF is below -11.4dB over the target frequency.
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Table 2.2
Phase shift vs. digital code of DI and DQ current DACs (0: GND, 1: VDD)

Phase shift (◦) SW1 SW2 SW3 SW4 DI DQ

0 1 0 0 0 11110000 00000000

22.5 1 0 1 0 11100000 00110000

45 1 0 1 0 10010000 01100000

67.5 1 0 1 0 01000000 10010000

90 0 0 1 0 00000000 10010000

112.5 0 1 1 0 01000000 10010000

135 0 1 1 0 10010000 01100000

157.5 0 1 1 0 11100000 00110000

180 0 1 0 0 11110000 00000000

202.5 0 1 0 1 11100000 00110000

225 0 1 0 1 10010000 01100000

247.5 0 1 0 1 01000000 10010000

270 0 0 0 1 00000000 10010000

292.5 1 0 0 1 01000000 10010000

315 1 0 0 1 10010000 01100000

337.5 1 0 0 1 11100000 00110000
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Fig. 2.6. Bias generator schematic (Iref=7.5µA) for the main phase shifter.

In order to control the strength of I and Q signals, binary 8-bit current-steering

DAC is designed and used. The unit resolution current is 7.5µA and it is generated

by bias generator shown in Fig. 2.6. The external resistor for the bias generator is

61.5kΩ to supply 7.5µA. The self-calibration block will use a separate bias generator.

The 8-bit current DAC layout is shown in Fig. 2.6(b). In the layout, common-centroid

technique and dummy cells are used for device and current matching.

Table 2.2 shows the setting of SW1∼SW4 and DI & DQ for each phase shift. Since

we use 4-bit phase shifters, the phase resolution is 22.5◦. The 8-bit digital codes for

DI and DQ are compensated values according to the QAF performance as seen in

Fig. 2.4 for TT process corner and 27◦C. Fig. 2.7 shows the simulated performance

of the 4-bit phase shifter. The phase shift and gain are depicted in Fig. 2.7(a) and

(b), respectively. As shown in Fig. 2.7(c) and (d), the maximum phase error is 6◦

and the maximum gain error is 1dB from 7 to 13GHz. In addition, Fig. 2.8 is Monte

Carlo simulation results with the phase shift setting for 292.5◦ and it shows the largest

phase error of -7◦ to 10◦.
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Fig. 2.7. Performance of the main phase shifter. (a) Phase shift, (b)
Gain, (c) Phase error, and (d) Gain error.
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2.2 Proposed Phase Sensing Method

2.2.1 Novel phase amplification technique

The fundamental issue of the self-calibration scheme for RF phase shifters is how

to sense phase difference at high frequencies. Our target frequency is 7 to 13GHz,

and the difficulty lies in that a phase has to be gauged in sub-pico-second range of

time. For example, the phase of 1◦ at 10GHz is equivalent to 0.277ps in time and it

is difficult to accurately sense such a small time as it is. In this work, we propose a

simple and accurate method for time-difference amplification and sensing. As shown

in Fig. 2.9, when two frequency different signals are applied to an adder and the

adder output is gone through an envelope detector, the phase (φ) at the envelope

detector output is amplified by ω1/∆ω where ∆ω = |ω1 − ω2|. In addition, the adder

can be easily implemented in current domain.
 

 

ED ( ){ } 1 2cos ,   tω φ ω ω ω≈ ∆ + ∆ = −

1 2 1 22cos cos
2 2 2 2

t t
ω ω ω ωφ φ −   +    + +      
      ( )2cos tω

( )1cos tω φ+

Fig. 2.9. Proposed phase amplification technique.

 

 

( )1 1cos

Phase-shifted

tω φ+

( )1 0cos

Reference

tω φ+

( )2cos tω

( ){ }1cos tω φ≈ ∆ +

( ){ }0cos tω φ≈ ∆ +

Fig. 2.10. Proposed phase amplification technique applied to a phase-
shifted path and a reference path in a phased array.
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Fig. 2.11. Example of proposed phase amplification method. (a) Sum-
mation of two 10GHz signals and 10.01GHz signal and (b) Transient
simulation.

Since a phased-array system has phase shifters and a reference phase, this proposed

phase amplification method can easily applied to sense a relative phase difference as

illustrated in Fig. 2.10. A signal of ω2, which is a close frequency to ω1, is summed

to phase-shifted signal and reference signal, respectively. Then, the two summed

signals go through the two envelope detectors. Now, we obtain two phase-amplified

signals and compare the phase difference as being amplified. Fig. 2.11 shows an

example of the phase amplification method. Two 10GHz signals which have phase
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of 45◦ and 0◦ are applied to two adders, respectively, and those signals are added

by 10.01GHz signal. After the summation, as seen in Fig. 2.11(b), the envelopes

are 10MHz signals, and the 45◦ (12.5ps) relative phase is amplified by 1000 times

(i.e. 12.5ns). It should be mentioned that this phase amplification method works

all for two sinusoids, one sinusoid and one square signal, and two square signals. In

the proposed system, we use two square signals because, if two applied signals of

the same frequency have different amplitude, we would have two different-amplitude

envelopes after phase amplification. Hence, we have to be careful to find the points to

be compared for the phase difference sensing in such a case. However, if we use rail-

to-rail square wave, we do not need to worry about the amplitude difference between

the two phase-amplified signals.

2.2.2 f/2 + ∆f signal generator

 

 

Q

I

Fig. 2.12. Continuous linear delay with respect to time.

We devised the phase amplification method. In order to use the method, we need

an additional signal which has a close frequency to the main signal. In addition, the

calibration loop should have minimal overhead to the main phased array. In reality,

it is not feasible to use two VCOs because there would be possible frequency pulling

between two VCOs and we would also have a problem of locking of two VCOs. So
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Fig. 2.13. Phase rotator schematic including the 8-bit thermometer-
code current DACs (D1 to D4).
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Fig. 2.14. Current source (D1 to D4) control signals for f+10MHz generation.

we have an issue of how to generate f +∆f signal. We look into a delay and as we

can see the following equation,

cos (ω0t+ αt) (2.5)
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if we make a continuous linear delay with respect to time, we can obtain a frequency

shift. Hence, in order to attain a 10MHz-distant frequency signal, we can use a phase

rotator producing a continuous linear delay as in Fig. 2.12. With I and Q signals, a

phase rotator as shown in Fig. 2.13 can be used to generate such a delay. D1∼D4

are 8-bit thermometer-code current DACs in the proposed system. For better device

and current matching, thermometer-code type is employed rather than binary one.

The current DACs are controlled by digital signals shown in Fig. 2.14 to produce a

10MHz-distant signal.
 

 

(a)

 

 

(b)

Fig. 2.15. 5.01GHz generation from 10GHz. (a) Output of the phase
rotator and (b) FFT of the phase rotator output.

For this phase rotator operation, we also need I and Q signals. Latch-based I/Q

divider in Fig. 2.22 [62] is used to generate I and Q signals from the original differential

signal. Since the original signal is divided by 2, we have actually f/2 + ∆f signal

instead of f + ∆f . Fig. 2.15 shows the phase rotator output, generating 5.01GHz

from 10GHz original signal. Initially, it takes approximately 80ns to properly produce

5.01GHz sginal. Spurs distant from the output signal by 40MHz will be rejected by

an ED and a LPF. Fig. 2.16 shows the delay of the 5.01GHz output signal compared
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Fig. 2.16. Continuous linear delay for the 5.01GHz generation.

with the divided 5GHz signal. As we can see, after the 80ns initialization, the delay

is continuously linear with respect to time and the delay changes 200ps in 100ns. The

delay of 200ps corresponds to 2π phase shift at 5GHz. Thus, the output signal is

expressed as

Output signal = cos

(

2π × 5GHz × t +
2π

100ns
× t

)

= cos (2π × 5GHz × t + 2π × 10MHz × t)

= cos (2π × 5.01GHz × t)

and the 10MHz-distant signal is obtained from the divided 5GHz signal.

2.2.3 Overall architecture for phase shift sensing

Fig. 2.17 is an overall diagram for phase difference sensing with phase amplifi-

cation including the main phase shifters. Due to poor performance of a frequency

doubler, we use divide-by-2 for main phase shifters, too. For this purpose, TSPC

divide-by-2 circuit [63] is employed and the TSPC schematic is shown in Fig. 2.23.

