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摘要 

視覺信號，包括圖像，視頻等，在采集，壓縮，存儲，傳輸，重新生成的過程中都會 

被各種各樣的噪聲所影響，因此他們的主觀質量也就會降低。所以，主觀視覺質量在 

現今的視覺信號處理跟通訊系統中起到了很大的作用。這篇畢業論文主要討論質量評 

價的算法設計，以及這些衡量標準在視覺信號處理上的應用。這篇論文的工作主要包 

括以下五個方面。 

第一部分主要集中在具有完全參考原始圖像的圖像質量評價。首先我們研究人類 

視覺系統的特征。具體說來，視覺在結構化失真上面的水平特性和顯著特征會被建模 

然后應用到結構相似度(SSIM)這個衡量標準上。實驗顯示我們的方法明顯的提高了衡 

量標準與主觀評價的相似度。由這個質量衡量標準的啟發，我們設計了一個主觀圖像 

壓縮的方法。其中我們提出了一個自適應的塊大小的超分辨率算法指導的下采樣的算 

法。實驗結果證明提出的圖像壓縮算法無論在主觀還是在客觀層面都構建了高質量的 

圖像。 

第二個部分的工作主要討論具有完全參考原始視頻的視頻質量評價。考慮到人類視 

覺系統的特征，比如時空域的對比敏感函數，眼球的移動，紋理的遮掩特性，空間域 

的一致性，時間域的協調性，不同塊變換的特性，我們設計了一個自適應塊大小的失 

真閾值的模型。實驗證明，我們提出的失真閾值模型能夠更精確的描述人類視覺系統 

的特性。基于這個自適應塊大小的失真閾值模型，我們設計了一個簡單的主觀質量評 

價標準。在公共的圖像以及視頻的主觀數據庫上的測試結果證明了這個簡單的評價標 

準的有效性。因此，我們把這個簡單的質量標準應用于視頻編碼系統中。它可以在同 

樣的碼率下提供更高主觀質量的視頻。 

第三部分我們討論具有部分參考信息的圖像質量評價。我們通過描述重組后的離散 

余弦變換域的系數的統計分布來衡量圖像的主觀質量。提出的評價標準發掘了相鄰的 

離散余弦系數的相同統計特性，相鄰的重組離散余弦系數的互信息，以及圖像的能量 

在不同頻率下的分布。實驗結果證明我們提出的質量標準可以超越其他的具有部分參 

考信息的質量評價標準，甚至還超過了具有完全參考信息的質量評價標準。而且，提 

取的特征很容易被編碼以及隱藏到圖像中以便于在圖像通訊中進行質量監控。 
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第四部分我們討論具有部分參考信息的視頻質量評價。我們提取的特征可以很好的 

描述空間域的信息丟失，和時間域的相鄰兩巾貞間的直方圖的統計特性。在視頻主觀質 

量的數據庫上的實驗結果，也證明了提出的方法可以超越其他代表性的視頻質量評價 

標準，甚至是具有完全參考信息的質量評價標準，譬如：PSNR以及SSIM�我們的方 

法只需要很少的特征來描述每一巾貞視頻圖像。對于每一巾貞圖像，一個特征用于描述空 

間域的特點，另外三個特征用于描述時間域的特點。考慮到計算的復雜度以及壓縮特 

征所需要的碼率，提出的方法可以很簡單的在視頻的傳輸過程中監控視頻的質量。 

之前的四部分提到的主觀質量評價標準主要集中在傳統的失真上面，譬 

如：J P E G圖像壓縮，H . 2 6 4視頻壓縮。在最后一部分，我們討論在圖像跟視頻 

的retargeting過程中的失真。現如今，隨著消費者電子的發展，視覺信號需要在不 

同分辨率的顯示設備上進行通訊交互。因此，retargeting的算法把同一個原始圖 

像適應于不同的分辨率的顯示設備。這樣的過程就會引入圖像的失真。我們研究 

了對于retargeting圖像主觀質量的測試者的分數，從三個方面進行討論測試者對 

于retargeting圖像失真的反應：圖像retargeting的尺度，圖像retargeting的算法，原始 

圖像的內容特性。通過大量的主觀實驗測試，我們構建了一個關于圖像retargeting的 

主觀數據庫。基于這個主觀數據庫，我們評價以及分析了幾個具有代表性的質量評價 

標準。 



Abstract 

Visual signals, including images, videos, etc., are affected by a wide variety of distor-

tions during acquisition, compression, storage, processing, transmission, and reproduc-

tion processes, which result in perceptual quality degradation. As a result, perceptual 

quality assessment plays a very important role in today's visual signal processing and 

communication systems. In this thesis, quality assessment algorithms for evaluating 

the visual signal perceptual quality, as well as the applications on visual signal process-

ing and communications, are investigated. The work consists of five parts as briefly 

summarized below. 

The first part focuses on the full-reference (FR) image quality assessment. The 

properties of the human visual system (HVS) are firstly investigated. Specifically, the 

visual horizontal effect (HE) and saliency properties over the structural distortions are 

modelled and incorporated into the structure similarity index (SSIM). Experimental 

results show significantly improved performance in matching the subjective ratings. 

Inspired by the developed FR image metric, a perceptual image compression scheme 

is developed, where the adaptive block-based super-resolution directed down-sampling 

is proposed. Experimental results demonstrated that the proposed image compression 

scheme can produce higher quality images in terms of both objective and subjective 

qualities, compared with the existing methods. 

The second part concerns the FR video quality assessment. The adaptive block-size 

transform (ABT) based just-noticeable difference (JND) for visual signals is investigat-

ed by considering the HVS characteristics, e.g., spatio-temporal contrast sensitivity 

function (CSF), eye movement, texture masking, spatial coherence, temporal consis-

tency, properties of different block-size transforms, etc. It is verified that the developed 

ABT based JND can more accurately depict the HVS property, compared with the 

state-of-the-art JND models. The ABT based JND is thereby utilized to develop a 

simple perceptual quality metric for visual signals. Validations on the image and video 
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subjective quality databases proved its effectiveness. As a result, the developed per-

ceptual quality metric is employed for perceptual video coding, which can deliver video 

sequences of higher perceptual quality at the same bit-rates. 

The third part discusses the reduced-reference (RR) image quality assessment, 

which is developed by statistically modelling the coefficient distribution in the reor-

ganized discrete cosine transform (RDCT) domain. The proposed RR metric exploits 

the identical statistical nature of the adjacent DCT coefficients, the mutual information 

(MI) relationship between adjacent RDCT coefficients, and the image energy distribu-

tion among different frequency components. Experimental results demonstrate that 

the proposed metric outperforms the representative RR image quality metrics, and 

even the FR quality metric, i.e., peak signal to noise ratio (PSNR). Furthermore, the 

extracted RR features can be easily encoded and embedded into the distorted images 

for quality monitoring during image communications. 

The fourth part investigates the RR video quality assessment. The RR features 

are extracted to exploit the spatial information loss and the temporal statistical char-

acteristics of the inter-frame histogram. Evaluations on the video subjective quality 

databases demonstrate that the proposed method outperforms the representative RR 

video quality metrics, and even the FR metrics, such as PSNR, SSIM in matching the 

subjective ratings. Furthermore, only a small number of RR features is required to 

represent the original video sequence (each frame requires only 1 and 3 parameters 

to depict the spatial and temporal characteristics, respectively). By considering the 

computational complexity and the bit-rates for extracting and representing the RR 

features, the proposed RR quality metric can be utilized for quality monitoring during 

video transmissions, where the RR features for perceptual quality analysis can be easily 

embedded into the videos or transmitted through an ancillary data channel. 

The aforementioned perceptual quality metrics focus on the traditional distortions, 

such as JPEG image compression noise, H.264 video compression noise, and so on. In 

the last part, we investigate the distortions introduced during the image and video re-

targeting process. Nowadays, with the development of the consumer electronics, more 

and more visual signals have to communicate between different display devices of dif-

ferent resolutions. The retargeting algorithm is employed to adapt a source image of 

one resolution to be displayed in a device of a different resolution, which may introduce 
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distortions during the retargeting process. We investigate the subjective responses on 

the perceptual qualities of the retargeted images, and discuss the subjective results 

from three perspectives, i.e., retargeting scales, retargeting methods, and source image 

content attributes. An image retargeting subjective quality database is built by per-

forming a large-scale subjective study of image retargeting quality on a collection of 

retargeted images. Based on the built database, several representative quality metrics 

for retargeted images are evaluated and discussed. 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

Information is exploding with the progresses of technologies, and the developments of 

the consumer electronics. Nowadays, most of the information is presented to customers 

in the form of visual signals, including images, videos, and etc., as intuitive and faithful 

depiction of things in life and work. Therefore, electronic devices (e.g. phone cameras) 

and services (e.g. YouTube, and IPTV) based on the visual signals have increasingly 

emerged, which can capture and provide visual signals with better perceptual quality. 

Better quality of experience (QoE) [1] for customers is thereby provided and gained 

more interests of both the research communities and industries. 

The objective of visual signal processing is to manipulate visual signals to provide 

consumers the desirable affects, which can deliver more pleased information. And the 

objective of visual signal communication is to ensure proper transmission of the visual 

signals from the server/producer side to the receiver/consumer side, which are of ac-

ceptable perceptual quality. However, as the typical multimedia service chain consists 

of sequential processing stages, e.g., acquisition, editing compression, transmission, re-

construction, restoration, presentation, etc., distortions will be inevitably introduced, 

which will degrade to the perceptual qualities of the visual signals. For example, during 

the video sequence transmission process for YouTube, the bandwidth of the transmis-

sion networks may be limited. Some frames may be dropped or skipped, especially for 

the video sequences with high spatial resolutions. This in turn will make the latency 

time of the requested video sequence intolerable. As a result, the satisfaction and enjoy-

ment level of the viewers/customers for whom these visual signals provide are scarified. 

Perceptual quality assessment plays an important role for visual signal processing and 

communication. 

1 



2 CHAP. 1. INTRODUCTION 

Given that the ultimate receiver of the visual signals are human eyes, the human 

subjective opinion is the most reliable value for indicating the perceptual quality of 

the visual signal. The subjective opinions are obtained through the subjective testing, 

where a large number of viewers participate in the evaluation process and provide 

their personal opinions on the perceptual quality of the visual signal according to 

some pre-defined scales. After processing these subjective scores across the human 

viewers, a quality score, e.g. mean opinion score (MOS), differential mean opinion 

score (DMOS), etc., is finally obtained to indicate the perceptual quality of the visual 

signal. Moreover, in order to ensure repeatable and statistically meaningful results, 

subjective testing methods should precisely follow the standards [5]- [11] to set up the 

testing environment, and should recruit sufficient subjects to account for individual 

differences. The obtained subjective rating value can be regarded as the ground truth 

of the visual signal perceptual quality. Therefore, they can be employed to reliably 

evaluate the performances of the algorithms or methods of the visual signal processing. 

As a result, more and more attentions of the research communities and industries have 

been paid to the subjective testing methods. 

Nowadays, video cameras for capturing high resolution video sequences, e.g. 720P 

and 1080P, 3D video cameras, depth cameras, eye tracker devices, and Kinect have been 

invented and developed for real-life applications. Better QoE can be provided due to the 

developments of these technologies and consumer electronics. However, new challenges 

are also issued meantime. In order to provide better perceptual quality of visual signals 

for the customers, the subjective responses need to be further studied and researched. 

As such, many subjective studies on the perceptual qualities of the emerged visual sig-

nals have been presented. In [16]- [24], [56], perceptual qualities of video sequences of 

different distortions have been studied, which consider not only the standard definition 

(SD) video sequences [16]- [19], but also high definition (HD) video sequences [23] [24]. 

Moreover, the perceptual quality of the scalable video sequences [21] [22] and 3D video 

sequences [20] have been recently discussed. In [25]- [34], the perceptual qualities of im-

ages are discussed and researched. The subjective responses of the images distorted by 

the traditional distortions are studied in [25]- [29]. The affects of wireless transmission 

on the image perceptual quality are discussed in [30]. Also the subjective opinions on 

the art image qualities are further researched [32]. Moreover, the subjective opinions on 
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the stereo images are discussed in [31]. Nowadays, the visual signals communicate be-

tween different display devices more and more frequently. Therefore, one source visual 

signal needs to be displayed on different devices. Retargeting algorithms are thereby 

developed to adapt the same visual signal to different display devices of arbitrary res-

olutions. The newly encountered distortions will be inevitably introduced. Therefore, 

the subjective responses of retargeted images are studied [33] [34]. Furthermore, with 

the development of the eye tracker devices, the visual attention maps of viewing visual 

signals are recorded during the subjective testing processes [35] [36], which can help to 

more accurately depict the human visual system (HVS) properties. 

Although many benefits are provided by the subjective evaluation process, the 

lengthy processing time and high cost make it impractical for the visual signal process-

ing and communication. Therefore, accurate objective perceptual quality assessment 

(PQA) methods are desired and becomes more and more important, which are expected 

to replace the subjective testing process for visual signal applications. However, many 

difficulties need to be overcome for deriving an accurate objective PQA [39]. Firstly, 

the visual signals are of diverse contents, e.g. sports, animations, cartoons, which pro-

duce different visual attentions for different viewers. Secondly, the visual signals go 

through a life cycle from the server/producer side to the receiver/customer side, such 

as acquisition, compression, transmission, presentation, and so on. During the pipeline, 

many types of distortions may be introduced. For example, noises can be introduced 

by the CMOS image sensors during the acquisition process, and blocking and ringing 

artifacts are brought in during the compression processes. Various noises introduced 

in different processing stages present great challenges in the design of accurate PQA 

methods. Thirdly, viewing conditions for the visual experiences are greatly different. 

For example, the lightness conditions as well as the types of the display devices will seri-

ously affect the visibility of the distortion. Fourthly, the perceptual quality judgements 

are viewer-dependent. Different viewers have different interests in the visual signals, 

which make it as an unpredictable factor during the visual signal quality assessment. 

All the aforementioned aspects make the design of an accurate PQA method extremely 

difficult and challenging. 

In order to handle the problems introduced above, the objective of this thesis is to 

develop new methodologies for quality evaluation of visual signals, including image and 
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videos. To that end, in order to evaluate the visual signals degraded by the traditional 

distortions, such as compression, blurring, white Gaussian noise (GWN), and so on, 

we focus on the two crucial aspects in perceptual quality metric design, namely, the 

HVS properties and the visual signal statistical properties. The HVS, as the ultimate 

receiver of the visual signals, should be considered to develop an effective quality as-

sessment method. However, the HVS is extremely complex and seems impossible to 

be completely modelled in the near future. Therefore, only the low-level vision of the 

HVS perception is depicted and modelled, specifically the visual horizontal effect (HE) 

and the just-noticeable distortion (JND) model [46]. Secondly, visual signals present 

strong correlations in both the spatial and temporal domains, which can be clearly 

depicted by the statistics in the pixel domain or transform domain. Some statistics 

for depicting the visual signals are very sensitive to distortions. In this respect, these 

statistics can be employed to depict the distortion level. Intuitively, the distortion level 

explicitly affects the perceptual quality of the visual signal. Therefore, the statistics 

of the visual signals are expected to help indicate the visual signal perceptual quali-

ty. Furthermore, the subjective responses to newly encountered distortions introduced 

during the retargeting process, are studied through a subjective testing process. Based 

upon the reliable subjective rating values, PQA methods for the retargeted images can 

be evaluated and developed. 

In the remaining part of this chapter, some background knowledge related to this 

thesis is introduced. In Section 1.2, the subjective PQAs are briefly described, in-

cluding different standardized testing methods, and rating scales. In Section 1.3, an 

overview of the objective PQAs is presented. Based on different approaches, the ob-

jective PQAs can be classified into two categories: visual modelling approaches and 

engineering approaches. The visual modelling approaches usually consider various low-

level characteristics of the HVS properties, such as luminance adaptation, contrast 

sensitivity function (CSF), contrast masking, etc., which are derived from physiologi-

cal or psychophysical studies. Engineering approaches, on the other hand, are mostly 

developed based on the assumptions and prior knowledge, i.e., assumptions of features 

that are closely related to perceptual quality and prior knowledge of the distortion 

types. Moreover, based on the available information of the reference visual signal, the 

objective PQAs can also be classified into 3 categories: (1) full reference (FR) quality 
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assessment which employs the complete information of the reference image, (2) reduced 

reference (RR) quality assessment which employs only partial information from the ref-

erence image, (3) no reference (NR) quality assessment where no information of the 

reference image is available. In this section, how to evaluate the performance of the 

PQA is also discussed. The thesis contributions are highlighted in Section 1.4. And 

the organization of this thesis is given in Section 1.5. 

1.2 Subjective Perceptual Quality Assessment 

Objective PQAs aim at depicting the HVS perception accurately. Till now, however, 

no quality metrics can accurately and completely characterize the subjective responses 

in perceptual quality assessment [2]- [4] [64]. Therefore, subjective testing process is 

still the only way to verify the model designing, tuning, and optimization. To this end, 

standardized testing methods and procedures need to be defined and strictly followed, 

which can ensure reliable results. 

Several international standards [5] - [11] are proposed for subjective image/video 

quality evaluation for different applications. ITU-R BT.1129-2 [9] was proposed for e-

valuating the perceptual quality of the standard definition (SD) video sequences. ITU-R 

BT.500 [5] specified by international telecommunication union (ITU) introduces dif-

ferent methodologies for subjective quality assessment of television pictures. ITU-R 

BT.710 [6] is an extension of ITU-R BT.500 dedicated for high definition (HD) TV. 

ITU-T P.910 [7] is another standard which defines the standard procedure of digital 

video quality assessment with transmission rate below 1.5 Mbit/s. ITU-R BT.814-1 [8] 

is proposed to set the brightness and contrast of the displays. Among these internation-

al standards, ITU-R BT.500-11 is most commonly utilized, which provides the viewing 

conditions, selection of test material, instructions of subjective assessment, presentation 

of the subjective rating results, and so on. Also the video quality expert group (VQEG) 

proposed several subjective evaluation procedures to evaluate the performances of dif-

ferent objective quality metrics [13] - [15], which are similar to the standards defined 

in ITU-R BT.500 and P.910. 

A wide variety of basic test methods have been used in television assessment. In 

practise, however, particular methods should be used to address particular assessment 

problems. In the following part, we will briefly introduce different standardized testing 
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methods, as well as the subjective rating scales, which is detailed in [5]. 

(1) Double stimulus impairment scale (DSIS) method. 

This method is employed to measure the robustness of systems. The reference visual 

signal (unimpaired image/video) and the test stimulus (impaired image/video) should 

be presented in a pseudo-random sequence, where the reference one is presented before 

the impaired one. In any case, the same test stimulus should be presented on two 

successive occasions with the same or different levels of impairment. The range of the 

impairments should be chosen so that all grades are used by the majority of observers; 

a grand mean score (averaged overall judgements made in the experiment) close to 

three should be aimed at. A session should not last more than roughly half an hour, 

including the explanations and preliminaries. The subjective testing procedure should 

begin with a few images/videos indicative of the range of impairments. And judgements 

of these images/videos need not be taken into account in the final results. The five-

grade subjective rating scale utilized is shown in Table 1.1. Assessors should use a 

form which gives the scale very clearly, and has numbered boxes or some other means 

to record the gradings. 

Quality Impairment 

5: Ecellent 5: Imperceptible 
4: Good 4: Perceptibly, but not annoying 
3: Fair 3: Slightly annoying 
2: Poor 2: Annoying 
1: Bad 1: Very annoying 

Table Five-grade subjective rating scale 

(2) Double-stimulus continuous quality-scale (DSCQS) method. 

This method aims at measuring the perceptual quality of stereoscopic image coding. 

This double-stimulus method is thought to be especially useful when it is not possible to 

provide test stimulus test conditions that exhibit the full range of quality. The method 

is cyclic in that the assessor is asked to view a pair of visual signals, each from the same 

source, but one via the process under examination, and the the other one directly from 

the source. The qualities of both visual signals need to be subjectively assessed and 
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Figure Portion of quality-rating form using continuous scales. 

rated by the viewers. One test session comprises a number of presentations. If there 

is only one observer, the assessor is allowed to switch between the two visual signals 

until he or she has the mental measure of the quality associated with each visual signal. 

Otherwise, if a number of observers are evaluating simultaneously, the pair of visual 

signals is shown one or more times for an equal length of time to allow the assessor to 

gain the mental measure of the qualities associated with them. 

The method requires the assessment of two versions of each test visual signals. One 

of each pair of test visual signals is unimpaired while the other presentation might or 

might not be impairment free. The unimpaired visual signal is included to serve as a 

reference. However, the observers are not told which one is the reference signal. In the 

series of tests, the position of the reference visual signal is changed in pseudo-random 

fashion. The observers are simply asked to assess the overall quality of each presentation 

by inserting a mark on a vertical scale, as shown in Figure 1.1. The vertical scales are 

printed in pairs to accommodate the double presentation of each test visual signal. 

The scales provide a continuous rating system to avoid quantization errors, but they 

are divided into five equal lengths which correspond to the normal ITU-R five-grade 

quality scale. 

(3) Single stimulus (SS) Method. 

7 
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A visual signal is presented and the assessor provides an index of the entire presenta-

tion. The subjective test session consists of a series of assessment trails. These should 

be presented in random order, and preferably, in a different random sequence for each 

observer. A typical assessment trial consists of two displays: a stimulus and a mid-grey 

post-exposure field. The duration of these displays may vary with viewer task, materi-

als, and the opinions or factors considered. But 10s and 5s are suggested, respectively. 

The viewer indices have to be collected during display of the post-exposure filed only. 

For SS method, the five-grade rating scale as illustrated in Table 1.1 can be employed 

to indicate the subjective quality. This method yields a distribution of judgements 

across scale categories for each condition. The way in which responses are analysed 

depends upon the judgement and information viewed. Also an SS procedure using an 

11-grade numerical categorical scale (SSNCS) was studied and compared to graphic and 

ratio scales. This study, described in ITU-R BT.1082 [12], indicates a clear preference 

in terms of sensitivity and stability for the SSNCS method when no reference is avail-

able. Furthermore, observers can assign a value to each visual signal in non-categorical 

judgements. 

(4) Stimulus-comparison (SC) methods. 

In SC methods, tow visual signals are displayed and viewer provides an index of the 

relation between the given two presentations. The assessment trial can use either one 

monitor or two well-aligned monitors and generally process as in SS cases. Stimulus-

comparison methods assess the relations among conditions more fully when judgements 

compare all possible pairs of conditions. However, if this requires too large a number 

of observations, it may be possible to divide the observations among assessors or to use 

a sample of all possible pairs. 

The adjective categorical judgement is employed for the SC methods, where ob-

servers assign the relation between members of a pair to one of a set of categories that, 

typically, are defined in semantic terms. These categories may report the existence of 

perceptible differences, the existence and direction of perceptible differences, or judge-

ments of extent and direction. The comparison scale recommended by ITU-R is shown 

in Table 1.2. This method yields a distribution of judgements across scale categories for 

each condition pair. The way that responses are analysed depends on the judgement 
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made and the information required. The SC method together with the comparison 

scale is suitable for evaluating the just-noticeable distortion (JND) performances. 

-3 The right one is much worse than the left one 
-2 The right one is worse than the left one 
-1 The right one is slightly worse than the left one 
0 The right one is the same quality as the left one 

+1 The right one is slightly better than the left one 
+2 The right one is better than the left one 
+3 The right one is much better than the left one 

Table 1.2: Comparison scales of SC method 

(5) Simultaneous double stimulus for continuous evaluation (SDSCE) method. 

This method targets at measuring the fidelity between two impaired video sequences 

and comparing different error resilience tools. When the fidelity of the visual signal 

needs to be evaluated, the reference conditions must be introduced. The method was 

proposed to motion picture experts group (MPEG) to evaluate the error robustness 

at very low bit rate. But it can be suitably applied to all those cases where fidelity 

of visual information affected by time-varying degradation has to be evaluated. The 

panel of subjects is watching two visual signals in the same time: one is the reference, 

the other one is the test condition. If the format of the visual signals is SD or smaller, 

the two signals can be displayed side by side on the same monitor, otherwise two well-

aligned monitors should be employed. Subjects are requested to check the differences 

between the two visual signals and to judge the fidelity of the video information by 

moving the slider of a handset-voting device. When the fidelity is prefect, the slider 

should be at the top of the scale range (coded 100), when the fidelity is null, the slider 

should be at the bottom of the scale (indicated 0). And subjects are aware of which is 

the reference and they are requested to express their opinion, while they are viewing 

the visual signals throughout their whole duration. 

With these subjective evaluation methods, such as DSIS, DSCQS, SS, SC, and 

SDSCE, the perceptual quality of the visual signal can be accurately measured. How-

ever, as aforementioned subjective visual quality quality assessment suffers from various 
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drawbacks that limit its applicabilities. (a) It is time-consuming, laborious and expen-

sive, since the resultant subjective opinions are obtained by many observers through 

repetitive viewing sessions. (b) Incorporation of subjective viewing tests is not feasible 

for on-line visual signal manipulations, such as visual signal compression, denoising, 

transmission, and so on. (c) The subjective testing results rely heavily on the viewers' 

physical conditions, emotional states, personal experience, and the context of preceding 

display [38] - [40]. As a result, it is necessary to build computational models to predict 

the perceptual quality of the visual signal in a consistent and objective manner, where 

the objective visual quality assessment methods are demanded. 

1.3 Objective Perceptual Quality Assessment 

The simplest and most widely used objective visual quality metric are the mean square 

error (MSE) and the related signal-to-noise ratio (SNR), and peak signal-to-noise ratio 

(PSNR). These measurements are appealing for their simple formulations, clear phys-

ical meanings, and friendliness for optimization. However, they perform poorly for 

the perceptual quality predictions of the visual signals [41] [42]. The major reason for 

the poor performance of MSE or PSNR is that all of the changes in the visual signal 

is assigned the same importance, regardless of the perceptual properties of the HVS. 

Objective evaluation of visual signal quality in line with the human perception is a 

difficult task [43] [44] due to the complex, multi-disciplinary nature of the problem (re-

lated to physiology, psychology, vision research, and computer science) and the limited 

understanding of the mechanisms behind the HVS. 

With regards to developing a visual quality assessment method, two different ap-

proaches are employed [85] (i) visual modelling approach and (ii) engineering approach. 

These two approaches and their advantages/disadvantages are discussed as follows, re-

spectively. 

1.3.1 Visual Modelling Approach 

The visual modelling approaches, as the name implies, are based on the modelling the 

components of the HVS, which range from the eye to the visual cortex. Although 

the anatomy of the eye provides us with detailed physiological evidences about the 

from-end of the HVS (optics, retina, etc.), a thorough understanding of the latter 
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stages of the visual pathway (visual cortex, etc.) in charge of higher-level perception 

is still unachievable, which makes the construction of a complete physiological HVS 

model impossible. As a result, the visual modelling approaches are mostly based on 

psychophysical studies and only account for low level perception. The physiological 

and psychophysical factors incorporated into the visual modelling are listed below. 

- Colour perception 

The responses of the cones need to be further processed at a higher stage of the 

HVS for the purpose of signal decorrelation, where the three commonly encoun-

tered color channels R, G, and B are highly correlated with each other. Nowadays, 

many color spaces are employed for representing the visual signal for difference 

purposes, e.g., CIELAB, YIQ, YUV color spaces, etc. Most of these color spaces 

share the common characteristics that they treat the luminance and chrominance 

components of the visual signal separately. However, according to the perfor-

mance comparison of different color spaces in the visual quality metrics [45], 

there is no significant performance difference if the chrominance component is 

discarded, but on the other hand, the computational complexity can be greatly 

reduced. 

- Luminance adaptation 

HVS perception is sensitive to luminance contrast rather than the luminance 

intensity. Given an image with a uniform background luminance l and a square 

at the center with a different luminance l+dl, if dl is the threshold value at which 

the central square can be distinguished from the background, then according to 

Weber's law the ratio of dl divided by l is a constant for a wide range of luminance 

l. This implies that HVS sensitivity to luminance varies with the local mean 

luminance value. In other words, the local mean luminance masks the luminance 

variation: the higher the local mean luminance, the stronger the masking effect 

is. Therefore, the luminance adaptation factor experimentally forms a U-shape 

curve. Nowadays, the luminance adaptation factors are employed for constructing 

the JND models [46]. 

- Multi-channel decomposition 
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Compared with the early perceptual quality metrics [47] [48], where only one 

channel is employed, multi-channel decomposition has been widely used for visual 

modelling these days. Multi-channel decomposition is justified by the discovery 

of the spatial frequency selectivity and orientation selectivity of the simple cells in 

the primary visual cortex. For spatial multi-channel decomposition, most studies 

suggest that there exist several octave spaced radial frequency channels, each 

of which is further tuned by orientations with roughly 30 degree spacing [49]. 

Many other decomposition algorithms serving this purpose exist, e.g., steerable 

pyramid transform [50], QMF (Quadrature Mirror Filters) transform [51], wavelet 

transform [52], DCT transform [53], etc. Some of these aim at accurately modeling 

the decomposition mechanism, while others are used due to their suitability for 

particular applications, e.g., compression [53]. A detailed comparison of these 

decomposition algorithms can be found in [54]. For temporal decomposition, it 

is generally believed that there exist two channels: one low-pass channel, namely 

sustained channel, and one band-pass channel, namely transient channel. Since 

most visual detailed information is carried in sustained channel, HVS models 

employed by some video quality metrics like those in [55] [56] only use a single low 

pass temporal filter to isolate the sustained channel, while the transient channel 

is disregarded. Temporal filters can be implemented as either Finite Impulse 

Response (FIR) filters [55] or Infinite Impulse Response (IIR) filters [57], either 

before [55] or after spatial decomposition [58]. 

- Contrast sensitivity function 

Contrast sensitivity is the inverse of the contrast threshold - the minimum contrast 

value for an observer to detect a stimulus. These contrast thresholds are derived 

from psychophysical experiments using simple stimuli, like sine-wave gratings or 

Gabor patches. In these experiments, the stimulus is presented to an observer 

with its contrast increasing gradually. The contrast threshold is determined at the 

point where the observer can just detect the stimulus. It has been proved by many 

psychophysical experiments that the HVS's contrast sensitivity depends on the 

characteristics of the visual stimulus: its spatial frequency, temporal frequency, 

color, and orientation, etc. Contrast sensitivity function (CSF) can be used to 

describe these dependences. And CSF is more complex when the influences of 
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other factors like temporal frequency or color are considered in conjunction with 

the spatial frequency [59] [60] . As a very important characteristic of HVS, CSF 

has been incorporated into the development of JND models [46] [53]. 

- Contrast masking 

Contrast masking effect refers to the visibility threshold elevation of a target signal 

(the maskee) caused by the presence of a masker signal. It can be further divided 

into spatial masking and temporal masking. The target and masker stimuli are 

sine-waves or Gabor patches, during the most spatial masking experiments. The 

target stimulus is superposed onto the masker stimuli, and contrast threshold of 

the target stimulus are recorded, together with the masker information, including 

its contrast, spatial frequency, orientation, phase, etc. Many of these experiments 

verify that the threshold contrast of the target depends on the masking contrast, 

and also the other characteristics of the masker. Generally higher masking con-

trast and larger similarity between the masker and the target in their spatial 

frequencies, orientations, and phases will lead to higher masking effect, which 

is known as the contrast masking effect [61] [62]. Compared with spatial mask-

ing, temporal masking has received less attention and is of less variety. In most 

of its implementations in video quality assessment, temporal masking strength 

is modelled as a function of temporal discontinuity in intensity: the higher the 

inter-frame difference, the stronger is the temporal masking effect. Particularly, 

the masking abilities of scene cut have been investigated in many experiments, 

with both of its forward and backward masking effects identified [63]. 

- Visual saliency and attention 

It is well known that HVS processes local regions of visual signals with different 

visual acuities. The artifacts in the attended regions are better perceived than 

those present in the non-attended areas. It means that the judgement of the 

observer's will be prejudiced by the contents in the visual salient regions. The 

perceptual quality of the visual signal will also be significantly affected by severity 

of the distortions in the attended area. Therefore, the visual saliency and atten-

tion map of the corresponding visual signal needs to be considered for deriving 

an accurate perceptual quality metric. 
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- Pooling 

In vision system, pooling refers to the process of integrating information of d-

ifferent channels, which is believed to happen at the latter stages of the visual 

pathway. In visual quality assessment, pooling is used to term the error summa-

tion process which combines errors measured in different channels into a quality 

map or a single quality score. For image quality assessment, most approaches 

perform error summation across frequency and orientation channels first to pro-

duce a 2-D quality map, and then perform it across spaces to obtain a single score 

indicating the quality of the entire image. For video quality assessment, one more 

step is performed to combine quality scores for frames into a quality score for the 

video sequence. 

