454 research outputs found

    The electronically steerable parasitic array radiator antenna for wireless communications : signal processing and emerging techniques

    Get PDF
    Smart antenna technology is expected to play an important role in future wireless communication networks in order to use the spectrum efficiently, improve the quality of service, reduce the costs of establishing new wireless paradigms and reduce the energy consumption in wireless networks. Generally, smart antennas exploit multiple widely spaced active elements, which are connected to separate radio frequency (RF) chains. Therefore, they are only applicable to base stations (BSs) and access points, by contrast with modern compact wireless terminals with constraints on size, power and complexity. This dissertation considers an alternative smart antenna system the electronically steerable parasitic array radiator (ESPAR) which uses only a single RF chain, coupled with multiple parasitic elements. The ESPAR antenna is of significant interest because of its flexibility in beamforming by tuning a number of easy-to-implement reactance loads connected to parasitic elements; however, parasitic elements require no expensive RF circuits. This work concentrates on the study of the ESPAR antenna for compact transceivers in order to achieve some emerging techniques in wireless communications. The work begins by presenting the work principle and modeling of the ESPAR antenna and describes the reactance-domain signal processing that is suited to the single active antenna array, which are fundamental factors throughout this thesis. The major contribution in this chapter is the adaptive beamforming method based on the ESPAR antenna. In order to achieve fast convergent beamforming for the ESPAR antenna, a modified minimum variance distortionless response (MVDR) beamfomer is proposed. With reactance-domain signal processing, the ESPAR array obtains a correlation matrix of receive signals as the input to the MVDR optimization problem. To design a set of feasible reactance loads for a desired beampattern, the MVDR optimization problem is reformulated as a convex optimization problem constraining an optimized weight vector close to a feasible solution. Finally, the necessary reactance loads are optimized by iterating the convex problem and a simple projector. In addition, the generic algorithm-based beamforming method has also studied for the ESPAR antenna. Blind interference alignment (BIA) is a promising technique for providing an optimal degree of freedom in a multi-user, multiple-inputsingle-output broadcast channel, without the requirements of channel state information at the transmitters. Its key is antenna mode switching at the receive antenna. The ESPAR antenna is able to provide a practical solution to beampattern switching (one kind of antenna mode switching) for the implementation of BIA. In this chapter, three beamforming methods are proposed for providing the required number of beampatterns that are exploited across one super symbol for creating the channel fluctuation patterns seen by receivers. These manually created channel fluctuation patterns are jointly combined with the designed spacetime precoding in order to align the inter-user interference. Furthermore, the directional beampatterns designed in the ESPAR antenna are demonstrated to improve the performance of BIA by alleviating the noise amplification. The ESPAR antenna is studied as the solution to interference mitigation in small cell networks. Specifically, ESPARs analog beamforming presented in the previous chapter is exploited to suppress inter-cell interference for the system scenario, scheduling only one user to be served by each small BS at a single time. In addition, the ESPAR-based BIA is employed to mitigate both inter-cell and intracell interference for the system scenario, scheduling a small number of users to be simultaneously served by each small BS for a single time. In the cognitive radio (CR) paradigm, the ESPAR antenna is employed for spatial spectrum sensing in order to utilize the new angle dimension in the spectrum space besides the conventional frequency, time and space dimensions. The twostage spatial spectrum sensing method is proposed based on the ESPAR antenna being targeted at identifying white spectrum space, including the new angle dimension. At the first stage, the occupancy of a specific frequency band is detected by conventional spectrum-sensing methods, including energy detector and eigenvalue-based methods implemented with the switched-beam ESPAR antenna. With the presence of primary users, their directions are estimated at the second stage, by high-resolution angle-of-arrival (AoA) estimation algorithms. Specifically, the compressive sensing technology has been studied for AoA detection with the ESPAR antenna, which is demonstrated to provide high-resolution estimation results and even to outperform the reactance-domain multiple signal classification