These I/Q divider and TSPC divider are designed to operate up to 16GHz under
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 Fig. 2.17. Block diagram for phase difference sensing with phase amplification.

all process corners and 65◦C in post-layout simulation. Now, we compare the phase

difference in f/2 range. The two phase-amplified signals go through envelope detec-

tors, low-pass filters, and self-reference comparators. The signals at the output of the

self-reference comparators are 10MHz digital signals, and the XOR senses the phase

difference in 10MHz range. Another important advantage of this sensing method is

that any systematic offsets including PVT variations can be cancelled out if the layout

of the two paths is symmetric and close enough. We used interdigitation, common-

centroid, and dummy cells for the layout of the two paths. The schematics of the

building blocks are also shown in Fig. 2.23 to 2.26.

Fig. 2.18 to 2.20 show simulation results of the phase difference sensing, where

22.5◦, 225◦, and 337.5◦ phase differences at 10GHz are sensed respectively. An upper

figure is the XOR output and a lower one is the ED and LPF outputs. In this

simulation, ∆f of 10MHz was used and we can see that the phase difference can be

sensed within 0.8◦ error. In addition, we need to consider the variation of the I/Q

divider. The maximum phase variation of I and Q signals from a latch-based I/Q
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Fig. 2.18. 22.5◦ phase difference sensing.

 

 

 Fig. 2.19. 225◦ phase difference sensing.

divider is 5◦ [64]. Including the 5◦ error, the phase difference was sensed within 1◦
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 Fig. 2.20. 337.5◦ phase difference sensing.
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Fig. 2.22. I/Q divide-by-2 circuit schematic.

 

 

 

Fig. 2.23. TSPC schematic of divide-by-2 circuit for main phase shifter.
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Fig. 2.24. Adder schematic.
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Fig. 2.25. Envelope detector.

 

 

 

Fig. 2.26. Self-reference comparator.

error, too. It is because such a systematic offset can be cancelled out, as mentioned

before.

The output, i.e. pulsewidth of the XOR output, will be converted to an 8-bit dig-

ital code by a pulsewidth-to-digital converter (TDC) for digital-domain processing,

which will be discussed in Section 2.3. The diagram in Fig. 2.21 depicts the rela-

tionship between phase shift at RF and pulsewidth of XOR output (i.e. duty cycle

of XOR output) in ∆f range. Since the main phase shifter is 4-bit phase shifter, the

phase resolution is 22.5◦. Since the phase fine resolution for the calibration is deter-

mined by the binary 8-bit current DACs in the main phase shifter, an 8-bit digital

comparator will be used to compare the sensed 8-bit digital code (from the TDC)

and the 8-bit preset value (indicating a desired phase shift). The 8-bit preset values

are also shown in Fig. 2.21. Finally, Table 2.3 shows the power consumption for

phase sensing with the power dissipation of the individual blocks. The total power
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Table 2.3
Power consumption for phase sensing with 1V supply

Current (mA) number
Total current

(mA)

Phase rotator and buffers 2.5 1 2.5

IQ divider and buffers 4.8 1 4.8

TSPC divider and buffers 1.12 2 2.24

Adder 2 2 4

Envelope detector 0.08 2 0.16

Self-reference comparator 0.18 2 0.36

Bias circuit 0.4 1 0.4

Total 14.46

consumption is 14.46mW for phase sensing. Since the building blocks are high-speed

analog and digital circuits, it dissipates the most power in the self-calibration system.

2.3 Proposed Pulsewidth-to-Digtal Converter (TDC)

After the XOR, we have 20MHz digital signal and its pulsewidth represents phase

difference. The pulsewidth needs to be converted to an 8-bit digital code for digital-

domain processing, which makes the calibration loop robust to PVT variations. How-

ever, we have the following issues in pulsewidth-to-digital conversion:

1) How to overcome random noise? Hence, we need averaging.

2) How to overcome PVT variations in the digital conversion?

3) How to handle wide input dynamic range of almost 0◦ to 360◦ phase?

TDC design has a tradeoff between resolution and input dynamic range. A state-of-

the-art wide-input-range TDC provides 0.1ns resolution and 0 to 2ns input range [65].

To achieve the maximum 2◦ phase error with the calibration and 0◦ to 360◦ input
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range, we require 0.2ns resolution and 0 to 100ns input range. In this work, from the

dual-slope integrating ADC concept [66], an 8-bit dual-slope integrating pulsewidth-

to-digital converter (TDC) is presented. Before discussion of the proposed TDC

design, the next section will briefly discuss the dual-slope integrating ADC.

2.3.1 Conventional dual-slope integrating ADC

Fig. 2.27 shows a block diagram of the dual-slope integrating ADC and Fig.

2.28 illustrates the operating principle of a 3-bit dual-slope integrating ADC with

two different inputs. After the reset sets the integrator input and output to be a

common-mode voltage of the op-amp (Vcm), during the fixed integration period (T1

= 2∧number of bits × Tclk), the switch at the input of the integrator is connected to

the input voltage (VIN) and the integrator output is charging. After T1, the switch

is connected to the reference voltage (VREF ) and the integrator starts discharging

with VREF . Hence, the discharging period, the slope is always constant regardless

of an input. During this period, the counter operates. As soon as the integrator

output goes below Vcm, the comparator sends a signal so that the counter stops its

operation and the counter values is stored in the latch. As a result, the ADC output

is proportional to the input voltage and the digital conversion has been done.
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Fig. 2.27. Block diagram of conventional dual-slope integrating ADC [66].
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Fig. 2.28. Operating principle with 2 different inputs [66].

Even though a dual-slope integrating ADC has relatively slow conversions, it

provides high accuracy, high resolution, and low power. Moreover, the most important

advantage of the dual-slope integrating ADC is to be robust to PVT variations.

Since the same integrator and the same clock are used to produce both charging and

discharging slopes, any non-idealities including PVT variations would be essentially

cancelled out.

2.3.2 Proposed 8-bit dual-slope integrating TDC

The simplified diagram of the proposed 8-bit dual-slope integrating TDC is shown

in Fig. 2.29. The diagram shows the core of the TDC and it does not include 8-bit

counter, digital control, bias circuitry, buffers, etc. The Vcm of op-amp in the integra-

tor is set to 500mV, and VL and VH is 450mV and 550mV, respectively. The Vcm,

VL, and VH are produced by a resistive divider which includes 40 series resistors. In

the TDC design, the relative values of (Vcm− VL) and (VH− Vcm) are required to

be the same rather than the absolute values of Vcm, VL, and VH. Hence, the resistive
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 Fig. 2.29. Simplified diagram excluding 8-bit counter, digital control,
bias circuitry, buffers, etc.

divider is designed to provide a constant ratio regardless of PVT variations. Con-

sequently, the constant up- and down-slopes are achieved. Fig. 2.30 also illustrates

the TDC operating principle with an XOR output of 50% duty-cycle (i.e. 180◦ phase

shift). The conversion procedure of the TDC can be explained as following:

1) The reset signal sets the integrator input and output to be Vcm.

2) XORen enables the XOR output to be applied to SW1 during a fixed time pe-

riod T1, which is 256 cycles with 10MHz clock. Hence, the XOR output controls SW1

and it connects VL to the integrator only when the XOR output is high. Depending

on the duty cycle of the XOR output, the integrator repeats integrating and stopping

until the fixed T1.

3) After T1, CountEN is set to high and the integrator starts discharging with

VH. During this period, the 8-bit counter operates.

4) As soon as the integrator output goes below Vcm, the comparator sends a sig-

nal to stop the counter operation. The final counter value is stored in the registers.
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Fig. 2.30. Operating principle with 50% duty-cycle.

We can obtain an 8-bit digital output which is proportional to the duty cycle (i.e.

pulsewidth). Then, a beacon signal informs the following stage of the availibility of

the TDC output so that the following stage would catch it for the further processing

5) The TDC will wait for the next update of the XOR output during the pro-

grammed wait time.