As these factors are intuitively depicted and can somewhat characterize the HVS 

properties, the visual modelling approaches achieve better results in matching the sub-

jective rating values, compared with MSE, SNR, and PSNR. However, they may suffer 

from some drawbacks, even though the visual modelling metrics are attractive in the-

ory. The HVS comprises of many complex processes which work in conjunction rather 

than independently, to produce visual perception. However, the vision modelling based 

metrics generally utilize results from psychophysical experiments which are typically 

designed to explore a single dimension of the HVS at a time. In addition, these exper-

iments usually use simple patterns such as spots, bars, and sinusoidal gratings which 

are much simpler than those occurring in real images. For instance, psychophysical ex-

periments characterize the CSF and masking phenomenon of the HVS by superposing 

a few simple patterns. Moreover these metrics generally depend on the modelling of 

the HVS characteristics which are not yet fully understood. Although our knowledge 

about the HVS has been improving over the years, we are still far from a complete 

understanding of the HVS and its intricate mechanisms. Furthermore, due to the com-

plex and highly non-linear nature of the HVS, these metrics can be complicated and 

time-consuming to be used in practice. The complexity of these models usually leads 

to high computational cost and memory requirement, even for images of a moderate 

size. In addition, the psychophysical experiments that underlie many error sensitivity 

models are specifically designed to estimate the threshold at which a stimulus is just 

barely visible. These measured threshold values are then used to define visual error 
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Figure 1.2: Representative diagram of the engineering approach. 

sensitivity measures, such as the CSF and various masking effects. However, very few 

psychophysical studies indicate whether such near-threshold models can be generalized 

to characterize perceptual distortions significantly larger than threshold levels, as is 

the case in a majority of image processing situations. As it turns out, many of the 

image quality assessment (IQA) metrics based on vision modelling approach are less 

effective for suprathreshold distortions [38]- [40]. Owing to these limitations, the second 

approach namely the engineering approach has gained popularity during recent years 

and is described next. 

1.3.2 Engineering Modelling Approach 

To overcome these shortcomings of the vision models, recently many new visual qual-

ity metrics were designed by engineering approaches. Instead of founding on accu-

rate experimental data from subjective viewing tests, these engineering-based quality 

metrics are based on (i) assumptions about visual features that are closely related to 

visual quality; (ii) prior knowledge about the distortion properties or the statistics 

of the natural scenes. Since these features and prior knowledge are considered to be 

higher-level perceptual factors compared with lower-level ones used in the vision model, 

engineering-based quality metrics are also referred to as top-down quality metrics, and 

are considered to have the potential to better deal with supra-threshold distortions. In 

ITU-R BT.1683 [64], four video quality assessment (VQA) methods are recommend-

ed after VQEG's FRTV Phase II tests [65], all of which belong to this category. A 
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representative diagram of the engineering approach is shown in Figure 1.2. It can be 

observed that the engineering approaches consist of two distinct stages. The first stage 

is detect and extract the visual features and statistics of the visual signals, which may 

include image structural elements, such as contours and edges, gradient information, 

and statistics of specific distortions introduced by a particular process step, i.e., com-

pression, transmission, and so on. The second one is to compare the extracted features 

and pool their differences together to generate the visual quality index (VQI) for the 

corresponding distorted visual signal. 

Based on the amount of the visual feature or statistics extracted from reference 

visual signal, PQAs can be classified into three categories: full reference (FR), reduced 

reference (RR), and no reference (NR). The whole reference visual signal is required 

to derive the FR metrics, in order to evaluate the perceptual quality of the distorted 

image, where the reference visual signal is is assumed to be artifact free and of perfect 

quality. These developed metrics can only be applied to the applications where the 

reference visual signal is available, such as image compression [66], watermarking [67], 

and so on. The simplest FR metrics are MSE, SNR, and PSNR, which are widely 

adopted. However, these PQAs only consider the differences in visual signal pixel level, 

which are not related to HVS perception properties as aforementioned. Consequently, 

they are not reliable for evaluating or even controlling the perceptual quality of the 

distorted image during the processing stages. Nowadays, many FR quality metrics 

have been developed, among which structure similarity index (SSIM) [68] [69] is the 

most famous one. SSIM is derived mainly based on the idea of equating the perceived 

image distortion to the measurement of structural distortion. The metric known as 

MSVD [71] evaluates the perceptual quality of each image block based on the error in 

singular values. Another representative FR image quality metric is visual information 

fidelity (VIF) [72], which is based on the assumption that visual quality is related to 

the amount of information that the HVS can extract from an image. Briefly, VIF works 

in the wavelet domain and uses three models to model the original natural image, the 

distortions, and the HVS, respectively. 

Picture quality scale (PQS) [73] is a hybrid image quality metric employing both 

the HVS model and the engineering design approaches. Among the five distortion fac-

tors measured, three of them are obtained basically by using HVS models. Perceptual 
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factors employed include luminance adaptation, CSF, and texture masking. The other 

two engineering-based distortion factors measure blockiness and error correlations. To 

fit in the three processing steps introduced above, in PQS, non-linear mapped lumi-

nance values (to account for the luminance adaptation effect) are used as features, and 

feature comparison is implemented by direct subtraction. These feature differences are 

further processed by the CSF and by using prior knowledge about the locations of the 

distortions to produce two distortion maps measuring blockiness and local error corre-

lations, respectively. In the last step, spatial pooling is performed separately on each of 

the two distortion maps, generating two engineering-based distortion factors. Together 

with the three HVS-model-based distortion factors, they are de-correlated by singular 

value decomposition and linearly combined to generate the PQS quality score. 

In many real-world applications, we cannot access the reference visual for the quality 

evaluation, such as image/video denoising, restoration, etc., where only the distorted 

visual signal is available for analysis. Therefore, the NR PQAs [70]- [79] are thus needed 

to evaluate and control the perceptual quality of the processed image. Many researchers 

employ the behaviours of specific distortions for the NR quality assessment, such as 

the blocking artifact of JPEG coded images, ringing artifact of the JPEG 2000 coded 

images, and so on. As JPEG 2000 employs the wavelet transform to compress the image, 

the wavelet statistical model is utilized to capture the compression distortion [74]. 

Liang et al. [75] combined the sharpness, blurring, and ringing measurements together 

to depict the perceptual quality of the JPEG 2000 coded image. The distribution of the 

DCT coefficient after quantization is modeled in [76] to predict the PSNR value of the 

JPEG coded image. Furthermore, Ferzli et al. [78] did the psychophysical experiment 

to test the blurring tolerance ability of the HVS, based on which the just-noticeable blur 

(JNB) model is developed. These methods employ the behaviors of specific distortions 

to predict the degradation level. Therefore, if a new distortion is introduced, these 

methods can hardly evaluate the perceptual quality of the distorted image. In order to 

compromise between the FR and NR PQAs, RR PQAs are developed. It is expected 

that the RR methods can effectively evaluate the image perceptual quality based on a 

limited number of features extracted from the reference image. Only a small number of 

bits is required for representing the extracted features, which can be efficiently encoded 

and transmitted for the quality analysis. Consequently, it will be very useful for the 
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quality monitoring during the image transmission and communication. The image 

perceptual quality can be easily analysed by referring to the extracted features from 

the reference image. Therefore, a better quality of user experience can be further 

provided for the consumers. 

RR quality metrics are the tradeoff between FR and NR PQAs. For designing an 

effective RR quality metric, we need to consider not only its performance but also its 

RR data rate for representing the extracted features. Firstly, the extracted features 

should be sensitive to a variety of image distortions and relevant to the HVS perception 

of the image quality. Secondly, the RR data rates should not be large, as the extracted 

features need to be embedded or transmitted to the receiver side for the quality analysis. 

For a larger RR data rate, one may include more information about the reference image. 

Then a good performance can be obtained. However, it will introduce a heavy burden 

to the RR feature transmission. The FR PQA can be regarded as an extreme case of 

RR PQA, with the RR data rate is the whole reference image. For a smaller RR data 

rate, only a little information of the reference image is available for quality analysis. 

Therefore, the performance is hard to be ensured. The NR PQA is another extreme 

case of RR PQA, with no information from the reference image. Therefore, how to 

balance the RR data rate and the performance is the essential for the RR quality 

metric development. VQ Model [80] is one of the best proponents of the VQEG FRTV 

Phase II tests [65]. For a video sequence, VQ Model generates seven distortion factors 

to measure the perceptual effects of a wide range of impairments, such as blurring, 

blockiness, jerky motion, noise and error blocks, etc. Viewed conceptually, VQ Model's 

distortion factors are all calculated in the same steps. Firstly, the video streams are 

divided into 3D Spatial-Temporal (S-T) sub-regions typically sized by 8 pixel x 8 lines 

X 0.2 second; then feature values are extracted from each of these 3D S-T regions 

by using statistics (mean, standard deviation, etc.) of the gradients obtained by a 

13-coefficient spatial filter, and these feature values are clipped to prevent them from 

measuring unperceivable distortions; finally these feature values are compared and their 

differences combined together for quality prediction. Three feature comparison methods 

used by VQ Model are Euclidean distance, ratio comparison, and log comparison. 
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1.3.3 Perceptual Subjective Quality Databases 

In order to evaluate the performances of the proposed PQAs, many subjective quality 

databases have been built, such as image databases [25]- [34], video databases [16]- [24]. 

Most of these databases are built according to the subjective test settings standardized 

in ITU-R BT.500-11 [5]. In this subsection, we will briefly introduced the major char-

acteristics of the databases, which are employed for the experimental validation in this 

thesis. In total, four image databases and one video databases are utilized, which are 

all subjective rated and publicly available. 

The LIVE image subjective quality database [25] includes 29 original 24-bits/pixel 

color images. Totally it consists of 982 images (779 distorted images and 203 reference 

images). Five types of distortions were introduced to obtain the distorted images: 1) 

JPEG2000 compression, 2) JPEG compression, 3) white Gaussian noise (WGN), 4) 

blurring, and 5) Rayleigh-distributed bit stream errors of a JP2K compressed stream 

or fast fading distortions (FF). Subjective quality scores for each image are available 

in the form of DMOS. The image resolution is either 768x512 or 512x768. 

The IRCCyN/IVC image subjective quality database [26] consists of 10 original 

color images with a resolution of 512x512 pixels from which 185 color distorted images 

have been generated, using 4 different processes: JPEG compression, JPEG2000 com-

pression, LAR coding, and blurring. Subjective evaluations have been performed in a 

normalized room with lighting conditions and display settings adjusted according to 

ITU-R BT.500-11 [5]. The viewing distance was set to six times the picture's height. A 

DSIS method, as illustrated in Section 1.2, has been used. Both distorted and original 

pictures were displayed sequentially. 

The MICT subjective quality database [27] contains 182 images of 768 x 512 pixels. 

14 were original images (24 bit/pixel RGB) in each group. The rest of the images 

were JPEG and JPEG2000 coded images (i.e., 84 compressed images for each type 

of distortion). Six quality scales and six compression ratios were respectively selected 

for the JPEG and JPEG2000 encoders. Subjective experiments were conducted in a 

normalized room with low lighting conditions and display settings adjusted according to 

ITU-R BT.500-11 [5]. The viewing distance was set to four times the picture's height. 

SS method (illustrated in Section 1.2) together with five-grade rating scales, as shown 

in Table 1.1, was used during the subjective experiments. The subjects were asked to 
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provide their opinions on the perceptual quality of the compressed images. 

In the A57 database [37], 3 original images of size 512x512 are distorted with 6 

types of distortions and 3 contrasts. These result in 54 distorted images (3 images x 6 

distortion types x 3 contrasts). The distortion types used are: 1) quantization of the 

LH subbands of a 5-level DWT of the image using the 9/7 filters, 2) additive WGN, 

3) baseline JPEG compression, 4) JPEG2000 compression, 5) JPEG2000 compression 

with the dynamic contrast-based quantization algorithm in which greater quantization 

is applied to the fine spatial scales relative to the coarse scales in an attempt to preserve 

global precedence, and 6) blurring. The subjective scores have been made available in 

the form of DMOS. 

The video database we used is the LIVE video subjective quality database [17] [18]. 

It contains 150 distorted videos (generated from 10 uncompressed reference videos of 

natural scenes) with spatial resolution being 768x432. The frame rate is either 25fps or 

50fps. The distorted videos have been obtained by using four distortion processes: (a) 

simulated transmission of H.264 compressed bit streams through error-prone wireless 

networks, (b) through error-prone internet protocol (IP) networks, (c) H.264 compres-

sion, and (d) MPEG-2 compression. Each video was assessed by 38 human subjects 

and the subjective scores have been made available as DMOS. Table 1.3 lists the major 

characteristics of the visual subjective quality metric used for validation in this thesis. 

Image Video 
Databases LIVE IRCCyN/IVC MICT A57 LIVE 

NOR 29 10 14 3 10 
NDT 5 4 2 6 4 
NOD 779 185 168 54 150 
RES 768x512 or 512x768 512x512 512x512 512x512 768x432 
SSF DMOS MOS MOS DMOS DMOS 

RNG (0-100) (1-5) (1-5) (0-1) (0-100) 

Table 1.3: Major characteristics of the visual subjective quality databases. NOR denotes the 
No. of the reference images/videos; NDT indicates the No. of the distortion types; NOD is 
the No. of the distorted images/videos; RES means the resolution of the images/videos; SSF 
indicates the subjective score format; and RNG indicates the range of the subjective scores of 
each database 
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1.3.4 Performance Evaluation 

To evaluate the performance of a visual quality metric, visual subjective quality databas-

es are employed, which are briefly introduced in Section 1.3.3. For each distorted visual 

signal, i.e., image or video, MOS or DMOS is assigned, which is obtained from subjec-

tive viewing tests which follow the standardized procedures as introduced in Section 

1.2. To evaluate the predictive performance of a visual quality metric, these subjective 

scores are used as the ground truths to be compared against the metric's quality pre-

dictions (objective quality scores). High correlation between the subjective scores and 

the objective scores indicates a good performance of the visual quality metric. 

Taking into account the non-linearity of the subjective scores introduced during 

the subjective tests, it is customary to perform a non-linear mapping on the objective 

scores before the correlation measurement. Following the existing work [72] [81], the 

following non-linear mapping function is used to map Xj to Vj: 

/ 1 \ 
Vj = 仇 x 0.5 ^ ― — — ^ ^ ： ^ + � x Xj + 饭 (1.1) 

j V 1 + exp(^2 x (x j -伪)）乂 j 

where Xj represents the objective quality score of the j-th distorted visual signal ob-

tained by the corresponding PQA, and Vj indicates the non-linearly mapped score. The 

fitting parameters ^2, , ^5} are determined by minimizing the sum of squared 

differences between the mapped objective scores Vj and the subjective scores, i.e., MOS 

and DMOS values. 

After the non-linear mapping, several performance measurements can be applied, 

such as the Linear Correlation Coefficient (LCC), the Root Mean Squared Error (RMSE), 

the Spearman Rank-Order Correlation Coefficients (SROCC), the Outlier Ratio (OR), 

etc. The mapped scores Vj and the subjective scores serve as their inputs. LCC between 

two data sets, X and Y, is defined as: 

LCC(X Y) — ^n=1 ( X i - x ) ( x i - y ) (1 2) 
( I , Y ) — VE 二 1 ( = - x 減 U y - y)2 ( 1 . 2 ) 

measures the correlation. x and y are the sample value, while x and y are the cor-

responding mean value. SROCC assesses how well the metric predicts the ordering of 

the distorted images, and can be defined as the LCC of the ranks of X and Y, which 
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is defined 

sRocc ( X , Y ) =
1 - n n ? ^ (工.

3
) 

where di is the difference between the i-th image's rank in subjective and the perceptual 

quality index. n denotes the total number of samples. RMSE between X and Y is 

calculated during the fitting process given by: 

RMSE(X, Y) 
4
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OR is defined as: 

OR = (1.5) 
n 

where noutHer is the number of predictions outside two standard deviations1 of the sub-

jective scores, and n is also the total number of samples. As can be observed from their 

definitions, larger LCC/SROCC or smaller RMSE/OR indicates better performance 

of the visual quality metric. The detailed information and comparison between these 

performance measurements can be found in [65] [81] [82]. 

1.4 Thesis Contributions 

As aforementioned, according to the availability of the reference signal, PQAs can be 

categorized into FR, RR, and NR methods. My work in this thesis focuses on the 

FR and RR PQAs, as well as their corresponding applications. Moreover, perceptual 

quality of the retargeted images are studied. The key contributions of this thesis are 

summarized into three parts, which are briefly introduced as follows. 

(I) FR quality assessment. The HVS properties are firstly studied, specifically, the 

visual horizontal effect (HE) to model the orientation sensitivity of the HVS per-

ception, the just-noticeable distortion (JND) over adaptive block-size transform 

(ABT) to depict the visual tolerance property, the visual saliency to characterize 

the HVS attention property to the visual signals. The HE is modelled by a sim-

ple cubic polynomial function, which can be easily incorporated with the recently 

developed IQAs, such as SSIM, VIF, and so on. Inspired by HVS HE property, 

"̂ The standard deviation indicates the variation of individual subjective ratings around the mean 
value. 
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a new image compression algorithm is developed by the super-resolution direct-

ed down-sampling (SRDDS). ABT-based JND is originally studied for capturing 

different HVS properties over different block-size discrete cosine transforms (D-

CT). Simple PQAs for image and video are developed, which are utilized for 

perceptual video coding. And motion trajectory is firstly considered to more ac-

curately depict the HVS saliency property, which are then utilized to improve the 

performances of different PQAs. 

(II) RR quality assessment. Statistics of the visual signals are studied, specifically the 

spatial statistics of image, and the spatio-temporal statistics of video sequences. 

For spatial statistics, the block-based DCT coefficients are firstly grouped into 

reorganized DCT (RDCT) subbands. The DCT statistics are characterized in the 

RDCT domain. The coefficient distribution in each domain are depicted by the 

generalized Gaussian density (GGD) function. The frequency variation is cap-

tured by the frequency ratio descriptor (FRD). The relationship between different 

RDCT subbands are measured by mutual information (MI). These statistics are 

believed to be sensitive to the distortion introduced in the spatial domain. As a 

result, they are sensitive to the visual signal degradation level and reliable for de-

picting the perceptual quality. As for the spatio-temporal statistics, the temporal 

relationship between adjacent frames needs to be characterized besides the spa-

tial FRD. The frame relationship is captured by the histogram of the difference 

image, which is also modelled by GGD. With the combination of spatial FRD and 

temporal GGD, the RR video quality assessment (VQA) for video sequences is 

developed, which is not only effective but also efficient. The RR features extract-

ed from both spatial and temporal aspects can be easily coded and transmitted 

to monitor the video quality during transmission process. 

(III) Retargeted image quality assessment. The perceptual quality of the retargeted 

image is studied through a large-scale subjective study of image retargeting qual-

ity, where an image regargeting subjective quality database is constructed. Each 

retargeted image in the database is viewed and subjectively rated by number-

s of viewers to generate the final MOS value for indicating its true perceptual 

quality. The built database is analysed from the perspectives of the retargeting 
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scale, the retargeting method, and the source image content. Moreover, sever-

al publicly available quality metrics for retargeted images are evaluated on the 

built database. The discussion on how to develop an effective quality metric 

for retargeted images are provided through a specific designed subjective testing 

process. 

1.5 Organization of the Thesis 

This thesis has been divided into 7 chapters as outlined as follows. Chapter 1 (this 

chapter) gives a brief introduction about the thesis, including the motivation and objec-

tives, subjective and objective quality assessment methodologies, thesis contributions, 

and organization. 

Chapter 2 discusses FR image quality assessment, where the HE and saliency prop-

erties of the HVS are depicted and modelled. Inspired by the developed FR IQA, a 

novel image compression algorithm is proposed via adaptive block-based SRDDS. 

Chapter 3 investigates FR PQA, where the JND property over ABT is modelled. 

ABT-based JND is utilized to develop a simple quality metric, which has been proved to 

be effective over the visual subjective quality databases. Finally, the developed metric 

is used for guiding the perceptual video coding. Also in this chapter, the visual saliency 

for the video sequences is studied by considering the motion trajectory. 

Chapter 4 describes our newly developed RR IQA method, where the coefficeint 

statistic of the RDCT subband is modelled and employed for quality assessment. Fur-

thermore, the MI between different RDCT subbands, and the FRD of the whole image 

are further employed to improve the performance of the RR image quality metric. 

Chapter 5 focuses on developing an RR VQA for the compressed video sequences. 

The spatio-temporal statistics are employed to depict the degradation level of the com-

pressed video sequence, which are proved to be highly related to the perceptual quality 

of the video sequences. 

In Chapter 6, an image retargeting subjective quality database is built, through 

a large-scale subjective testing process. The subjective responses on the retargeted 

image qualities are studied. And several quality metrics are employed to evaluate the 

retargeted image quality. New directions for deriving more accurate quality metric are 

further discussed. 
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Lastly, Chapter 7 closes the thesis with a summary of the main research work 

performed and directions for further studies. 

The Appendix provides the detailed information of the constructed image retarget-

ing subjective quality database. 
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Chapter 2 

Full Reference Image Quality Assessment 

2.1 Visual Horizontal Effect for Image Quality Assessment 

2.1.1 Introduction 

Full reference (FR) image quality metric plays a fundamental role for many image pro-

cessing applications, such as compression, watermarking, and etc. As aforementioned, 

MSE and the related PSNR are the most wildly employed quality metric for evaluating 

the perceptual quality of the visual signals. However, they do not correlate well with 

the HVS perception, because they just focus on the pixel value differences but ignore 

the image content and human perception property [41] [68]. In order to handle this 

problem, many image quality metrics have been proposed, which attempt to character-

ize the features that HVS may associate with loss of quality, such as blurring, blocking, 

and so on. The IQAs that embody this approach include structure similarity index (S-

SIM) [68] [69], and visual information fidelity (VIF) [72]. SSIM is derived by capturing 

the information loss of image structures, while VIF employs the mutual information 

between the original and test image to evaluate the image quality. In [83] , it has 

been demonstrated that SSIM and VIF have similar performances. And SSIM treats 

different oriented distortions and different located distortions equally. However, as the 

HVS perceives images with local varying saliencies [84], the pooling HVS feature [85] 

needs to be considered to evaluate the image quality. Also, the HVS horizontal effect 

(HE) property [86]- [89] of natural scenes has been researched for modeling the visual 

sensitivities of different distortions over image contents with different orientations, in 

comparison with the HVS oblique effect property for the simple patterns, such as iso-

lated gratings [87]. Therefore, the HVS HE property needs to be taken into account 

when evaluating the image quality. In this chapter, the HVS properties over structural 

distortions are considered to improve the IQA performance. Firstly, SSIM is employed 

27 
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to obtain the structural distortion map. Secondly, the distortion map is refined by 

the HVS orientation sensitivity modeled by the HE. Finally, the image quality index is 

obtained by a saliency pooling strategy over the distortion map. 

The reminder of this chapter is organized as follows. Section 2.1.2 introduces the 

proposed FR IQA, including the visual HE modeling and saliency pooling. Its perfor-

mance is evaluated and compared with other representative FR IQAs in Section 2.1.3. 

A summary is given in Section 2.1.4. 

2.1.2 Proposed Image Quality Assessment Framework 

Structure Similarity Index 

SSIM is based on the assumption that the HVS is highly adapted to extract struc-

tural information from the viewing field. Three types of similarity together consti-

tute the SSIM, which are luminance similarity l(I(i, j ) , T(i,j)), contrast similarity 

c(I(i, j ) , T(i , j ) ) , and structure similarity s(I(i, j), T(i,j)): 

SD( i , j ) = [l(I(i,j), T(i,j ))]a • [c(I(i,j), T(i,j))]" • [s(I(i,j), T(i,j ))]Y (2.1) 

where I and T denotes the original and distorted images, respectively. (i, j) is the pixel 

location. SD is the obtained structural distortion map after performing SSIM. a > 0, 

^ > 0, and Y > 0 are parameters used to adjust the relative importance of the three 

components. The three components of Eq. (2.1) are relatively independent of each 

other. In other words, the value change of one component does not necessarily mean 

that the value of the other components must change accordingly. This is one of the 

good properties of SSIM, which makes the use of a, (3 and Y to adjust the importance 

of the three components reasonable. The formula for l(I(i, j), T ( i , j)), c(I(i, j), T ( i , j)), 

and s(I(i,j), T(i,j)) are defined as follows: 

2购{i,j)^T (i,j) + C 1 
l (I ( i , j ) , T ( i , j ) ) 

c(I( i , j ) , T ( i , j ) ) 

而 j ) + 冉(i,j) + C i 

2 哪 , j )即( i , j ) + C 2 

(2.2) 

2 2 " (2.3) 

s(I(i,j) , T ( i , j ) ) = ” j ( i j ) ++CC (2.4) 

(i,j)叶(i ,j) + C3 
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(a) (b) 

(c) (d) 

Figure 2.1: Four reference images from the LIVE image database [25] for training the visual 
HE model. (a): bikes; (b): buildings; (c): parrots; (d): sailing1. 

where (ij) and 时(ij are the block means centered at (i,j) of the reference and dis-

torted image, respectively; aj(ij) and 叶 ( i j ) are the variances of the blocks; aj(i,j)T(ij) 

is the covariance of the two blocks describing their structure similarity; Ci, 62，and 

C3 are small constants to avoid instability when the denominator is very close to zero. 

The classic SSIM [68] [69], or namely the mean SSIM, takes the average of the quality 

map as the overall score to predict the image visual quality. 

Visual Horizontal Effect Modeling 

According to Hansen et al.'s researches on human vision, [86]- [89], the oblique content 

s perceived to be the best, whereas the horizontal content is the worst for natural 

mages; also the oblique stimuli are perceived to be the best in naturalistic broad-band 

stimuli. The phenomenon is known as HE. Hence, we want to model the visual HE 

sensitivity, which the HVS may associate with the image quality. 
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Figure 2.2: Orientation information of the reference image and their distorted version. (a): 
content orientation distribution (x-axis: content orientation; y-axis: pixel number probability). 
(b): content and stimulus orientation joint distribution (x-axis: (content orientation, stimulus 
orientation) pair; y-axis: pixel number probability). 

In order to model the visual HE sensitivity, first we need to obtain the orienta-

tion and energy information for both the content and stimulus. In our approach, the 

reference image is regarded as the original content, while the difference between the 

test and reference images is denoted as the stimulus superposed onto the content. As 

we all know, the kernels of Gabor filters are similar to the 2D receptive field profiles 

of the mammal cortical simple cells, which exhibit desirable characteristics of spa-

tial locality and orientation selectivity [90]. Therefore, different oriented Gabor filters 

are employed to filter the original content and stimulus to generate different oriented 

responses. According to the maximum response, the orientation and energy are de-

termined for depicting the local features of the visual inputs. However, in some local 

smooth regions, all the filtering responses may appear very small, which are regarded 

as isotropic for its weak influences over all the orientations. 

Four representative images and their distorted versions from the LIVE image database 

[25] are selected to train the visual HE sensitivities over the image structural distortion-

s. The four original images are illustrated in Figure 2.1. The orientation information 

of the images and their distorted versions are shown in Figure 2.2. It can be observed 

that certain oriented contents dominate each selected image, such as: the isotropic con-

tents dominate PARROTS; 135 degree and horizontal contents dominate BIKES and 

so on. Moreover, we can see that different oriented stimuli are superposed onto differ-

ent oriented contents with different probabilities. Therefore, we can employ the four 

representative images (with different dominant oriented contents) and their distorted 
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Figure 2.3: HE sensitivity values of different orientated stimuli ovrei^ different coi^teent bias (each 
color represents a biased contentitb and the horizontal axis indicates the stimulus orientation). 

versions (with different oriented stimuli) to train the visual HE sensitivities. During 

the training process, the following three aspects should be considered. 

(I) The content orientation is isotropic. The stimuli presented in these regions are 

easy for HVS perception, which is modeled by contrast masking in JND models 

[46]. Therefore, HVS is highly sensitive to this type of content. 

(II) The stimulus orientation is the same as the content orientation. It can be viewed 

as a signal enhancement rather than distortion. Therefore, the lower HVS sensi-

tivity is expected and the distortion is difficult to detect. 

(III) The stimulus orientation is perpendicular to the content orientation. The HVS 

is extremely sensitive and the distortion is very easy to perceive. 

The initial HE sensitivity values in [87] are first slightly modified (increased or 

decreased) by referring to the afore-mentioned three aspects. Based on the structural 

distortion map SD, if the HE refined SSIM values correlate better with the subjective D-

ifferential Mean Opinion Score (DMOS) values, which are provided by the database [25], 

the HE sensitivity values are tuned by following the same direction. Otherwise, the HE 

sensitivity values are tuned by following the opposite direction. After several iterations, 

the optimized HE sensitivity values are obtained. The optimized HE sensitivity values 

of 4 dominant oriented stimuli over 5 prevailing biased contents are indicated by the 

spots in Figure 2.3. Based on these sensitivity values, the cubic polynomial functions 

are fitted to model the sensitivities of oriented stimuli over the same content, illustrat-

ed by the curves in Figure 2.3. For the isotropic biased content, the visual sensitivity 

values are much larger than the other biased contents, which match the HVS contrast 
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masking properties. For the isotropic and horizontal biased contents, the visual sen-

sitivity values of oblique orientations (45 and 135 degree) are higher than that of the 

vertical direction, while the horizontal sensitivity value appears the smallest, which 

matches the experimental results of HE. As for the 45 and 135 degree biased contents, 

sensitivity values of the orientations around its perpendicular direction are the largest, 

whereas the sensitivity value of the same orientation appears to be the smallest, which 

matches the aforementioned aspects. For the vertical biased content, the largest sensi-

tivity value appears around 45 degree according to the HVS HE property and around 

0 degree for the perpendicular property. Therefore, the HVS appears to be the most 

sensitive between 0 and 45 degrees by considering the HVS properties together. The 

cubic polynomial function for depicting the visual HE sensitivities of orientated stimuli 

over different oriented contents is expressed as: 

SHE = 州 , O s ) = ae!昭 + be! 0�+ c î Os + de! (2.5) 

where ^ is the HE sensitivity function illustrated in Figure 2.3, Oj and 0 � d e n o t e the 

orientation information of the content and stimulus, respectively, which are determined 

by the maximum responses of the oriented Gabor filters. ae!, be!, ce!, and de! are the 

parameters which relate to the content orientation Oj. Furthermore, the higher the 

stimulus energy, the worse is the visual quality of the test image. Therefore, a relation-

ship between stimulus energy and image perceptual quality should be considered. A 

stimulus energy adaptation factor asE is used to refine the structural distortion value, 

which is defined as: 

asE = P i • erf (p2 • Es(i, j ) + Ps ) + P4 (2.6) 

where Es is the stimulus energy obtained from the Gabor filtering results, erf is the 

error function, pi=-0.175, p2=0.35, ps=-2.5, and p4=0.825 are set empirically for ad-

justing the stimulus energy adaptation factor. Then the refined structural distortion 

map SMr is obtained by: 

SM (i j) S D ( i , j ) • asE(i,j) (2 7) 
S M r ( i , j ) = SHE (Oj ( i , j ) ,0s ( i , j ) ) ( 2 . 7 ) 

Moreover, as we have mentioned before, when all the responses of Gabor filtering 

appear very small, the regions should be regarded as isotropic. It means that the signal 



§ 2.1.2. Proposed Image Quality Assessment Framework 33 

has no inclined orientations. For the stimulus, it means that the distortion obtained 

is spread over all the orientations. As the stimulus energy is very small, it will have 

little effect on the image perceptual quality, which can be modeled by JND [46]. In 

this case, the HE sensitivity and stimulus energy adaptation factor should not be taken 

into consideration. Therefore, a signal-dependent JND model for the stimulus should 

be considered by neglecting the influence of the invisible distortion, the magnitude of 

which is smaller than a threshold Thr. However, according to our experiments, the 

performance will not be obviously affected as the threshold varies. Thereby, Thr is 

simply set as 2.2. 