    Super Resolution of Wavelet-Encoded Images and Videos

    Get PDF
    In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-encoded images and videos. The goal of multiframe super resolution is to obtain one or more high resolution images by fusing a sequence of degraded or aliased low resolution images of the same scene. Since the low resolution images may be unaligned, a registration step is required before super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain) image registration; then, investigate super resolution. Our motivation for analyzing the image registration and super resolution problems in the wavelet domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video compression. Due to drawbacks of widely used discrete cosine transform in image and video compression, a considerable amount of literature is devoted to wavelet-based methods. However, since wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order to overcome this drawback, we establish and explore the direct relationship between the subbands under a translational shift, for image registration and super resolution. We then employ our devised in-band methodology, in a motion compensated video compression framework, to demonstrate the effective usage of wavelet subbands. Super resolution can also be used as a post-processing step in video compression in order to decrease the size of the video files to be compressed, with downsampling added as a pre-processing step. Therefore, we present a video compression scheme that utilizes super resolution to reconstruct the high frequency information lost during downsampling. In addition, super resolution is a crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods in enhancing resolution of pansharpened multispectral images

    Dense light field coding: a survey

    Get PDF
    Light Field (LF) imaging is a promising solution for providing more immersive and closer to reality multimedia experiences to end-users with unprecedented creative freedom and flexibility for applications in different areas, such as virtual and augmented reality. Due to the recent technological advances in optics, sensor manufacturing and available transmission bandwidth, as well as the investment of many tech giants in this area, it is expected that soon many LF transmission systems will be available to both consumers and professionals. Recognizing this, novel standardization initiatives have recently emerged in both the Joint Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG), triggering the discussion on the deployment of LF coding solutions to efficiently handle the massive amount of data involved in such systems. Since then, the topic of LF content coding has become a booming research area, attracting the attention of many researchers worldwide. In this context, this paper provides a comprehensive survey of the most relevant LF coding solutions proposed in the literature, focusing on angularly dense LFs. Special attention is placed on a thorough description of the different LF coding methods and on the main concepts related to this relevant area. Moreover, comprehensive insights are presented into open research challenges and future research directions for LF coding.info:eu-repo/semantics/publishedVersio

    Perceptual quality assessment and processing for visual signals.