In the TDC design, it should be noted that, during the first integration with XOR

output, the integrator input can be a floating node when XOR output is low. Since

the integrator is a continuous analog circuit, the integrator keeps integration if there

is a tiny voltage difference between the input and Vcm. As a result, the integrator

output could be slightly deviated from the expected value. To prevent the floating

input, a prevent-floating circuit is added at the integrator input as shown in Fig.

2.29. Only when both enabled XOR output and CountEN are 0, the integrator input
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is fixed to Vcm. It can prevent undesired integration when the XOR output is low

during the first integration.

The TDC operation can also be expressed in the following manner to clearly

prove how the 8-bit ouput of the counter is proportional to the duty cycle of the

XOR output:

Tup = time for up-slope

Tdown = time for down-slope

Tclk = period of clock

P = duty cycle (in percentage of Tclk)

The peak of the waveform can be given by (Vin × Tup)/RC and it is also given by

(Vin × Tdown)/RC. Therefore, Tup = Tdown. If we let the up-slope be fixed number of

clock (N) but the XOR output has P duty cycle, then

Tup = N × P × Tclk (2.6)

We let the duty cycle of the down-slope be fixed, but the number of counts (M) be

variable. Then,

Tdown = M × Tclk (2.7)

Since Tup = Tdown, N × P × Tclk = M × Tclk. Thus,

P =
M

N
(2.8)

which means that P is proportional to M .

2.3.3 Performance and simulation results

The TDC is tested with 50% and 6.25% duty cycle of inputs with 5 process corners

(TT, FF, FS, SF, SS). The TDC outputs are the same for each case. For the 50%

and 6.25% duty cycle, the outputs are 10000001 and 00010001, respectively. Fig.

2.31 shows the simulation results with 50% duty cycle including integrator output,

control signals, and 8-bit digital output of the TDC. TDC done is the beacon signal
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Fig. 2.31. TDC simulation results with 50% duty cycle: integrator
output, control signals, and 8-bit digital output of the TDC.

to inform the following stage that one-cycle of the TDC operation is complete. The

Vcm of the integrator is set to 500mV. Total power consumption is only 740µW with

1V power supply as shown in Table 2.4 and it also summarizes the TDC performance.

Fig. 2.32 shows the bias generator for the TDC and it also provides bias currents for

all the calibration blocks. It supplies a reference current of 10µA with R=8.8kΩ. The

schematic also contains a start-up circuit.

In recapitulation, the proposed TDC has the following advantages and it enables

a PVT-tolerant self-calibration system. The TDC design is also able to resolve the

issues aforementioned.

• It can average out random noise during the 256 cycles.

• Since the rising slope and the falling slope is the same, it provides PVT-tolerant

performance.

• It has the same benefits of dual-slope integrating ADC, which are high accuracy,
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Fig. 2.32. Bias generator schematic (Iref=10µA) for the calibration blocks.

high resolution, and low power consumption.

• It provides a wide input dynamic range of almost 0◦ to 360◦.

• Slow conversion helps the feedback loop stability.

Table 2.4
8-bit TDC performance summary

Bit resolution (◦) 1.4

Input range (◦) 0 ∼ 360

Integrator 100

Power Comparator 80

consumption Analog buffers 320

(µW) Digital and bias circuits 240

Total 740



38

2.4 Decision Algorithm and Circuit
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Fig. 2.33. Issue due to using divide-by-2 for the main phase shifter.

We obtain an 8-bit digital output by the TDC, which has the phase shift infor-

mation. But we have one more issue because the divide-by-2 circuits are used for the

main phase shifters. As illustrated in Fig. 2.33, for one phase shift, we may have two

possible XOR outputs depending on an initial condition of the TSPC divider. It is

because we do not know at which rising edge the divider would start. Hence, we need

to properly choose one of them.

As in Table 2.5, we need a 4-bit initial setting in order to set the desired phase

shift. It also shows the 8-bit preset value for each phase shift. The 4-bit codes

(S3,S2,S1,S0) for initial setting are decoded for initial SW1∼SW4 setting and initial

DI & DQ current DACs’ setting in Fig. 2.2(b). As we can see in Fig. 2.33 and

2.34, two possible XOR outputs are 2’s compliment to each other. It is noted that

the S3 in 4-bit initial setting indicates upper half (S3=0) or lower half (S3=1) plane.
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Fig. 2.35. Logic implementation of the decision circuit.
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Table 2.5
4-bit initial settings and 8-bit preset values (0: GND, 1: VDD)

Phase shift (◦)
Initial setting 4-bit

8-bit preset value
(S3,S2,S1,S0)

0 0000 00000000

22.5 0001 00010000

45 0010 00100000

67.5 0011 00110000

90 0100 01000000

112.5 0101 01010000

135 0110 01100000

157.5 0111 01110000

180 1000 10000000

202.5 1001 10010000

225 1010 10100000

247.5 1011 10110000

270 1100 11000000

292.5 1101 11010000

315 1110 11100000

337.5 1111 11110000

Hence, we can compare the S3 and the MSB of TDC output to obtain a right 8-

bit code representing the phase shift. If two values are the same, the TDC output

is correct. Otherwise, we have to take 2’s complement of the TDC output. Based

on this selection function, Fig. 2.35 shows the logic implementation of the decision

circuit composed of only XORs and registers.
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2.5 Overall Architecture of Self-Calibration System

2.5.1 Control algorithm and implementation

As discussed in the previous section, the two phase-amplified signals produce a

digital pulse at the XOR output. Then, the 8-bit TDC and decision circuit convert

the pulsewidth to an 8-bit digital code. This digital code is compared with the 8-

bit preset code by the digital comparator. The output of the digital comparator

controls the Up/Dn counter and hence, the 8-bit DI or DQ current DAC of the main

phase shifter. Fig. 2.36 shows the overall architecture of the self-calibration system

including the main phase shifters. The calibration continues until a decision circuit
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Fig. 2.37. Control algorithm. (a) Quadrant selection and DI/DQ
control, (b) Control for the 1st and 3rd quadrants, and (c) Control
for the 2nd and 4th quadrants.

output equals the preset code. Once the calibration ends, the right control codes for

DI and DQ current DACs are stored in the registers until the next calibration. The

self-calibration loop is powered off during normal operation.

As illustrated in Fig. 2.37, the control between DI and DQ is determined by the

quadrant of target phase shift. If the target phase shift is on the 1st and the 3rd

quadrants as in Fig. 2.37(b), DI is fixed and DQ is increased when the preset value

is bigger than the measured value, and vice versa. If the target phase shift is on the

2nd and the 4th quadrant as in Fig. 2.37(c), DQ is fixed and DI is increased when the

preset value is greater than the measured value, and vice versa. In cases of 90◦ and

270◦ phase shifts, the digital controller is designed to properly toggle the two adjacent

quadrants until the decision circuit output matches the preset code. In addition, the

digital controller was designed in Verilog and then, it was synthesized with ARM

standard cells, which is IBM SOI12S0 HVT Process (45nm CMOS 12S0 Technology,

High Vt). The Verilog scripts are shown in Appendix A. The digital control block

was verified by ModelSim and AMS as shown in Fig. 2.38. The synthesized block

also includes the decision circuit, the digital comparator, and the Up/Dn counter.
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Fig. 2.38. Verification of the digital control block.

2.5.2 Layout and performance

The prototype of the self-calibration system and the phase shifters is designed

in 45nm SOI CMOS technology. Fig. 2.39 shows the whole chip layout and pin

assignment, and the chip area is 2.1mm × 2.1mm including the pads. The calibration

loop shows somewhat area overhead; however, in reality, since sixteen 4-bit phase

shifters are used in a 4-bit phased array, the area overhead of the calibration loop

would be significantly reduced in an actual phased array system. In addition, since

1V supply voltage is used for the prototype, an active inductor could not be adopted

due to a voltage headroom issue. This design is targeted for wide bandwidth and

thus, high-Q inductors are not required. If a higher supply voltage is allowed, the use

of active inductors for the adder and the f/2 + ∆f generator could reduce the area

overhead even further. The power overhead of the calibration loop is 16.2mA with

1V supply. Table 2.6 also shows its power breakdown. It is noted that this power

overhead is not an issue because the calibration loop is turned off once the calibration
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Fig. 2.39. Layout of the self-calibration system including the main phase shifters.

is complete. Considering the error from phase sensing and the quantization error from

the TDC, the maximum phase error is estimated to be less than 2◦.