Saliency Pooling Strategy 

As HVS processes local regions of images with different visual acuities, artifacts that 

are present in the attended regions are better perceived than those present in the 

non-attended areas, which means that the observer's assessment of image quality is 

prejudiced by the perceived structural distortions in salient regions. Therefore, a rela-

tive measure of the importance of different regions, indicated by a saliency map, plays 

an important role in evaluating the image quality. In this study, we employ the spectral 

residual model [84] to detect the saliency. 

Given an image I, Fourier Transform (FT) ^ is firstly applied to obtain the amplitude 

spectrum A(f) and phase spectrum P(f). The log-spectrum representation of an image 

is defined as: 

L(f) = log(A(f)) (2.8) 

The spectral residual R(f) can be generated based on L(f) according to: 

R ( f ) = L ( f ) 一 La(f) (2.9) 

where La(f) denotes the averaged spectrum, which is derived by convolving the log-

spectrum L(f) with an averaging filter. And it is claimed that the spectral residual 

contains some important information of an image related to the HVS perception [84]. 

The primary non-trivial part of the scene is constructed by inverse FT ^ - 1 , which 

could be interpreted as the unexpected portion of the image. The unexpected portion 

represents the saliency map SAM in spatial domain, which indicates the different visual 
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importances of different locations: 

SAm = IC-1(exp(R(f)+ jP (f )))|2 (2.10) 

Based on S A M , a saliency pooling strategy is proposed to generate the visual quality 

index (VQI) for evaluating the image perceptual quality: 

VQI E S A M • SMr 
“ E S A M “ 

(2.11) 

2.1.3 Experimental Results 

The performance of the VQI is compared with other methods, i.e., PSNR, SSIM [68] 

[69], and VIF [72]. The IQA methods are evaluated on the LIVE [25] and A57 databas-

es [37], which comprise the most prevailing distortions. The distorted images, excluding 

the ones generated from the 4 training images, are used for evaluating the IQA perfor-

mances. The detailed information about the image database can be referred to Section 

1.3.3. Also as introduced in Section 1.3.4, three statistical measurements are employed 

to evaluate the corresponding performances, specifically the LCC, SROCC, and RMSE. 

detailed information of each measurement can be found in Section 1.3.4. 

LIVE A57 
LCC SROCC RMSE LCC SROCC RMSE 

PSNR 0.891 0.897 12.425 0.644 0.570 0.192 
SSIM 0.914 0.922 11.060 0.415 0.407 0.224 
LDW-SSIM 0.915 0.919 11.051 0.545 0.495 0.206 
ICW-SSIM 0.936 0.942 9.641 0.518 0.455 0.210 
SMW-SSIM 0.947 0.953 8.769 0.607 0.557 0.195 
VIF 0.961 0.966 7.523 0.614 0.622 0.194 
VQI 0.966 0.971 7.057 0.848 0.857 0.130 

Table 2.1: Performance Comparisons of different IQAs on the LIVE and A57 image subjective 
quality databases 

We compare the performance of VQI with PSNR, SSIM [68] [69], LDW-SSIM (local 

distortion weighted SSIM) [91], ICW-SSIM (information content weighted SSIM) [92], 

SMW-SSIM (smooth region weighted SSIM) [93], and VIF [72]. The results are listed 

in Table 2.1. The performance of our proposed scheme outperforms the other IQAs on 

the provided two databases with larger SROCC and LCC, and smaller RMSE, which 
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means that our method demonstrates better performance across a wide range of im-

age distortions. The reason is that the SSIM methods just employ different weights 

for different locations of the image. However, they do not account for the orientation 

sensitivity and saliency property of HVS. VIF employ the steerable pyramid to decom-

pose the test image, which extracts the image features at different scales and different 

orientations. In this way, HVS orientation and saliency properties are included. That 

is why it can outperform the other IQAs. However, our method can more accurately 

model the HVS orientation and saliency sensitivities over structural distortions, which 

outperforms VIF. The scatter-plots of different IQAs are shown in Figure 2.4. It can 

be observed that the results of our proposed method scatter more closely around the 

fitted line than other IQAs, which indicates a better performance. Furthermore, it 

can be observed that VIF performs well on LIVE, but poorly on A57 database. The 

reason may be that the distortion model embodied in VIF cannot efficiently simulate 

the two new distortion types in A57, which are (a) quantization of the LH subbands of 

the image with equal distortion contrast at each scale; (b) JPEG 2000 with dynamic 

contrast-based quantization compression [37]. However, as the proposed method mod-

els the HE and saliency properties of the HVS, it can efficiently capture the distortions 

in the image which are sensitive to the HVS, no matter what the distortion type is. 

That is why the proposed metric performs well on both the two databases. 

Moreover, we demonstrate the efficiency of each phase (i.e., HE sensitivity and 

saliency pooling) of our proposed scheme individually by evaluating its performance 

on the LIVE database. The results are illustrated in Table 2.2. Both the strategies 

improve the IQA performance. However, the saliency pooling strategy performs better 

than the HE sensitivity. Intuitively, the results are in accordance with the human per-

ception of a visual input. While perceiving an image, we mainly focus on its interesting 

or salient portion. If the part appears really interesting and attractive, we will examine 

it more carefully. Therefore, the saliency pooling is important for image quality assess-

ment. However, the visual HE sensitivity appears to play a lesser but nevertheless an 

important role in image quality assessment. 
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Figure 2.4: Scatter plots of the DMOS values versus model predictions on the LIVE database. 
Each sample point represents one test image. (a): PSNR; (b): VIF; (c): SSIM; (d): the 
proposed method). 

Table 2.2: Performance of each phase of the proposed scheme on the LIVE image subjective 
quality database 

2.1.4 Conclusion 

In this section, an image quality assessment method is proposed by considering the 

visual HE sensitivity and saliency properties. The SSIM structural distortion map is 

refined by the visual HE model. The image quality index is generated by saliently 

pooling on the refined structural distortion map. Experimental results demonstrate 

LCC SROCC RMSE 
HE Senstivity 0.9331 0.9405 9.820 
Saliency Pooling 0.9443 0.9495 8.990 
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that the proposed scheme outperforms the other IQAs. 

2.2 Image Compression via Adaptive Block-Based Super-Resolution Di-
rected Down-Sampling 

2.2.1 Introduction 

With the development of the imaging technology, more and more images with high 

qualities and large spatial resolutions are provided to satisfy people's visual experiences. 

However, it issues a great challenge to image transmission and storage. Therefore, a 

more efficient image compression scheme is highly desired, which can ensure a higher 

image quality with a smaller number of bits for image representation. 

Based on the fact that most images can be obtained via interpolation from sparse 

pixel data yielded by a signal-sensor camera [94], and natural images exhibit high spatial 

correlations between neighboring pixels [95], many interpolation-based image coding 

methods [96]- [100] have been proposed. In [98], 2x2 average operator is employed for 

decimation before JPEG compression. A replication filter and a Gaussian filter are used 

for restoring the image from the decimated one. The theoretical down-sampling model 

was studied and compared in [99]. Tsaig et al. [100] proposed to code the filter param-

eters as the side information for better reconstruction at the decoder side. In [96] [97], 

the authors suggest coding the down-sampled low-resolution image during encoding 

and recovering the high frequency components during decoding by interpolating the 

compact image representation generated by sparse sampling in the spatial domain. Al-

though the predominated smooth regions of an image can be satisfactorily recovered by 

interpolation, the reconstruction of high frequency components of the edge and texture 

regions still remains a great challenge. In order to overcome the problem, Wu et al. [101] 

employed the piecewise autoregressive model to handle the large phase errors during 

the interpolation of the image edges. However, there is a heavy computation burden 

at the decoder side due to the optimal block estimation problem driven by the autore-

gressive model. Moreover, Lin et al. [95] proposed a new image coding method based 

on the adaptive decision of appropriate down-sampling directions/ratios and quantiza-

tion steps to achieve higher coding quality. The method tries to avoid down-sampling 

a macroblock (MB) along the direction of high spatial variations, which signals the 

existence of edges and other image features with great impact on the perceptual visual 
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quality. In [95], the down-sampled pixels are obtained by averaging the neighboring 

pixels of the original resolution image. Although it can somewhat reduce the aliasing 

artifacts introduced by direct sampling, the blurring artifacts will be introduced. Also 

as the down-sampling process is independent of the following super-resolution process, 

the reconstruction errors between the original and the restored MB cannot be ensured 

to be the smallest. More recently, the JPEG2000 [102] and H.264/AVC [103] have been 

developed for achieving higher compression performances for images. 

In order to tackle the aforementioned problems and inspired by the proposed FR 

IQA in Section 2.1, we propose a novel perceptual image coding scheme via adaptive 

block-based super-resolution directed down-sampling (SRDDS). For each MB of a given 

image, whether down-sampling or not depends on the contents of the visual signal itself, 

which will be determined by the rate distortion optimization (RDO) process [104]. 

And the joint method of down-sampling and super-resolution is proposed to minimize 

the reconstruction errors between the original and the restored MB inferred by the 

super-resolution method from the down-sampled block. At the decoder side, the super-

resolution method performed in DCT domain is employed to recover the full-resolution 

MB for its simplicity. This section is organized as follows. Section 2.2.2 will introduce 

the proposed perceptual image compression framework, as well as the super-resolution 

method and super-resolution directed down-sampling process. Experimental results in 

Section 2.2.3 will demonstrate the coding efficiency of the proposed method. Finally, 

Section 2.2.4 concludes the part of this work. 

2.2.2 The Proposed Image Compression Framework 

The framework of our proposed method is illustrated in Figure 2.5. For each 16x16 

MB of a given image, two candidate coding modes are provided. One is the traditional 

JPEG coding mode. The MB is divided into four 8x8 sub-blocks, each of which is 

processed by transformation, quantization, de-quantization, and the inverse transfor-

mation. The other one is the proposed super-resolution directed down-sampling (S-

RDDS) mode. Firstly, an 8x 8 low-resolution sub-block is obtained by down-sampling 

the full-resolution 16x16 MB according to the proposed SRDDS. Secondly, the 8x8 

sub-block is transformed and quantized (the quantization parameter (QP) parameter 
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Figure 2.5: Proposed image compression framework 

is set as half of the one used in the JPEG mode). Then after de-quantization, the cor-

responding super-resolution method processed in DCT domain is performed together 

with the inverse transformation. Finally, the RDO process will determine which mode 

is employed to process the MB. The detailed information of the super-resolution in 

DCT domain and the SRDDS will be introduced in the following sections. 

The proposed method differs with the schemes presented in the prior literatures [95]-

[97] [101] [105] [106]. Although the image compression approaches in [96] [97] [101] [105] 

[106] also employ the interpolation oriented adaptive down-sampling, they are designed 

to down-sample the whole original image for coding and try to recover the full-resolution 

image during the decoding process, which makes that the higher frequency components 

of the local texture and edge regions cannot be faithfully restored. Lin et al. presented 

an adaptive block-based down-sampling method in [95]. Three down-sampling modes 

with four different QP settings are employed, which results in high complexity of the 

encoder. Our experimental results reveal that only one mode is sufficient to improve the 

coding efficiency. Therefore, some down-sampling modes in [95] are not necessary, which 

just introduce the overhead information for the coded image. Also the down-sampling 

process in [95] is not optimized that cannot ensure higher quality reconstructed MBs. 

Super-Resolution in DCT Domain 

In order to reduce the computation complexity for the decoding process, the super-

resolution performed in DCT domain [107] [108] is employed for generating the full-

resolution MB from the down-sampled low-resolution sub-block. 

In the decoding process, the de-quantization process results in N x N DCT coef-

ficients CoefNxN (N is equal to 8). The DCT coefficients are firstly extended into 
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2N x 2N by inserting the remained positions of the 2N x 2N matrix Coef2NX2N with 

0, which is defined as: 

C oef2N x2N 
CoefN xN 0N xN 

0N N 0N N 
(2.12) 

where 0NXN is N x N zeros matrix. Then the inverse DCT is applied Coef2Nx2N to 

reconstruct the full-resolution MB by: 

P2Nx2N = ^TNx2N x (Coef2Nx2N) x D2Nx2N ( 2 . 1 3 ) 

where P2Nx2N is the full-resolution MB obtained from the super-resolution method, 

D2Nx2N denotes the DCT kernel for 2N samples the superscript T denotes the tanspose 

of the matrix. Therefore, Eq. 2.13 can be further expressed as: 

2N 1 2N 1 

P2Nx2N (m, n) = ^ ^ apaq • Coef (p, q) • cos 
n(2m + 1)p \ / n(2n + 1)q 

4N M 4N 

where 0 < m < 2N - 1, 0 < n < 2N - 1, (2.14) 

a A 
1/V2N, A = 0 

\ 1 / V n , 1 < A < 2N - 1 

and A represents p or q. For the super-resolution method in DCT domain, the full-

resolution MB can be reconstructed during the inverse transformation, which can sig-

nificantly reduce the complexity of the decoder. Moreover, a fast algorithm of the 

super-resolution method is presented in [107], which only requires 3.1874 multiplica-

tions for each pixel. 

Proposed Super-Resolution Directed Down-Sampling (SRDDS) 

As aforementioned, the decoder employs the simple super-resolution method performed 

in DCT domain for up-sampling the low-resolution sub-block to the full-resolution MB. 

Therefore, in order to minimize the reconstruction error, an optimized low-resolution 

sub-block needs to be generated from the original block by considering the super-

resolution process. It can be formulated as: 

bNxN = a r g m i n b {|| B2Nx2N = SR(hNxN) (2.15) 
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where SR(bNXN) is the enlarged 2N x 2N block by the super-resolution method p-

resented in previous sub-section, B2NX2N is the original full resolution 2N x 2N MB. 

The solution of Eq. 2.15 is the optimized down-sampled low-resolution sub-block bNXN, 

which yields the smallest reconstruction error. 

The super-resolution process in Eq. 2.13 can be expressed as: 

P2NX 2N = D ‘ 2Nx 2N X 
CoefN XN 0N XN 

ONXN ONXN 
X D2NX 2N 

D2NX 2N X X D2NX 2N (2.16) 
DNXN X bNXN X D^NXN 0NXN 

0NXN 0NXN 

= ( D N X N x DNX2N)2 x b N X N x (DNXN x DNX2N) 

= V 2 N X N x bNXN X HNX2N 

where DNXN denotes the DCT kernel for N samples, DNX2N represents the upper 

most N rows of D2NXN, V2NXN and HNX2N indicate the vertical and horizontal super-

resolution kernels, respectively. And the transpose relationship between their kernels 

reflects V^^NXN = HNX2N. The vertical super-resolution kernel is defined as: 

N-

V2NXN(m, n) = ^ au • cos 
n(2m + 1)fc� 

4N . ]cos 
n(2n + 1)fc 
^ 2 N ^ 

where 0 < m < 2N - 1,0 < n < N - 1, (2.17) 

ak 
1/N, k = 0 

2/N, 1 < k < 2N - 1 

Therefore, the super-resolution process in Eq. 2.13 in DCT domain can be further 

interpreted as the corresponding up-sampling in spatial domain, as shown in Eq. 2.16. 

Then the up-sampling can be implemented separately by multiplying the vertical kernel 

followed by multiplying the horizontal kernel. In the following, V2NXN and HNX2N are 

denoted as V and H, respectively, for simplicity. The Frobenius norm of the matrix 

A, with ai,j as its component, is employed as the objective function, which is defined 

according to: 

II A 11/=='( Q Q II a 幻 112 (2.18) 
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where bv, bv, and Bv are vectors obtained from the corresponding matrices, and � 

is the Kronecker product between two matrices. The optimized bv can be obtained 

according to: 

bv = (MT M ) - 1 M T Bv (2.20) 

where M = (V � HT). Then after inverse vectorization, the optimized low-resolution 

sub-block b can be obtained. The sub-block b will be processed by transformation, 

quantization. Finally the RDO process [104] will determine whether the MB is coded 

by the traditional JPEG mode or the SRDDS mode. Therefore, 1-bit flag for each MB 

is encoded and transmitted to indicate which mode is employed. 

2.2.3 Experimental Results 

In order to demonstrate the coding efficiency of the proposed scheme, four typical 

grey scale images are employed for experiments: Lena (512x512), Goldhill (512x512), 

Foreman (352x288), and Kodim23 (768x512) [109]. The baseline JPEG coding method 

and the down-sampling based image coding scheme [95] are compared with the proposed 

method. 

The images are coded by different coding schemes, with the bit rates ranging from 

0.1 bpp to 0.7 bpp. The objective quality of the coded image is evaluated by PSNR. 

The higher the PSNR, the smaller the difference between the reconstructed image and 

the original one. Detailed information of PSNR comparisons is illustrated in Figure 

2.6. From the results, it can be observed that the PSNR of the image inferred from 

our method is significantly higher than the baseline JPEG coded image and the image 

coded by [95], especially at the low bit-rates. Furthermore, the method by [95] degrades 

the performance at high bit-rates. The reason is that it employs three down-sampling 

methods and four QP settings, which results in too many overhead bits to be en-coded 

and transmitted. 

Furthermore, in order to demonstrate the perceptual gain of our proposed method, 
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Then the optimized low-resolution sub-block b from the full-resolution MB B can be 

obtained by the minimization problem: 

(2.19) HT )bv 
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(a) Lena (b) Kodim23 

(c) Foreman 

Figure 2.6: PSNR comparisons of the proposed scheme, baseline JPEG, and the method 
by [95] 

in Figure 2.7, we have illustrated some images decoded from the baseline JPEG method, 

and the proposed method, respectively. It can be observed that the baseline JPEG 

decodes images with severe blocking artifacts, which greatly degrades the visual quality. 

However, the pro-posed method reconstructs images with better visual quality. In order 

to further evaluate the image quality, SSIM [68] [69], which is believed to be more 

consistent to the HVS perception than PSNR, is employed to evaluate the perceptual 

quality of each reconstructed image. According to its definition, the larger the SSIM 

value, the better the visual quality of the image. As illustrated from the experimental 

results in Figure 2.7, our proposed method generates better visual quality images with 

higher SSIM values. 

Coding bit-rates (bpp) Coding bit-rates (bpp) 

§ 2.2.3. Exper imenta l Results 4 3 

1 5 ] 
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bpp=0.1315;PSNR=26.94dB;SSIM=0.7551 bpp=0.1308;PSNR=32.09dB;SSIM=0.8798 

bpp=0.2285;PSNR=27.78dB;SSIM=0.6564 bpp=0.2264;PSNR=29.02dB;SSIM=0.7498 

bpp=0.2122;PSNR=29.31dB;SSIM=0.7901 

Figure 2.7: Subjective quality comparisons. 
generated by the proposed scheme. 

bpp=0.2115;PSNR=31.33dB;SSIM=0.8497 

Left: baseline JPEG images; right: images 
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2.2.4 Conclusion 

A novel perceptual image coding scheme via adaptive block-based super-resolution 

directed down-sampling is proposed. The down-sampling method in the encoder is 

directed by the super-resolution method, which ensures the minimal reconstruction 

error. In the decoder, the super-resolution method is implemented in the DCT do-

main, which can be integrated with the inverse DCT transform process. Therefore, it 

can significantly reduce the computational complexity. The experimental results have 

demonstrated that our methods can improve the decoded image quality in terms of 

both objective and subjective measurements. For future works, the proposed SRDDS 

method will be implemented into JPEG2000 or even H.264 to achieve higher compres-

sion performances. 



Chapter 3 

Full Reference Video Quality Assessment 

3.1 Adaptive Block-size Transform based Just-Noticeable Difference Mod-
el for Visual Signals 

3.1.1 Introduction 

Just-noticeable difference (JND) accounts for the smallest detectable difference between 

a starting and a secondary level of a particular sensory stimulus in psychophysics [110], 

which is also known as the difference limen or differential threshold. JND model has 

given a promising way to model the properties of the Human Visual System (HVS) 

accurately and efficiently in many image/video processing research fields, such as per-

ceptual image/video compression [53] [111]- [114], image/video perceptual quality eval-

uation [58] [115]- [117] , watermarking [118] and so on. 

Generally automatic JND model for images can be determined in the spatial domain 

or the transform domain, such as DCT and Discrete Wavelet Transform (DWT), or the 

combination of the two schemes [119]. JND models generated in the spatial domain 

[120] [121], named as the pixel-based JND, mainly focus on the background luminance 

adaptation and the spatial contrast masking. In [113] [114], Yang et al. deduce the 

overlapping effect of luminance adaptation and spatial contrast masking to refine the 

JND model in [120]. However pixel-based JND models do not consider the human 

vision sensitivities of different frequency components. Therefore it cannot describe the 

HVS properties accurately. JND models generated in the transform domain, namely 

the subband-based JND, usually incorporate all the major effecting factors, such as 

Contrast Sensitivity Function (CSF), luminance adaptation and contrast masking. In 

[111], the JND model is developed from the spatial CSF. Then the DCTune JND 

model [53] is developed by considering the contrast masking. Hontsch et al. [112] 

modify the DCTune model by replacing a single pixel with a foveal region, and Zhang 
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et al. [122] refine the JND model by formulating the luminance adaptation adjustment 

and contrast masking. More recently, Wei et al. [124] incorporate new formulae of 

luminance adaptation, contrast masking and Gamma correction to estimate the JND 

threshold in the DCT domain. Zhang et al. [119] propose to estimate the JND profile 

by summing the effects in DCT and spatial domain together. 

In order to extend the JND profile from spatial to temporal, temporal characteristics 

of the HVS are considered. The previous works mostly focus on the perceptual differ-

ences between an original video sequence and its processed version [58] [117]. Actually, 

the temporal HVS properties are highly correlated with the video signals, and can be 

approximated by a computational model. In [120] [113] [114], an empirical function 

based on the luminance difference between adjacent frames is proposed to model the 

temporal masking property. In [125], Kelly proposes to measure the spatio-temporal 

CSF model at a constant retinal velocity, which is tuned to a particular spatial fre-

quency. Daly [126] refines the model by taking the retina movement compensation into 

consideration. Jia et al. [127] estimate the JND for video sequences by considering 

both the spatio-temporal CSF and eye movements. And Wei et al. [123] [124] take the 

directionality of the motion into consideration to generate the temporal modulation 

factor. 

However all the existing DCT-based JND models are calculated based on the 8x8 

DCT, which do not consider the perceptual properties of the HVS over transforms of 

different block sizes. Recently adaptive block-size transform (ABT) has attracted re-

searchers' attention for its coding efficiency in image and video compression [128]- [130]. 

It cannot only improve the coding efficiency but also provide subjective benefits, es-

pecially for high definition (HD) movie sequences from the viewpoint of subtle texture 

preservation [131] [132]. Specifically, transforms of larger blocks can better exploit the 

correlation within the block, while the smaller block size is more suitable for adapting to 

the local structures of the image [133]. Therefore by incorporating ABT into the JND, 

an adaptive JND model is obtained which can more precisely model the spatio-temporal 

HVS properties. Furthermore, since ABT has been adopted in current video coding 

standards, the ABT-based JND model for images/videos should be considered for ap-

plications such as video compression, image/video quality assessment, watermarking, 

and so on. 
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In this work, extension from 8x8 DCT-based JND to 16x16 DCT-based JND is 

performed by conducting a psychophysical experiment to parameterize the CSF for the 

16x16 DCT. For still images or the intra video frames, a new spatial selection strategy 

based on the spatial content similarity (SCS) is utilized to yield the JND map. For 

the inter video frames, a temporal selection strategy based on the motion characteristic 

similarity (MCS) is employed to determine the transform size for generating the JND 

map. The rest of the chapter is organized as follows. Section 3.1.2 briefly introduces 

the extension procedure from the 8x8 JND to 16x16 JND. The proposed spatial and 

temporal selection strategies are presented in Section 3.1.3. The experimental perfor-

mances are demonstrated and compared with the existing relevant models in Section 

3.1.4. Finally, Section 3.1.5 concludes the chapter. 

3.1.2 JND Model based on Transforms of Different Block Sizes 

JND model in the DCT domain is determined by a basic visibility threshold Tbasic, the 

spatial and temporal modulation factors [123]. It can be expressed as: 

T(k, m, n, i, j) — Ts_io(m, n, i, j ) x atempo(k, m, n, i , j) ( 3 .1 ) 

Tspatio('m, n, i, j) — Tbasic(i, j) x aium(m, n) x acm(m, n, i, j) (3.2) 

where k denotes the frame index of the video sequence, (m, n) is the position of DCT 

block in the current frame, (i, j ) indicates the DCT coefficient position, aium and 

acm, denoting the luminance adaptation and contrast masking, constitute the spatial 

modulation factor. The video JND model T is obtained by modulating spatial JND 

model Tspatio with the temporal modulation factor atempo. 

Extension From 8 x 8 to 16x16 DCT based JND 

Based on the band-pass property of the HVS in the spatial frequency domain, the HVS 

sensitivity characteristics are modeled in [134] [135] as: 

H(u) — (a + bu) • exp(-cu) (3.3) 

where u is the specified spatial frequency. JND is defined as the reciprocal of the HVS 

sensitivity characteristics given by Eq. 3.3. Hence the basic JND threshold can be 
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modeled as [124]: 
T ( i ,) = s exp(cWij)/(a + bUij) 

Tb-从、])-硕 Y + (1 - Y)cos2^j (
3
.

4
) 

where s — 0.25 denotes the summation effect factor, Y is set as 0.6,如 and 如 are the 

DCT normalization factors, and ^ij — aresin(2uioUoj) indicates the directional 

angle of the corresponding DCT subband .⑴ j is the spatial frequency of the (i, j ) 

subband. As claimed and verified in [130], 4x4 DCT does not contribute much to the 

efficiency of HD video coding. Since the proposed JND model aims at improving the 

performance of the perceptual HD video coding, only the 8x8 and 16x16 DCTs are 

considered to constitute the ABT-based JND model. 

In order to extend the 8x8 JND to 16x16, the DCT block dimension N is set to 16. 

And a psychophysical experiment is carried out to parameterize the three parameters a, 

b, and c in Eq. 3.4. For a 512x512 image, with all pixel intensities are set as 128, noises 

are injected into several selected 16x16 DCT subbands to decide whether it is visible. 

The following two aspects need to be considered for the DCT subbands selection. 

(i) The selected DCT subbands should cover the low, middle and high frequency 

components. We select at least one DCT subband located on each row and each 

column. Consequently, the selected spatial frequencies are uniformly distributed 

within the HVS sensitivity frequency range. 

(ii) At least one selected DCT subband should be located on each diagonal. There-

fore, the spatial frequencies with all directions are covered, with which the HVS 

directional sensitivities are taken into account. 

Furthermore, we consider the oblique effect [136], where human eyes are more sen-

sitive to the horizontal and vertical frequency components than the diagonal ones. The 

sensitivities of horizontal and vertical components appear to be nearly symmetrical. 

Consequently, only the DCT subbands of the upper-right portion (as shown in Figure 

3.1) are chosen by considering the two aforementioned aspects. For the selected DCT 

subbands, several amplitude levels of the noises are pre-defined. The initial amplitude 

of the noise for each selected DCT subband is obtained by referring to the spatial CSF 

presented in [134] [135]. Then the noise amplitude is tuned into several levels, which 

make the noise rang from invisible to obviously visible based on the preliminary mea-

sure of the authors. During the tuning process, according to the CSF, larger magnitude 
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Figure 3.1: Selected 16x 16 DCT subbands for the psychophysical experiment (the shaded 
cells denote the selected DCT subbands) 

alternations of the noises are performed in the subbands with lower sensitivities. Also 

the oblique effect [136] results in lower HVS sensitivities for the subbands with larger 

directional angles. Therefore, the noise amplitude alternations in the subbands with 

larger directional angles should be larger. Then the noise, with its amplitude as one of 

the pre-defined levels, is inserted into the selected DCT subbands of the image. The o-

riginal image and the processed one (with noise insertion) are juxtaposed on the screen. 

Ten viewers vote on whether the noise is visible. If half of them choose "yes", the noise 

amplitude is recognized as above the JND threshold. A smaller amplitude noise will 

be inserted. Otherwise, a larger one will be chosen for injection. Finally, the obtained 

thresholds of the selected DCT subbands are employed to minimize the least squared 

error as given in Eq. 3.5 to parameterize (a, b, c): 

(a, b, c) = argmin E (T叫j - Ttasic(i, j ) ) (3.5) 

where T^j. is the JND threshold obtained from the psychophysical experiment. The 

above procedure yields the parameters, a = 0.183, b = 0.165, and c = 0.16 for the 

16x16 JND model. 

JND is influenced by the intensity scale of the digital image. It is reported that 

higher visibility threshold occurs in either dark or bright regions compared with the 

medium brightness regions. The luminance adaptation factor aium forms a U-shape 

2 
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curve [115] [122] [119] [137] [138]. Therefore, an empirical formula [124] is employed to 

depict the azum: 

alum 

(60 - /ave)/150+1, lave < 60 

1, 60 < lave < 170 ( 3 . 6 ) 

(lave - 170)/425 + 1, lave > 170 

where lave denotes the average intensity of the DCT block. 

For the contrast masking factor, a block-based method [113] [114] is utilized to ac-

curately describe the different masking properties of different block categories. These 

methods categorize the blocks into different block types according to the DCT subband 

energy [119] [122] [127] or image spatial characteristics [123] [124]. As in [124], we cat-

egorize the image block into three types, namely PLANE, EDGE, and TEXTURE, 

based on the proportion of the edge pixels in the 16x16 MB. The MB categorization 

is defined according to: 

Categi6 

PLANE, Y^ep < 16 

EDGE, 16 < YEP < 52 (3.7) 

TEXTURE, J2EP > 52 

where EEP denotes the number of edge pixels in a given MB. Considering the block 

category and the intra-band masking effect [122] [124] [119], the contrast masking factor 

acm for 16x16 JND is obtained. Detailed information about the contrast masking 

scheme can be found in [139]. 

For the temporal modulation factor atempo, Robson [140] has shown that the form 

of the sensitivity fall-off at high spatial frequencies is independent of the temporal 

frequency and vice versa, while a sensitivity fall-off at low spatial frequencies occurs only 

when the temporal frequency is also low and vice versa. In [123] [124], it demonstrates 

that the logarithms of the temporal contrast sensitivity values follow approximately the 

same slope (nearly -0.03) for different spatial frequencies. By further considering the 

band-pass characteristic at the lower spatial frequencies [125], the temporal modulation 
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Figure 3.2: Modeled HVS sensitivities over transforms of different block sizes by Eq. 3.4. (a): 
the HVS sensitivity over 8x8 DCT in [124]; (b): the HVS sensitivity over 16x16 DCT. 

factor is derived 

atempo 

1, Us < 5cpd and � t < 10Hz 

1 0 - 0 . 0 3 ( ^ t - i 0 ) , Us < 5cpd and 叫 > 10丑z 

1 0 - 0 . 0 3 ( ^ , ) , Us > 5cpd 

(3.8) 

where Us and Ut denote the spatial and temporal frequency, respectively. Us is deter-

mined by the transform size and the viewing distance, while Ut relies on both the spatial 

frequency Us and the motion information, which is approximated by the block-based 

motion estimation [123] [124]. 

Why introduce ABT into JND? 

The HVS sensitivities over transforms of different block sizes are illustrated in Figure 

3.2. Firstly, as explained before, the HVS sensitivities are constrained within a spa-

tial frequency range, which is approximately from 0 to 25 cpd. Therefore, the HVS 

sensitivities can be modeled more accurately by using a larger number of frequency 

bases. As shown in Figure 3.2, the HVS sensitivities for the 8x8 DCT are very sparse 

compared with the ones for the 16x16 DCT. The HVS sensitivity properties cannot be 

accurately modeled by only employing the 8x8 DCT based sensitivity function. Sec-

ondly, the HVS directional sensitivities need to be considered. From Figure 3.2, many 

points of the 16x16 sensitivities, which have nearly the same spatial frequency but dif-

ferent angle information, demonstrate different HVS sensitivities. The higher the angle 

0 
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information, the lower the HVS contrast sensitivities, which matches the HVS oblique 

effect [136]. However for the sensitivity values of 8x8, there are very few points with 

different angle information. It cannot accurately represent the HVS directional proper-

ties. Considering the two aforementioned aspects, the sensitivities of 16x16 can more 

accurately model the HVS properties. It can help to find more accurate parameters a, 

b, and c in Eq. 3.4 for depicting the HVS sensitivities. 