    Get PDF
    視覺信號,包括圖像,視頻等,在采集,壓縮,存儲,傳輸,重新生成的過程中都會被各種各樣的噪聲所影響,因此他們的主觀質量也就會降低。所以,主觀視覺質量在現今的視覺信號處理跟通訊系統中起到了很大的作用。這篇畢業論文主要討論質量評價的算法設計,以及這些衡量標準在視覺信號處理上的應用。這篇論文的工作主要包括以下五個方面。第一部分主要集中在具有完全套考原始圖像的圖像質量評價。首先我們研究人類視覺系統的特征。具體說來,視覺在結構化失真上面的水平特性和顯著特征會被建模然后應用到結構相似度(SSIM)這個衡量標準上。實驗顯示我們的方法明顯的提高了衡量標準典主觀評價的相似度。由這個質量衡量標準的啟發,我們設計了一個主觀圖像壓縮的方法。其中我們提出了一個自適應的塊大小的超分辨率算法指導的下采樣的算法。實驗結果證明提出的圖像壓縮算法無論在主觀還是在客觀層面都構建了高質量的圖像。第二個部分的工作主要討論具有完全參考原始視頻的視頻質量評價。考慮到人類視覺系統的特征,比如時空域的對此敏感函數,眼球的移動,紋理的遮掩特性,空間域的一致性,時間域的協調性,不同塊變換的特性,我們設計了一個自適應塊大小的失真閾值的模型。實驗證明,我們提出的失真閾值模型能夠更精確的描迷人類視覺系統的特性。基于這個自適應塊大小的失真閾值模型,我們設計了一個簡單的主觀質量評價標準。在公共的圓像以及視頻的主觀數據庫上的測試結果證明了這個簡單的評價標準的有效性。因此,我們把這個簡單的質量標準應用于視頻編碼系統中。它可以在同樣的碼率下提供更高主觀質量的視頻。第三部分我們討論具有部分參考信息的圖像質量評價。我們通過描迷重組后的離散余弦變換域的系數的統計分布來衡量圖像的主觀質量。提出的評價標準發掘了相鄰的離散余弦系數的相同統計特性,相鄰的重組離散余弦系數的互信息,以及圖像的能量在不同頻率下的分布。實驗結果證明我們提出的質量標準河以超越其他的具有部分參考信息的質量評價標準,甚至還超過了具有完全參考信息的質量評價標準。而且,提取的特征很容易被編碼以及隱藏到圖像中以便于在圖像通訊中進行質量監控。第四部分我們討論具有部分參考信息的視頻質量評價。我們提取的特征可以很好的描迷空間域的信息失,和時間域的相鄰兩幀間的直方圖的統計特性。在視頻主觀質量的數據庫上的實驗結果,也證明了提出的方法河以超越其他代表性的視頻質量評價標準,甚至是具有完全參考信息的質量評價標準, 譬如PSNR以及SSIM 。我們的方法只需要很少的特征來描迷每一幀視頻圖像。對于每一幀圖像,一個特征用于描迷空間域的特點,另外三個特征用于描述時間域的特點。考慮到計算的復雜度以及壓縮特征所需要的碼率,提出的方法河以很簡單的在視頻的傳輸過程中監控視頻的質量。之前的四部分提到的主觀質量評價標準主要集中在傳統的失真上面, 譬如JPEG 圖像壓縮, H.264視頻壓縮。在最后一部分,我們討論在圖像跟視頻的retargeting過程中的失真。現如今,隨著消費者電子的發展,視覺信號需要在不同分辨率的顯示設備上進行通訊交互。因此, retargeting的算法把同一個原始圖像適應于不同的分辨率的顯示設備。這樣的過程就會引入圖像的失真。我們研究了對于retargeting圖像主觀質量的測試者的分數,從三個方面進行討論測試者對于retargeting圖像失真的反應.圖像retargeting的尺度,圖像retargeting的算法,原始圖像的內容特性。通過大量的主觀實驗測試,我們構建了一個關于圖像retargeting的主觀數據庫。基于這個主觀數據庫,我們評價以及分析了幾個具有代表性的質量評價標準。Visual signals, including images, videos, etc., are affected by a wide variety of distortions during acquisition, compression, storage, processing, transmission, and reproduction processes, which result in perceptual quality degradation. As a result, perceptual quality assessment plays a very important role in today's visual signal processing and communication systems. In this thesis, quality assessment algorithms for evaluating the visual signal perceptual quality, as well as the applications on visual signal processing and communications, are investigated. The work consists of five parts as briefly summarized below.The first part focuses on the full-reference (FR) image quality assessment. The properties of the human visual system (HVS) are firstly investigated. Specifically, the visual horizontal effect (HE) and saliency properties over the structural distortions are modelled and incorporated into the structure similarity index (SSIM). Experimental results show significantly improved performance in matching the subjective ratings. Inspired by the developed FR image metric, a perceptual image compression scheme is developed, where the adaptive block-based super-resolution directed down-sampling is proposed. Experimental results demonstrated that the proposed image compression scheme can produce higher quality images in terms of both objective and subjective qualities, compared with the existing methods.The second part concerns the FR video quality assessment. The adaptive block-size transform (ABT) based just-noticeable difference (JND) for visual signals is investigated by considering the HVS characteristics, e.g., spatio-temporal contrast sensitivity function (CSF), eye movement, texture masking, spatial coherence, temporal consistency, properties of different block-size transforms, etc. It is verified that the developed ABT based JND can more accurately depict the HVS property, compared with the state-of-the-art JND models. The ABT based JND is thereby utilized to develop a simple perceptual quality metric for visual signals. Validations on the image and video subjective quality databases proved its effectiveness. As a result, the developed perceptual quality metric is employed for perceptual video coding, which can deliver video sequences of higher perceptual quality at the same bit-rates.The third part discusses the reduced-reference (RR) image quality assessment, which is developed by statistically modelling the coe cient distribution in the reorganized discrete cosine transform (RDCT) domain. The proposed RR metric exploits the identical statistical nature of the adjacent DCT coefficients, the mutual information (MI) relationship between adjacent RDCT coefficients, and the image energy distribution among different frequency components. Experimental results demonstrate that the proposed metric outperforms the representative RR image quality metrics, and even the FR quality metric, i.e., peak signal to noise ratio (PSNR). Furthermore, the extracted RR features can be easily encoded and embedded into the distorted images for quality monitoring during image communications.The fourth part investigates the RR video quality assessment. The RR features are extracted to exploit the spatial information loss and the temporal statistical characteristics of the inter-frame histogram. Evaluations on the video subjective quality databases demonstrate that the proposed method outperforms the representative RR video quality metrics, and even the FR metrics, such as PSNR, SSIM in matching the subjective ratings. Furthermore, only a small number of RR features is required to represent the original video sequence (each frame requires only 1 and 3 parameters to depict the spatial and temporal characteristics, respectively). By considering the computational complexity and the bit-rates for extracting and representing the RR features, the proposed RR quality metric can be utilized for quality monitoring during video transmissions, where the RR features for perceptual quality analysis can be easily embedded into the videos or transmitted through an ancillary data channel.The aforementioned perceptual quality metrics focus on the traditional distortions, such as JPEG image compression noise, H.264 video compression noise, and so on. In the last part, we investigate the distortions introduced during the image and video retargeting process. Nowadays, with the development of the consumer electronics, more and more visual signals have to communicate between different display devices of different resolutions. The retargeting algorithm is employed to adapt a source image of one resolution to be displayed in a device of a different resolution, which may introduce distortions during the retargeting process. We investigate the subjective responses on the perceptual qualities of the retargeted images, and discuss the subjective results from three perspectives, i.e., retargeting scales, retargeting methods, and source image content attributes. An image retargeting subjective quality database is built by performing a large-scale subjective study of image retargeting quality on a collection of retargeted images. Based on the built database, several representative quality metrics for retargeted images are evaluated and discussed.