2.5.3 Test setup

The test of the prototype can be performed either with internal digital control or

with external FPGA control. As shown in Fig. 2.40, for using the internal control,

synth sel is set to VDD. Using SPI control with 1kHz SPI clock, an initial setting
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Table 2.6
Power breakdown of the self-calibration loop

Power consumption (mW)

Phase sensing 14.46

TDC 0.74

Digital controller, buffers, bias ∼1

Total 16.2

needs to be done as following:

• S3,S2,S1,S0: 4-bit target phase shift setting

• Iext and Qext: Initial upper 4-bit for DI/DQ registers and hence, DI/DQ current

DACs

• Preset: 8-bit preset code

• Programmable loop settling time: TDC wait time with a 24-bit register; 16-

bit input will be loaded into upper 16 bits of the register; TDC wait time can be

programmed from 25.6µs to 1.67s

Other external control and output signals are also as following:

• synth sel: Multiplex between internal control and external FPGA control

• rst: Global digital reset

• load: Load initial DI and DQ values to DI/DQ registers from SPI registers

• count: Enable/disable calibration

• calib comp: Output signal to inform the calibration complete

The calibration is controlled by the input signals of load and count designed in

the following sequence:

1) load=0, count=0: Through the SPI control, all initial values are loaded to the

SPI registers.

2) load is set to 0→1 (count=0): The DI/DQ registers are loaded with external
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Fig. 2.40. Test board setup.

Table 2.7
Truth table for load and count (0: GND, 1: VDD)

load count Operation

0 0 Do nothing; retain values

0→1 0 Load external values to DI/DQ registers

1→0 0 Load Up/Dn counter depending upon S2 value

0 0→1 Calibration loop starts

1 1 Prohibited

initial values.

3) load is set to 1→0 (count=0): Based on S2 indicating the quadrant (1st and
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3rd, or 2nd and 4th), either DI or DQ value is loaded to the Up/Dn counter.

4) count is set to 0→1 (load=0): The calibration operation begins. [Note] count

should be set to 1 after all values are settled with load=1→0 (i.e. after a proper

delay).

5) If count=0 (load=0), the calibration loop stops and the final calibrated DI or

DQ values are retained in DI or DQ registers. Table 2.7 summarizes the function of

load and count signals.

In addition, an external 160MHz crystal oscillator is used to control the 8-bit

thermometer-code current DAC in the f/2 + ∆f generator, for the generation of

∆f=10MHz distant signal. A divide-by-16 circuit as shown in Fig. 2.41 is imple-

mented to provide the TDC, decision circuit, digital comparator, and digital con-

troller with 10MHz system clock. When calibration is complete, the output signal of

calib comp will be changed from 0 to 1.
 

 

Fig. 2.41. Block diagram of the divide-by-16 circuit.

2.6 Conclusion

In this work, we presented an on-line self-calibration system for RF phase shifters

in a phased array. In the proposed system, we also developed a novel phase am-

plification for phase sensing and a new dual-slope integrating pulsewidth-to-digital

converter (TDC) for a PVT-tolerant sensing/control loop. These unique techniques

are applied to a 4-bit IQ-vector-sum phase shifter and the phase shifter can operate

in 7 to 13GHz with the phase error of less than 2◦. This design methodology is the

first on-line self-calibration for RF phase shifters, which is fully implemented on chip.
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The proposed calibration system also provides lesser design complexity, and it does

not require external equipments and complex DSP. Moreover, this calibration scheme

can be applied to other types of RF phase shifters.
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3. WIDE DYNAMIC RANGE LNA DESIGN

3.1 Previous Multi-/Dual-Mode LNA Designs

The existing works on multi-/dual-mode LNAs can be roughly categorized into

seven approaches: (1) two independent gain paths [36, 37], (2) variable transconduc-

tance (gm) [38,39], (3) variable load impedance [40,41], (4) pre-attenuation [42–45], (5)

current steering [43], (6) current splitting [42,46], and (7) multiplexing gain paths [47].

The design with two independent signal paths in Fig. 3.1(a) is easy to implement,

but wastes die area. It could also suffer from the increased parasitic and the signal

loss in a mode selection switch. The variable gm approach in Fig. 3.1(b) can provide

a wide gain tuning range. However, since an input impedance is a strong function of

gm in most LNA design, providing a consistent input matching quality over a wide

gain tuning range is challenging. Furthermore, typically there is no linear relation

between gm and linearity, which prohibits an effective implementation of a dual-mode

design with high-gain and high-linearity modes. The variable load approach in Fig.

3.1(c) could also provide a wide gain tuning range, but it provides a negligible lin-

earity tuning range because of its fixed input biasing condition. The resistive or

capacitive pre-attenuation approach in Fig. 3.1(d) allows handling of large input sig-

nals, but it needs to be combined with a high-gain mode LNA for implementing a

dual-mode operation. The current steering and splitting approaches in Fig. 3.1(e)

and 3.1(f), respectively, could provide consistent input matching because of the fixed

gm of the input transistor, but they would not provide a wide linearity tuning range

due to the fixed gm. The multiplexing approach in Fig. 3.1(g) is attractive because

its by-pass and high-gain paths can be used for high-linearity and high-gain mode

operations, respectively. However, the use of a high-frequency multiplexer increases
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design complexity and input matching for large input signals still needs to be properly

addressed.

As discussed, the existing approaches demand area overhead, waste in power, or

increase in design complexity. Besides the area, power, and complexity issues, input

matching for large input signals and forgiveness for the errors in mode-transition

point estimation need to be properly addressed for a successful implementation of a

dual-mode LNA that can toggle between high-gain and high-linearity modes.

3.2 Narrowband Dual-Mode LNA
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Fig. 3.2. Proposed narrowband LNA schematic.

Since fine gain tuning can be efficiently achieved using a variable gain amplifier

placed after a mixer, we focus on improving dynamic range for the proposed dual-

mode approach. One of the best ways to improve the upper bound of the input

power range is using a passive divider that reduces the signal amplitude to below the

dynamic range limit of the following stage. For the narrowband design, we combine

the inductively source degenerated topology [67] with a capacitive divider as shown
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Table 3.1
Component parameters of the narrowband LNA

Transistor Dimension Component Value

M1 204µm / 0.13µm LG 2.12 nH

M2 51µm / 0.13µm LL 2.67 nH

M3 51µm / 0.13µm LS 0.63 nH

M4 102µm / 0.13µm C1 26.2 fF

M5 102µm / 0.13µm C2 2.26 pF

in Fig. 3.2. Device dimensions and component values are shown in Table 3.1. The

capacitive divider (C1 and C2) is placed between the gate inductor (LG) and the gate

of the input transistor (M1) to minimize its impact on the input matching and NF

during high-gain mode operation. For the high-gain mode, Vcont is set to 0 V to turn

off M3 and M5. Vcontb is the inverted signal of Vcont. Therefore, the circuit works

as a typical inductively source degenerated LNA while the effect of the capacitive

divider is minimal because of its small effective capacitance value (<26.2 fF in the

proposed design). The sizes of LG and LS are adjusted to partially compensate for

the effect of C1 and C2. The additional capacitive divider degrades the S21, S11,

and NF of high-gain mode only by 0.1 dB, 1.6 dB and 0.04 dB, respectively, at 5.1

GHz. M6 works as a buffer in source follower configuration, driving external 50-Ω

test equipments.

For high-linearity mode, Vcont is set to VDD (1.2 V). The input stage consisting

of LG, LS, M1, and M3 does not provide signal amplification anymore, but provides

the desired narrowband input impedance matching that reflects out-of-band signals.

The input signal is attenuated by the capacitive divider, and the cascoded common

source stage (M4 and M5) operates as a transconductor, delivering the attenuated

signal to the output load. The size of M3 is matched to that of M2, so the DC current

through M1, and hence gm of M1, are consistent for the two operation modes. This
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allows reliable narrowband input impedance matching for the two modes since the

input impedance is approximately gm1LS/Cgs1, where gm1 and Cgs1 are the transcon-

ductance and the gate-to-source capacitance of M1, respectively. In fact, since the

LC-tank load (LL and CL) affects the small-signal input impedance in both the real

and the imaginary parts, through Cgd of M1, the high-linearity mode with zero load

impedance at the drain of M3 can provide better small-signal input matching as

shown in Fig. 3.3.