From the viewpoint of energy compaction, a larger block size transform takes ad-

vantage of exploiting the correlation within a block. On the other hand, the smaller 

one is more adaptive to the local structural changes. Therefore, transforms of different 

block sizes adapting to the image content play a very important role in image/video 

processing tasks, especially in image/video compression. And it has been claimed [141] 

that ABT can provide subjective benefits, especially for HD movie sequences from 

the viewpoint of subtle texture preservation, such as keeping film details and grain 

noises which are crucial to the subjective quality [142]. We believe that ABT-based 

JND model will make the HVS properties modeling more accurate, and benefit the 

perceptual-related image/video applications. 

As ABT has been adopted into the current video coding schemes such as H.264, it is 

therefore necessary to develop the ABT-based JND model. It can be easily incorporated 

into the current coding standards. In [113] [114] perceptual video coding schemes 

employing the 8x8 DCT JND have been proposed. With the proposed ABT-based 

JND model, a more efficient perceptual coding scheme can be developed. 

3.1.3 Selection Strategy Between Transforms of Different Block Sizes 

The formulations of the JND models for the 8x8 and 16x16 DCT transforms are 

described in the previous section. Decision method for the proper transform size, i.e., 

8x8 or 16x16, will be discussed in this section. 

Spatial Selection Strategy for Transforms of Different Block Sizes 

As the selection strategy is designed for each MB, the image is firstly divided into 16x16 

MBs. For each MB, two JND models based on 8x8 and 16x16 DCT are obtained. For 

the still images or intra video frames, where there is no motion information, we propose 

the spatial content similarity (SCS) to measure the image content homogeneity between 



Figure 3.3: Spatial selection results of Lena and Peppers. Left: the original image; right: 
spatial selection results in terms of block category and transform block size. 

an MB and its sub-blocks: 

SCS = ^(Catecgi6 三 Categl) (3.9) 

where CategiQ and Categ'i denotes the categories of the MB and the i-th 8x8 sub-block, 

respectively. SCS indicates the number of 8x8 sub-blocks with the same categorization 

as the MB which they belong to. If SCS is equal to 4, referring to the homogeneous 

content within the MB, the JND model based on 16x16 DCT will be utilized to yield 

the resulting JND model. On the contrary, if SCS is smaller than 4, the 8x8 JND model 

will be employed for adapting the local structures within the sub-blocks. The results 

of spatial selection strategy for Lena and Peppers are shown in Figure 3.3. Most of the 
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PLANE regions employ the 16x16 JND model, while the areas with local structure 

changes utilize 8x 8 JND model. The results are consistent with the energy compaction 

capabilities of the 8x8 and 16x16 DCTs. 

Temporal Selection Strategy for Transforms of Different Block Sizes 

For inter video frames, the JND model needs consider not only the spatial but also the 

temporal information. Therefore, we should include the temporal motion characteris-

tics, which are depicted by motion vectors of different size blocks. 

Based on the motion vectors of different size blocks, we propose a motion charac-

teristics similarity (MCS) to measure the motion consistency between a MB and its 

sub-blocks, which is expressed as: 

4 

MCS = ^ || Mv8 - M v i 6 ||22 / 4 (3.10) 
i=i 

where Mv\ denotes the motion vector of the i-th 8x8 sub-block, Mvi6 is the motion 

vector of the 16x16 MB, and || • ||2 denotes the Euclidean distance between the two 

motion vectors. Considering the spatial SCS and temporal MCS, we can make decision 

on which transform block size to use for the resulting JND. 

If the calculated MCS is smaller than a threshold, it is deemed that the motion 

characteristics of the MB and its corresponding sub-blocks are nearly the same. In this 

chapter, we empirically set the threshold as 1.25 pixels. When SCS is equal to 4 and 

MCS smaller than the threshold, the MB is considered to be a single unit. Therefore, 

16x16 DCT based JND is utilized to generate the JND model. On the other hand, if 

the MCS is larger than the threshold, indicating that motion vectors of the MB and its 

sub-blocks are quite different, the MB should be separated into 4 sub-blocks because 

of the smaller SCS and larger MCS. The 8x8 DCT based JND for each sub-block is 

then employed to obtain the resulting JND model. 

In order to further test the consistency between the spatial and temporal selection 

strategies, the hit ratio (HR) curve is used to demonstrate the hit rate for each inter 

video frame. Firstly, we record the MB JND types determined by the aforementioned 

spatial and temporal selection strategies, respectively. The hit rate h of each INTER 

frame measures the percentage of the MBs (as determined by the spatial and temporal 
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Figure 3.4: HR curves of the MBs for each inter frame of the test video sequences 

selection strategies) are identical. In this case, the transform of the same block size 

is selected for a macroblock to generate the resulting JND model. The HR curves for 

each INTER frame of several typical CIF (352x288) sequences are illustrated in Figure 

4. The hit rates h are high, corresponding to the fact that the proposed temporal se-

lection strategy accords well with the spatial selection strategy. The proposed selection 

strategy is efficient for depicting both spatial image content information and temporal 

video motion characteristics. Furthermore, the hit rates of Football and Foreman are 

a bit lower than the other sequences, with the average hit rate as 77%. The reason 

is that both sequences contain high motion characteristics. Therefore, the consistency 

between spatial and temporal characteristics tends to be low. On the other hand, as 

the motion appears slightly in the other sequences, the hit rate become much higher, 

with the average value as 93%. 

3.1.4 JND Model Evaluation 

In order to demonstrate the efficiency of the proposed ABT-based JND model, the 

noise is injected into each DCT coefficient of each image or video frame to evaluate the 

HVS error tolerance ability: 

Ityp(k, m, n, i, j ) = Ityp(k, m, n, i, j) + R • Ttyp(k, m, n, i, j ) (3.11) 
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where Ityp is the noise-contaminated DCT coefficient which is located on the (i, j ) - th 

position of the (m,n) — th block in the k — th frame. For still images, k is set as 0. R 

takes the value of +1 or -1 randomly to avoid introducing a fixed pattern of changes. 

Ityp is the JND threshold obtained by the proposed ABT-based scheme, and typ denotes 

the final transform block size to generate the resulting JND model. 

Evaluation on Images 

We tested the proposed JND model on several typical 512x512 images and 768x512 

Kodim images [109]. We compare the proposed method with Yang et al.'s method [113], 

which evaluated the JND in the image domain, and Wei et al.'s method [124] which 

calculates the JND in the DCT domain. Comparisons in terms of PSNR are listed 

in Table 3.1, which show that our proposed JND method yields smaller PSNR values 

compared with other JND models. Here if the image visual quality stays the same as 

the original one, it implies that our JND model can tolerate more distortions. 

Yang (dB) Wei (dB) Proposed JND (dB) 
Baboon 32.53 28.38 27.46 
Barbara 31.35 29.49 29.02 
Bridge 30.96 29.01 28.53 
Lena 32.72 29.97 29.51 
Peppers 30.78 29.99 29.66 
Kodim06 32.21 29.02 28.61 
Kodim08 31.21 29.11 28.73 
Kodim13 30.59 28.75 28.42 
Kodim14 30.00 29.41 29.14 
Kodim21 32.15 29.43 29.06 

Table 3.1: PSNR comparisons of different JND models 

In order to provide a more convincing evaluation of the proposed JND model, sub-

jective tests are conducted to assess the perceptual qualities of the noise-contaminated 

images. In the subjective test, two images were juxtaposed on the screen. One is 

the original image as the reference and the other is the distortion-inserted version, 

which is regarded as the SC method specified in Section 1.2. In this experiment, the 

viewing monitor is a Viewsonic professional series P225fb CRT display. The viewing 

distance is set as 4 times the image height. Ten observers (half of them are experts in 
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image processing and the other half are not) are asked to offer their opinions on the 

subjective quality of the images, by following the quality comparison scale shown in 

Table 1.2. Their average subjective values are calculated to indicate the image visual 

quality, which is illustrated in Table 3.2. Also the mean and variance values of the 

subjective scores are calculated. According to the quality comparison scale in Table 

1.1, the smaller the subjective scores, the better quality of the noise contaminated im-

ages. The proposed method has the smallest mean value (only 0.37), demonstrating 

the best performance. From the subjective results, Yang et al.'s method can generate 

higher quality images, such as Baboon, Kodim13, and Kodim14. These images exhibit 

more texture information. For the images with much plain or edge information, such as 

Peppers and Kodim21, the visual quality will degrade significantly. Our method gener-

ates smaller variance compared with the other methods, indicating that the proposed 

scheme performs more consistently over images of different types. The noise-inserted 

images generated by our method can be found in [143]. 

Yang Wei Proposed JND 
Baboon 0.5 0.2 0.2 
Barbara 1.2 0.4 0.5 
Bridge 0.7 0.3 0.3 
Lena 0.8 0.3 0.4 
Peppers 1.0 0.4 0.4 
Kodim06 1.0 0.6 0.4 
Kodim08 1.2 0.5 0.6 
Kodim13 0.4 0.4 0.3 
Kodim14 0.5 0.3 0.2 
Kodim21 1.5 0.6 0.4 
Average 0.88 0.40 0.37 
Variance 0.362 0.133 0.125 

Table 3.2: Subjective evaluation results. Left: noise-contaminated image by different JND 
model; right: the original image 

Evaluation on Videos 

The proposed JND model was evaluated on several typical CIF (352x288) video se-

quences, with a frame rate of 30fps. In our experiments, 250 frames of each sequence 

are tested, with the first frame as intra and the rest as inter frames. We also compare 
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the proposed method with Yang et al.,s [113], and Wei et al.'s JND models [124]. S-

ince we have evaluated the efficiency of ABT-based JND model for images, here only 

the average PSNR of the inter frames is calculated. Comparisons in terms of PNSR 

are listed in Table 3.3. It is observed that the proposed JND model yields smaller 

PSNR values compared with other JNDs. It shows that the ABT-based JND model 

can tolerate more distortions. 

Yang (dB) Wei (dB) Proposed JND (dB) 
Tempete 31.68 27.42 27.04 
Football 34.43 28.39 28.17 
Foreman 35.29 28.29 28.02 
Mobile 33.10 27.48 26.93 
Silence 34.43 28.26 27.93 
Table 36.37 27.81 27.33 
Stefan 35.20 27.83 27.38 
Paris 33.56 27.60 27.07 
Flower 35.57 27.18 26.80 
Waterfall 33.88 27.83 27.52 

Table 3.3: PSNR comparisons of different JND models 

The subjective test was conducted to further assess the perceptual quality of the 

noise-contaminated videos. DSCQS method, as specified in Section 1.2, is employed 

to evaluate the perceptual quality. Two sequences were presented to viewers, one of 

which is original and the other is processed. Ten viewers (half of them are experts in 

image/video processing and the other half are not) were asked to offer their opinions. 

Five-grade subjective rating scale as illustrated in Table 1.1 were employed by the 

viewers for the rating process. The difference between subjective scores of the original 

and noise-injected video sequence is calculated as the DMOS. Hence, the smaller the 

DMOS, the higher is the quality of the noise-contaminated video. The testing conditions 

are the same as the image evaluation process. Detailed subjective test results are 

depicted in Table 3.4. The mean DMOS value of the proposed scheme is 6.89, which 

is smaller than Yang et al.'s and Wei et al.'s methods. It reflects that our proposed 

method can generate similar quality videos with the original ones. Also it can be found 

that variance of the DMOS value is the smallest. Compared with the other methods, 

our approach delivers more consistent results for both the fast-moving video sequences, 
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e.g., Football and Stefan, and the slightly-moving video sequences, e.g., Silence and 

Paris. 

Yang Wei Proposed JND 
Tempete 7.3 6.6 6.4 
Football 7.6 6.2 5.6 
Foreman 13.2 9.2 8.3 
Mobile 9.7 7.0 7.1 
Silence 13.9 9.7 8.5 
Table 6.9 6.2 5.2 
Stefan 7.2 6.0 5.4 
Paris 14.2 9.4 9.2 
Flower 13.2 8.2 7.4 
Waterfall 6.5 5.6 5.8 
Average 9.97 7.41 6.89 
Variance 3.269 4.565 1.429 

Table 3.4: Subjective evaluation results. DMOS for noise-contaminated video sequences. 

3.1.5 Conclusion 

In this section, a novel ABT-based JND profile for visual signals is proposed by ex-

ploiting the HVS properties over different transform sizes. New selection strategies 

are proposed for each MB to decide which transform block-size is to be employed by 

considering not only spatial SCS but also temporal MCS. The developed JND profile 

can tolerate more distortions with the same visual quality compared with other JND 

models. 

3.2 Perceptual Quality Assessment 

Traditional error measures for images/videos, such as MSE and PSNR, do not correlate 

well with the HVS for evaluating the image/video perceptual quality [41] [68] [72] [80] 

[144] [145]. In this section, we design a very simple visual quality metric based on the 

proposed ABT-based JND model (introduced in Section 3.1, which is defined as: 

Difftyp(k,m,n,i,j) 
0, if D(k ,m,n , i , j ) < Ttyp(k,m,n,i, j) 

D(k, m, n, i, j ) - Ttyp(k, m, n, i, j ) otherwise 
(3.12) 

where D(k,m,n,i,j) = \ltyp(k,m,n,i,j) - liDyp(k,m,n,i,j) 
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Pdist(k,m,n,i,j ) = nyp D f ^ j ) (3.13) 

VQ = 1 0 l o g l 0 ( m e a n ( f c , m , n , i , j ) ( P L t ( f c , m , n , i j ) ) ) ( 3 . 1 4 ) 

where Ttyp is the ABT-based JND, typ denotes the transform block size for generating 

the JND, Ityp is the DCT coefficient of the reference image/frame, itDp denotes the 

DCT coefficient of the distorted image/frame, and Difftyp denotes the DCT coefficient 

difference between the reference image/frame and the distorted one by considering 

the HVS error tolerance ability. Since the JND denotes the threshold for detecting 

the perceptual difference (as demonstrated in Section 3.1.4), the distortions below the 

JND thresholds cannot be perceived by the human eyes. They need not be accounted in 

measuring the visual quality, where the visual difference is set as 0. In Eq. 3.12 above, 

only the distortions larger than the JND thresholds are calculated for measuring the 

visual quality. The adjustable parameter Ttyp is introduced according to the different 

energy compaction properties, which are determined by the coding gains of different 

block transforms. The coding gain [146] for the block transform is defined as: 

GTC = 10 log 10 
1 • N-1 一 

L i=o 
n N A i 2 

1 
N 

(3.15) 

where N is the number of the transform subbands, a^ is the variance of each subband 

i, for 0 < i < N - 1. Then Ttyp is defined according to: 

Ttyp 
Glc/G^Tc, typ is 16 x 16 

(3.16) 
1, typ is 8 x 8 

where GTC and GTC denote the coding gains of 8x8 and 16x16 DCT, respectively. 

After testing on the reference images of the LIVE subjective image quality database [25], 

the coding gain ratio appears to be nearly the same. Therefore, we simply set it as 

0.95. Pdist is the distortion masked by the proposed ABT-based JND model. The 

visual quality metric VQ is obtained by aggregating the Pdist of all the transform blocks 

in one frame. If we evaluate the visual quality metric of an image, only the spatial 

JND model is employed and k is set as 0. If the video quality is assessed, the proposed 

metric employs the spatio-temporal JND model. In our approach, the visual quality 

of each frame is measured individually. Hence the visual quality of the whole video 
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sequence is given by the mean quality value of all the frames. 

3.2.1 Experimental Results 

We have tested the performance of the proposed metric, as well as the state-of-the-art 

image quality metrics, such as SSIM [68] [69], VIF [72], and VSNR [144] over the LIVE 

[25], A57 [37], and IRCCyN/IVC [26] image subjective quality database. Table 1.3 lists 

some major characteristics of these image databases. They contain the most prevailing 

distortions, such as JPEG, JPEG 2000, blurring, additive Gaussian noise, and so on. 

Each distorted image in these subjective quality databases is assigned a subjective score, 

e.g., DMOS for LIVE image/video database, MOS for the IRCCyN/IVC database, 

and perceived distortion for the A57 database. These subjective scores were obtained 

from subjective viewing tests where many observers participated and provided their 

opinions on the visual quality of each distorted image. These subjective scores are 

regarded as the ground truths for evaluating the performances of different visual quality 

metrics. As introduced in Section 1.3.4, SROCC, LCC, and RMSE are employed to 

evaluate the performances, which are illustrated in Table 3.5. And the scatter-plots of 

different quality metrics are illustrated in Figure 3.5 and [143]. It can be observed that 

our proposed method scatter closely around the fitted curve, which indicates a good 

performance. 

Database PSNR SSIM VSNR VIF Proposed 

LIVE 
LCC 0.8716 0.904 0.637 0.956 0.933 

LIVE SROCC 0.8765 0.910 0.648 0.958 0.934 LIVE 
RMSE 13.392 11.68 21.13 7.99 9.881 

IRCCyN/IVC 
LCC 0.704 0.776 0.800 0.903 0.913 

IRCCyN/IVC SROCC 0.679 0.778 0.798 0.896 0.909 IRCCyN/IVC 
RMSE 0.866 0.769 0.731 0.524 0.498 

A57 
LCC 0.644 0.415 0.942 0.618 0.913 

A57 SROCC 0.570 0.407 0.936 0.622 0.901 A57 
RMSE 0.192 0.224 0.083 0.193 0.101 

Table 3.5: Performance Comparisons of different image quality metrics 

Furthermore, we tested the proposed visual quality metric on the LIVE video sub-

jective quality database [17], whose major characteristics are also listed in Table 1.3. 

The video subjective quality index is obtained by averaging the frame VQ scores, the 
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Figure 3.5: Scatter plots of the subjective values versus model prediction on the image sub-
jective databases. 

same as PSNR, SSIM, and VIF. And we also compared with the most popular video 

quality metrics VQ Model [80] and MOVIE [145]. As usual, after non-linear mapping, 

CC, SROCC and RMSE are employed for evaluating the performances, as shown in 

Table 3.6. It is observed that the proposed method outperforms other video quality 

metrics, while slightly inferior to MOVIE. The scatter-plots are provided in Figure 3.6 

and [143]. The results of our proposed method scatter closely around the fitted curve, 

indicating a good performance. 

Database PSNR SSIM VIF VQ Model MOVIE * Proposed 

LIVE 
LCC 0.5398 0.4999 0.5735 0.7160 0.8116 0.780 

LIVE SROCC 0.5234 0.5247 0.5564 0.7029 0.7890 0.761 LIVE 
RMSE 9.241 9.507 8.992 7.664 - 6.935 

Table 3.6: Performance Comparisons of different video quality metrics. (* LCC and SROCC 
value of MOVIE are obtained directly from [145], which does not provide the RMSE value.) 

A57 
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Figure 3.6: Scatter plots of the DMOS values versus model prediction on the LIVE video 
subjective quality database. 

3.2.2 Conclusion 

From the test results, our proposed visual quality metric performs comparably with the 

stat-of-the-art quality metrics. It clearly demonstrates that the proposed ABT-based 

JND model can incorporate the HVS properties into the context of perceptual quality 

assessment. It is found that SSIM and VIF perform very well on image quality evalu-

ation. But they fail in assessing the video subjective quality. The reason is that SSIM 

and VIF succeed to depict the spatial distortions, but fail to capture the temporal dis-

tortions. That is the reason why VQM outperforms SSIM and VIF, for it has considered 

the temporal effect. However, the temporal effect in VQ Model is simply modeled by 

the fame differences. It cannot efficiently depict the temporal distortions, resulting in a 

slightly better performance. MOVIE is developed by considering the complex temporal 

and spatial distortion modeling, leading to the best performance. However, it is very 

complex and time-consuming, hence cannot be easily applied in practical applications. 
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As the proposed visual quality metric has modeled both the spatial and temporal HVS 

properties, it performs equally well with VIF and MOVIE. It maintains a very simple 

formulation in DCT domain. Therefore, the proposed visual quality metric can be 

easily applied to image/video applications, especially the perceptual video coding. 

3.3 Motion Trajectory Based Visual Saliency for Video Quality Assessment 

Since the HVS is the ultimate receiver of the images/videos, it is very important and 

advantageous to incorporate HVS properties into the PQAs. In Section 3.1, the HVS 

perceptual property is depicted by JND, which has demonstrated good performances 

while incorporating with PQAs in Section 3.2. In Section 2.1, the HVS orientation 

property is modeled by the visual HE, which can help improve the IQA performances 

as shown in Section 2.1.3. Among the HVS properties, the visual saliency is straight-

forward and extremely important for PQAs. Nowadays, many computational mod-

els [84] [147] [148] have been proposed to simulate human's visual attention. Itti et 

al. propose a bottom-up model and build a system named Neuromorphic Vision C++ 

Toolkit [148]. Hou et al. propose a spectral residual (SR) approach [84], which is 

proved to be useful for IQA in Section 2.1. However, SR only considers the spatial 

information for images. Guo et al. propose phase spectrum (PS) [147] for detecting the 

video saliency. Its temporal information is simply modeled by the frame differences. As 

claimed and verified in [149], the performances of VQAs can be improved by considering 

the distortions along the temporal trajectories. Therefore, we propose to incorporate 

the motion trajectory for efficiently detecting the visual saliency of video sequences. 

A quaternion representation (QR) for each frame is constructed, which comprises the 

spatial image content, the motion trajectories, and the temporal residuals. Based on 

the QR, the quaternion Fourier transform (QFT) is employed to construct the visual 

saliency. Finally, the visual saliency is incorporated with several video quality metrics 

for evaluating its efficiency. The rest of the section is organized as follows. In Sec-

tion 3.3.1 - Section 3.3.4, the proposed visual saliency model and its application on 

VQAs are introduced. Experimental results are demonstrated in Section 3.3.5. Finally, 

Section 3.3.6 concludes the section. 
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Figure 3.7: VQA framework based on the proposed visual saliency 

3.3.1 Motion Trajectory based Visual Saliency for VQA 

As illustrated in Figure 3.7, the proposed visual saliency model is applied on the original 

video sequences by considering both the image spatial content and the temporal motion 

trajectory. The distortion map is obtained by performing different VQAs, e.g. MSE, 

SSIM, on the original and distorted videos. Finally, by incorporating the saliency map 

with the distortion map, the video quality index of the distorted video is generated. 

3.3.2 New Quaternion Representation (QR) for Each frame 

In order to apply the proposed visual saliency model, each frame of the original video 

sequence needs to be represented as a quaternion image [150]. It consists of four com-

ponents, each of which captures the useful information from one certain aspect. As we 

only perform VQAs on the luminance part of the distorted videos, the chroma infor-

mation is not required to construct the quaternion image. Define the video sequence 

as V(t),t — 1, 2,…，N, where N is the total frame number. l(t) denotes the luminance 

part of V � . 

The overlapped block-based motion estimation (OBME) scheme is employed to 

depict the temporal motion trajectory. After OBME, 3 temporal components of each 

frame are obtained. MVx(i,j) and MVy(i,j) denote the horizontal and vertical motion 

vector of the block centered at (i, j ) - th pixel, respectively. PE(i, j) indicates the 
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corresponding motion prediction error. Together with the luminance 1(t), we have 

obtained the four components of the quaternion image. 1(t) represents the spatial 

image content. MVx(t) and MVy(t) describe the motion trajectory. PE(t) depicts the 

temporal residual information, which compensates the inaccurate OBME. Each frame 

can be represented as the new quaternion image qi(t) [150] according to: 

qi(t) = 1(t) + PE ⑴糾 + MVx(t)购 + MVy ⑴购 

成=-1, i = 1, 2, 3 
(3.17) 

时 丄 ^ 2 丄 购 丄 时 

鄉 = 卿 2 

We can further represent qi(t) in a symplectic form: 

qdf) = f i ( t ) + ⑴购 

f i � = 1 ( t ) + PE � Pi ( 3 . 1 8 ) 

f2 � = M V x ( t ) + MVy � " 1 

In [147], the quaternion image comprises one intensity channel, two color channels, 

and one motion channel. However, the motion channel is simply described by the 

adjacent frame difference. On the contrary, our new quaternion image consists of one 

luminance channel, two motion vector channels depicting the temporal trajectory, and 

one temporal residual channel. With the consideration of the temporal trajectory, the 

visual saliency map can be faithfully reconstructed, which will benefit the VQAs. 

3.3.3 Saliency Map Construction by QR 

As clarified in [147], only the phase spectrum is sufficient to represent the saliency 

information of each frame. Given an image I(x, y), 

f (x,y) = ({I (x,y)) 

p(x,y) = P {f (x,y)) (3.19) 

SAM(x,y) = g(x,y)x || 广ifexp{i • p(x,y)U ||2 
\ / 

where ( and ( - 1 denote the Fourier transform and inverse Fourier transform, respec-

tively. P(f) represents the phase spectrum of the image. g(x, y) is a Gaussian filter. 

After the process in Eq. 3.19, the saliency map SAM(x, y) of I(x, y) is generated. 
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For a quaternion image, the quaternion Fourier transform (QFT) [150] is employed 

to generate the visual saliency map. The QFT of a quaternion image q(n, m) can be 

expressed as: 

Q(仏 v) = (仏 v) + F2(P, (3 20) 

Fi(p, V) = • E M M - 1 E N - 0 1 exp( - " i 2 n ( ( f t + N M ( n , m ) . 

where (n, m) and v) are the locations of each pixel in time and frequency domain. 

N and M are the image height and width. fi, i e {1, 2} is obtained from Eq. 3.18. 

The inverse QFT is defined as: 

Mm, n) = • EMM-1 EN-01 exp{ - " i 2 n ( ( f + 樂 ) ) F 如 , v ) ( 3 . 2 1 ) 

By applying Eq. 3.20, the frequency response Qi(t) of qi(t) can be obtained in the 

polar form as: 

Q办）=|| Q办)|| exp�p • 遍 ( 3
.

2 2 ) 

where pi(t) is the phase spectrum of Qi(t) and fi is a unit pure quaternion. 

As shown in Eq. 3.19, only the phase spectrum is sufficient to construct the visual 

saliency map. Therefore, || Qi(t) || is set as 1. Then by applying the inverse QFT in Eq. 

3.21, the reconstructed quaternion image qi is generated. Finally, the visual saliency 

map is constructed by the Gaussian filtering: 

S A M ⑴ = p | | q； ||2 (
3
.

2 3
) 

3.3.4 Incorporating Visual Saliency with VQAs 

Several VQAs, such as MSE, SSIM [68], MSSIM [151], and ABT-based JND metric 

introduced in Section 3.2, incorporate the detected visual saliency for improving their 

performances. For MSE and ABT-based JND metric, the visual saliency map is em-

ployed to weigh the calculated differences: 

sDiff �=\Diff � I . SAM � � 3 . 2 4 ) 

where Diff (t) denotes the differences between the original frame O(t) and the distorted 

frame D � . F o r MSE, Diff(t) = O(t) - D � . A s to ABT-based JND metric, Diff(t) 
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indicates the difference after the JND masking process, as illustrated in Eq. 3.13. The 

quality index for each frame is obtained by summing sDiff(t) together: 

Index(t) = 10logio (mean(sDiff2�）) (3.25) 

As to SSIM, the visual saliency pooling strategy is performed over the structural 

distortion map, as defined in Eq. 2.11. MSSIM tries to apply SSIM over different 

scales of the image and sum the quality indexes together to evaluate the image quality. 

Adapting to this scheme, we down-sample the visual saliency map to different scales. 

By saliency pooling over different scales, the quality index of each frame is generated. 

For each VQA, the quality index of each frame has been generated by considering 

the visual saliency map. Then the indexes are finally averaged to yield the video quality 

value (VQI): 

VQI = 仏 Nn—�'� (3.26) 

where N is the total frame number of the video sequence. 

3.3.5 Experimental Results 

We first provide the processing results during the visual saliency detection, which is 

illustrated in Figure 3.8. As we have discussed in Section 3.3.2, each frame will be 

represented as a quaternion image, comprising luminance 1(t), horizontal and vertical 

motion vector MVx(t) and MVy(t), and prediction error P E � . F o r better visualiza-

tion, MV is rescaled by 5 x MV + 128; PE is rescaled by PE +128. It can be observed 

that the entire object generates nearly the same motion information, such as the ball, 

the boat, and the players in the video sequences. After performing the OBME, the 

prediction error is obtained. By incorporating the motion trajectory information (de-

picted by the motion vectors) and the temporal residual information, the visual saliency 

map for the corresponding frame is constructed using QFT, as shown in Figure 3.8. 

It can be observed that the visual saliency can significantly detect the motion object 

(highlighted white) in the saliency map. By considering the accurate visual saliency 

map, the VQA performances can be significantly improved. 

We incorporated the detected saliency map with MSE, SSIM [68], MSSIM [151], and 

ABT-based JND metric introduced in Section 3.2. All of these VQAs were tested on the 
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Figure 3.8: Quaternion Representation (QR) of each frame and the visual saliency map. From 
top to bottom: luminance l(t), horizontal motion vector MVx(t), vertical motion vector MVy (t), 
motion prediction error PE{t), and the visual saliency map. 
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LIVE video subjective quality database [17]. Detailed information about the database 

was introduced in Section 1.3.3. After the nonlinearly mapping, the LCC, SROCC, 

and RMSE are employed to evaluate different VQA performances. The performances 

of VQAs incorporating different visual saliency models are shown in Table I, where SR 

denotes the saliency model in [84]; PS is the saliency model in [147]; VS is our proposed 

method. It can be observed that all the saliency weighted metrics can outperform the 

non-weighted metrics. It means that the visual saliency is important to HVS and helpful 

for the VQAs. Furthermore, VS weighted VQAs outperform the other saliency weighted 

VQAs. The reason is that the proposed method considers the motion trajectory, which 

is useful to improve the VQA performances, as demonstrated in [149]. However, the 

saliency weighted methods still perform inferiorly to MOVIE [145]. The reason is 

that MOVIE has employed complex HVS model for depicting the temporal and spatial 

distortions, compared to the proposed saliency weighting method. Another observation 

is that the improvement of ABT-based JND metric is not so significant, compared with 

the other metrics. The reason is that ABT-based JND metric has considered some HVS 

properties, such as contrast masking, which has somehow modeled the HVS saliency 

property. 

VQA methods LCC SROCC RMSE 
MSE 0.5398 0.5234 9.241 
SSIM 0.4999 0.5247 9.507 
MSSIM 0.6754 0.7329 8.095 
ABT-based JND metric 0.7627 0.7372 7.099 
SR-MSE 0.6164 0.6104 8.644 
SR-SSIM 0.6215 0.6012 8.600 
SR-MSSIM 0.7472 0.7360 7.296 
SR-ABT-based JND metric 0.7623 0.7322 7.105 
PS-MSE 0.6230 0.6191 8.588 
PS-SSIM 0.6051 0.5909 8.740 
PS-MSSIM 0.7371 0.7245 7.419 
PS-ABT-based JND metric 0.7685 0.7338 7.023 
VS-MSE 0.6295 0.6268 8.531 
VS-SSIM 0.6308 0.6187 8.518 
VS-MSSIM 0.7583 0.7468 7.157 
VS-ABT-based JND metric 0.7768 0.7484 6.913 

Table 3.7: Performance comparisons of different VQAs 
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3.3.6 Conclusion 

In this section, we propose a new quaternion representation for each frame of the video 

sequence. Then the quaternion image is employed to generate the corresponding visual 

saliency map. By incorporating the visual saliency map with different VQAs, the metric 

performances can be significantly improved, which further confirms that the proposed 

method can accurately model the HVS saliency property. 

3.4 Perceptual Video Coding 

In this section, the ABT-based JND is incorporated into the video coding scheme for 

pursuing higher visual quality with the same bit-rates according to: 

Retyp(k,m,n,i,j) = DCTtyp{I (k, m, i,j, k) - Ipre(kref ,m,n,i,j)} (3.27) 

, , 0, if\Retyp(k,m,n,i,j)\ < Ttyp(k,m,n,i,j) 
Retyp(k,m,n,i,j)= < 

�Vsign • {\Retyp(k,m,n,i,j)\ - Ttyp(k,m,n,i,j)), otherwise 

where I is the MB to be encoded, Ipre is the predicted MB by inter motion estimation 

or intra prediction, typ denotes the transform size (8x8 or 16x16 DCT), Retyp is the D-

CT coefficient of the prediction error, Ttyp is the calculated JND threshold for different 

transform sizes, Vsign denotes the sign of the coefficient Retyp(k,m,n,i, j). According 

to the definition of JND and the quality metric in Eq. 3.12, the HVS cannot detect the 

distortions which are smaller than the JND threshold. Therefore, the distortions below 

the JND threshold need not be accounted. The perceptual redundancies in the video 

signals are removed according to Eq. 3.27, which will not cause any visual degrada-

tion. Then the resulting DCT coefficients Retyp without perceptual redundancies are 

encoded. 