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Detailed summary in vernacular field only.Ma, Lin."December 2012."Thesis (Ph.D.)--Chinese University of Hong Kong, 2013.Includes bibliographical references (leaves 185-197).Abstract also in Chinese.Dedication --- p.iiAcknowledgments --- p.iiiAbstract --- p.viiiPublications --- p.xiNomenclature --- p.xviiContents --- p.xxivList of Figures --- p.xxviiiList of Tables --- p.xxxChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation and Objectives --- p.1Chapter 1.2 --- Subjective Perceptual Quality Assessment --- p.5Chapter 1.3 --- Objective Perceptual Quality Assessment --- p.10Chapter 1.3.1 --- Visual Modelling Approach --- p.10Chapter 1.3.2 --- Engineering Modelling Approach --- p.15Chapter 1.3.3 --- Perceptual Subjective Quality Databases --- p.19Chapter 1.3.4 --- Performance Evaluation --- p.21Chapter 1.4 --- Thesis Contributions --- p.22Chapter 1.5 --- Organization of the Thesis --- p.24Chapter I --- Full Reference Quality Assessment --- p.26Chapter 2 --- Full Reference Image Quality Assessment --- p.27Chapter 2.1 --- Visual Horizontal Effect for Image Quality Assessment --- p.27Chapter 2.1.1 --- Introduction --- p.27Chapter 2.1.2 --- Proposed Image Quality Assessment Framework --- p.28Chapter 2.1.3 --- Experimental Results --- p.34Chapter 2.1.4 --- Conclusion --- p.36Chapter 2.2 --- Image Compression via Adaptive Block-Based Super-Resolution Directed Down-Sampling --- p.37Chapter 2.2.1 --- Introduction --- p.37Chapter 2.2.2 --- The Proposed Image Compression Framework --- p.38Chapter 2.2.3 --- Experimental Results --- p.42Chapter 2.2.4 --- Conclusion --- p.45Chapter 3 --- Full Reference Video Quality Assessment --- p.46Chapter 3.1 --- Adaptive Block-size Transform based Just-Noticeable Dfference Model for Visual Signals --- p.46Chapter 3.1.1 --- Introduction --- p.46Chapter 3.1.2 --- JND Model based on Transforms of Different Block Sizes --- p.48Chapter 3.1.3 --- Selection Strategy Between Transforms of Different Block Sizes --- p.53Chapter 3.1.4 --- JND Model Evaluation --- p.56Chapter 3.1.5 --- Conclusion --- p.60Chapter 3.2 --- Perceptual Quality Assessment --- p.60Chapter 3.2.1 --- Experimental Results --- p.62Chapter 3.2.2 --- Conclusion --- p.64Chapter 3.3 --- Motion Trajectory Based Visual Saliency for Video Quality Assessment --- p.65Chapter 3.3.1 --- Motion Trajectory based Visual Saliency for VQA --- p.66Chapter 3.3.2 --- New Quaternion Representation (QR) for Each frame --- p.66Chapter 3.3.3 --- Saliency Map Construction by QR --- p.67Chapter 3.3.4 --- Incorporating Visual Saliency with VQAs --- p.68Chapter 3.3.5 --- Experimental Results --- p.69Chapter 3.3.6 --- Conclusion --- p.72Chapter 3.4 --- Perceptual Video Coding --- p.72Chapter 3.4.1 --- Experimental Results --- p.75Chapter 3.4.2 --- Conclusion --- p.76Chapter II --- Reduced Reference Quality Assessment --- p.77Chapter 4 --- Reduced Reference Image Quality Assessment --- p.78Chapter 4.1 --- Introduction --- p.78Chapter 4.2 --- Reorganization Strategy of DCT Coefficients --- p.81Chapter 4.3 --- Relationship Analysis of Intra and Inter RDCT subbands --- p.83Chapter 4.4 --- Reduced Reference Feature Extraction in Sender Side --- p.88Chapter 4.4.1 --- Intra RDCT Subband Modeling --- p.89Chapter 4.4.2 --- Inter RDCT Subband Modeling --- p.91Chapter 4.4.3 --- Image Frequency Feature --- p.92Chapter 4.5 --- Perceptual Quality Analysis in the Receiver Side --- p.95Chapter 4.5.1 --- Intra RDCT Feature Difference Analysis --- p.95Chapter 4.5.2 --- Inter RDCT Feature Difference Analysis --- p.96Chapter 4.5.3 --- Image Frequency Feature Difference Analysis --- p.96Chapter 4.6 --- Experimental Results --- p.98Chapter 4.6.1 --- Efficiency of the DCT Reorganization Strategy --- p.98Chapter 4.6.2 --- Performance of the Proposed RR IQA --- p.99Chapter 4.6.3 --- Performance of the Proposed RR IQA over Each Individual Distortion Type --- p.105Chapter 4.6.4 --- Statistical Significance --- p.107Chapter 4.6.5 --- Performance Analysis of Each Component --- p.109Chapter 4.7 --- Conclusion --- p.111Chapter 5 --- Reduced Reference Video Quality Assessment --- p.113Chapter 5.1 --- Introduction --- p.113Chapter 5.2 --- Proposed Reduced Reference Video Quality Metric --- p.114Chapter 5.2.1 --- Reduced Reference Feature Extraction from Spatial Perspective --- p.116Chapter 5.2.2 --- Reduced Reference Feature Extraction from Temporal Perspective --- p.118Chapter 5.2.3 --- Visual Quality Analysis in Receiver Side --- p.121Chapter 5.3 --- Experimental Results --- p.123Chapter 5.3.1 --- Consistency Test of the Proposed RR VQA over Compressed Video Sequences --- p.124Chapter 5.3.2 --- Consistency Test of the Proposed RR VQA over Video Sequences with Simulated Distortions --- p.126Chapter 5.3.3 --- Performance Evaluation of the Proposed RR VQA on Compressed Video Sequences --- p.129Chapter 5.3.4 --- Performance Evaluation of the Proposed RR VQA on Video Sequences Containing Transmission Distortions --- p.133Chapter 5.3.5 --- Performance Analysis of Each Component --- p.135Chapter 5.4 --- Conclusion --- p.137Chapter III --- Retargeted Visual Signal Quality Assessment --- p.138Chapter 6 --- Image Retargeting Perceptual Quality Assessment --- p.139Chapter 6.1 --- Introduction --- p.139Chapter 6.2 --- Preparation of Database Building --- p.142Chapter 6.2.1 --- Source Image --- p.142Chapter 6.2.2 --- Retargeting Methods --- p.143Chapter 6.2.3 --- Subjective Testing --- p.146Chapter 6.3 --- Data Processing and Analysis for the Database --- p.150Chapter 6.3.1 --- Processing of Subjective Ratings --- p.150Chapter 6.3.2 --- Analysis and Discussion of the Subjective Ratings --- p.153Chapter 6.4 --- Objective Quality Metric for Retargeted Images --- p.162Chapter 6.4.1 --- Quality Metric Performances on the Constructed Image Retargeting Database --- p.162Chapter 6.4.2 --- Subjective Analysis of the Shape Distortion and Content Information Loss --- p.165Chapter 6.4.3 --- Discussion --- p.167Chapter 6.5 --- Conclusion --- p.169Chapter 7 --- Conclusions --- p.170Chapter 7.1 --- Conclusion --- p.170Chapter 7.2 --- Future Work --- p.173Chapter A --- Attributes of the Source Image --- p.176Chapter B --- Retargeted Image Name and the Corresponding Number --- p.179Chapter C --- Source Image Name and the Corresponding Number --- p.183Bibliography --- p.18