Fig. 3.3 also shows the input impedance (S11) variation at 5.1 GHz with increasing

input signal power. For the wide dynamic range up to 0 dBm, the inductively source

degeneration topology maintains the good input matching in both high-gain and

high-linearity modes. When input power increases over -10 dBm, the real input

impedance decreases as shown in Fig. 3.3(a). In this topology, the input impedance

is approximately equal to [67]

Zin ≈ s(Ls + Lg) +
1

sCgs

+
gmLs

Cgs

(3.1)

Thus the real impedance is created by the gm of the input transistor. However, it

cannot be considered to be constant over a large voltage swing and is a function of a

time-varying gate-to-source voltage by the input signal. The effective gm for large sig-

nals is obtained as the RMS value of instant gm [68,69]. As an input signal increases,

non-linear behaviors of the transistor such as subthreshold and triode operations de-

crease the increment of the drain current with respect to the gate-to-source voltage

and it causes the reduction of the effective gm and the real impedance. As depicted

in Fig. 3.3(b), with increasing input power, the input matching starts to degrade at

around -15 to -10 dBm of input power for both modes. For high-linearity mode, S11

is less than -10 dB up to 1.2 dBm of input power.

The size of M4 (M5) was selected for the best linearity of the common source stage

during high-linearity mode operation. From simulation, a width of 102 µm provides

the highest IIP3 under the given gate bias voltage.



54
 

 

0

.2

-.2

.5

-.5

1

-1

2

-2

5

-5

.2 .5 1 2 50

.2

-.2

.5

-.5

1

-1

2

-2

5

-5

.2 .5 1 2 5

HG

HL

-30dBm
5dBm

(a) Smith chart of input matching
 

 

-20

-15

-10

-5

0

-30 -25 -20 -15 -10 -5 0 5

S
11

  
(d

B
)

Input power  (dBm)

HG

HL

(b) Return loss of input matching

Fig. 3.3. Simulated input matching vs. input power of the narrowband
LNA at 5.1 GHz (HG: high-gain, HL: high-linearity).

3.3 Wideband Dual-Mode LNA

Wideband LNAs are finding more applications in multi-band and multi-standard

systems. Thus, an LNA for multi-bands and multi-standards needs to provide a

wide dynamic range as well as a wideband input matching, gain, and NF. The dual-
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mode design approach is applied to a resistive feedback based wideband LNA. Fig.

3.4 shows two versions of the proposed wideband LNA: cascode design and single

transistor design. The cascode design is more suitable for a high supply voltage.

When a low supply voltage is required for a scaled technology, the IIP3 of the cascode

design can be worsened in high-gain mode because of the gds non-linearity of M2 in

Fig. 3.4(a). In order to design in 45 nm SOI CMOS technology which recommends

the maximum supply voltage of 1.1 V, the single transistor design in Fig. 3.4(b)

was adopted and implemented. Table 3.2 summarizes the device dimensions. For

high-gain mode operation, Vcont, H Atn, L Atn, and Iref are set to 0 V, 0 V, 0 V,

and 130 µA, respectively. Vcontb is the inverted signal of Vcont. M1 and M2 work

as a transconductor with a resistive load. The output impedances of M1 and M2

form the load impedance. The resistive feedback using RF provides a wideband input

matching.

For high-linearity and low-attenuation (HL(LA)) operation, Vcont, L Atn, H Atn,

and Iref are set to VDD (1.1 V), VDD, 0 V, and 0 A, respectively, turning off M1,

M2, M4 and turning on M3. In high-linearity mode, RF and M3 work as a voltage

divider. Because RF and the on-resistance of M3 are set to be much bigger than the

source impedance (50 Ω), the RM and M5 combination, connected in shunt to the

signal path, provides a wideband input matching. The on-resistance of M5 can be

adjusted to 50 Ω to provide the desired wideband input matching without using RM ,

but the drain-body junction can enter forward bias region with large input signals.

For this reason, RM is added and set to 20 Ω to prevent the forward biasing condition

with large input signals. RM also improves the input matching by partially shielding

the junction capacitance of M5. When even higher attenuation is required, M4 can be

turned on by setting H Atn to VDD for high-linearity and high-attenuation (HL(HA))

operation. The passive voltage division allows a low-power in high-linearity mode,

and a highly linear operation producing almost negligible third-order intermodulation

until the input signal amplitude reaches the threshold voltages (Vth1 and Vth2) of

M1 and M2. For input signals with amplitudes larger than Vth1 or |Vth2|, M1 or
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Fig. 3.4. Proposed wideband LNA schematic. (a) Cascode design
(concept) and (b) Single transistor design (implemented).

M2 works as a class-C amplifier, producing intermodulation and degrading linearity.

Mb6 is added to prevent this undesirable class-C amplification. Since Mb6 is off
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Table 3.2
Component parameters of the wideband LNA

Transistor Dimension Component Value

M1 38.8µm / 56nm RF 515 Ω

M2 48µm / 56nm RM 20 Ω

M3 2µm / 56nm CF 0.8 pF

M4 10µm / 56nm C1 1 pF

M5 9µm / 56nm C2 1 pF

during the high-linearity mode operation, no branch current is available for the class-

C amplification of M1 and M2. The effect of the parasitic of RM , M3, M4, and M5 on

high-gain mode operation is almost negligible from 0.8 to 6 GHz. Simulation shows

that the parasitic degrades the S21, S11, and NF of high-gain mode only by 0.1 dB,

0.15 dB, and 0.02 dB, respectively, at 6 GHz.

Fig. 3.5 shows the simulated S11 at 2 GHz in the face of different input power

levels. The S11 from 0.8 to 6 GHz with varying input power levels also exhibits a

similar result. For small input signals, the high-linearity mode shows much better

S11 because of its simple matching using a shunt resistive network. The small signal

input impedance (Zin) of the LNA in high-gain mode is approximately

Zin ≈
RF +RL

1 + Av

‖
1

sCgs

(3.2)

where Av is the voltage gain, RF is the feedback resistance, RL is the load resistance,

and Cgs is the total gate-source capacitance of the input transistors. In this design,

RL ≈ ro1 ‖ ro2, where ro1 and ro2 are the output resistances of M1 and M2, respec-

tively. Equation (3.2) shows that Zin is a complex function of the input transistor

size, voltage gain, load resistance, and feedback resistance, compared with the high-

linearity case. With increasing input signal power, the input impedance starts to

deviate from its small-signal value because Av starts to saturate and the effective Cgs

across the input voltage swing range starts to deviate from the small signal Cgs. The
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Fig. 3.5. Simulated input matching vs. input power of the wideband
LNA at 2 GHz.

simulated S11 becomes worse than -10 dB at above -13 dBm of input power. For high-

linearity mode, the input matching deteriorates with increasing input power because

of the voltage dependent on-resistance of M5. We note that the effective gate-source

capacitances of M1 and M2 are not sensitive to the input signal amplitude because
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the current through the branch is zero. The S11 becomes worse than -10 dB at above

7.5 dBm of input power, which is 20.5 dB larger than that of high-gain mode.

3.4 Experimental Results

3.4.1 Narrowband dual-mode LNA

IN

Vbias

VDD

OUT

Vcont

Fig. 3.6. Chip microphotograph of the narrowband LNA.

The narrowband LNA was implemented in 0.13 µm CMOS technology, and Fig.

7 shows a chip microphotograph. The LNA core area is 550× 880 µm2 and the total

area including test pads is 815 × 1015 µm2. The LNA draws 3.2 mA and 4.9 mA

from a 1.2 V voltage supply in high-gain and high-linearity modes, respectively. Fig.

3.7 shows the measured and simulated S21 and S11 with -40 dBm of input power.