For the traditional video coding strategy, MSE is utilized to calculate the distortions 

in rate distortion optimization (RDO), which is justified to be inconsistent with the 

HVS perception [41]. Here, Pdist is employed for depicting the HVS responses of the 

distortions, which is defined as: 

D n ••入 lietyp(k,m,n,i,j) 

P “ ( k ’ 零 ) = T t y P TtypOk,m,n,�f) ( 3 . 2 8 ) 

The sum squared error of Pdist will be utilized as the distortion measurement for the 
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modified RDO (M-RDO) process. As demonstrated in Section 3.2.1, Pdist correlates 

better with the HVS than MSE, which is believed to benefit the perceptual video 

coding. During the encoding process, a suitable 入 needs to be determined for the 

M-RDO process: 

Cost = Dp + XR (3.29) 

where Dp is the sum squared error of Pdist, and R denotes the bit-rate. In our exper-

iments, four 720P sequences, Crew, Harbor, Sailormen, and Spincalendar are encoded 

with the H.264 platform provided by [130]. The test conditions are listed in Table 3.8 

(only 100 frames), with QP ranging from 28 to 40. Then Dp is used to evaluate the 

coded sequences. According to the derivation in [104], the optimal 入 is set as: ,_ dDp 

X = - "dR 
(3.30) 

In our experiments, the tangent slopes at each identical QP point of the four testing 

sequences appear to be similar. Therefore, the average value of the tangent slopes is 

employed as 入 in the M-RDO process. 

Platform JM 11(H.264) [130] 
Sequence structure IBBPBBP 
Intra period 10 frames 
Transform size 8x8, and 16x16 
Entropy coding CABAC 
Deblocking filter On 
R-D Optimization On 
Rate control Off 
Reference frame 2 
Search range 士 32 

Frame rate 30 frames/s 
Total frame number 199 

Table 3.8: Test conditions. 

In the encoding process, the M-RDO process is employed to determine the best 

transform type. We believe that the proposed selection strategy has strong ties with 

the M-RDO process. For one Mb, if the spatial content is homogenous within its sub-

blocks, and the motion vector differences between the MB and its sub-blocks are small, 

the MB is regarded as a unit. The 16x16 DCT is chosen by the proposed selection 



MOBILE 

50 
10 20 30 40 50 60 70 

Frame Index 

Figure 3.9: HR curve for each CIF sequence 

strategy. During the encoding process, the MB can be well predicted by the 16x16 MB 

motion estimation. The prediction error will be very small. The 16x16 DCT thus can 

efficiently compact the energy, which will be chosen by the M-RDO process. Otherwise, 

the 8x8 DCT will be determined by both the selection strategy and M-RDO. 

In order to demonstrate the relationship between the selection strategy and the 

M-RDO process, the Hit Ratio (HR) curve is employed to demonstrate the hit rates. 

The transform type (8x8 or 16x16 DCT) is first determined by the proposed selection 

strategy for each MB. Then the video sequences are encoded by the proposed perceptual 

coding scheme. The QP is fixed as 20 and the test conditions are listed in Table 3.8. 

During the encoding process, the transform type (8x8 or 16x16 DCT) for each MB 

as determined by the M-RDO process is also recorded. The hit rate h of each video 

frame measures the percentage of the MBs whose transform types determined by the 

M-RDO process and the proposed selection strategy are identical. It indicates that 

the selection strategy and M-RDO choose the same size transform. The HR curves of 

several typical CIF (352x288) sequences are illustrated in Figure 3.9. The hit rates are 

high, with the average hit rate higher than 80%. It means that the proposed selection 

strategy correlates well with the M-RDO process. During the video encoding, the M-

RDO process will take the role to determine which size transform to use. For other 

applications, such as visual quality assessment, watermarking, and so on, where the 
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M-RDO process is not applicable, the proposed selection strategy will determine which 

size transform to utilize. 

3.4.1 Experimental Results 

The 720P test sequences, Crew, Harbor, Sailormen, and Spincalendar, were coded with 

fixed QP parameters. The H.264/AVC software platform used is the JM 11 with ABT 

implementation [130]. The test conditions are listed in Table 3.8. With different QP 

parameters, nearly the same bit-rates are ensured by the traditional ABT codec and the 

proposed ABT-based JND codec, as shown in Table 3.9. It can be observed that there 

is a slight PSNR loss. As explained before, the PSNR correlates poorly with the HVS 

perception, which makes it an improper criterion for visual quality assessment. The 

proposed visual quality metric VQ as illustrated in Eq. 3.14 has demonstrated better 

performances in matching subjective ratings. We calculate the VQ of the distorted 

sequences. According to its definition in Eq. 3.14, the smaller the VQ value, the better 

is the visual quality. It can be observed from Table 3.9 that the sequences generated by 

our proposed method possess smaller VQ indexes, compared to the sequences processed 

by [130]. 

Video Bit-rates (kbit/s) PSNR (dB) VQ DMOS 

ABT 
codec [130] 

Crew 807.79 36.68 2.88 25.0 
ABT 
codec [130] 

Harbor 1068.34 30.05 13.32 37.3 ABT 
codec [130] Sailormen 572.40 30.92 10.09 33.8 
ABT 
codec [130] 

Spincalendar 683.91 31.23 8.40 30.5 

The Proposed 
ABT-based 
JND codec 

Crew 806.28 36.42 2.76 22.3 The Proposed 
ABT-based 
JND codec 

Harbor 1056.37 29.83 13.22 32.5 The Proposed 
ABT-based 
JND codec Sailormen 576.37 30.86 9.78 30.5 

The Proposed 
ABT-based 
JND codec Spincalendar 688.70 31.05 8.23 25.3 

Performance 
differences 

Crew -1.51 -0.26 -0.12 -2.7 
Performance 
differences 

Harbor -11.97 -0.22 -0.10 -4.8 Performance 
differences Sailormen +4.11 -0.06 -0.31 -3.3 
Performance 
differences 

Spincalendar +4.79 -0.18 -0.17 -5.2 

Table 3.9: Performance comparisons between the tradition ABT codec [130] and the proposed 
ABT-based JND 

In order to demonstrate the perceptual gain of our proposed video codec, the DSC-

QS subjective test as introduced in Section 1.2 was conducted to evaluate the visual 

qualities of the coded video sequences. And the DMOS value for each coded sequence 



Figure 3.10: Visual quality comparison of regions of the reconstructed frames generated by 
different video codrc. Left: original frame; middle: reconstructed frame fron^ AfBTT code^c [130]; 
right: reconstructed frame for the proposed ABT-based JND codec. Top: 113th frame of 
Sailormen; center: 109th frame of Harbor; bottom: 40^h frame of Spincalendar. 

is listed in Table 3.9. As explained before, the smaller the DMOS value, the better 

the visual quality. Therefore, it can be observed that the proposed method can im-

prove the visual quality of the coded video sequences with the constraint of the same 

bit-rates. Figure 3.10 shows some pictures of videos coded and decoded with the JM 

11 with ABT implementation [130] on one hand and with the proposed method on 

the other hand. Generally, the proposed method generates frames with higher visual 

quality, especially the detailed information, such as the lines and edges of Harbor and 

Spincalendar sequences. 

3.4.2 Conclusion 

In this section,the ABT-based JND model is employed for guiding perceptual video 

coding. Experimental results on the proposed ABT-based JND codec demonstrate a 

better visual quality videos with the same bit-rates. It further confirms the efficiency 

of our proposed ABT-based JND in modeling the HVS characteristics. 
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Chapter 4 

Reduced Reference Image Quality Assessment 

4 . 1 Introduction 

As mentioned before, reduced reference (RR) quality metric is the compromise between 

the full reference (FR) and no reference (NR) quality metrics. It is expected that the 

RR methods can effectively evaluate the image perceptual quality based on a limited 

number of features extracted from the reference image. Only a small number of bits is 

required for representing the extracted features, which can be efficiently encoded and 

transmitted for the quality analysis. Consequently, it will be very useful for the quality 

monitoring during the image transmission and communication. The image perceptual 

quality can be easily analyzed by referring to the extracted features from the reference 

image. Therefore, a better quality of user experience can be further provided for the 

consumers. 

For designing an effective RR quality metric, we need to consider not only its 

performance but also its RR data rate for representing the extracted features. Firstly, 

the extracted features should be sensitive to a variety of image distortions and relevant 

to the HVS perception of the image quality. Secondly, the RR data rates should not be 

large, as the extracted features need to be embedded or transmitted to the receiver side 

for the quality analysis. For a larger RR data rate, one may include more information 

about the reference image. Then a good performance can be obtained. However, it 

will introduce a heavy burden to the RR feature transmission. The FR IQA can be 

regarded as an extreme case of RR IQA, with the RR data rate is the whole reference 

image. For a smaller RR data rate, only a little information of the reference image is 

available for quality analysis. Therefore, the performance is hard to be ensured. The 

NR IQA is another extreme case of RR IQA, with no information from the reference 

image. Therefore, how to balance the RR data rate and the performance is the essential 
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for the RR quality metric development. 

The RR quality metrics aim to monitor the video perceptual quality during the 

transmission and communication processes. Therefore, many approaches [152]- [157] 

try to model the distortions of the encoded video sequences, such as the MPEG-2 com-

pressed videos, in the quality monitoring system. For example, Wolf et al. [152] [153] 

extracted a set of spatial and temporal features which are very sensitive to the distor-

tions introduced in the standard video compression framework. In [154], Le Callet et 

al. depicted the blur, blocking and temporal artifacts of the MPEG-2 coded sequences 

by some representative features. By accounting for differences between these features, 

the degradation level of the coded videos can be estimated. In [155], Yang employed 

the ratio information of DCT coefficients to measure the perceptual quality of MPEG-2 

coded sequences. In [156], the artifacts of the H.264/AVC coded video sequence, such 

as blur and blocking, are depicted and measured by the objective features. They are 

combined together into a single measurement for the overall video quality. Further-

more, Tagliasacchi et al. [157] approximated the SSIM value of the videos corrupted 

by channel errors through employing coding tools provided by the distributed source 

coding theory. 

Furthermore, in order to provide a more accurate performance, the HVS proper-

ties [80] [158]- [166] have been considered during the feature extraction. Le Callet et 

al. [158] employed a neural network to train and evaluate the perceptual quality of video 

sequences, based on the perception related features of the video frames. In [159] [160], 

the authors extracted perceptual features motivated from the computational models of 

the low level vision. These features are utilized as the reduced descriptors to represent 

the visual quality. Tao et al. [161] incorporated the merits of the contourlet transform, 

the contrast sensitivity function, and Weber's law of JND to derive an RR IQA. En-

gelke et al. [162] designed an RR IQA for wireless imaging by accounting for different 

structural information that is observed in the distortion model of wireless link. Then 

the structural information from the viewing area is trained for the HVS. In [80], the 

authors extract several HVS related features to indicate the spatial information losses, 

edge information changes, contrast information, and color impairments. By combining 

these different components with different weights, the final video perceptual quality 
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index is obtained. These HVS related features are compressed for video quality mon-

itoring [163]. It is demonstrated that a compression ratio of more than 30:1 can be 

achieved with only a small error introduced in the final quality values. Moreover, as 

the HVS is sensitive to the degradation around the edges, the RR video quality met-

ric proposed in [164] mainly measures the edge degradations. The edge degradation 

is computed by measuring the mean squared error of the edge pixels. Therefore, this 

method is named as edge PSNR (EPSNR). In [165], the authors employed discrimina-

tive local harmonic strength with motion consideration to evaluate the distorted video 

quality. The gradient information of each frame is employed for harmonic and discrimi-

native analysis. Furthermore, the authors in [166] derived the RR quality metric for 3D 

videos. The edge information of depth maps and information from the corresponding 

color image in the areas in the proximity of edges are extracted for the RR quality 

metric, which can be utilized for 3D video compression and transmission. 

Recently, the statistical modeling of the image signal has been investigated for 

the image perceptual quality assessment for both RR IQAs [167]- [175]. In [169], the 

divisive normalization is employed to depict the coefficient distributions of the wavelet 

subbands. The distribution difference between the reference and distorted images is 

used to depict the image perceptual quality, which we name as RR-DNT. In [172] [173], 

the developed RR image quality metric RR-SSIM extracted the statistical features 

from a multi-scale, multi-orientation divisive normalization transform. By following 

the philosophy in the construction of SSIM, a distortion measurement is developed 

to estimate the SSIM index of the distorted image. In [174], the statistics of image 

gradient magnitude are modeled by the Weibull distribution to develop an RR image 

quality metric, which is named as RR-Weibull. Also the statistics of the edge [175] are 

utilized for developing the RR IQA, which we name as RR-Edge. In [170], the authors 

measure the differences between the entropies of wavelet coefficients of the reference 

and distorted image to quantify the image information change, which can indicate the 

image perceptual quality. In [171], the color distribution changes of an image as a 

consequence of the distortions are employed for depicting the perceptual quality, where 

the color correlogram is extracted as the RR feature. Wang et al. [167] [168] proposed 

a wavelet-domain natural image statistic metric (WNISM), which models the marginal 

probability distribution of the wavelet coefficients of a natural image by the generalized 
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Gaussian density (GGD) function. The Kullback-Leibler distance (KLD) is used to 

depict the distribution difference. Although WNISM can achieve good performances in 

image quality assessment, some limitations still exist. Firstly, KLD is asymmetric [176], 

which is not suitable for the quality analysis. The perceptual quality distance from 

one image to another should be identical no matter how it is measured. Secondly, 

as revealed in [169], although WNISM can work quite well on individual distortion 

types, its performance degrades significantly when image of different distortion types 

are evaluated together. 

In this chapter, a novel RR IQA is developed by depicting the intra and inter sub-

band statistical characteristics in the RDCT domain. It is shown that after performing 

DCT the statistical dependencies between the DCT subbands still exist. Applying the 

reorganization strategy, the intra RDCT subband statistical characteristic, specifical-

ly the identical natural of the coefficient distribution within the RDCT subband, is 

exploited by GGD modeling. The inter RDCT subband dependency is captured by 

the mutual information (MI) between the DCT coefficient pair in corresponding RD-

CT subbands, such as parent-child pair coefficient, brother-child pair coefficient, and 

cousin-child pair coefficient. Furthermore, a frequency ratio descriptor (FRD) comput-

ed in the RDCT domain is employed to measure the energy distribution among different 

frequency components. It can be further utilized to simulate the HVS texture mask-

ing property. By considering the intra RDCT subband GGD modeling, inter RDCT 

subband MI values, and the image FRD value, an effective RR IQA is developed. This 

chapter is organized as follows. The relationships of intra and inter RDCT subbands 

are presented in Section 4.3. The DCT reorganization strategy is described in Section 

4.2. Section 4.4 discusses the RR feature extraction. And the quality analysis in the 

receiver side is introduced in Section 4.5. Finally, Section 4.7 concludes this chapter. 

4.2 Reorganization Strategy of DCT Coefficients 

Since the HVS is more sensitive to luminance than chrominance [177], the proposed 

image quality metric and the others used for comparison work with luminance only. 

Color inputs will be converted to gray scale before further analysis. As natural images 

can be viewed as smooth regions delimited by edge discontinuities, after block-based 

DCT the image energy of smooth regions is compacted into the DC coefficients, and 



Image Width 

Figure 4.1: Reorganization strategy of DCT coefficients. Top left: one 8x8 DCT block with 
ten subband decomposition; top right: the reorganized DCT image representation taken as a 
three-level coefficient tree; bottom left: 8x8 DCT representation of Lena image; bottom right: 
the RDCT representation of Lena image. (For better visualization, the DC components are 
rescaled to integers between 0 and 255, while the AC coefficients are obtained by 255 - (5 x 
| A C 1).) 

some high-frequency AC coefficients. For edges, only a small number of high-frequency 

AC coefficients contribute to its energy. Also the coefficients obtained by the block-

based DCT exhibit high correlations, which can be employed for depicting the image 

degradation level. In [155], after the 8-tap DCT, the second DCT coefficient and 

the third/fourth DCT coefficient are related to each other as the parent and child 

bands of the wavelet transform. In [76], the Laplacian probability density function 

(pdf) is employed to model the coefficient distribution of each DCT subband. The 

fitted Laplacian pdf parameter 入 of one DCT subband can be linearly predicted by 
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the 入 values of the neighboring upper and left DCT subbands. Therefore, although 

DCT has decomposed the spatial image block into different frequency components, the 

relationship between the related DCT subbands still exists. In order to utilize the 

identical nature of the neighboring coefficient distributions, the reorganization strategy 

[178] [179] is employed to compose the block-based DCT coefficients into a three-level 

tree structure, as demonstrated in Figure 4.1. 

For the subbands 0, 1, 2, and 3, each subband only contains one DCT coefficient. 

For the subbands 4, 5, and 6, each subband contains a 2x2 DCT coefficient matrix. 

For the subbands 7, 8, and 9, each subband contains a 4x4 DCT coefficient matrix. 

After the decomposition, the same subbands of all the 8x8 DCT blocks are grouped and 

organized together according to their corresponding positions, as shown in Figure 4.1 

(top left). In this manner, the block-based DCT coefficients are reorganized into a three-

level coefficient tree. In Figure 4.1 (top right), Sn denotes the grouped subband of all the 

DCT coefficients lying on the position denoted by n. For example, S7 is the reorganized 

subband by grouping the 4x 4 DCT coefficient matrix lying on the position 7 of all the 

8x8 DCT blocks. An example of the reorganization of the Lena DCT coefficient image 

is illustrated in Figure 4.1. The 8x8 DCT representation is obtained by applying the 

non-overlapped 8x8 block based DCT, as shown in Figure 4.1 (bottom left). The 

reorganized DCT (RDCT) representation is shown in Figure 4.1 (bottom right). It can 

be observed that the RDCT representation appears like a wavelet representation, i.e., 

exhibiting structural similarities between subbands, and coefficient magnitude decaying 

toward high-frequency subbands. Moreover, the RDCT representation is more efficient 

for the RR quality metric design than the wavelet representation, such as the steerable 

pyramid [180] [181], even though the wavelet directly has an access to the oriented 

subbands. 

4.3 Relationship Analysis of Intra and Inter RDCT subbands 

The statistical relationships between RDCT coefficients are examined in the following 

ways. Firstly, consider the parent-child coefficient pair representing the information at 

adjacent scale subbands of the same orientation (e.g. S4 and S7). Each parent coeffi-

cient in the subband S4 corresponds to four child coefficients in the subband S7, as il-

lustrated in Figure 4.2. In order to exploit the underlying statistics, the joint histogram 
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left 

Figure 4.2: Statistical correlation between inter RDCT subbands. Each 
in the coarser scale RDCT subband corresponds to four child coefficients 
subband. Each child coefficient corresponds to 
subbands of different orientations. 

parent coefficient 
in the finer scale 

cousin/brother coefficient in the same scale 

of the coefficient pair (parent, child) is built, which is gathered over the spatial extent 

of the image. Figure 4.3 (a) shows the conditional histogram h(child\parent), which 

is simply calculated by counting the child coefficients in the subband S7 conditioned 

on the coarser-scale subband S4. Several important aspects can be observed from the 

conditioned histogram. These coefficients are approximately second-order decorrelated, 

as the value of the child coefficient is always zero when the values of parent coefficients 

are not large enough. Moreover, the standard deviation of the child coefficients highly 

depends on the value of the parent coefficient. The larger the parent coefficient value, 

the larger the standard deviation of the child coefficients tends to be, as illustrated by 

the blue curve in Figure 4.3. In [182] [183], it has been demonstrated that the mean 

and the standard deviation curves of the conditional histogram can be well fitted by 

a Student's t model of a cluster of coefficients. Furthermore, although they are decor-

related, the statistical dependency can still be observed between the child and parent 

coefficients. These dependencies also exist in the wavelet coefficient pairs [184], which 

cannot be eliminated by the linear transformations. This statistical dependency can be 

more clearly observed by converting the coefficient value into the log-domain as shown 

in Figure 4.3 (b). The left part of the conditional histogram h(log2(child) \ log2(parent)) 

concentrates on a nearly horizontal line (shown by the green curve), which means that 
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the value of log2(cMd) is independent of log2 (parent) in this area. Actually, natural 

images are composed of smooth regions which are delimited by edge discontinuities. 

After performing DCT, most of the image energy is compacted to the low-frequency 

components, which results in a small amount of energy in the high-frequency compo-

nents. Therefore, the child coefficient values in the finer RDCT subband tend to be 

small, especially when the parent coefficient values are not large enough. The right 

part of the conditional histogram in log-domain presents a nearly linear correlation. It 

implies that the conditional expectation ^(log2(chi1d)\ log2(parent)) is approximately 

proportional to log2(parent). 

Figure 4.3 (c) and (e) show the histograms of the child coefficient conditioned on the 

brother and cousin coefficient, respectively. Compared with the conditional histogram 

in Figure 4.3 (a), the child coefficient values vary significantly, which do not present 

a close scattering around the zero value. When the cousin or brother coefficient value 

becomes larger, the child value fluctuates more dramatically, which can be observed 

by the standard deviation values (the blue curve of each figure). The brightness of 

Figure 4.3 corresponds to the probability. The brighter the area, the larger the cor-

responding probability is. Compared with Figure 4.3 (a), the brightness of Figure 4.3 

(c) and (e) is not so significant. It means that the child coefficient value depends on 

the cousin/brother coefficient less than the parent coefficient. Furthermore, it can be 

observed that Figure 4.3 (e) is brighter than Figure 4.3 (c). And the standard deviation 

curves of Figure 4.3 (e) appear to be more regular than those of Figure 4.3 (c). The 

observations show that the dependency relationship between child-cousin coefficient 

pair is closer than that between child-brother coefficient pair. After converting the 

histograms into log-domain, as shown in Figure 4.3 (d) and (f), the correlations appear 

much looser. Although the mean value in the log-domain concentrates approximately 

on a line, the child coefficient values are of great differences. The child coefficients 

do not present a concentrated distribution (with larger standard deviation values), 

which makes the probability of each coefficient value to be very small. Therefore, the 

brightness of Figure 4.3 (d) and (f) can hardly be detected. Although the relationship 

between child and brother/cousin appears to be much looser than that between child 

and parent, it is admitted that the dependency does exist however in a very complex 

way, which is very hard to depict. 
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cousin, and brother, respectively. 
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In order to provide a more accurate description about the relationship between RD-

CT subbands, the mutual information (MI) is employed to describe the dependencies 

between the child and its condition parent, brother, cousin, upper, and left coefficients, 

as illustrated in Figure 4.2. As introduced in [176], MI admits the direct data com-

pression and classification interpretations. Let X and Y be two random variables (or 

vectors) having a joint pdf p(x,y). The MI between X and Y is defined as: 

I(X； Y) = Jx fy P(x,y)log 鵷dxdy 

=EXY (log Pp^) = D(p(x,y) II p(x)p(y)) 
(4.1) 

where D(|) is the relative entropy between two distributions, known as the KLD. The 

MI I(X; Y) indicates how much information Y conveys about X. Therefore, the larger 

the MI value, the more information is shared by X and Y. Hence, the statistical 

correlation between X and Y is stronger. 

Subband Inter RDCT subband Intra RDCT subband 
orientation 

parent-child brother-child cousin-child upper-child left-child 
Horizontal (S4 and S 7 ) (S9 and S 7 ) (Sg and S 7 ) ( S 7 ) ( S 7 ) 

0.5496 0.2739 0.2908 0.3892 0.3918 

Vertical parent-child 
(S5 and S g ) 

brother-child 
(S9 and S g ) 

cousin-child 
(S7 and S g ) 

upper-child 
( S g ) 

left-child 
( S g ) 

0.5091 0.2685 0.2908 0.3672 0.3508 

Diagonal parent-child brother-child cousin-child upper-child left-child Diagonal 
(So and S 9 ) (S7 and S 9 ) (Sg and S 9 ) ( S 9 ) ( S 9 ) 

0.2974 0.2739 0.2685 0.2165 0.2095 

Table Mutual information between the RDCT subbands. 

The MI values between the RDCT subbands are illustrated in Table 4.1. We have 

provided the MI values of the inter RDCT subbands, such as parent-child S4 and S7, 

brother-child S9 and S7, and cousin-child Sg and S7, and the intra RDCT subbands, 

such as upper-child and left-child. In order to provide a more convincing result, each 

entry gives the average MI value over all the reference images from the LIVE image 

subjective quality database [25]. Some interesting findings can be observed. Firstly, no 

matter what the subband orientation is, the MI value of parent-child is the largest. It 

means that the parent coefficients in coarser subband affect the child coefficients in the 
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finer subband most, which presents the same property as the wavelet transform. These 

dependencies have been successfully utilized for the image compression [178] [179]. 

Secondly, the parent-child MI value of diagonal RDCT subband is much smaller than 

those of horizontal and vertical ones. The reason is that natural images present much 

more horizontal and vertical information than the diagonal one. Therefore, most of the 

DCT coefficients in the diagonal subbands tend to be zero. Furthermore, the MI values 

somewhat match the HVS property, namely the oblique effect [136], that is, the HVS is 

more sensitive to the horizontal and vertical frequency components, compared with the 

diagonal ones. Thirdly, for the horizontal and vertical RDCT subbands, the MI values 

of intra RDCT subbands are larger than those of brother-child and cousin-child inter 

RDCT subbands. Therefore, the relationship between neighboring DCT coefficients 

also exists. This relationship has been further employed for image compression [179] and 

image quality metric [76]. In [76], the authors employ the neighboring DCT subband 

relationship to improve the modeling accuracy of the DCT coefficient distribution. 

Finally, the dependencies between cousin-child and brother-child RDCT subbands can 

be observed. Although DCT has decomposed the spatial image content into different 

components with different orientations and frequencies, the dependencies cannot be 

removed by the linear transformations. Therefore, the correlations between inter RDCT 

subbands can be exploited for image processing researches, such as compression [184] 

[185], and so on. 

4.4 Reduced Reference Feature Extraction in Sender Side 

As discussed above, the RR IQAs aim at evaluating the image perceptual quality based 

on some RR features extracted from the reference image. In order to design an effective 

RR IQA, the features extracted should be sensitive to the distortions related to the 

HVS perception property, and efficient for representation. Therefore, the RR features 

are critical to the RR IQA performances. Based on the analysis in the above section, 

the dependencies of intra and inter RDCT subbands do exist, as shown in Table 4.1, 

which can be depicted and quantified in the receiver side. And these dependencies 

are expected to be sensitive to the distortions, which can be utilized as the RR fea-

tures for the quality analysis in the receiver side. Figure 4.4 provides the framework 

of extracting the RR features from the reference image. For intra RDCT subband, 
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Figure RR feature extraction in the sender side. 

the GGD modeling together with the city-block distance (CBD) is employed to char-

acterize the relationship. For the inter RDCT subband, MI is employed to depict the 

correlation. And the frequency ratio descriptor (FRD) is used to calculate the RDCT 

subband energy distribution. Detailed information will be introduced in the following 

sub-sections. 

4.4.1 Intra RDCT Subband Modeling 

It has been claimed [167] [168] that the wavelet coefficient distributions of natural 

images are highly kurtotic (with a sharp peak at zero and a fat-tail distribution). Based 

on a strict mathematical analysis, Lam et al. [186] pointed out that the high-frequency 

DCT coefficients also follow the kurtotic distribution, which a GGD usually fits well. 

The probability density function of GGD is defined as: 

Pa,^ ( x ) 
a 

2
风 ( a : —-(ft ] p 

(4.2) 

where a models the width of the PDF peak (standard deviation), while p is inversely 

proportional to the decreasing rate of the peak. a and p are also referred to as the 

scale and shape parameters, respectively. r is the Gamma function given by: 

r (x ) = t^-^ 
Jo 

expQ-t^dt (4.3) 

Therefore, we can see that only two parameters are needed to completely define each 

GGD model. However, if the coefficient distributions of all the DCT subbands are to 

be modeled, too many parameters are needed for the RR IQA. Considering the 8x8 
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Figure 4.5: Coefficient distribution (blue line) and the fitted GGD curve (red line) of the 
RDCT from S4 to S9. 

DCT as an example, if all the DCT subbands are to be depicted, there are at least 

63x2 = 126 parameters. It is too large and conflicts with the purpose of RR IQA, which 

requires less reference information for the quality assessment. In order to reduce the RR 

data rate and further utilize the identical nature of the coefficient distribution between 

adjacent DCT subbands, the aforementioned reorganization strategy is employed to 

group the DCT coefficients into fewer representative RDCT subbands. 

After the reorganization process, the number of RDCT subbands containing AC 

coefficients is reduced to 9, which is more reasonable for RR IQA. The GGD model is 

employed to model the coefficient distribution of each RDCT subband. The DCT co-

efficient distribution (blue line) and the fitted GGD curve (red line) of the reorganized 

subbands S4-S9 from the Lena image are illustrated in Figure 4.5. It can be observed 

that the two curves overlap with each other, which means that the GGD model can 

efficiently depict the coefficient distributions of the RDCT subbands. Applying this 

process, we not only model the DCT coefficient distribution, but also exploit the iden-

tical nature of the coefficient distributions between adjacent DCT subbands, which will 
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help improve the RR IQA performance. 

It has been shown that the GGD model provides an efficient way to represent the 

coefficient histogram for each RDCT subband of the reference image. Therefore, for 

each GGD model, two parameters {a, /3} are needed for the RR IQA. In order to further 

improve the GGD modeling precision, another parameter denoted as the prediction 

error is introduced. As we have discussed before, the KLD is asymmetric, which is not 

suitable for measuring the visual quality distance between the two images. Therefore, 

the city-block distance (CBD) between two distributions p and pa,^ is proposed to 

measure their differences: 

hL 

dcBD (p,pa,l3) = E |p(i) - Pa,巨⑴丨 （4.4) 

i = 1 

where p is the histogram distribution of the actual RDCT subband, pa,艮 is the fitted G-

GD curve, and h^ is the total number of the histogram bins. From the definition, it can 

be observed that dcBD is symmetric, which means that dcBD(p,pa,^) = dcBD(pa,^,p). 

Therefore, compared with KLD, CBD is symmetrical to capture the visual distance 

between two images, which is reasonable for evaluating image perceptual quality. Ac-

cording to the oblique effect [136] of the HVS, human eyes present similar sensitive 

values to the horizontal and vertical information, while less sensitive to the diagonal 

information. Therefore, in order to reduce the RR data rates, only three horizontal 

RDCT subbands, specifically Si, S4, and S7, are employed for GGD modeling and 

CBD calculation to extract the RR features. 

4.4.2 Inter RDCT Subband Modeling 

Referring to Table 4.1, the dependencies between inter RDCT subbands also exist. MI 

as defined in Eq. 4.1 is employed to capture the corresponding dependencies, which 

can be further expressed as: 

I(X； Y ) = h(X) - h(XlY) 
(4.5) 

= - l o g 2 ( p � )）-E X Y { - log2(p(x|y))) 

where h(X) and h(X|Y) denote the entropy of X and X conditioned on Y, respectively. 

As shown in Eq. 4.5, we can observe that the MI is symmetric and non-negative. If X 

and Y are independent, the MI is equal to zero. While if X is a function of Y, I(X； Y)= 
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� . A c t u a l l y , the MI I(X； Y) indicates how much information Y conveys about X. It 

admits a well-known data compression interpretation: coding X to a precision A X 

costs h(X) - log2(AX) bits, based on the assumption that A X is sufficiently small. 

If Y is known, by considering the same encoding precision A X , the total bits cost for 

encoding X is equal to h(X) - log2(AX) - I(X； Y) bits [176]. Therefore, the total 

saving bits by introducing Y is I(X； Y). 