    Wavelet-Based Enhancement Technique for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of color digital images based on wavelet transform domain are investigated in this dissertation research. In this research, a novel, fast and robust wavelet-based dynamic range compression and local contrast enhancement (WDRC) algorithm to improve the visibility of digital images captured under non-uniform lighting conditions has been developed. A wavelet transform is mainly used for dimensionality reduction such that a dynamic range compression with local contrast enhancement algorithm is applied only to the approximation coefficients which are obtained by low-pass filtering and down-sampling the original intensity image. The normalized approximation coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is realized by tuning the magnitude of the each coefficient with respect to surrounding coefficients. The transformed coefficients are then de-normalized to their original range. The detail coefficients are also modified to prevent edge deformation. The inverse wavelet transform is carried out resulting in a lower dynamic range and contrast enhanced intensity image. A color restoration process based on the relationship between spectral bands and the luminance of the original image is applied to convert the enhanced intensity image back to a color image. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some pathological scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for tackling the color constancy problem. The illuminant is modeled having an effect on the image histogram as a linear shift and adjust the image histogram to discount the illuminant. The WDRC algorithm is then applied with a slight modification, i.e. instead of using a linear color restoration, a non-linear color restoration process employing the spectral context relationships of the original image is applied. The proposed technique solves the color constancy issue and the overall enhancement algorithm provides attractive results improving visibility even for scenes with near-zero visibility conditions. In this research, a new wavelet-based image interpolation technique that can be used for improving the visibility of tiny features in an image is presented. In wavelet domain interpolation techniques, the input image is usually treated as the low-pass filtered subbands of an unknown wavelet-transformed high-resolution (HR) image, and then the unknown high-resolution image is produced by estimating the wavelet coefficients of the high-pass filtered subbands. The same approach is used to obtain an initial estimate of the high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients are estimated via feeding this initial estimate to an undecimated wavelet transform (UWT). Taking an inverse transform after replacing the approximation coefficients of the UWT with initially estimated HR image, results in the final interpolated image. Experimental results of the proposed algorithms proved their superiority over the state-of-the-art enhancement and interpolation techniques