For high-gain mode, the measured S21 and S11 at 5.1 GHz are 15.4 dB and -7.6 dB,

respectively. The corresponding numbers for high-linearity mode are -9 dB and -20

dB, respectively. As expected, the high-linearity mode shows a narrowband input

matching characteristic. Fig. 3.8 shows the measured S11 at 5.1 GHz in the face of
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Fig. 3.7. Measured and simulated S-parameters of the narrowband
LNA with -40 dBm input. (a) S21 and (b) S11.

different input power levels. Compared with the simulation results shown in Fig. 4,

the measurement results show a slight offset, mostly because of the errors introduced

in parasitic extraction, but show a good agreement in the trend over the input power

range. The measured S11 for high-linearity mode stays below -10 dB up to 5 dBm of

input power. The measured NF is 2.9 dB and 25.7 dB at 5.1 GHz for the two modes,

respectively, as shown in Fig. 3.9. IIP3 measurements used a two-tone signal with
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5.1 GHz and 5.105 GHz components, and, as shown in Fig. 3.10, the measured IIP3

are -7.3 dBm for high-gain mode, and +5.6 dBm for high-linearity mode. Fig. 3.11

shows the measured input-referred P1dB; -18.3 dBm and -1.8 dBm in high-gain and

high-linearity modes, respectively.

Table 3.3 shows comparison with published multiple-mode or highly-linear LNAs

for narrowband applications. The proposed narrowband LNA achieves a low NF in
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Table 3.3
Narrowband LNA performance summary and comparison

Frequency Gain S11 NF P1dB IIP3 Power Supply CMOS

(GHz) (dB) (dB) (dB) (dBm) (dBm) (mW)1 (V) Tech.

This HG
5.1

15.4 -7.6 2.9 -18.3 -7.3 3.8
1.2 0.13µm

work HL -9 -20 25.7 -1.8 5.6 5.9

[40]
HG

5.65∼5.85
21.4

<-7
4.4 n/a -18.5

16.2 1.8 0.18µm
HL 10.8 6.2 n/a -6.5

[41]2
HG

2.0∼3.5
23.8∼26.2 <-10 2.6∼2.96 -18 -8 10.08

1.8 0.18µm
HL 10.2∼12.5 <-7.5 6.7∼8.58 -10 n/a 10.8

[43]2
HG

0.47∼0.87
16

<-11
4.3 n/a -1.5

22 1.8 0.18µm
HL -17 35 n/a 27

[31] 2.5 12 -16 3.5 -5 5 19.8 1.8 32nm

[32] 2.1 5.2 -14 3.0 n/a 10.5 12.6 1.2 0.13µm

[33] 2.2 8.4 -13 1.92 n/a -2.55 16.2 1.8 0.35µm

1: Power consumption of output buffer for testing is excluded

2: Medium gain level not shown
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Fig. 3.10. Measured IIP3 of the narrowband LNA. (a) High-gain mode
and (b) High-linearity mode.

high-gain mode and high P1dB and IIP3 in high-linearity mode while consuming low

power.
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150µm
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m

Fig. 3.12. Chip microphotograph of the wideband LNA.

3.4.2 Wideband dual-mode LNA

The wideband LNA was implemented in 45 nm digital SOI CMOS technology, and

Fig. 3.12 shows a chip microphotograph. Its area excluding test pads and decoupling

capacitors is only 150 × 100 µm2. The LNA core including the bias circuitry draws

5.6 mA from a 1.1 V voltage supply in high-gain mode, and does not consume power

in high-linearity mode. Fig. 3.13(a) shows the measured and simulated S21. The
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Fig. 3.13. Measured (solid lines) and simulated (dashed lines) S-
parameters of the wideband LNA with -30 dBm input. (a) S21 and
(b) S11.

measured S21 in high-gain mode ranges from 9.4 to 7.0 dB over the target frequency

range (0.8 to 6 GHz). Fig. 3.13(b) shows the measured and simulated S11 with -30

dBm of input power. As expected, it shows a wideband input matching characteristic.

Fig. 3.14 shows the S11 versus input power curves measured at 2 GHz. The S11

starts to increase at around -15 dBm for high-gain mode and at around -10 dBm for
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figure of the wideband LNA.

high-linearity modes, which agree well with the simulation results shown in Fig. 3.5.

The measured S11 for high-linearity modes stay below -10 dB up to 8 dBm of input

power. As seen in Fig. 3.15, the measured NF ranges from 3.0 to 3.6 dB over the

target frequency range in high-gain mode. Since the gain is negative in high-linearity

modes, the attenuation factor directly adds to the NF which ranges from 22.7 to 26.3
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dB in high-linearity and low-attenuation (HL(LA)) mode, and ranges from 32.4 to

39.3 dB in high-linearity and high-attenuation (HL(HA)) mode.

The input-referred P1dB is measured at 1 GHz as shown in Fig. 3.16. The

P1dB for HG, HL(LA), and HL(HA) modes are -14.0 dBm, +2.7 dBm, and +4.2

dBm, respectively. It suggests that the operation mode can be switched from HG to

HL(LA) when the input signal power gets close to -14.0 dBm. Because the mode-
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transition relies on signal power sensing, and because power sensing inevitably incurs

errors, the acceptable mode-transition power range needs to be wide enough to forgive

the errors in the transition point estimation based on power sensing. This issue will

be further discussed based on EVM measurements.

A 50-MHz spaced two-tone signal is used for the IIP3 measurements, and the

measured IIP3 ranges from -5.0 to -2.4 dBm over the target frequency band in high-

gain mode as shown in Fig. 3.17. In high-linearity modes, the circuit works as a

passive divider, and no third-order intermodulation signal bigger than the noise floor

(-90 dBm) of the test equipment was observed with the input power up to 8 dBm.

Due to this, we could not measure IIP3 for high-linearity modes. We stopped the

measurement at 8 dBm of input power because the peak voltage across the input

transistor at 8 dBm is higher than the operating voltage limit (1.15 V at 105◦C)

posed by hot-carrier effects of the technology.

To demonstrate the forgiveness for the mode-transition point estimation error,

we conducted EVM measurements, shown in Fig. 3.18. An Agilent E4433B signal

generator produced 16-QAM modulated signals at 1 GHz and a Tektronix RSA3408A

spectrum analyzer was used as a demodulator. A typical upper bound of EVM for a

16-QAM receiver for a bit error rate compliance of 5× 10−4 is 12% [73]. For enough

margin and for a quantitative example, we use a conservative number, 5%, for the

LNA. As can be seen in Fig. 3.18(d), with increasing input power, the EVM of high-

gain mode starts to deteriorate at around -20 dBm, and its EVM becomes bigger

than 5% at above -13.5 dBm which is close to the P1dB of high-gain mode. Based

on the 5% EVM criteria, the LNA operation mode can change from HG to HL(LA)

anywhere between -40 dBm and -13.5 dBm of the input power, which provides a

26.5 dB transition window. For the same reason, the LNA operation mode can

change from HL(LA) to HL(HA) anywhere between -28 dBm and -2 dBm of the

input power, providing a 26 dB transition window. The wide mode-transition windows

would allow reliable mode-transitions based on a measured signal power using a crude

power sensing. Also, the EVM for HL(HA) mode stays below 5% up to 8 dBm of
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Table 3.4
Wideband LNA performance summary and comparison

Frequency Gain S11 NF P1dB IIP3 Power Supply CMOS

(GHz) (dB) (dB) (dB) (dBm) (dBm) (mW)1 (V) Tech.

This HG

0.8∼6

9.4∼7.0 <-10 3.0∼3.6 -14.0 >-5 6.2

1.1 45nmwork HL(LA) -19.9∼-19.3 <-19.8 22.7∼26.3 2.7
>82 0

HL(HA) -33.0∼-32.4 <-23.4 32.4∼39.3 4.2

[47]LB3,4
HG

0.5,1.0,2.0
23,22.5,21.5 <-15 4,2.8,2.7 n/a n/a 29∼315

1.2 90nm
HL 0∼5 n/a n/a -3.3,-2.5,-2.9 8.6,7,9.4 12∼146

[47]HB3,4
HG

3.0,4.5,6.0
14.5,14.2,12 <-9.6 2.8,2.7,3.9 n/a n/a 30.2∼32.25

HL 0∼5 n/a n/a -5,-3,-2.4 10.5,7.5,7.8 12∼146

[70] 0.2∼5.2 4∼6.67 <-10 <3.5 n/a >0 14 1.2 65nm

[71] 0.5∼7 12∼15 <-7.5 2.3∼2.9 n/a
-2.38

12 1.8 90nm
-8.89

[72] 3∼8 10.8∼16.4 <-10 2.9∼4.66 n/a -4.3∼-2.2 3.9 1.8 0.18µm

1: Power consumption of output buffer for testing is excluded

2: 3rd-order intermodulation was not measured until the maximum applied input power of 8 dBm

3: Medium gain level not shown

4: LB and HB is a low-band and a high-band LNA, respectively

5: Power consumption of LNA and multiplexer

6: Power consumption of multiplexer

7: Single input to differential output

8: At 0.5GHz, 9: At 5.8GHz
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input power, which is bigger than the measured P1dB (4.2 dBm). This demonstrates

that the upper bound of input dynamic range of the proposed topology, ignoring

in-band interferers, is essentially determined by the maximum operating voltage of

the technology limited by hot-carrier effects. Based on the 5% EVM criteria, the

lower bound of input dynamic range is -69 dBm, which can be further improved

by enhancing the baseband signal processing gain. Due to the limitation in the

operating frequency of the available test equipment, similar measurements could not

be performed at higher frequencies.