The MI value is introduced in the sender side to describe the essential relationship 

between inter RDCT subbands, which is changed by the introduced distortion. As we 

employed three horizontal RDCT subbands (Si, S4, and S7) for GGD modeling and 

CBD calculation to depict the intra RDCT relationship, the MI values between these 

horizontal RDCT subbands and other related ones are computed as the RR features 

to depict the inter RDCT dependencies. These RR features include two MI values to 

depict the parent-child correlation between the RDCT subband pairs (Si, S4) and (S4, 

S7), three MI values to depict the cousin-child correlation between the RDCT subband 

pairs (S2, Si), (S5, S4), and (Ss, S7), and three MI values to depict the brother-

child correlation between the RDCT subband pairs, (S3, Si), (S6, S4), and (S9, S7). 

Therefore, there are 8 MI values in total extracted to capture the inter RDCT subband 

dependencies. 

4.4.3 Image Frequency Feature 

Furthermore, in order to accurately represent the reference image characteristic, an 

image-level feature, specifically the frequency ratio descriptor (FRD), is proposed by 

considering the HVS properties. For our RR feature extraction, after performing 8x 8 

DCT, the coefficients are reorganized into several RDCT subbands, as illustrated in 

Figure 4.1. The frequency � i j of the (i,j) - th subband for each 8x8 DCT block can 

be obtained by [124]: 

^ij = 27V V(i/^x)2 + ij/Oy)2 

/ g \ 
Oa = 2 x arctan , (§ = x,y) 

(4.6) 

where N is the dimension of the DCT block (in this study, N = 8), Ox and Oy are the 

horizontal and vertical visual angels of a pixel. l is the viewing distance and § stands 

for the display width/length of a pixel on the monitor. According to the international 
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standard ITU-R BT.500-11 [5], the ratio of viewing distance to picture height should be 

a fixed number between 3 and 6. Moreover, for most of the displays, pixel aspect ratio 

(PAR) is equal to 1. It means that the horizontal and vertical visual angles (Ox, Gy) are 

identical: 

Ox — Oy — 2 x a r c t a n � 2xR丄xH—� ( 4 . 7 ) 

where R^d is the ratio of viewing distance to picture height. Hpic is the number of 

pixels in picture height. The frequency values obtained by Eq. 4.6 and the spatial 

contrast sensitivity function (CSF) values [124] of the 8x8 DCT subbands are illustrated 

in Figure 4.6. It can be observed that the adjacent DCT subbands present similar 

frequency and CSF values. The lower the frequency component, the larger is the CSF 

value. After the reorganization process introduced in Section 4.2, the CSF values of the 

RDCT subbands So, Si, S2, and S3 are larger than 0.5, which are the most sensitive 

components to the HVS. By checking the frequency Uj value, we can find that the 

frequency values of these RDCT subbands are smaller than 5. Therefore, these RDCT 

subbands So, Si, S2, and S3 (denoted by the red box) are regarded as the low frequency 

(LF) components. For the RDCT subbands S4, S5, and Sq, the CSF values (except the 

one of U33) are larger than 0.2 and smaller than 0.5. And the frequency values (except 

U33) are larger than 5 and smaller than 12. These RDCT subbands S4, S5, and Sq 

(indicated by the blue box) are viewed as the medium frequency (MF) components with 

medium sensitivity values. The rest of the RDCT subbands S7, Sg, and S9 (denoted 

by the green box) present the lowest sensitivity values and the highest frequency values 

larger than 12, which are regarded as the high frequency (HF) components. 

The introduced distortion will not only change the histogram distribution in each 

RDCT subband and dependencies between adjacent RDCT subbands, but also alter 

frequency components of the image. For example, if JPEG is utilized to code the 

reference image, the blocking and ringing artifacts will appear as a result of frequency 

coefficient truncation. As the quantization steps of the HF components are higher than 

the LF ones, the HF components will be degraded more seriously than LF ones. Here, 

the image-level feature FRD is proposed by considering the ratio information between 

the LF, MF, and HF components. The FRD can be efficiently computed in the RDCT 
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Figure 4.6: Frequency Uij and the spatial contrast sensitivity function (CSF) value of each 
DCT subband. Left: frequency � i j value; right: spatial CSF value. 

domain, which is defined 

FRD = Mvalue + Hvalue 
Lvalue 

(4.8) 

where Lvalue, Hvalue, and Mvalue represent the sums of the absolute DCT coefficient 

values in the LF (So, Si, S2, and S3), MF (S4, S5, and Se) and HF (S7, Ss, and 

S9) RDCT subbands, respectively. The FRD can help to capture the proportion of 

frequency changes caused by the distortions. Furthermore, the larger the value of 

FRD, the more energy the MF and HF components possess. It means that the DCT 

block is more likely to contain texture information. For the plain block, the energy 

mostly concentrates in the LF components. For the edge block, there will be only a 

small number of DCT coefficients in the HF group. Consequently, the texture block will 

present higher FRD. As discussed in the JND models [119] [122] [124], the texture block 

can tolerate more distortions than the plain and edge block, which is interpreted as the 

texture masking property of the HVS. Therefore, the proposed FRD can be employed 

to simulate the texture masking property for the derivation of the final image quality 

metric. 

As discussed above, there are total 3 parameters [a, dcBD(p,pa,^ to depict the 

histogram distribution of each RDCT subband. Considering the HVS oblique effect, 

only the 3 horizontal subbands are included, which results in 9 parameters. For the inter 

RDCT subband relationship, 8 MI values in total are introduced to depict the parent-

child, cousin-child, and brother-child relationships. For the frequency distribution, only 

one parameter named as FRD is extracted from the reference image. Therefore, the 



§ 4.5. Perceptual Quality Analysis in the Receiver Side 95 

proposed RR method employs 9 + 8 + 1 = 18 parameters to represent the reference 

image. By comparing them with the ones extracted from the distorted image, the 

perceptual quality can be analyzed. 

4.5 Perceptual Quality Analysis in the Receiver Side 

In the receiver side, we need to compare the extracted features to analyze the percep-

tual quality of the distorted image. The parameters are extracted from intra RDCT 

subbands, inter RDCT subbands, and image-level feature FRD. 

4.5.1 Intra RDCT Feature Difference Analysis 

In the receiver side, for each distorted image, the aim is to compute the CBD between 

the coefficient distributions of RDCT subbands from the original image p and the 

distorted image pd, respectively: 

dcBD(p,pd) = Y t L i ( p ( i ) - pd(i)) ( 4 . 9 ) 

However, the coefficient distributions of the original image are unavailable. Therefore, 

we employ the fitted GGD model and the prediction error to approximate the CBD 

between p and pd. The inequality property: 

Y h L i Ipa,^ (i) - pd(i)| - |p(i) - p»,l3 (i)| 

< Y h L i |p(i) - pd(i)| 

^ hLi Ipa,̂  (i) - pd(i)| + E hLi |p(i) - (i)| 

(4.10) 

implies that dCBD (p, pd) is bounded by: 

dcBD (p<a,/3,pd) - dcBD (^Pa/i ,p) < dcBD (p,pd) < dcBD (^Pa/i ,pd) + dcBD (p<a,/3, p) 

(4.11) 

Here, we employ the lower bound denoted as dcBD (p,pd) to approximate the CBD 

between p and pd: 

dcBD (p, pd) = dcBD (Va,i ,Vd) - dcBD (Pa,i ,V) ( 4 . 1 2 ) 

For the distorted image, we need not fit pd to a GGD model, which is not appropriate 

for the distorted images. What we compute is the distance dcBD(p,pd) between the 
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fitted GGD of the reference image and the coefficient distribution of the distorted image 

according to Eq. 4.9. By considering the prediction error of GGD modeling, we can 

obtain the approximated distance according to Eq. 4.11 to analyse the intra RDCT 

relationship changes, which can further help to depict the perceptual quality. 

4.5.2 Inter RDCT Feature Difference Analysis 

For the inter RDCT subband, the differences between the corresponding MI values of 

the adjacent RDCT subbands are calculated: 

dMI(Sm, Sn) = I(Sm, Sn) — I(Sm, Sn) ( 4 . 1 3 ) 

where I(Sm, Sn) is the MI of the RDCT subband Sm and Sn in the reference image, 

and I(Sm, Sn) is the MI of the Sm and Sn in the distorted image. In this way, the inter 

RDCT subband relationship is captured, which can help to depict degradation level of 

the perceptual quality. 

4.5.3 Image Frequency Feature Difference Analysis 

For the image frequency, as the distortion will degrade the HF, MF, and LF compo-

nents differently, the FRD distance can effectively represent the frequency component 

changes: 

FL = \FRDori - FRDdist\ ( 4 . 1 4 ) 

where FRDori is the original feature, FRDdist is calculated from the distorted image, 

and FL denotes the frequency information change. As discussed before, FRD can 

represent how much texture information the image contains. Therefore, it can help to 

simulate the texture masking property of the HVS. Furthermore, as discussed in [187] 

[188], for the content of the original image and the artifacts, one's presence will affect 

the visibility of the other. Therefore, a novel mutual masking strategy is proposed by 

considering the FRD values of both the original and distorted image: 

FLv FL+FRDori , FRDori < F R D d i s t 
(4.15) 

FL+FRDdist , FRDori ^ FRDdist 

where FLv is the final HVS-related features to depict the frequency information change. 

FL in the denominator is employed to scale FLv into the range [0,1]. When an image 
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containing texture information is smoothed by the distortions, such as JPEG com-

pression and blur, the detailed texture information cannot be perceived by the HVS. 

Therefore, no visual masking effect should occur. Also if a smooth image is distorted to 

be highly textured by the distortion, such as additive Gaussian noise and fast-fading in 

the LIVE image subjective quality database [25], only the noise can be perceived from 

the degraded image. In this case, there should be no visual masking effect either. This 

phenomenon is named as the mutual masking [189]. In [188], the mutual masking effect 

is determined by the minimum value of the thresholds calculated from the original and 

distorted image. In this study, as the computed FRD value can depict the texture in-

formation of the image, we employ Eq. 4.15 to depict the mutual masking effect of the 

HVS perception, where the smaller value of FRDori and FRDdist is employed to model 

the masking effect. In this way, only the image is highly textured in both the reference 

and distorted images (large FRDori and FRDdist values) can produce a significant 

masking effect. In other cases, an insignificant masking effect will be introduced, as 

expressed in Eq. 4.15. 

Now we have obtained the CBD values of the intra RDCT subbands, MI difference 

values of the inter RDCT subbands, and the FLv value depicting the image frequency 

information change. How to combine them together for developing an effective RR 

IQA needs to be considered. Here, a simple linear combination method is employed to 

obtain the final quality values: 

Q = pari x dcBD(psub,pTb) + par2 x T.(m,n) dui(Sm, Sn) + par3 x FLv 

(4.16) 

where (pari, par2, par3) are the three weighting parameters to be determined, Q is 

the perceptual quality index of the distorted image. Firstly, we sum together the CBD 

values of intra RDCT subbands, and MI differences of inter RDCT subbands, respec-

tively. Their sum values and the FLv value are further linearly combined together 

according to Eq. 4.16. In order to find the optimal parameters (pari , par2, par3), the 

genetic algorithm [190] is employed to train them on several distorted images. In this s-

tudy, four reference images and their corresponding distorted images in the LIVE image 

quality assessment database [25] are employed to obtain the three parameter values. 

The selected four reference images for parameterization are 'rapids', 'paintedhouse', 
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'plane', and 'building2'. The correlation between the DMOS values and the calculated 

Q values in Eq. 4.16 of the training images is maximized to determine the optimized 

parameters (pari, par2, pars). As there are only 3 parameters to be determined, the 

number of the genes is equal to 3. Each gene uses 8-bit binary representation. Each 

gene will be divided by 255 to constrain them within [0,1.0]. The generation gap is 

set as 0.9, which means that only 30 - 30 x 0.9 = 3 best fitted genes will be propa-

gated to the successive generation. Therefore, 27 new genes will be produced at each 

generation. The crossover for creating new genes is a single-point with probability 0.7. 

And the mutation for creating new genes is with probability 0.0014. The number of 

generations is set to 100. The initial population is created randomly and uniformly 

distributed. The fitness assignment is based on ranking instead of raw performance. 

Selection method is stochastic universal sampling. Reinsertion is fitness-based (instead 

of uniform random). After performing the genetic algorithm, the parameterization re-

sult is pari=0.4883, par2=0.0313, and par3=0.6719. Furthermore, as in [167] [168], a 

logarithm process is employed to scale the perceptual quality index Q: 

VQI = logio (1 + D ) ( 4 . 1 7 ) 

where VQI is the final obtained quality score, Do is utilized for scaling the distortion 

measure to avoid the variation of Q being too small. It just helps to depict the per-

ceptual quality index clearly, which will not influence the performance of the proposed 

RR IQA. In this study, Do is set as 0.0001 for simplicity. 

4.6 Experimental Results 

In this sub-section, we firstly show the efficiency of the reorganized DCT strategy 

for the proposed method. Subsequently, the performances of different IQAs will be 

compared to demonstrate the efficiency of the proposed RR IQA for evaluating the 

image perceptual quality. 

4.6.1 Efficiency of the DCT Reorganization Strategy 

All the reference images from the LIVE image database [25] are employed to demon-

strate the efficiency of the DCT reorganization strategy, compared with the steerable 

pyramid [167] [168], which has been employed in the FR IQAs, such as VIF [72]. As 



Figure 4.7: Prediction error of the reference images in the LIVE image database [25]. 

illustrated in [167] [168], after the 3-scale, 3-orientation steerable pyramid decomposi-

tion, the high-frequency subbands correspond to the reorganized DCT subbands from 

Si to Sg. As described in Section 4.4.1, the average prediction error, specifically the 

CBD, between the fitted GGD function and the actual coefficient distribution of the 6 

subbands (from S4 to Sg), are employed as the criterion to evaluate the performances of 

different transforms. According to the definition in Eq. 4.4, the smaller the prediction 

error, the better fitting is the GGD function, which means that the GGD can more 

accurately describe the coefficient distribution. The prediction error of each reference 

image in the LIVE image database is illustrated in Figure 4.7. It can be observed that 

for most images the prediction errors using the reorganized DCT are smaller than those 

using the steerable pyramid. The average prediction error using the reorganized DCT 

of all the images is only 0.1183, compared with 0.1664 using the steerable pyramid. 

This result means that the coefficient distributions of the reorganized DCT subbands 

are more suitable for GGD modeling, which will further help improve the RR IQA 

performance. 

4.6.2 Performance of the Proposed RR IQA 

We compare the performance of our proposed RR IQA with the representative RR 

image quality metric: WNISM [167] [168], recently developed RR-LHS [165], EPSNR 

[164], RR-DNT [169], RR-SSIM [172] [173], RR-Weibull [174], RR-Edge [175], and the 
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FR metrics: PSNR, and SSIM [68]. The LIVE image database [25] (excluding the 

distorted images generated from the four training reference images), the IRCCyN/IVC 

image database [26], and the MICT image database [27] are employed to compare the 

performances of these metrics. Detailed information of these image databases can be 

referred to Section 1.3.3. As usual, three statistical measurements LCC, SROCC, and 

RMSE are employed to evaluate the corresponding performances of these metrics. 

Database Method LCC SROCC RMSE RR feature 
number 

RR data 
rate 

LIVE 

PSNR 0.8759 0.8813 13.157 - -

LIVE 

SSIM 0.9041 0.9112 11.653 - -

LIVE 

WNISM 0.7585 0.7709 17.771 18 162 bits 

LIVE EPSNR 0.6571 0.6257 20.559 30 270 bits LIVE RR-LHS 0.8809 0.8831 12.909 320 2560 bits LIVE 

RR-Weibull 0.8567 0.8650 14.475 6 * 
LIVE 

RR-Edge 0.8613 0.8908 14.256 12 96 bits 

LIVE 

Proposed 0.9309 0.9279 9.965 18 153 bits 

IRCCyN/IVC 

PSNR 0.7037 0.6791 0.866 - -

IRCCyN/IVC 

SSIM 0.7758 0.7778 0.769 - -

IRCCyN/IVC 

WNISM 0.4525 0.4094 1.087 18 162 bits 

IRCCyN/IVC EPSNR 0.3947 0.3958 1.119 30 270 bits IRCCyN/IVC RR-LHS 0.8078 0.8203 0.718 320 2560 bits IRCCyN/IVC 

RR-DNT 0.6316 0.6099 0.9446 48 * 
IRCCyN/IVC 

RR-SSIM 0.8177 0.8156 0.7014 36 * 

IRCCyN/IVC 

Proposed 0.7712 0.7649 0.776 18 153 bits 

MICT 

PSNR 0.6154 0.5748 0.987 - -

MICT 

SSIM 0.7174 0.7870 0.872 - -

MICT 

WNISM 0.6568 0.6446 0.944 18 162 bits 

MICT EPSNR 0.4016 0.4059 1.146 30 270 bits MICT RR-LHS 0.7623 0.7644 0.810 320 2560 bits MICT 

RR-DNT 0.6733 0.6521 0.9253 48 * bits 

MICT 

RR-SSIM 0.8051 0.8003 0.7423 36 * bits 

MICT 

Proposed 0.8282 0.8317 0.701 18 153 bits 

Table 4.2: Performance comparisons of different RR IQAs over different image subjective 
quality databases. (”-” means that the IQA is an FR metric, where the RR feature number is 
the pixel number of the image, and the RR data rate is also viewed as the whole image. 
means that the RR IQA only calculates the number of the features, while the number of the 
bits for representing the RR parameters cannot be provided.) 

The performances of different IQAs over different image subjective quality databases 

are illustrated in Table 4.2, where the RR data rate of each IQA is also illustrated. It 

can be observed that the proposed method can outperform the other RR and FR 
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Figure 4.8: Scatter plots of the DMOS values versus model predictions on the LIVE image 
quality assessment database. 

metrics on the LIVE [25] and MICT [27] image databases, with larger LCC/SROCC 

and smaller RMSE value. While for the IRCCyN/IVC [26] image database, only the 
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Figure 4.9: Scatter plots of the DMOS or MOS values versus model predictions on the three 
image subjective quality databases. Each sample point represents one test image. 

metrics RR-LHS and RR-SSIM can generate better performances. However, these 

two RR metrics require a much larger bit rate to represent the RR features than the 

proposed RR metric. From Table 4.2, experimental results demonstrate that PSNR 

performs badly, although it requires the whole reference image for perceptual quality 

analysis. The reason is that PSNR only measures the pixel absolute differences, which 

does not take the HVS property into consideration. For SSIM, the structural distortions 

are measured rather than the absolute pixel value differences, which are sensitive to 

the HVS perception. Therefore, SSIM demonstrates a better performance than PSNR. 

However, SSIM also utilizes the whole reference image for quality analysis, which will 

introduce a heavy burden for the RR feature transmission. For EPSNR, in order to 
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reduce the bits to represent the location, the reference and distorted images are firstly 

cropped to 614x454, where only the central parts are kept. Therefore, as shown in [164], 

19 bits are required to encode the location, while 8 bits are needed to represent the 

pixel value. In our comparisons, 10 pixels together with their locations are employed as 

the RR features, which require 270 bits in total for representation. The performances of 

EPSNR over the three databases seem to be the worst. Although the HVS is sensitive to 

the edges, 10 edge points are not sufficient to accurately represent the image perceptual 

quality. If more edge pixels are included, the performance will be better. In that case, 

a heavy burden for transmitting the RR features will be introduced. 

For RR-Weibull and RR-Edge, as the authors only provide the performance result-

s on the LIVE image database, their performances results on the IRCCyN/IVC and 

MICT image databases are not available for comparison. RR-Weibull extracted 6 s-

calar parameters from each source image to depict the statistics of the image gradient 

magnitude. It can generate a better performance than WNISM and EPSNR. However, 

as the number of the RR features is very small, which may not be sufficient to depict 

the information of the source image, the performance is not good enough, compared 

with other RR image metrics. RR-Edge further incorporated more RR features to de-

pict the statistics of the edge. In total, 12 RR features are extracted from the source 

image, which generates a better performance compared with RR-Weibull. However, it 

is still not good enough. Since RR-LHS considers the motion information to design 

the RR video quality metric, in our comparisons only the discriminative local harmon-

ic strength in the spatial domain is employed for the RR image quality assessment. 

Therefore, about 320 elements of each image are extracted as the RR features. If 8 

bits are employed to encode each element, the RR data rate is 2560 bits. It is a high 

burden for the RR data transmission. For RR-DNT and RR-SSIM, the performance 

results on the three image databases are illustrated in [173]. 

All the 779 distorted images in the LIVE image database are employed to demon-

strate the performances of RR-DNT and RR-SSIM. However, as the proposed method 

utilized four reference images and the corresponding distorted images for training the 

parameters, it is not fair to compare RR-DNT and RR-SSIM with the proposed method 

on the LIVE database. Therefore, only the performance comparisons on IRCCyN/IVC 



104 CHAP. 4. REDUCED REFERENCE IMAGE QUALITY ASSESSMENT 

and MICT image databases are illustrated in Table 4.2. RR-DNT employs the divi-

sive normalization to depict the coefficient distributions of the wavelet subbands. The 

distribution difference between the reference and distorted images is used to depict the 

image perceptual quality. However, a training process is utilized to determine the 5 pa-

rameters in RR-DNT. And the performances of RR-DNT seem to be sensitive to these 

parameters. That is the reason why RR-DNT performs very well over the LIVE image 

database, while performs poorly over the IRCCyN/IVC and MICT image databases. 

RR-SSIM extracted the statistical features from a multi-scale, multi-orientation divi-

sive normalization transform. By following the philosophy in the construction of SSIM, 

a distortion measurement is developed to estimate the SSIM index of the distorted im-

age. As a linear relationship between the RR-SSIM and SSIM has been discovered, the 

performances of RR-SSIM are good, which is comparable with the proposed method. 

RR-SSIM outperforms the proposed metric on the IRCCyN/IVC database, while its 

performance is worse than the proposed one on the MICT database. However, RR-

SSIM extracted 36 RR features to represent the source image, which is twice of that 

extracted by the proposed RR metric. 

WNISM [29] [30] is proposed in the wavelet domain by depicting the marginal prob-

ability distribution of each wavelet subband. The steerable pyramid is firstly employed 

to decompose the image into several wavelet subbands, whose coefficient distribution-

s are modeled by GGD. As demonstrated in Section 4.6.1, GGD can more accurately 

model the coefficient distribution of RDCT subband than that of the steerable pyramid. 

Moreover, KLD is utilized in WNISM to depict the histogram distribution distance. 

However, KLD is asymmetric, which is not suitable for image quality evaluation, be-

cause the visual quality distance from one image to another should be identical no 

matter how it is measured. Those are the reasons why WNISM performs badly over 

the three image quality databases, as illustrated in Table 4.2. 

For the RR data rate, each wavelet subband needs 3 parameters to describe its 

distribution, which requires 8 + 8 + 8 + 3 = 27 bits for representing these parameters. 

In total 6 wavelet subbands are considered to construct WNISM, which results in 

27 x 6 = 162 bits to encode all the RR features of the reference image. For the proposed 

method, the intra RDCT subband relationship is captured by GGD modeling and CBD; 

the inter RDCT subband correlation is depicted by the MI values; and the frequency 
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distribution is captured by FRD, which can further simulate the HVS texture masking 

property. As the three horizontal RDCT subbands are employed for depicting the intra 

RDCT subband distribution, (8 + 8 + 8 + 3) x 3 = 81 bits are needed to represent 

the GGD modeling parameters. For the MI and FRD values, 8-bit representation is 

employed. Therefore, 8 x 9 = 72 bits are needed for representing all the MI and FRD 

values. In total, 81 + 72 = 153 bits are required to encode all the RR features extracted 

for the proposed method. The scatter-plots of different IQAs over the LIVE image 

database are illustrated in Figure 4.8. And the scatter plots of the proposed RR metric 

on the three image subjective quality database are illustrated in Figure 4.9. It can be 

observed that the points of the proposed method scatter more closely to the fitted line, 

compared with other IQAs. It means that the DMOS or MOS values correlate better 

with the perceptual quality values obtained by the proposed RR IQA. 

4.6.3 Performance of the Proposed RR IQA over Each Individual Distortion Type 

Furthermore, we tested the proposed RR IQA over individual distortion types from 

the LIVE image database, which are illustrated in Table. III. It can be observed that 

PSNR performs well over JPEG2000 and WGN images, especially for WGN images. 

However, for the JPEG, Blur, and FF noise images, PSNR performs poorly. EPSNR 

only employs several edge pixels to measure the corresponding PSNR. Therefore, it 

presents a performance similar to PSNR. For the WGN images, EPSNR demonstrates 

a very good performance. It means that the perceptual qualities of WGN images 

correlate closely with the absolute pixel value differences, in contrast to other noise 

images. RR-LHS demonstrates good performances on the JPEG2000, JPEG, WGN, 

and FF noise images. However, its performance over the Blur noise images is very 

poor, even a very large number of RR features has been employed. It means that 

the discriminative local harmonic strength is not suitable for depicting the perceptual 

quality of the Blur noise images. 

For WNISM, RR-Weibull, and RR-Edge, the experimental results over the individ-

ual distortion types are very good. However, their performances degrade significantly 

when images with different types of distortions are tested together, as shown in Ta-

ble 4.2. As revealed by the previous literature [169], it is also the main drawback 
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of WNISM. The experimental results demonstrate that proposed RR metric outper-

forms WNISM except for the JPEG 2000 distortion. Actually, JPEG 2000 employed 

the wavelet transform for compression. Therefore, the steerable pyramid employed 

in WNISM is more suitable for depicting the coefficient distribution than the DCT. 

Also as new RR features, specifically the inter RDCT subband MI and image FRD 

FLv, have been introduced, the performance has been greatly improved. Therefore, 

the proposed method not only performs very well over individual distortion types, but 

also provides a good performance across different distortion types. It means that it 

performs more robustly for evaluating image visual quality. Furthermore, the proposed 

metric maintains a smaller RR data rate, compared with WNISM, and RR-LHS. The 

improvements have demonstrated that the intra and inter RDCT subband dependen-

cies and the image FLv value are helpful for designing an effective RR IQA. It reflects 

that the CBD difference, MI differences, and FLv value can help to depict the levels 

of the introduced distortions. Therefore, for the proposed RR IQA, the RR features 

for depicting the vertical RDCT subbands are excluded to save some bit rates for the 

inter RDCT subband MI values and image FRD value. 

As illustrated in Table 4.2 and Table 4.3, the effectiveness of our proposed RR 

quality metric has been clearly demonstrated compared with the other RR metrics 

or even FR metrics in terms of both performance and required RR data rate. The 

computational complexities of RR feature extraction and comparison need to be further 

evaluated. The processing complexity in the sender side is different from that in the 

receiver side. In the sender side, as introduced in Section 4.4, 8x8 block-based DCT 

is firstly performed on the source image. After the reorganization strategy, the DCT 

subbands are grouped into several representative RDCT subbands. The DCT coefficient 

distribution of each RDCT subband is modeled by the GGD. MI is employed to depict 

the relationship between different RDCT subbands. Based on the RDCT subband, the 

image FRD FLv is calculated. 

We implemented the RR feature extraction in Matlab. During our implementation, 

we did not perform any optimizations. A speed test was performed on our PC with a 

3.0GHz Quad CPU and 1.0GB memory. For each source image of LIVE image database, 

it only requires 2.94s on average to extract the RR features. In the receiver side, as 

illustrated in Section 4.5, the 8x8 block-based DCT and reorganization strategy was 
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Method JPEG2000 JPEG WGN Blur FF 

PSNR 
LCC 0.9078 0.8942 0.9857 0.7856 0.8880 

PSNR SROCC 0.9042 0.8853 0.9850 0.7894 0.8897 PSNR 
RMSE 10.546 14.406 4.711 11.214 12.898 

WNISM 
LCC 0.9270 0.8629 0.8791 0.9234 0.9422 

WNISM SROCC 0.9211 0.8539 0.8572 0.9290 0.9350 WNISM 
RMSE 9.434 16.258 13.346 6.955 9.399 

EPSNR 
LCC 0.6773 0.6489 0.9700 0.4890 0.6129 

EPSNR SROCC 0.6816 0.6400 0.9670 0.3086 0.5612 EPSNR 
RMSE 18.500 24.280 6.776 15.807 22.167 

RR-LHS 
LCC 0.8861 0.9761 0.9345 0.6051 0.8569 

RR-LHS SROCC 0.8792 0.9557 0.9848 0.6250 0.8575 RR-LHS 
RMSE 11.654 6.995 9.970 14.427 14.462 

RR-Weibull 
LCC 0.9422 0.9493 0.9771 0.9471 0.9234 

RR-Weibull SROCC 0.9415 0.9402 0.9749 0.9404 0.9261 RR-Weibull 
RMSE 7.912 10.115 5.954 5.817 10.741 

RR-Edge 
LCC 0.9404 0.9383 0.8815 0.9152 0.9421 

RR-Edge SROCC 0.9406 0.9408 0.8654 0.9083 0.9329 RR-Edge 
RMSE 8.592 11.128 13.224 7.302 9.400 

Proposed 
LCC 0.8983 0.9528 0.9275 0.9459 0.9437 

Proposed SROCC 0.8912 0.9520 0.9093 0.9525 0.9204 Proposed 
RMSE 11.051 9.766 10.471 5.880 9.277 

Table 4.3: Performances of different IQAs over individual distortion types on the LIVE image 
database 

also performed. But the fitting process of the GGD does not need to be performed. 

Only the histogram of each RDCT subband was constructed. And MI values between 

RDCT subbands, and the image FRD FLv are calculated. Therefore, the computation 

is faster. The speed test was performed on the same PC, which indicates that only 1.93s 

per image on average is needed for the image quality analysis. If further optimization 

is applied, it is believed that the quality analysis in the receiver side can perform even 

faster. 

4.6.4 Statistical Significance 

To assess the statistical significance of the performance difference between two metrics, 

F-test was conducted on the prediction residuals between the metric outputs (after 

nonlinear mapping) and the subjective ratings. The residuals are supposed to be Gaus-

sian. Smaller residual variance implies more accurate prediction. Let F denotes the 

ratio between the residual variances of two different metrics (with the larger variance 

as the numerator). If F is larger than Fcriticai which is calculated based on the number 
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of residuals and a given confidence level, then the difference between the two metrics 

are considered to be significant at the specified confidence level. Table 4.4 lists the 

residual variance of each metric on the three subjective image databases. Notably due 

to the differences in employed subjective scales, the residual variance varies a lot across 

different image databases. The Fcriticai with 95% confidence is also shown in Table IV 

for each database. 

In Table 4.5, the proposed metric is compared with the other metrics regarding 

the statistical significance. In each entry, the symbol "1", "0", or ” = ” means that 

on the image databases indicated by the first row of the table, the proposed metric 

is statistically (with 95% confidence) better, worse, or indistinguishable, respectively, 

when compared with its competitors indicated by the first column. means that 

the comparison cannot be performed due to the unavailable result data. For the RR 

metrics RR-Weibull and RR-Edge, the metric outputs of the distorted images on the 

IRCCyN/IVC and MICT image databases are not available. Therefore, we cannot 

compare the statistical significances of these two metrics with the proposed method on 

these two databases. By referring to the other entry values shown in Table 4.5, it can 

be observed that the proposed metric outperforms most of its competitors statistically. 

Although its performance on IRCCyN/IVC image database seems to be equivalent 

to other IQAs, overall it demonstrates better performances on the other two image 

databases. 

LIVE(672 images) IRCCyN/IVC(185 images) MICT(168 images) 
Fcriticai = 1.1355 Fcritical ——1.275 Fcritical ——1-291 

PSNR 173.3645 0.7534 0.9804 
SSIM 136.0017 0.5942 0.7647 
RR-LHS 166.8887 0.5186 0.6600 
EPSNR 423.3052 1.2599 1.3213 
RR-Weibull 209.8357 - -
RR-Edge 203.5310 - -
WNISM 333.7304 1.1869 0.8958 
Proposed 99.6236 0.6049 0.4948 

Table Residual variances of the IQAs on the three image subjective quality databases 
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LIVE(672 images) IRCCyN/IVC(185 images) MICT(168 images) 
Fcritical = 1 . 1 3 5 5 Fcritical = 1 . 2 7 5 Fcritical = 1 . 2 9 1 

PSNR 1 = 1 
SSIM 1 = 1 
RR-LHS 1 = 1 
EPSNR 1 1 1 
RR-Weibull 1 氺 * 
RR-Edge 1 氺 * 
WNISM 1 1 1 

Table 4.5: Performance comparisons regarding the statistical significance. In each entry, the 
symbol ”1", "0" or means that on the image database the proposed RR metric is statisti-
cally (with 95% confidence) better, worse or indistinguishable in comparison to its competitor. 

means that the comparison cannot be performed due to the unavailable result data. 