    Fractal image compression and the self-affinity assumption : a stochastic signal modelling perspective

    Get PDF
    Bibliography: p. 208-225.Fractal image compression is a comparatively new technique which has gained considerable attention in the popular technical press, and more recently in the research literature. The most significant advantages claimed are high reconstruction quality at low coding rates, rapid decoding, and "resolution independence" in the sense that an encoded image may be decoded at a higher resolution than the original. While many of the claims published in the popular technical press are clearly extravagant, it appears from the rapidly growing body of published research that fractal image compression is capable of performance comparable with that of other techniques enjoying the benefit of a considerably more robust theoretical foundation. . So called because of the similarities between the form of image representation and a mechanism widely used in generating deterministic fractal images, fractal compression represents an image by the parameters of a set of affine transforms on image blocks under which the image is approximately invariant. Although the conditions imposed on these transforms may be shown to be sufficient to guarantee that an approximation of the original image can be reconstructed, there is no obvious theoretical reason to expect this to represent an efficient representation for image coding purposes. The usual analogy with vector quantisation, in which each image is considered to be represented in terms of code vectors extracted from the image itself is instructive, but transforms the fundamental problem into one of understanding why this construction results in an efficient codebook. The signal property required for such a codebook to be effective, termed "self-affinity", is poorly understood. A stochastic signal model based examination of this property is the primary contribution of this dissertation. The most significant findings (subject to some important restrictions} are that "self-affinity" is not a natural consequence of common statistical assumptions but requires particular conditions which are inadequately characterised by second order statistics, and that "natural" images are only marginally "self-affine", to the extent that fractal image compression is effective, but not more so than comparable standard vector quantisation techniques