Table 3.4 compares the proposed wideband LNA with published multiple-mode or

highly-linear LNAs for wideband applications up to higher than 5 GHz. The proposed

design provides a low NF while consuming low power in high-gain mode, and provides

a high power handling capacity and negligible intermodulation while consuming no

power in high-linearity mode.

3.5 Conclusion

We presented a narrowband and a wideband LNA using a dual-mode design ap-

proach that provides wide dynamic range and low power consumption. The two

modes, high-gain and high-linearity, can be digitally selected, and share components,

minimizing the inter-loading between the two modes and alleviating the performance

degradation at high frequencies caused by parasitic. The proposed designs provide

good input impedance matching for small and large signals alike, and improve the

power handling capacity by passive attenuation, which produces almost negligible

intermodulation. In the narrowband design, the additional circuitry for signal at-

tenuation was effectively integrated into the inductively source degenerated topology

with a negligible effect on high-gain mode operation while achieving high P1dB and

IIP3 in high-linearity mode. For the wideband design, the P1dB and EVM measure-

ment results demonstrate that the upper bound of the input dynamic range is limited

by the maximum voltage across transistors, which is determined by hot-carrier ef-



72

fects, not by the nonlinear transconductance of the input transistor. The comparison

with existing works demonstrates the effectiveness of the proposed dual-mode de-

sign approach for achieving low power and wide dynamic range. Also, the measured

wide mode control window (>26 dB) of the wideband LNA shows the feasibility of a

reliable mode control using a crude power sensing.
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4. SUMMARY AND CONCLUSION

The semiconductor industry in the field of wireless communications has grown rapidly

and the advancement of CMOS technology has been a major momentum in the de-

velopment. While CMOS scaling has brought low cost, high performance, and high

integration density, it also accompanies large variability to PVT variations and lim-

ited linearity on RF and analog circuit design. To achieve reliable performance of

RF circuits in deeply-scaled technologies, wireless communication systems include a

lot of calibration and mode-selection circuitries, which are adopted a digital-friendly

manner. As proposed are design techniques to overcome such issues in phase shifters

and LNAs with a digitally-assisted method, the self-calibration system for RF phase

shifters and the wide dynamic range LNAs were presented.

With the proposed self-calibration system, the 7 to 13GHz phase shifter achieves

the phase error of less than 2◦. In this work, several unique design methodologies are

developed, which are phase amplification technique, signal generation by phase rota-

tor, PVT-tolerant pulsewidth-to-digital converter, and digital controller with lesser

complexity. The proposed phase amplification is a powerful technique in measuring

phase or time difference with high accuracy, especially for high-frequency circuits.

This technique can be applied to many other applications such as DLL, PSK mod-

ulator, and I/Q calibration. The 8-bit dual-slope integrating TDC provides many

benefits comparing previous TDC designs. It offers robustness to PVT variation,

high accuracy, low power, built-in averaging function, high resolution, and wide in-

put dynamic range. The devised algorithm and digital controller can be also shared

with other calibration circuitries in a system and hence, it can be used for local and

global calibration.

To enhance the power handling capacity of LNAs, an LNA can be designed to

support multiple modes. However, the parasitic effect by added circuits would limit
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the high-frequency performance of an LNA. The presented narrowband (5.1GHz) and

wideband (0.8 to 6GHz) LNAs effectively share the circuit components between high-

gain and high-linearity modes, and thereby, the inter-loading between the two modes

is minimized. As a result, their high-frequency performance is negligibly degraded in

high-gain mode achieving low power consumption. In addition, this research fully ex-

plores the following issues, which have not been properly addressed: input impedance

matching with large input signals and tolerance to input power sensing error. The

S11 of the narrowband LNA is less than -10dB up to 5dBm of input power in high-

linearity mode, and the S11 of the wideband LNA stays below -10dB up to 8dBm of

input power in high-linearity mode. In addition, with the EVM test, the wideband

LNA shows the wide mode-control window of more than 26dB, and this enables re-

liable mode control even with power sensing error. Finally, the narrowband and the

wideband LNA achieves the input-referred P1dB of -1.8dBm and +4.2dBm, respec-

tively.
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A. VERILOG SCRIPTS

1. Synthesis top: Top module synthesized with ARM standard cells

module Synthe s i s t op ( I synth , Q synth , SW synth , XOR en synth ,

count en synth , c lk , r s t , SPI c lk , SPI data , SPI load ,

TDC done , count , load , tdc , l oop hau l t synth , ca l ib comp ) ;

input count ;

input SPI data ;

input SPI load ;

input c l k ;

input [ 7 : 0 ] tdc ;

input r s t ;

input TDC done ;

input SPI c lk ;

input load ;

output [ 4 : 1 ] SW synth ;

output count en synth ;

output [ 7 : 0 ] I synth ;

output XOR en synth ;

output [ 7 : 0 ] Q synth ;

output l o op hau l t syn th ;

output ca l ib comp ;

wire [ 3 : 0 ] I ex t , Q ext ;

wire [ 3 : 2 ] S ext ;

wire [ 7 : 0 ] Preset ;

wire [ 2 3 : 0 ] l o o p s e t ;

wire l oop hau l t synth w ;

SPI top U1(

c l k ( c l k ) ,

c lk SPI ( SPI c lk ) ,

data ( SPI data ) ,

load ( SPI load ) ,

I ( I e x t ) ,

Q( Q ext ) ,

Preset ( Preset ) ,
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S( S ext ) ,

l o o p s e t ( l o o p s e t )

) ;

Cont ro l b lock U2(

r s t ( r s t ) ,

DI ( I synth ) ,

DQ(Q synth ) ,

I e x t ( I e x t ) ,

Q ext ( Q ext ) ,

p r e s e t ( Preset ) ,

tdc ( tdc ) ,

load ( load ) ,

c l k ( c l k ) ,

count ( count ) ,

s ( S ext ) ,

sw( SW synth ) ,

TDC done(TDC done) ,

ca l ib comp ( cal ib comp )

) ;

TDC control U3(

XOR en(XOR en synth ) ,

c l k ( c l k ) ,

TDC done(TDC done) ,

count en ( count en synth ) ,

r s t ( l oop hau l t synth w )

) ;

TDC wait U4(

c l k ( c l k ) ,

count done (TDC done) ,

r s t ( r s t ) ,

wa i t c y c l e ( l o o p s e t ) ,

wa i t out ( l oop hau l t synth w )

) ;

assign l o op hau l t syn th=loop hau l t synth w ;

endmodule

2. SPI top

// The 8−MSB−b i t s are data and 3−LSB−b i t s are con t r o l

// Data i s moved everywhere at r i s i n g edge o f c l o c k and load
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// con t r o l = 000 : Do Nothing

// con t r o l = 001 : MSB −> LSB = [4− b i t I , 4− b i t Q]

// con t r o l = 010 : MSB −> LSB = [8− b i t Prese t ]

// con t r o l = 011 : MSB −> LSB = [2− b i t S , XXXXXX]