4.6.5 Performance Analysis of Each Component 

As we have mentioned before, the intra RDCT subband correlation, the inter RDCT 

subband dependency, and the image frequency distribution are utilized to design the 

RR IQA. In this part, we will try to figure out the contribution of each component to 

the final performance. 

Table 4.6 illustrates the individual performance of each component of the proposed 

RR metric over the LIVE image database. For the CBD values of intra RDCT subband-

s, only three horizontal RDCT subbands are considered. Therefore, as 3 parameters are 

required to depict the coefficient distribution, 3x 3 = 9 parameters are extracted for the 

RR features of intra RDCT subband correlation. According to the HVS oblique effect, 

HVS presents similar sensitivity to the horizontal and vertical information. Therefore, 

by considering only the horizontal ones, the visual quality of the distorted image can 

be accurately depicted. 

For the MI difference of inter RDCT subbands, 8 MI values are employed to de-

pict the parent-child, cousin-child, and brother-child dependencies. The performance 

is better than the WNISM, while it only requires far smaller number of RR features (8 

parameters vs. 18 parameters of WNISM). Additionally, it can be observed that the 

MI differences perform worse than the CBD values. The reason is that the correlations 

between inter RDCT subbands have been essentially ensured by the linear transforma-

tions. Therefore, compared with the coefficient distribution in each RDCT subband, 

the MI values between different subbands vary less significantly, thus cannot effectively 

depict the image distortions. However, the introduced distortion in the image will affect 
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the MI values between RDCT subbands. Therefore, it is necessary to incorporate the 

inter RDCT subband dependencies in designing the RR IQA, which plays a less but 

nevertheless an important role in image quality assessment. 

For the FLv of the image, the performance is very good. Even with only one 

parameter FRD extracted from the reference image, the performance is comparable 

with PSNR, and even better than WNISM, RR-Weibull, and RR-Edge, as shown in 

Table. 4.2. Therefore, if we want to further reduce the RR data rate, we can extract the 

FRD only and transmit it to the receiver side for perceptual quality analysis. It only 

requires 8 bits to represent the FRD of the reference image. The good performance may 

attribute to two reasons. Firstly, the distortions introduced will significantly change 

the frequency distribution of the image. The larger the FRD changes, the higher the 

distortion level. For example, the more compression is introduced for JPEG coded 

image, the more HF and MF components are discarded, compared with the LF ones. 

The FRD differences as in Eq. 4.14 will become larger, which indicates worse perceptual 

quality. Therefore, the FRD difference can depict the distortion level. Secondly, the 

mutual masking strategy is employed as formulated in Eq. 4.15. As discussed in [187], 

for the content of the original image and the artifacts, one's presence will affect the 

visibility of the other. Therefore, by using mutual masking, the texture masking effect 

of the HVS can be more accurately simulated. 

CBD MI FLv 
LCC 0.8983 0.7746 0.8770 
SROCC 0.8943 0.7697 0.8809 
RMSE 11.981 17.248 13.106 

Table 4.6: Performance of 
database. 

component of the proposed RR metric on LIVE image 

In order to further demonstrate the contribution of each component of the proposed 

RR metric, different combinations of these components are evaluated on the LIVE im-

age database, as well as over each individual distortion type. The experimental results 

are illustrated in Table 4.7 and Table 4.8. It can be observed that the proposed method 

can outperform all of these different combinations. It means that each component of 

our proposed RR metric does contribute to the final performance. Comparing the three 

combinations, we can see that CBD+FLv can achieve the best performance. It is also 
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consistent with the performances illustrated in Table 4.7, where CBD and FLv perform 

better than MI. However, CBD+FLv is still not as good as the proposed RR metric. 

Therefore, the MI is a necessary component that contributes to the performance im-

provement of the proposed RR metric. In this case, if a very small RR data rate is 

required, we can extract FLv and transmit it to the receiver side for perceptual quality 

analysis. With the increasing of the required RR data rate, we can further transmit 

the CBD RR features to the receiver side. Finally, if the RR data rate is sufficient, 

all the three components, specifically the FLv, CBD, and MI, will be extracted and 

transmitted to the receiver side for a better performance. 

CBD+MI CBD+FLv FLv +MI 
LCC 0.9100 0.9206 0.9114 
SROCC 0.9050 0.9194 0.9127 
RMSE 11.309 10.652 11.220 

Table Performances of the combinations of different components of the proposed metric. 

Method JPEG2000 JPEG WGN Blur FF 

CBD+MI 
LCC 0.8461 0.9347 0.9141 0.9245 0.9394 

CBD+MI SROCC 0.8400 0.9241 0.9010 0.9331 0.9177 CBD+MI 
RMSE 13.403 11.438 11.357 6.907 9.617 

CBD+FLv 
LCC 0.8908 0.9556 0.9150 0.9320 0.9383 

CBD+FLv SROCC 0.8821 0.9540 0.8988 0.9406 0.9170 CBD+FLv 
RMSE 11.426 9.479 11.296 6.568 9.703 

FLv +MI 
LCC 0.9315 0.9586 0.9294 0.9652 0.9288 

FLv +MI SROCC 0.9223 0.9597 0.9144 0.9666 0.9268 FLv +MI 
RMSE 9.149 9.160 10.331 4.736 10.395 

Table 4.8: Performances of the combinations of different components of the proposed metric 
over individual distortion type. 

4.7 Conclusion 

In this chapter, we propose a novel RR IQA by considering the intra and inter subband 

correlations in the RDCT domain. The CBD and MI values are firstly employed to 

depict the intra and inter RDCT relationships, respectively. The FRD calculated in 

RDCT domain depicts the frequency distribution of the images, which can be employed 
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to simulate the HVS texture masking effect in a mutual masking way. Combining the 

CBD values, MI differences, and FRD value together, an effective RR IQA is developed. 

Evaluations on several image quality databases demonstrate that the proposed method 

outperforms the state-of-the-art RR metrics and even FR metrics PSNR and SSIM. It 

means that the proposed metric correlates well with the human perception of the image 

quality. Meanwhile, only a small number of RR features are extracted. 



Chapter 5 

Reduced Reference Video Quality Assessment 

5.1 Introduction 

As introduced in Section 4.1, many RR IQAs have been developed by considering the 

distortions behaviours, HVS properties, and the statistics modeling of visual signals. 

Nowadays, many RR VQAs are developed by extending the RR IQA by characterizing 

the distortions in spatio-temporal domain rather than in spatial domain only. Among 

these RR VQAs, VQ Model [80] is one of the best proponents of the VQEG FRTV 

Phase II tests [65]. For a video sequence, VQ Model generates seven distortion factors 

to measure the perceptual effects of a wide range of impairments, such as blurring, 

blockiness, jerky motion, noise and error blocks, etc. Viewed conceptually, VQ Mod-

el's distortion factors are all calculated in the same steps. Firstly, the video streams 

are divided into 3D Spatial-Temporal (S-T) sub-regions typically sized by 8 pixel x 

8 lines x 0.2 second； then feature values are extracted from each of these 3D S-T re-

gions by using statistics (mean, standard deviation, etc.) of the gradients obtained 

by a 13-coefficient spatial filter, and these feature values are clipped to prevent them 

from measuring unperceivable distortions； finally these feature values are compared and 

their differences combined together for quality prediction. Three feature comparison 

methods used by VQ Model are Euclidean distance, ratio comparison, and log compar-

ison. Also as aforementioned, RR-LHS [165] employed discriminative local harmonic 

strength with motion consideration to evaluate the distorted video quality. The gra-

dient information of each frame is employed for harmonic and discriminative analysis. 

Furthermore, Zeng et al. [191] [192] extended the RR IQA to VQA, by modeling the 

video natural temporal statistics. In [191], the temporal motion smoothness of a video 

sequence is proposed to examine the temporal variations of local phase structures in 

113 
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the complex wavelet transform domain. In [192], both intra- and inter-frame RR fea-

tures are calculated based on the statistical modeling of natural videos. Together with 

a robust video watermarking approach, a quality-aware video system is developed. It 

has been demonstrated that these two RR VQAs present good measurement of the in-

dividual distortion level. However, these metrics are not evaluated over the subjective 

quality video database, which leads to a deficiency of the evaluation results. 

This study deals with the RR quality assessment by extending the previous work 

RR IQA introduced in Section 4 for compressed video sequences. With inspiration 

from the RR IQAs, an efficient RR VQA for compressed video sequences is proposed. 

Firstly, from the spatial perspective, an energy variation descriptor (EVD) is proposed 

to measure the energy change of each distorted frame. The proposed EVD can also be 

utilized to simulate the texture masking property of the HVS. For the temporal distor-

tion, the generalized Gaussian distribution (GGD) is employed to model the histogram 

distribution of the inter frame difference. The city-block distance (CBD) is used to 

calculate the histogram difference between the original video and the distorted one. 

Finally, the perceptual quality index is derived by combining the spatial EVD together 

with temporal CBD. The rest of the chapter is organized as follows. The detailed algo-

rithm will be introduced in Section 5.2. Section 5.3 will demonstrate the performance 

comparisons. Finally, the conclusion will be given in Section 5.4. 

5.2 Proposed Reduced Reference Video Quality Metric 

The general framework of the RR VQA system is illustrated in Figure 5.1. In the sender 

side, the RR features which are sensitive to the HVS perception are firstly extracted 

from the original video sequence. Then the original video is encoded and transmitted 

to the receiver side. The corresponding RR features can be embedded into the coded 

bit-streams or transmitted through an ancillary data channel to the receiver side. After 

decoding, the processed features can be calculated from the compressed video sequence. 

By comparing the processed features with the ones of the original video sequence, the 

visual quality index of the compressed video can be generated. 

As aforementioned, in order to develop an efficient RR VQA, several challenges need 

to be considered. In the sender side, the extracted features need to be sensitive to a 

variety of video coding distortions, not only from the spatial perspective but also from 
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Figure 5.1: General framework of the RR VQA system. 
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the temporal perspective. Also these features have to be relevant to the HVS perception 

of the video quality. The second important issue is the computational complexity of the 

RR feature calculation. If the complexity is too high, the receiver cannot easily compute 

the processed features from the compressed video. Consequently it cannot practically 

monitor the visual quality of the distorted video. Therefore, the feature computation 

process should be efficient. Another important aspect is that the RR feature selection 

should consider not only the prediction accuracy of the quality metric, but also the data 

rate of the RR features. For a higher data rate, one may include more information of the 

reference video. Thus a good performance can be obtained, but this on the other hand 

will introduce a heavy burden to the RR feature transmission. Actually, the FR VQA 

is one extreme case of RR VQA, with the data rate being the whole reference video. 

With a smaller data rate, little information of the reference image/video is available, 

resulting in poor quality prediction accuracy. As such, we can regard the NR VQA as 

another extreme case of RR VQA, with no information from the reference video. How 

to balance the data rate and performance is the key point for RR feature selection. 

The framework of extracting the RR features in the sender side is illustrated in 

Figure 5.2. For each original video frame, the RR feature representing the distortions 

from the spatial perspective is calculated. As the difference frame can depict the 

temporal relationship between adjacent frames, the temporal features are extracted 

from each difference frame. After the feature extraction, the compression process is 

performed to represent the RR features in limited bits, which can be easily transmitted 
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Figure 5.2: RR feature extraction in the sender side. 

to the receiver side for visual quality analysis. The following sections will introduce the 

detailed information of feature extraction from both spatial and temporal perspectives. 

5.2.1 Reduced Reference Feature Extraction from Spatial Perspective 

The distortion of the video sequence encoded by MPEG-2 and H.264 is introduced 

during the quantization process, which quantizes the DCT coefficients of the spatial 

blocks into different levels. It can help to efficiently reduce bit-rates for representing 

the video sequence. However, the quantization process results in the useful information 

loss. Intuitively, the larger the quantization step, the more is the information loss is, 

and the worse is the perceptual quality of the encoded video. Therefore, the information 

loss has certain implicit relationship with the video perceptual quality. In this study, 

we propose an energy variation descriptor (EVD) to represent the spatial information 

loss. 

For each block-based DCT (take an 8x8 DCT for an example), the DCT sub-

bands can be categorized into different frequency bands, namely, high frequency (HF), 

medium frequency (MF), and low frequency (LF). In JND estimation [119] [122], the 

authors employed the energies of different subbands to indicate different block types. 

Based on these different types, the visual texture masking property is described. The 

frequency categorization of DCT subbands is illustrated in Figure 5.3. Let L, M, and 

H represent the sums of the absolute DCT coefficient values in the LF, MF and HF 

groups, respectively. It should be noted that the quantization matrix is not uniformly 

distributed. The higher the DCT frequency, the larger the quantization parameter is. 

The reason is that the HVS is more sensitive to the LF components, which should be 
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preserved during the quantization process. Therefore, it is not reasonable to record the 

absolute values of L, M , and H, which cannot effectively depict information loss. In 

this part, the corresponding frequency ratio EVD is proposed to depict the HVS-related 

information loss, which is defined as: 

EVD 
M + H 
“ L “ 

(5.1) 

The above definition is for each 8x8 DCT block. You can sum all the L, M, and 

H values over all the blocks to get the EVD value for a whole image/frame. From 

the definition, we can see that the EVD depicts the frequency energy proportion of the 

original video frame. When the distortion is introduced, specifically in the quantization 

process, the energies of MF and HF components will change more significantly than 

the LF ones. Thus, the EVD can accurately depict the changes and effectively capture 

the information losses. Furthermore, the larger the value of EVD, the more energy 

the MF and HF components possess. It means that the DCT block is more likely 

to contain texture information. For the plain block, the energy mostly concentrates 

in the LF components. For the edge block, there will be only a small number of 

DCT coefficients in the HF group. Consequently, the texture block will present higher 

EVD. As discussed in the JND models [119] [122], the texture block can tolerate more 

distortions than the plain and edge block, which is interpreted as the texture masking 

property of the HVS. Therefore, the proposed EVD can be employed to simulate the 
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texture masking property for the derivation of the final video quality metric. 

5.2.2 Reduced Reference Feature Extraction from Temporal Perspective 

The temporal RR feature extraction strategy is illustrated in Figure 5.4. Firstly, the 

temporal relationship between adjacent frames needs to be depicted. The block-based 

motion estimation [193] [194] and optical flow [195] are employed to explore the motion 

information between the corresponding blocks or pixels of adjacent frames. However, 

although they can provide much more accurate information for describing the motion, 

the computational complexity is too high for practical implementations, especially in 

the receiver side. Therefore, we simply employ the difference image for characterizing 

the temporal relationship between adjacent frames: 

D(i) = I(i) - I(i - 1),i e 2,3, �N (5.2) 

where I(i) is the i - th original video frame, D(i) is the corresponding difference frame, 

N is the total frame number of the video sequence. This simple scheme has been proved 

to be effective for detecting the visual saliency map of the natural video sequences 

[147]. Since luminance is more important than chrominance for our visual system, 

only the luminance information is considered to compute the difference frame. In 

order to illustrate the statistical property of the difference image, several original video 

sequences, such as PA, PR, RB, and TR are selected from the LIVE video quality 

database [17] [18] for demonstration, as illustrated in Figure 5.5. In order to provide a 

better visualization, the difference image has been reconstructed by 128 + (Pixe1yalue). 

It can be observed that the pixel values of the difference image mostly concentrate 

around zero, which generates a highly kurtotic distribution (with a sharp peak at zero 

and a fat-tail distribution). As demonstrated in [167] [168], the histogram distribution 
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of the wavelet coefficient is highly kurtotic. And this highly kurtotic distribution can 

be well fitted by the generalized Gaussian density (GGD) function. Furthermore, the 

coefficient distribution of the RDCT subband, presenting highly kurtotic, can also be 

modeled by GGD as shown in Section 4.4.1. Therefore, in this study the GGD is 

employed to model the histogram distribution of the difference image. The probability 

density function (PDF) of GGD is defined as: 

⑷——(學)1 (5.3) 
where a models the width of the PDF peak (standard deviation), while ^ is inversely 

proportional to the decreasing rate of the peak. a and (3 are also referred to as the 

scale and shape parameters, respectively. F is the Gamma function given by: 

I•� 

r(x) = tx-1exp(—t)dt (5.4) 
Jo 

The GGD model can accurately model the histogram distribution, as demonstrated in 

Figure 5.5, where the actual histogram distribution and the fitted GGD curve overlap 

with each other. Furthermore, it can be observed that the GGD model can work 

effectively with different types of video sequences. For example, the PA video sequence 

is captured by a static camera, which results in a great proportion of the pixel value 

around zero, whereas the PR video sequence is captured by a moving camera, hence 

the pixel value distribution is much flatter. On the other hand, the RB video sequence 

is rich of dynamic texture information, and the TR video sequence is captured with a 

camera zooming effect. 

By considering the maximum-likelihood estimation and assuming (3 > 0, we can 

obtain the approximated A [196] according to: 

a 
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where Xi is the pixel sample from the corresponding difference image, L denotes the 

total number of the pixels. From Eq. 5.5, it can be observed that the estimated a is 

related to the energy of the difference image in the 3-norm. The difference energy can 

somewhat reflect the temporal changes between adjacent frames. That is the reason 

why we introduce GGD to model the histogram distribution of the difference image, 
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not only because of the modeling accuracy but also its ability to indicate the energy of 

frame difference. As demonstrated in [154] [158], the energy of the frame difference is 

useful to measure the temporal content for video quality assessment. Furthermore, in 

order to improve the modeling accuracy, another parameter besides (a, (3) is introduced, 
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Figure 5.6: Framework of visual quality analysis in the side. 

which is named as CBD, which has been introduced: 

hL 

dcBD (P,Pa,^)
 = E |P(i) - Pa,^ ⑴ | (5.6) 

where p(i) is the actual histogram of the difference image, Pa,^(i) is the fitted GGD 

curve, and hL is the total number of the histogram bins. Compared with KLD, CBD 

is symmetrical, which makes it more reasonable for evaluating the histogram distance 

as discussed in Section 4.4.1. 

For each video frame, one parameter EVD is recorded to depict the spatial infor-

mation loss, and three GGD parameters {a, dcBD(p,Pa,^)} are extracted from each 

difference image for describing the temporal information. Therefore, there will be 4 

parameters per frame in total to be recorded and transmitted to the receiver side for 

the quality assessment. For the EVD parameter, it is quantized into 8-bit precision for 

transmission. For the 3 GGD parameters, same as in [167], (3 and dcBD(p,Pa,^) are 

quantized into 8-bit precision, and a is represented using 11-bit floating point, with 8 

bits for mantissa and 3 bits for exponent. The quantization steps are set uniformly to 

represent the corresponding parameters in a limited number of bits. Therefore, for each 

frame, only 8 + 8 + 8 + 8 + 3 — 35 bits are required to represent the RR features. As 

the data rate is very small, the features can be easily transmitted through an ancillary 

data channel. Furthermore, they can also be embedded into the same video signal with 

a robust watermarking scheme [192]. 

5.2.3 Visual Quality Analysis in Receiver Side 

In the receiver side, as shown in Figure 5.1, we need to evaluate the visual quality of 

the compressed video sequence based on the RR features of the original video. The 

framework of the visual quality analysis in the receiver side is illustrated in Figure 5.6. 
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Firstly, the feature calculation procedure is performed on the distorted sequence to 

obtain the processed features, which consist of the spatial EVD and temporal GGD. The 

original RR features are decoded from the transmitted bit-streams. By comparing the 

original features with the processed ones, the spatial EVD difference and temporal CBD 

distance are obtained. By combining the two distances together, the visual quality score 

of each frame is generated. The final video quality index (VQI) of the corresponding 

video is obtained by temporally pooling the frame-level scores together. 

For the spatial EVD, as the compression process will discard more HF and MF 

components than the LF ones, the degradation of EVD can effectively represent the 

information loss caused by the compression: 

EL = \EVDori - EVDpro\ (5.7) 

where EVDori is the original feature, and EVDpro is calculated from the compressed 

video sequence. For the coded video sequences, the compression artifacts are superposed 

onto the original video sequence, which is regarded as the masker signal. Therefore, the 

original sequence is utilized to mask the compression artifacts, which are introduced 

by quantization process. As discussed before, larger EVD value indicates more texture 

information. Consequently, more distortion can be masked by a larger EVD. Therefore, 

the extracted EVD can be utilized to simulate the HVS texture masking property. The 

information loss in Eq. 5.7 is weighted by the original feature EVDori : 

ER = EL = \EVDori 一 EVDprol ( 5 8 ) 

ELv = EVDTi = WDT ( 5 . 8 ) 

where ELv is the final HVS-related features for depicting the spatial information loss. 

For the temporal difference image, the CBD is employed to measure the difference 

between the reference video and the distorted one: 

dCBD(p,pd) = EhLi(P(i) - Pd(i)) ( 5 . 9 ) 

where p depicts the difference image histogram of the original video, and pd is the 

distorted one. However, as the original video is unavailable at the receiver side, the 
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fitted GGD curve is employed to approximate the distance: 

dcBD (p,pd) = \dcBD (pa,l3 ,Vd) — dcBD (Pa,艮,p) | ( 5 . 1 0 ) 

where dcBD(pa,^, p) is the third parameter introduced in the sender side. In the receiver 

side, only dcBD (pa,玲,pd) needs to be calculated. Their difference will be recorded to 

represent the statistical feature distance from the temporal perspective. As in [167], 

the logarithm process is employed to scale the temporal CBD distance as log 10 (1 + 

dcBD (p,pd)/c), where c is utilized to scale the CBD distance to avoid the variation 

being too small, and it is set as 0.001 for simplicity. 

After obtaining the spatial ELv value and temporal logio(1 + dcBD(p,pd)/c) value, 

how to combine them together remains a problem. In [192], the authors employed the 

averaging process to combine the spatial and temporal values together. However, it 

is not suitable for our obtained spatial and temporal values, because their magnitudes 

are quite different. In order to make the spatial ELv value and temporal logio(1 + 

dcBD (p,pd)/c) value contribute equally to the final quality score Qs for each frame, 

the simple multiplication process is employed: 

Qs = Elv x logio(1 + dcBD (p,pd)/c) ( 5 . 1 1 ) 

Based on the frame-level quality score Qs, the VQI for depicting the perceptual 

quality of the entire compressed video is obtained by temporally pooling the Qs scores 

together. In our implementation, the averaging process is employed to generate the 

final VQI: 

VQI = 、 糊 (5.12) 

where N is the total number of the video frames. According to the definition of VQI, 

the smaller the VQI, the better visual quality the compressed video sequence is. And 

the VQI of the original sequence is 0 according to its definition. 

5.3 Experimental Results 

In this section, different VQAs are compared to demonstrate the effectiveness of the 

proposed RR VQA for evaluating the video perceptual quality. Firstly, similar to [191] 

[192], the consistency between the quality index generated by our proposed method 
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and the distortion level is evaluated. Subsequently, the effectiveness of the proposed 

RR VQA is evaluated based on the LIVE video quality database [17] [18], compared 

with the other VQAs. Finally, each component of the proposed algorithm is evaluated 

separately to demonstrate their corresponding contributions. 

5.3.1 Consistency Test of the Proposed RR VQA over Compressed Video Se-

quences 

We first tested the consistency of our proposed RR VQA on the coding artifacts, specif-

ically, the MPEG-2 compression and H.264 compression. The LIVE video quality 

database contains the coded video sequences and their corresponding DMOS values. 

The consistency results of our proposed RR VQA on the coded video sequences are 

illustrated in Figure 5.7. It can be observed that the relationship between the VQI 

and DMOS values is monotonic for a given source video, specifically the VQI value is 

monotonically increasing with the DMOS value for a given source video. The larger 

the VQI, the worse visual quality is the compressed video sequence, which possesses 

larger DMOS value. For all the original video sequences, the relationship between the 

VQI and DMOS value is approximately linear for both MPEG-2 and H.264 coded video 

sequences. For each original video sequence, if a new MPEG-2 or H.264 coded video 

sequence is introduced, we can utilize the slope information which can be derived from 

Figure 5.7, and its corresponding VQI value to predict its DMOS value with high ac-

curacy. Consequently, the true perceptual quality of the coded sequence is obtained. 

In the following section, we will further evaluate the proposed RR VQA metric in the 

standardized way by measuring the relationship of the obtained VQI values and the 

provided subjective DMOS values. 

The middle column of Figure 5.7 shows the EVD values of the original and distorted 

videos, respectively. The MPEG-2 and H.264 compression will change the EVD value of 

each frame. During the compression process, more HF and MF components have been 

discarded than the LF components, which results in a smaller value of M + H in Eq. 

5.1. Therefore, a smaller EVD value of each frame is obtained, compared to the original 

value. The histogram of the difference image indicating the temporal information is 

illustrated in the right column of Figure 5.7. Compared to the fitted GGD curve, the 

histogram distribution has been changed. As MPEG-2 and H.264 introduce more zero 
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Figure 5.7: Consistency evaluation of the proposed RR VQA over H.264 (left) and MPEG-2 
(right) coded video sequences. Top: the proposed distortion measure VQI versus the DMOS 
value of each distorted video sequence; middle: spatial EVD value of the PA video sequence 
(with the largest VQI value); bottom: temporal histogram of the 11th difference image of the 
distorted video PA (with the largest VQI value) and the fitted GGD curve. 

coefficients during the quantization process, a sharper and narrower distribution can 

be obtained from the distorted video sequence. Moreover, the actual histogram of the 

difference frame and the fitted GGD curve appear very close, while the EVD curves of 

the original and coded videos are quite different. The EVD is believed to affect the final 

VQI value more. As the compression distortion increases, although the LF component 
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starts to be affected, the HF and MF components are quantized even more severely. 

Therefore, by computing EVD in Eq. 5.1, its value becomes even smaller. However, 

the quantization step of each frame is usually the same during the compression process. 

The temporal CBD changes will not be as significant as the spatial EVD variations. 

That is the reason why the spatial EVD contributes more to the final quality score 

than the temporal EVD, as to be demonstrated in the following section. 

As shown in Figure 5.7, the MPEG-2 coded sequences with the same perceptual 

quality (same DMOS value) demonstrate similar VQI values for different original se-

quences. On the contrary, the VQI values of the H.264 coded sequences with the same 

perceptual quality (same DMOS value) appear more dispersed. It means that the per-

formance of the proposed RR VQA on MPEG-2 coded video sequences is more robust 

than that of H.264 coded video sequences. The reason is that the EVD is calculated 

based on 8x8 DCT. The energy variation of MPEG-2 can be accurately depicted, as 

the transform and quantization are performed based on 8x8 block. For H.264, differ-

ent block-size based intra prediction, inter motion estimation, and DCT result in an 

inaccurate energy variation calculation. The final VQI values of H.264 coded video 

sequences of the same perceptual quality will be different. 

5.3.2 Consistency Test of the Proposed RR VQA over Video Sequences with 

Simulated Distortions 

Furthermore, as in [191] [192], the consistency property of the proposed RR VQA is 

evaluated over the simulated video sequences with five distortion types at different dis-

tortion levels. These five distortions include (1) Gaussian noise contamination, where 

the mean value is set as 0 and the distortion level is defined as the variance. (2) Gaus-

sian blur distortion, where the filter is fixed as a 7x 7 window, and the corresponding 

distortion level is determined by the standard deviation. (3) Line jittering, where each 

line in a frame is shifted horizontally by a random number uniformly distributed be-

tween [-S, S], and S defines the line jittering level. (4) Frame jittering, where the 

whole frame is shifted together by a random number uniformly distributed between 

[ - S , S], and S defines the frame jittering level. (5) Frame dropping, which is simulated 

by discarding every 1 of N frames and repeating the previous frame to fill the empty 

frame, and 10 - N defines the distortion level. As claimed in [191], all these distortion 
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types are associated with certain real-world scenarios. For example, frame jittering is 

often caused by irregular camera movement; line jittering often occurs whe n two fie Ids 

A 
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of interlaced video signals are not synchronized. 

Figure 5.8 illustrates the consistency evaluation results over different distortion 

types of different levels. As we do not have the DMOS values of the video sequences 

contaminated by the aforementioned 5 distortions, the corresponding distortion level 

is utilized to indicate its perceptual quality. For each distortion type, the higher the 

distortion level, intuitively the worse is the perceptual quality of the processed video. 

Similar to MPEG-2 and H.264 coded video sequences, the relationship between the 

distortion level and the VQI is monotonic. Specifically the VQI value is monotonically 

increasing with the distortion level for a given source video. Therefore, from this aspect, 

we can conclude that the proposed VQI is sensitive to the levels of different distortions. 

It demonstrates a consistent relationship with the distortion level of different distortion 

types. The spatial EVD and the temporal CBD information of the PA video sequence 

(at the largest distortion level) are illustrated. For Gaussian noise contamination and 

line-jittering distortion, the EVD value of the distorted video is larger than that of 

the original video. It means that the HF and MF components increase more than the 

LF components. For the Gaussian noise contamination, the Gaussian noise dominates 

the histogram distribution of the difference image. It demonstrates a much flatter 

distribution, compared to the fitted GGD curve. For the line-jittering and frame-

jittering distortion, as the temporal relationship still exists, the histogram distribution 

of the difference image appears to be similar with the GGD fitted curve. However, 

the pixel values of the difference image will increase due to the jittering distortion. 

Therefore, there will not be so many zero values, which results in a smaller peak value 

as shown in Figure 5.8. For Gaussian blur distortion, more HF and MF components are 

discarded compared with LF component. The EVD value decreases after the Gaussian 

blur process. And a sharper and narrower histogram distribution is obtained as more 

zero pixel values appear due to the filtering process. For the frame dropping distortion, 

the spatial EVD varies slightly, because of the close temporal relationship between 

adjacent frames. However, the pixel values of the difference image are all zero, as the 

previous frame is simply copied to fill the empty frame. 
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5.3.3 Performance Evaluation of the Proposed RR VQA on Compressed Video 

Sequences 

In order to provide a more convincing result of the proposed RR VQA, we tested the 

proposed method on the LIVE video quality database [17] [18]. The performance can 

be evaluated by depicting the relationship of the obtained VQI values and the provided 

subjective ratings, specifically the DMOS value of each distorted video. As usual, 

three statistical measurements LCC, SROCC, and RMSE, are employed to evaluate 

the corresponding performances. According to the definitions, larger values of LCC 

and SROCC mean that the objective and subjective scores correlate better, that is to 

say, a better performance of the VQA. And the smaller RMSE values indicate smaller 

errors between the two scores, therefore a better performance. 

We compare the performance of our proposed RR VQA with the representative 

RR video quality metric VQ Model [80], Yang's metric [155], RR-LHS [165], and J.246 

[164], as well as several FR metrics: PSNR, SSIM [68], MSSIM [151], VSNR [72], and 

VIF [144]. The corresponding results together with the reference type and RR data 

rates are illustrated in Table 5.1. As PSNR, SSIM, MSSIM, VSNR, VIF, Yang's metric, 

and J.246 only provide frame-level quality scores, the final quality index of the video 

sequence is generated by averaging their outputs of each frame. For PSNR, SSIM, 

MSSIM, VSNR, and VIF, are FR metrics, the whole original frame should be available 

for quality analysis. Therefore, the RR data rates are regarded as the whole original 

video sequence. As for the RR VQAs, in order to ensure a fair comparison, the RR data 

rate is calculated based on video sequences of 25fps. For J.246, the locations and edge 

pixel values need to be encoded. As shown in [164], 14 extracted edge pixels per frame 

will result in the data rate as about 10 kbps. For Yang's metric, the only one extracted 

ratio parameter can be quantized in 8-bit precision. The data rate (about 0.2 kbps) 

is relatively small. For the RR-LHS, as shown in [165], the bit rate of the RR data is 

64 kbps. For VQ Model, the compression method has been researched in [163], which 

ensures a more than 30x compression ratio compared to the original VQM features. 

The bit rate of the RR feature is about 150 kbps. For the proposed method, as only 35 

bits for each frame are required to encode all the features, 35x25 = 875 bps are required 

to represent the features. Compared with the other RR VQAs except Yang's metric, 

the RR data rate of the proposed metric is much smaller. However, the performance 
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of the proposed metric is better. Furthermore, if only the spatial EVD is employed for 

constructing the RR metric, the RR data rate will be the same as Yang's metric. The 

performance is better, as to be illustrated in the following section. 