    Perceptual Image Similarity Metrics and Applications.

    Full text link
    This dissertation presents research in perceptual image similarity metrics and applications, e.g., content-based image retrieval, perceptual image compression, image similarity assessment and texture analysis. The first part aims to design texture similarity metrics consistent with human perception. A new family of statistical texture similarity features, called Local Radius Index (LRI), and corresponding similarity metrics are proposed. Compared to state-of-the-art metrics in the STSIM family, LRI-based metrics achieve better texture retrieval performance with much less computation. When applied to the recently developed perceptual image coder, Matched Texture Coding (MTC), they enable similar performance while significantly accelerating encoding. Additionally, in photographic paper classification, LRI-based metrics also outperform pre-existing metrics. To fulfill the needs of texture classification and other applications, a rotation-invariant version of LRI, called Rotation-Invariant Local Radius Index (RI-LRI), is proposed. RI-LRI is also grayscale and illuminance insensitive. The corresponding similarity metric achieves texture classification accuracy comparable to state-of-the-art metrics. Moreover, its much lower dimensional feature vector requires substantially less computation and storage than other state-of-the-art texture features. The second part of the dissertation focuses on bilevel images, which are images whose pixels are either black or white. The contributions include new objective similarity metrics intended to quantify similarity consistent with human perception, and a subjective experiment to obtain ground truth for judging the performance of objective metrics. Several similarity metrics are proposed that outperform existing ones in the sense of attaining significantly higher Pearson and Spearman-rank correlations with the ground truth. The new metrics include Adjusted Percentage Error, Bilevel Gradient Histogram, Connected Components Comparison and combinations of such. Another portion of the dissertation focuses on the aforementioned MTC, which is a block-based image coder that uses texture similarity metrics to decide if blocks of the image can be encoded by pointing to perceptually similar ones in the already coded region. The key to its success is an effective texture similarity metric, such as an LRI-based metric, and an effective search strategy. Compared to traditional image compression algorithms, e.g., JPEG, MTC achieves similar coding rate with higher reconstruction quality. And the advantage of MTC becomes larger as coding rate decreases.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113586/1/yhzhai_1.pd

    DWT and SWT based Image Super Resolution without Degrading Clarity

    Get PDF
    This project presents a self-similarity-based approach that is able to use large groups of similar patches extracted from the input image to solve the SISR problem. It introduce a novel prior leading to the collaborative filtering of patch groups in a 1D similarity domain and couple it with an iterative back-projection framework. The performance of the proposed algorithm is evaluated on a number of SISR benchmark data sets. Without using any external data, the proposed approach outperforms the current non-convolutional neural network-based methods on the tested data sets for various scaling factors. As an extension of this project, Discrete and Stationary Wavelet Decomposition is proposed to improve accuracy levels