// con t r o l = 100 : MSB −> LSB = [ 2 3 : 1 6 ] o f wai t counter

// con t r o l = 101 : MSB −> LSB = [ 1 5 : 8 ] o f wai t counter

// con t r o l = 110 : Do Nothing

// con t r o l = 111 : Do Nothing

// SPI module must not have any r e s e t pin f o r reg

module SPI top ( c lk , c lk SPI , data , load , I , Q, Preset , S ,

l o o p s e t ) ;

input c lk , c lk SPI , data , load ;

output reg [ 7 : 0 ] Preset ;

output reg [ 2 3 : 0 ] l o o p s e t ;

output reg [ 3 : 0 ] I ,Q;

output reg [ 3 : 2 ] S ;

reg [ 1 0 : 0 ] SPI reg ;

reg l oad r , c l k SP I r ;

always @ (posedge c l k )

begin

i f ( load && ! l o ad r )

begin

case ( SPI reg [ 2 : 0 ] )

3 ’ b001 : begin

I [ 3 : 0 ] <= SPI reg [ 1 0 : 7 ] ;

Q[ 3 : 0 ] <= SPI reg [ 6 : 3 ] ;

end

3 ’ b010 : begin

Preset [ 7 : 0 ] <= SPI reg [ 1 0 : 3 ] ;

end

3 ’ b011 : begin

S [ 3 : 2 ] <= SPI reg [ 1 0 : 9 ] ;

end

3 ’ b100 : begin

l o o p s e t [ 2 3 : 1 6 ] <= SPI reg [ 1 0 : 3 ] ;
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end

3 ’ b101 : begin

l o o p s e t [ 1 5 : 8 ] <= SPI reg [ 1 0 : 3 ] ;

l o o p s e t [ 7 : 0 ] <= 8 ’ b0 ;

end

default : begin

end

endcase

end

end

always @ (posedge c l k )

begin

i f ( c lk SPI && ! c l k SP I r )

begin

SPI reg [ 1 0 : 0 ] <= {SPI reg [ 9 : 0 ] , data } ;

end

end

always @ (posedge c l k )

begin

c l k SP I r <= clk SPI ;

l o ad r <= load ;

end

endmodule

3. Control block

module Contro l b lock ( r s t , DI , DQ, I ex t , Q ext , prese t , tdc ,

load , c lk , count , s , sw , TDC done , ca l ib comp ) ;

input [ 3 : 0 ] I ex t , Q ext ;

input [ 3 : 2 ] s ;

input [ 7 : 0 ] prese t , tdc ;

input r s t , load , count , c lk , TDC done ;

output [ 7 : 0 ] DI , DQ;

output reg [ 4 : 1 ] sw ;

output reg ca l ib comp ;

reg [ 7 : 0 ] DI reg , DQ reg , tdc reg , counter ;
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reg [ 8 : 0 ] counter reg ;

reg TDC update ;

// Loading I and Q to 8− b i t r e g i s t e r s

always @ (posedge c l k or posedge r s t )

begin

i f ( r s t )

begin

counter reg [ 8 : 0 ] <= 9 ’ b0 ;

DI reg [ 7 : 0 ] <= 8 ’ b0 ;

DQ reg [ 7 : 0 ] <= 8 ’ b0 ;

TDC update <= 1 ’ b1 ;

ca l ib comp <= 1 ’ b0 ;

end

else

begin

i f ( ! load && ! count ) // Load=0, Count=0;

begin

i f ( s [ 2 ] )

begin

counter reg [ 8 ] <= 1 ’ b0 ;

counter reg [ 7 : 4 ] <= DI reg [ 7 : 4 ] ;

counter reg [ 3 : 0 ] <= 4 ’ b0 ;

end

else

begin

counter reg [ 8 ] <= 1 ’ b0 ;

counter reg [ 7 : 4 ] <= DQ reg [ 7 : 4 ] ;

counter reg [ 3 : 0 ] <= 4 ’ b0 ;

end

end

else i f ( load && ! count ) // Load=1, Count=0;

begin

DI reg [ 7 : 4 ] <= I ex t [ 3 : 0 ] ;

DI reg [ 3 : 0 ] <= 4 ’ b0 ;

DQ reg [ 7 : 4 ] <= Q ext [ 3 : 0 ] ;

DQ reg [ 3 : 0 ] <= 4 ’ b0 ;

TDC update <= 1 ’ b0 ;

end

else i f ( ! load && count && TDC update && TDC done) //

Load=0, Count=1;

begin

i f ( s [ 2 ] )

DI reg <= counter ;
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else

DQ reg <= counter ;

// Comparator

i f ( td c r eg < pr e s e t ) // M < PS

begin

counter reg <= counter reg + 1 ’ b1 ;

ca l ib comp <= 1 ’ b0 ;

end

else i f ( td c r eg > pr e s e t ) // M > PS

begin

counter reg <= counter reg − 1 ’ b1 ;

ca l ib comp <= 1 ’ b0 ;

end

else ca l ib comp <= 1 ’ b1 ; // M = PS

TDC update <= 1 ’ b0 ; // TDC f l a g Low

end

else i f ( ! TDC done)

begin

TDC update <= 1 ’ b1 ;

end

end

end

// Counter l o g i c f o r 90 deg and 270 deg

always @ (posedge c l k or posedge r s t )

begin

i f ( r s t )

begin

counter [ 7 : 0 ] <= 8 ’ b0 ;

end

else

begin

i f ( counter reg [ 8 ] )

counter [ 7 : 0 ] <= ˜ counter reg [ 7 : 0 ] ;

else

counter [ 7 : 0 ] <= counter reg [ 7 : 0 ] ;

end

end

// Swi tches

always @ (posedge c l k or posedge r s t )

begin
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i f ( r s t )

begin

sw [ 4 : 1 ] <= 4 ’ b0 ;

end

else

begin

sw [ 2 ] <= s [ 3 ] ˆ s [ 2 ] ˆ counter reg [ 8 ] ;

sw [ 1 ] <= (˜( s [ 3 ] ) ˆ s [ 2 ] ˆ counter reg [ 8 ] ) ;

sw [ 3 ] <= (˜ s [ 3 ] ) ;

sw [ 4 ] <= s [ 3 ] ;

end

end

// TDC l o g i c

always @ (posedge c l k or posedge r s t )

begin

i f ( r s t )

begin

td c r eg [ 7 : 0 ] <= 8 ’ b0 ;

end

else

begin

i f ( s [ 3 ] ˆ tdc [ 7 ] )

td c r e g <= (˜ tdc ) + 1 ’ b1 ;

else

td c r eg <= tdc ;

end

end

assign DI = DI reg ; assign DQ = DQ reg ;

endmodule

4. TDC control

module TDC control (XOR en , c lk , TDC done , count en , r s t ) ;

input c lk , TDC done , r s t ;

output reg count en , XOR en ;

reg [ 7 : 0 ] count reg ;

always @ (posedge r s t , posedge c l k )

begin

i f ( r s t )
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begin

XOR en <= 1 ’ b1 ;

count en <= 1 ’ b0 ;

count reg <= 8 ’ b0 ;

end

else i f (TDC done)

begin

XOR en <= 1 ’ b1 ;

count en <= 1 ’ b0 ;

count reg <= 8 ’ b0 ;

end

else

begin

i f ( count reg == 8 ’ d255 )

begin

XOR en <= 1 ’ b0 ;

count en <= 1 ’ b1 ;

count reg <= 8 ’ b0 ;

end

else

begin

count reg <= count reg + 1 ’ b1 ;

end

end

end

endmodule

5. TDC wait

module TDC wait ( c lk , count done , r s t , wa i t cyc l e , wa i t out ) ;

input c lk , r s t , count done ;

input [ 2 3 : 0 ] wa i t c y c l e ;

output reg wait out ;

reg count ;

reg [ 2 3 : 0 ] c t r r e g ;

always @ (posedge c l k or posedge r s t )

begin

i f ( r s t )

begin

c t r r e g <= 24 ’ b0 ;

count <= 1 ’ b1 ;

wa i t out <= 1 ’ b1 ;
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end

else

begin

i f ( c t r r e g == wa i t c y c l e )

begin

wait out <= 1 ’ b0 ;

c t r r e g <= 24 ’ b0 ;

count <= 1 ’ b0 ;

end

else i f ( count == 1 ’ b1 )

begin

c t r r e g <= c t r r e g + 1 ’ b1 ;

wa i t out <= 1 ’ b1 ;

end

else

begin

i f ( count done )

count <= 1 ’ b1 ;

end

end

end

endmodule
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