    Nearby Spiral Galaxies at Low Frequencies

    Get PDF
    The low frequency regime (less that 300 MHz) of radio astronomy, while been its birthplace, has been neglected in the past several decades due to the challenges of calibration. External galaxies have hardly been observed at these frequencies with several exceptions. Such observations always suffered from poor angular resolution and therefore accurate flux measurements were nearly impossible. In addition virtually no research in polarization has been performed at these frequencies due to various physical and instrumental depolarization processes. Observing external galaxies at low frequencies would enable us to study the propagation of low energy electrons and in turn weak magnetic fields. Thankfully, a revival in low frequency radio astronomy is now in full force with interferometers such as the GMRT being constructed. This is especially so with the construction of the Low Frequency Array (LOFAR) which officially opened in 2012. This thesis took place during the commissioning phase of LOFAR and therefore contains many technical commissioning tasks mainly addressing the calibration of LOFAR data which were essential for the wider community. This includes developing software to interpolate gain solutions in frequency, enabling more bandwidth on the observational target and thus increasing sensitivity. This thesis presents the first arcsecond observations of nearby galaxies at low frequencies with LO- FAR. We mapped the face-on interacting galaxy M51 and the edge-on galaxy NGC891 to study the propagation of low energy cosmic ray electrons especially in the extended disk and halo. We also employ the novel method of RM synthesis to search for linear polarization in these galaxies and their surrounding fields for polarized background sources. In M51 we observe no break in the integrated spectrum but there are signs of thermal absorption in center of the galaxy. We observe a radial break of the radio continuum emission beyond M51’s star forming disk, demonstrating that detecting the extended disk in radio contiuum will still be difficult even at low frequencies. We have created a program to model the cosmic ray electron distribution for M51 and we find that a diffusion coefficent of approximately 7.5 × 1028 cm2 s-1 is needed to describe the radial spectral index of M51. From these models we can also determine the thermal fraction in the center of M51 and spiral arms at 151 MHz. We also see that the magnetic field in the outer disk obtained from observations are underestimated due to assumptions made using equipartition. Through this observation and model we conclude that diffusion is the dominate process in the cosmic ray electron propagation in M51. The observed frequency dependence of radial scalelengths and the radio-infrared correlation of M51 both confirm our diffusion model. In M51 and NGC891, no diffuse linear polarization was detected showing that detecting diffuse po- larization in star forming galaxies at low frequencies will be impossible at current sensitivities. In the M51 field, we detect six polarized extragalactic sources, resulting in a polarization detection for every 2.9 square degrees, making previous plans of using RM grids of background polarized sources to probe the weak magnetic fields of nearby galaxies quite unrealistic. We confirm the spectral break in NGC891 seen in previous studies and we observe significant signs of thermal absorption within the disk of NGC891. We argue that increased thermal absorption by classical HII regions due to the path length and hence inclination causes the flatting of the integrated spectral index at low frequencies. Also it is found that a low temperature ionized gas component as proposed by Israel & Mahoney (1990) is not needed to explain the thermal absorption. We detect the supernova SN1986J at 146 MHz with a peak flux of 8.8 mJy. We observe significant outflows in the halo via the spectral index map and also observe a new feature not seen in higher frequencies, possibly created via increased star formation in the disk. We see that the bulk velocity of the galactic wind speed is relatively constant for only one half of the galaxy making NGC891 different from NGC253. New observations of the nearly face on galaxy NGC628 were also taken with the Effelsberg 100m telescope and the Jansky Very Large Array in order to detect rotation measure gradients signifying outflows from the disk to the halo of the galaxy. Preliminary results do detect such RM gradients and reversals. Finally this thesis also contains work done on the calibration and processing of the MSSS (Multi Frequency Snapshot Survey) survey for which linear polarization was detected, thus opening up the first low frequency polarization survey of the entire northern sky
    corecore