LCC SROCC RMSE Reference type Data rate(25fps) 
PSNR 0.4488 0.4157 9.188 FR -
SSIM 0.5946 0.5969 8.267 FR -
MSSIM 0.6671 0.6944 7.717 FR -
VSNR 0.3097 0.3041 9.777 FR -
VIF 0.6447 0.6350 7.860 FR -
J.246 0.5036 0.4460 8.883 RR 10 kbps 
Yang's metric 0.5654 0.5366 8.484 RR 0.2 kbps 
RR-LHS 0.4557 0.4082 9.152 RR 64 kbps 
VQM 0.7003 0.6790 7.340 RR 150 kbps 
Proposed 0.7567 0.7486 6.722 RR 0.875 kbps 

Table 5.1: Performances of different VQAs 
and H.264 encoded videos). 

the LIVE video quality database (MPEG-2 

From Table 5.1, it can be observed that the FR PSNR performs poorly, because it 

is not related to the HVS perception. Also the VSNR performs badly, which can be 

attributed to two reasons. The first is that VSNR analyzes the HVS perception of the 

distortion in the wavelet domain. But the MPEG-2 and H.264 compression schemes 

introduce the distortions during the quantization process in DCT domain. The second 

one is that VSNR is an image quality metric designed to capture the spatial distor-

tions. For video quality assessment, the temporal information is very important and 

needs to be accounted for. This is also the reason why SSIM, MSSIM and VIF perform 

successfully in image quality evaluation, but not so well on the video quality assess-

ment. Yang's metric employs the DCT coefficient ratio to measure the video quality. 

Although a small RR data rate is required, Yang's metric only depicts the DCT coef-

ficient distortion from the spatial aspect. The temporal information is not considered. 

For J. 246, only the edge pixels in spatial domain are extracted for quality comparison. 

For RR-LHS metric, the harmonic and discriminative analysis is employed to depict 

the blocking and blur artifacts in the spatial domain. And the temporal motion in-

formation is employed to finally correct the quality values. From Table 5.1, it can be 

observed that the performances of these metrics are not good enough, with SROCC 

values smaller than 0.6. The reason is that the temporal information is not accurately 
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modeled. For video quality assessment, the temporal distortion is very important and 

needs to be considered for developing an effective video quality metric. The RR VQ 

Model [80] is derived by recording several features which depict the spatial informa-

tion losses, edge information changes, contrast information, and the color impairments. 

However, the feature extraction process is of high complexity. And the RR data rate 

after compression is still very large. 

As for our proposed method, it outperforms the VQ Model and the other FR quality 

metrics. It means that the proposed metric can effectively depict the perceptual quality 

of the compressed videos. Furthermore, the RR data rate is very small compared with 

the other RR VQAs, which will not introduce heavy burden for transmitting the RR 

features from the sender to the receiver side. The scatter-plots of different VQAs over 

the LIVE video quality database are illustrated in Figure 5.9. It can be observed that 

for our proposed method, the sample points scatter more closely around the fitted line. 

It means that the values predicted by the proposed method correlate better with the 

subjective ratings, specifically the DMOS values, demonstrating a better performance. 

Moreover, for the proposed RR VQA and VQ Model [80], the triangles representing 

MPEG-2 coded videos scatter more closely to the fitted line, while several star points 

indicating H.264 coded videos are under or over estimated. As mentioned before, such 

scattering may be attribute to the fact that the features are calculated based on fixed 

block size, specifically EVD from the 8x 8 DCT for the proposed RR VQA and the 

quality-related features from (8 x 8) x 0.2 second S-T region for the VQ Model. By 

considering the fixed 8x 8 block in the spatial domain, the distortion of MPEG-2 can 

be accurately depicted, as the transform and quantization are performed based on 8x 8 

block. However, for H.264, different block-size based intra prediction, inter motion 

estimation, and DCT result in an inaccurate energy variation calculation. Therefore, 

the DMOS values correlate worse with the quality values of H.264 coded videos than 

that of MPEG-2 coded videos. In the future, we will consider the information of 

the H.264 coded video, specifically the transform and quantization block size. Then 

the EVD calculation can be extended to different block sizes for accurately capturing 

the energy variation, which is believed to be able to improve the performance of our 

proposed RR VQA. 

As illustrated in Table 5.1 and Figure 5.9, the effectiveness of our proposed RR VQA 
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Figure 5.9: Scatter plots of the DMOS values versus model predictions on the LIVE video 
quality database. Each sample point represents one test video. (The star indicates H.264 
encoded video sequence, while the triangle indicates the MPEG-2 compressed one.) First row 
from left to right: PSNR, SSIM, and MSSIM; second row from left to right: VSNR, VIF, and 
Yang's metric; third row ^om le^ to right: J.246, VQ Model and the proposed method. 

has been clearly demonstrated compared with the other RR metrics or even FR metrics 

in terms of both performance and required RR data rate. Therefore, as in [163], we may 

consider incorporating the proposed RR VQA into video quality monitoring system, 

where the computational complexity of feature extraction and comparison needs to be 

evaluated. The spatial EVD of the proposed RR VQA only requires several addition 

and division processes after DCT, which can be calculated during the DCT process 

of the video encoding and decoding procedure. For the temporal GGD modeling and 

CBD calculation, the processing complexity in the sender side is different from that in 

the receiver side. In the sender side, as shown in Figure 5.4, the difference image is 

firstly obtained. Then the histogram depicting the pixel value distribution is modeled 

by the GGD. Finally, the CBD distance as shown in Eq. 5.6 is calculated to indicate 
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the modeling error. We implement the temporal feature extraction in Matlab. During 

our implementation, no optimizations are performed. A speed test is performed on 

our PC with a 3.0GHz Quad CPU and 6.0GB memory. For each difference frame, 

it only requires 0.7s on average for obtaining the temporal features. In the receiver 

side, we only construct the histogram of the difference image and compare it with the 

fitted GGD. The distance shown in Eq. 5.10 is approximated. As the fitting process is 

not performed, the computation of the temporal information is faster. The speed test 

is performed on the same PC, which indicates that only 0.14s per difference frame on 

average is needed for the temporal quality analysis. If further optimization is employed, 

it is believed that the quality analysis in the receiver side can perform even faster, which 

can be incorporated into the video quality monitoring system. 

5.3.4 Performance Evaluation of the Proposed RR VQA on Video Sequences Con-
taining Transmission Distortions 

As the transmission errors over wireless channel and IP network are more realistic 

for the video quality monitoring, the proposed RR VQA and other representative RR 

quality metrics were evaluated on the LIVE video sequences containing transmission 

distortions. These distortions are simulated transmission of H.264 compressed bit-

streams through error-prone IP networks and wireless channel. The performance of 

these RR video quality metrics are illustrated in Table 5.2. It can be observed that the 

proposed RR VQA can outperform J. 246, Yang's metric, and RR-LHS . However, it 

performs worse than VQ Model. For Yang's metric, it only employs the ratio between 

the parent coefficient (second DCT coefficient) and the child coefficient (the third and 

fourth DCT coefficient) to measure the video perceptual quality. Therefore, the distor-

tion introduced by compression can be depicted, as the quantization process will change 

the ratio of DCT coefficients. However, the transmission distortion is not related to the 

ratio of DCT coefficients. Consequently, the perceptual qualities of the video sequences 

containing transmission distortion cannot be accurately depicted, which results in a 

bad performance of Yang's metric on these video sequences, as illustrated in Table 5.2. 

For J.246 and RR-LHS, the performances are not as good as the proposed one, al-

though they required more RR data rates for representing the original video sequence. 

On the other hand, VQ Model extracts many features for quality analysis, which are 
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related to the specific distortions, such as blur, edge shifting, chroma spreading, color 

impairments, and so on. Most of these features can help to depict the distortions intro-

duced during the video transmission. Therefore, the VQ Model performs well on these 

distorted video sequences. However, considering the data rates of different RR VQAs 

shown in Table 5.1 the RR data rates of VQM after compression is 150 kbps, which is 

about 170 times of the proposed VQA (0.875 kbps). It will introduce a heavy burden 

for the RR features' transmission. 

Distortion Proposed RR-LHS J.246 VQ Model Yang's metric 

IP distortion 
LCC 0.6000 0.4602 0.3168 0.6553 0.2654 

IP distortion SROCC 0.5582 0.3766 0.3437 0.6383 0.1462 IP distortion 
RMSE 7.488 8.873 8.873 7.071 9.017 

Wireless 
distortion 

LCC 0.5546 0.4684 0.5061 0.7416 0.0842 Wireless 
distortion SROCC 0.5386 0.4638 0.4051 0.7220 0.1041 Wireless 
distortion RMSE 8.586 9.117 8.900 6.922 10.282 

Table 5.2: Performances of different VQAs over the LIVE video quality database (IP and 
wireless distortion). 

For the proposed RR VQA, although it can outperform the other RR metrics except 

VQ Model employing very low RR data rates, the performance is still not good enough. 

It can be attributed to two reasons. Firstly, the transmission distortions over wireless 

channel and IP network are simulated from the H.264 compressed bit-streams. As 

discussed in Section 5.3.3, the proposed spatial EVD is calculated based on the fixed 

block size, specifically from the 8x8 DCT. However, for H.264, different block-size 

based intra prediction, inter motion estimation, and DCT are utilized, which result 

in an inaccurate energy variation calculation. Therefore, the transmission distortions 

simulated from H.264 compressed bit-streams cannot be accurately depicted. Secondly, 

in the RR VQA, the properties of the transmission errors, such as the error patterns, 

are not considered. If some features related with these errors are further incorporated, 

the RR VQA can more accurately depict the perceptual qualities of these degraded 

video sequences. In this study, the focus is on the RR VQA for the compressed video 

sequences. In future, as the RR data rate of the proposed metric is relatively small, we 

will consider incorporating more RR features to better handle the transmission errors. 
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5.3.5 Performance Analysis of Each Component 

In this section, we evaluate the corresponding contribution for each component of our 

proposed metric in Eq. 5.11. To this end, we derive three different metrics to generate 

the frame-level quality score. The first one is the spatial EVD distance, which means 

Qs = EL as in Eq. 5.7. The second one is the weighted spatial EVD distance, which 

means Qs = ELv as in Eq. 5.8. The third one is the temporal CBD distance defined 

as: 

Qs = log +10(1 + dcBDc(p,Pd)) (5.13) 

where c is also set as 0.001. Their corresponding performances are illustrated in Table 

5.3. 

It can be observed that all of these three components are necessary for the proposed 

RR VQA. The spatial EVD distance as in Eq. 5.7 performs the worst. The reason 

is that it only considers the absolute difference of corresponding DCT coefficients, 

which captures the information loss during the quantization process. Therefore, it does 

not correlate well with the HVS perception. Furthermore, the distance in Eq. 5.7 is 

performed in the spatial domain. It does not consider the temporal information, which 

is critical to the video quality assessment. The HVS related weighting strategy of the 

EVD distance was tested as formulated in Eq. 5.8. As discussed before, the EVD of 

the original frame can represent its texture characteristic. The higher the EVD value, 

the more texture information it may contain. And the more texture information, the 

more distortion it can mask. Therefore, the EVD value is employed to simulate the 

texture masking property of the HVS as shown in Eq. 5.8. Compared with Eq. 5.7, the 

performance is significantly improved. It means that the EVD can accurately model the 

texture masking property of the HVS. Actually, Yang's metric also employs the ratio of 

DCT coefficients to measure the video quality in spatial domain. It employs the ratio 

between the parent coefficient (second DCT coefficient) and the child coefficient (the 

third and fourth DCT coefficient). However, it does not consider the texture masking 

effect of the HVS. Therefore, the performance, as illustrated in Table 5.1, is not as good 

as that of Eq. 5.8. 

For the coded video sequences, the artifacts in the processed video are superposed 

onto the original video sequence, which is regarded as the masker signal. Therefore, as 
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Spatial EVD 
distance as 
in Eq. 5.7 

Weighted spatial 
EVD distance 
as in Eq. 5.8 

Weighted spatial 
EVD distance 
as in Eq. 5.14 

Temporal CBD 
distance as 
in Eq. 5.13 

LCC 0.3986 0.5965 0.5958 0.4135 
SROCC 0.3475 0.5992 0.5717 0.3950 
RMSE 9.430 8.253 8.258 9.362 

Table 5.3: Performances of different components of the proposed RR VQA 
video quality database (MPEG-2 and H.264 encoded videos). 

the LIVE 

shown in Eq. 5.8, we employed EVDori to mask the compression artifacts, which are 

introduced by quantization process. However, as discussed in [187], for the content of 

video sequence and the compression artifacts, one's presence will affect the visibility of 

the other. It is believed that the coded video sequence lacking of detailed information 

can also mask the artifacts. Therefore, we also evaluated the weighted spatial EVD 

distance, where EVDpro is employed for simulating the HVS texture masking property: 

ELv EL 
EVDp 

\ EVDori-EVDpro | 
EVDpro 

(5.14) 

The corresponding performance is shown in Table 5.3. It can be observed that ELv 

performs better than the spatial EVD distance formulated in Eq. 5.7. It means that 

EVDpro can also simulate the texture masking property of HVS. However, EVDori 

as the masker signal can generate a better performance. Therefore, we only consider 

employing the original video signal to simulate the HVS texture masking effect in this 

study. It means that EVDori is employed to weight the spatial EVD distance as in Eq. 

5.8. In future, we will research on how to accurately model the HVS texture masking 

effect by considering both the original and processed video signal. 

The temporal CBD distance is evaluated as expressed in Eq. 5.13. The temporal 

CBD distance depicts the temporal statistical characteristic. It has been demonstrat-

ed to be related to HVS perception, as shown in [191] [192]. The distortions in the 

video will result in the statistical characteristic changes. By accurately capturing these 

changes, the corresponding perceptual quality can be described. Comparing the per-

formances in Table 5.3 with those in Table 5.1, it is clear that the spatial distance 

or the temporal distance alone cannot outperform the integrated one. It means that 

only the spatial or temporal distortion alone is not sufficient to depict the perceptual 

quality of the video sequence. An effective RR VQA needs to accurately capture not 



§ 5.4. Conclusion 137 

only the spatial distortion but also the temporal one. This is the main reason why our 

RR VQA outperforms the other quality metrics, such as PSNR, SSIM, VSNR, Yang's 

metric, J.246, and VQ Model. 

5.4 Conclusion 

In this chapter, an effective RR VQA is proposed by depicting the distortions from 

both the spatial and temporal perspectives. The EVD captures the information loss of 

each individual frame, which is also employed to simulate the texture masking prop-

erty of the HVS. The GGD function and CBD distance are utilized to describe the 

temporal statistical characteristics. Evaluation results on the subjective quality video 

database show that the proposed RR VQA outperforms the representative RR metric 

VQM, and also the FR metrics. Due to its simplicity and efficiency in terms of feature 

representation, the proposed metric can be considered for incorporation into the video 

quality monitoring system. 



Part III 

Retargeted Visual Signal Quality 
Assessment 
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Chapter 6 

Image Retargeting Perceptual Quality Assessment 

6.1 Introduction 

The previous chapters discuss the perceptual quality assessment of visual signals cor-

rupted by traditional distortions, such as JPEG image compression, H.264 video com-

pression, and so on. In this chapter, we investigate the newly encountered distortions, 

which are introduced during the image and video retargeting process. Nowadays, the 

diversity and versatility of the display devices have imposed new demands on digital 

image processing. The same image needs to be displayed with different resolutions on 

various devices. The image retargeting methods [197]- [207] have been proposed to 

adjust the source images into arbitrary sizes and simultaneously keep the salient con-

tent of the source images. These developed methods, such as seam carving [200]- [202], 

warp [198], and multi-operator [203], try to preserve the salient shape and content in-

formation of the source image, and shrink (or expend) the unimportant regions of the 

image into the given resolution. For most of these methods, a simple visual comparison 

was conducted for the results (comparing the results of different retargeting methods 

based on a small set of images) to demonstrate the efficiencies of the retargeting meth-

ods. Such a method cannot be used for on-line manipulation. In order to obtain an 

image with good quality, quality assessment of retargeted images should be performed 

and used to maximize the perceptual quality during the retargeting process. There-

fore, there is a new challenge of objectively evaluating the retargeted image perceptual 

quality, where the resolution has been changed, the objective shape may be distorted, 

and some content information may be discarded. 

Given that the ultimate receivers of images are human eyes, the human subjective 

opinion is the most reliable value for indicating the image perceptual quality. The 

subjective opinions are obtained through the subjective testing, where a large number 

139 
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of viewers participate in the subjective test and provide their personal opinions of the 

image quality on some pre-defined scale. After processing these subjective scores across 

the human subjects, a score is finally generated to indicate the perceptual quality of the 

image. The subjective testing method is time-consuming and expensive, which makes 

it impractical for most image applications. However, the subjective rating obtained 

can be recognized as the ground truth of the image perceptual quality. Therefore, they 

can be employed to evaluate the performances of the objective quality metrics, which 

evaluate the image quality automatically [16]- [37]. Moreover, subjective studies can 

also enable the improvement in the performance of the quality metric towards attaining 

the ultimate goal of matching human perception. Then the developed quality metric 

can be utilized to guide the corresponding application. Furthermore, the subjective 

studies can also benefit the image applications for better perceptual quality experience, 

specifically improving the perceptual quality of the retargeted image. Therefore, there 

is a need to build an image retargeting database with subjective testing results, based 

on which we can evaluate the current developed quality metrics for retargeted images. 

Until now, the only publicly available subjective image retargeting database is built 

by M. Rubinstein et al. [34]. The main purpose of building the database concentrates 

on a comparative study of existing retargeting methods. The authors compared which 

retargeting method generates the retargeted image with the highest perceptual quality. 

The subjective test is performed in a pair comparison way, where the participants are 

shown two retargeted images at a time, side by side, and are asked to simply choose 

the one they like better. The resulting database comprises the retargeted image and 

the corresponding number of times that the retargeted image is favored over another 

one. This is distinct from the traditional subjective testing [16]- [32], where the MOS or 

DMOS of each visual signal is obtained. Therefore, the perceptual quality metric for re-

targeted images cannot be evaluated in the standardized way [81], where the statistical 

measurements are used to match the scores between metric values and MOS/DMOS 

values. Moreover, as only the number of times that the retargeted image is favored 

over another image is recorded, the actual perceptual quality of the image is not clearly 

indicated. For one image with a larger number of favored times, it may possess a low 

perceptual quality if it is compared with images of even lower perceptual qualities. The 

image may be favored the most by comparing with other images, whereas its perceptual 
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quality may still not be accepted. It is also the main reason why the quality metric 

cannot be evaluated in the standardized way. Furthermore, the total number of pos-

sible paired comparisons is too large. It is unaffordable and unrealistic for employing 

many human subjects and taking long time. Therefore, the authors in [34] sample the 

space of possible comparisons to reduce the labors for the subjective testing. However, 

the completeness of the comparison is not ensured, which may affect the robustness of 

the subjective ratings. The most serious shortcoming of the database is that subjects 

have difficulties to arrive at an agreement on the perceptual quality of the retargeted 

image. The Kendall 斤coefficient [208] obtained for all the images is only 0.095. It is a 

relatively low value suggesting that the subjects in general had difficulty judging. 

In this chapter, a subjective study is conducted to assess the perceptual quality 

of the retargeted image to build a publicly available database. Totally 171 retargeted 

images (in two different scales) are generated by different retargeting methods from 

57 source images. With the source image as the reference, the perceptual quality of 

each retargeted image has been subjectively rated by at least 30 human viewers on a 

pre-defined scale. After processing the subjective ratings, the MOS value and the cor-

responding standard deviation are obtained for each image. Based on the MOS values, 

the constructed image retargeting database is analyzed from the perspectives of the re-

targeting scale, the retargeting method, and the source image content. Moreover, some 

publicly available quality metrics for retargeted images are evaluated on the database 

in the standardized way. Furthermore, a specifically designed subjective testing process 

is carried out to provide further information for developing an effective quality metric 

for retargeted images. 

Our constructed database mainly focuses on evaluating perceptual quality of the 

retargeted images other than pair-wise comparing the retargeting methods [34]. There-

fore, based on our database, the objective quality metrics can be evaluated in the 

standardized way. For the database [34], only the Kendall T distance [209] is employed 

to measure the degree of correlation between two rankings. Same as traditional im-

age/video quality assessments where multiple image/video databases [16]- [32] were cre-

ated, the image retargeting quality assessment also requires multiple image databases. 

When constructing different databases, different subjects participated in the subjective 

testing with different rating scales. Meanwhile, the source image content and image 
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distortions introduced by retargeting are quite different. In these respects, the subjec-

tive quality databases can be ensured to be of great diversity, which can be employed 

to evaluate the effectiveness and robustness of the developed objective quality metric. 

Therefore, our database and the one in [34] can be further viewed as complementary 

to each other. 

The rest of this chapter is organized as follows. In Section 6.2, we will introduce the 

subjective testing process for building the image retargeting database. In Section 6.3, 

the obtained subjective ratings will be processed and analyzed. In Section 6.4, some 

objective quality metrics are introduced and evaluated on the built database. Finally, 

Section 6.5 will conclude the work. 

6.2 Preparation of Database Building 

6.2.1 Source Image 

Content-aware retargeting methods generate images with high perceptual quality where 

some background content can be removed or efficiently compacted, and the clear fore-

ground object will be preserved. However, for some images with geometric structures 

and faces, the perceptual quality of the retargeted image cannot be ensured. In or-

der to build a reasonable image retargeting database, we need to consider the source 

images containing the frequently encountered attributes, such as the face and people, 

clear foreground object, natural scenery (containing smooth or texture region), and 

geometric structure (evident lines or edges). The detailed information of the attributes 

can be referred to Appendix A. 

In order to build the database, we select 57 source images in which the frequently 

encountered attributes have been included. The corresponding resolutions of source 

images are diverse, in order to alleviate the influence of the image resolution on the 

subjective testing. Figure 6.1 illustrates some samples of the source images for gen-

erating the retargeted images. The source images are roughly categorized into four 

classes according the aforementioned attributes. It should be pointed out that one im-

age may contain more than one attributes. For example, the image 'umdan' contains 

the attributes of people and geometric structure. The image 'bicycle1' contains the 

attributes of clear foreground object, people, and natural scenery. And the image 'fish-

ing' contains the attributes of people and natural scenery. The attribute information 
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pencils 

Figure 6.1: Samples of the source images utilized in the subtjective testing. The images ^n the 
top ro^i^ mostly contahi the attribiute of face and people; the imagies in the second r^owa mostly 
coicia^iii the attribute of (slf^str foreground object; the iinagg^si in the third rocwn mostly contain 
the atMbute of natural scenery; the ^magcf ^n the bottom row mostly contain the attribute of 
geometric structure. 

of the source image can be found in Appendix A. As the image retargeting methods 

are content-aware, the perceptual qualities of retargeted results from different source 

images will be different. The attributes of the images are critical to the perceptual 

quality of the final retargeted images. The human subjects are very sensitive to the 

distortion of the faces and geometric structures, while they can tolerate more distor-

tions on the natural scenery, especially for the texture regions. By including the images 

with different attributes, the subjective database can reflect how the retargeted images 

are favored by the human subjects. 

6.2.2 Retargeting Methods 

In order to efficiently demonstrate the perceptual quality of the retargeted images, 

the resolution changes are restricted in only one dimension. The retargeting methods 

change the resolution of the source images in either the width or height dimension. 

As shown in [197]- [207], most of the retargeting methods generate the retargeted 

images in two ratios, shrinking the image to 75% and 50%. Therefore, only these two 

retargeting ratios are employed to generate the retargeted image for constructing our 
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database. In the constructed database, three retargeted results of each source image 

îre included. They may be in different retargeting scales. The reason why the database 

s built in this way is that we only care about the perceptual quality of the retargeted 

mage, no matter how it is generated and what the resolution is. For some source 

mages, the retargeted results in 50% scale appear to have very high perceptual quality, 

which perfectly preserve the salient information of the source image. For some source 

images, even the retargeted images in the 75% scale are of low perceptual quality. 

For the subjective testing of different scales separately, how the scale influences the 

perceptual quality may not be clearly revealed. Therefore, it is more reasonable to 

mix retargeted images with different scales together to examine its perceptual quality 

through subjective testing. Ten recently developed retargeting methods are employed 

to generate the retargeted images, which are detailed below. 

• Cropping (CROP): manually choosing a window of the target size from the source 

image to maximize the salient information. 

• Scaling (SCAL): simple scaling the source image into the target size. 

• Seam carving (SEAM) [200]- [202]: removing the contiguous chains of pixels that 

lie in the regions of the smallest gradient magnitude values in the source image. 

The dynamic programming is employed to find the seams for removing. 

• Optimized seam carving and scale (SCSC) [207]: a measurement named as "seam 

carving distance" is proposed to measure the similarity of retargeted image and 

the source one. A combination of linear scaling and seam carving is considered 

to optimize the measurement. 

• Non-homogeneous retargeting (WARP) [198]: a warping function is optimized 

to find the optimal squeezed image by reducing the image width. The gradient 

magnitude together with the face detection is employed to indicate the saliency 

region of the source image, which needs to be preserved with high priority during 

the retargeting process. 

• Scale and stretch (SCST) [204]: an objective function is optimized by uniformly 

scaling the salient regions to preserve the shape information. The saliency map 
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is detected by combining the gradient magnitude and the saliency map detected 

by Itti et al. [148]. 

• Shift-map editing (SHIF) [205]: graph cut is used to remove an entire object at 

a time rather than a seam. The smoothness is depicted by the color differences 

and the gradient information. 

• Multi-operator process (MULT) [203]: seam carving, scaling, and cropping are 

combined together to generate the retargeted image. And a bi-directional warping 

measurement determines how to choose these operators. 

• Energy-based deformation (ENER) [206]: similar as the SCST method, warping 

is also used to generate the retargeting image. 

• Streaming video (STVI) [199]: the warping method is also used. The saliency 

map is obtained by combining the visual attention map, the line detection, and 

important objects. 

Referring to these retargeting methods, it can be observed that the cropping, scal-

ing, seam carving, and warping are the basic tools for image retargeting. Many research 

works are proposed to combine these tools together by optimizing a defined objective 

measurement. As the foreground objects, including the faces and people, represent the 

most salient information to the human viewers, the saliency map is incorporated into 

retargeting. It can be utilized to guide the image retargeting by preserving the shape 

information in the salient regions. 

With these 10 retargeting methods, if each source image is to be retargeted into two 

different aspect ratios (75% and 50%), there should be 20 retargeted results for each 

source image. However, some retargeting methods, such as SCSC [207], MULT [203], 

ENER [206], and STVI [199], do not provide the source code or executive file. There-

fore, we can only include the retargeted results provided by the developers of the corre-

sponding retargeting methods. For some source images, the retargeted results cannot 

be generated. Including all of 20 retargeted images seems impossible. Secondly, we do 

not aim to compare the performances between different image retargeting methods as 

the authors in [34] did. Therefore, we need not include all the retargeted images at 
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each retargeting ratio into our database. The database we built mainly focus on eval-

uating the perceptual quality of the retargeted image. It needs only to ensure that the 

perceptual qualities of the selected images are sampled in an approximately uniform 

fashion as shown in [16]- [18]. In this respect, 3 retargeted images for each source image 

are manually selected according to the coarse judgment of the authors. Although 3 out 

of 20 seems a bit sparse sampling, different retargeted images obtained by different 

methods are selected, whose perceptual qualities are expected to be distributed uni-

formly from low to high qualities. The constructed database demonstrates a uniform 

distribution and good separation of the perceptual quality, as will be illustrated in the 

following section. 

6.2.3 Subjective Testing 

ITU-R BT.500-11 [5] has specified several methodologies for the subjective assessment 

of the quality of television pictures. These methods can be roughly categorized into 

two types: the double stimulus and single stimulus approaches. The double stimulus 

approach asks the subjective viewers to rate the quality or change in quality between 

two videos/images (reference and impaired). For the single stimulus approach, the 

subjective viewers only rate the quality of just one impaired video/image. As discussed 

in [210], each subjective test methodology has its own advantages. The double stimulus 

approach is claimed to be less sensitive to the context, where the subjective ratings are 

less influenced by the severity and ordering of the impairments within the test session. 

The single stimulus approach yields more representative quality estimates for quality 

monitoring. Also the single stimulus approach can ensure a faster and more efficient 

subjective testing process [211], compared with the double stimulus one. 

However, for our subjective testing process of retargeted images, we not only care 

about the distortions perceived in the retargeted image, but also how much information 

of the source image has been conveyed. Therefore, in order to provide more convincing 

results, the source image needs to be presented to the subjective viewers as the reference 

simultaneously. Otherwise, if we employ the single stimulus approach, the CROP 

method will always yield the best quality, as no distortions are introduced. Without 

the source image as the reference, the viewers are not able to detect the discarded 

information, which may be the most important part of the source image. Therefore, 



§ 6.2.3. Subjective Testing 147 

in this work, the simultaneous double stimulus for continuous evaluation (SDSCE) as 

specified in Section 1.2 is employed. 

Two images are juxtaposed on the screen for the human subject. One is the source 

image for reference and the other is the retargeted image to be evaluated. The human 

subjects are aware of which one is the reference image and which one is the retarget-

ed. The subjects are requested to check the difference between the two images and 

judge the perceptual quality of the retargeted one. After that, they provide their own 

opinions on the retargeted image quality. The only difference of the subjective testing 

in this work was the use of the ITU-R absolute category rating (ACR) scale rather 

than a continuous scale. The ACR scale employs a 5-category discrete quality judg-

ment, as illustrated in Table 1.1. As discussed in [7], the subjective rating scales can 

be increased to more than 5 categories, such as 9 or 11 categories, which are partic-

ularly designed for the assessment of special applications, such as low bit-rate video 

codecs. Also an additional possibility is to use continuous scale rating, which can pro-

vide more precise subjective values. In [211], the experimental data has demonstrated 

that there are no overall statistical differences between different rating scales, which 

include (i) 5-category discrete scale, which is the one we employed in our subjective 

testing process; (ii) 11-category continuous scale; (iii) 5-category continuous scale; (iv) 

9-category discrete scale. Moreover, for the subjective testing of retargeted image, the 

resolutions of the images and the introduced shape distortions are very different. The 

subjective viewers may have difficulties in judging the perceptual quality of the image 

and provide a precise subjective value. Therefore, in order to make the scoring process 

simpler to the subjective viewers and the subjective values more distinguishable, the 

5-category discrete scale is employed to obtain the subjective opinions to build the 

image retargeting subjective quality database. 

The user interface for the subjective testing is developed by using M A T L A B , as 

shown in Figure 6.2. The two images, including the source and the retargeted one, are 

loaded into the memory before displaying. In order to avoid strong visual contrast, 

the remaining regions of the display area are gray (the pixel values are set equal to 

128). The quality scales are labeled to help the human subjects to do the quality 

evaluation. The quality scales are labeled as "Bad", "Poor", "Fair", "Good", and 

"Excellent" (same as the one shown in Table 1.1), which range from the lowest to the 
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Figure 6.2: Screenshot of the subjective study interface displaying the images to the human 
subject. 

highest perceptual quality index. During the subjective testing, the subjective values 

are recorded in numerical values. As shown in Figure 6.2, the "Bad" corresponds to 1 

and the "Excellent" corresponds to 5. Therefore, for the obtained subjective ratings, 

the larger the value, the better is the image perceptual quality. The human subjects 

select the appropriate quality index according to their own opinions. After choosing 

the quality of one image, the subjects can go on evaluating the next image. The subject 

was allowed to take as much time as needed to evaluate the image quality. 

In order to reduce the effect of the viewer fatigue, the 171 retargeted images are 

divided into 2 sessions. In the first session, the subjective testing is performed in two 

steps. In the first step, the subjective viewers are asked to provide their personal 

opinions on the perceptual quality of the retargeted image. After that, in the second 

step they are further asked to provide their personal opinions on the two distortion 

levels: (i) the level of shape distortion; (ii) the level of content information loss. The 

detailed process of the second step will be described in following Section 6.4.2. However, 

for the second session, the subjective viewers are only asked to take the first step of 

the subjective testing. Therefore, compared with the first session, the second one will 

take shorter time for each image. In order to reduce the effect of the viewer fatigue, 
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the number of the images in the first session should be smaller than that of the second 

one. But the number of images of the two sessions can be different. Considering this, 

we simply separate the images into two parts. The first session contains 69 images, 

while the second one contains 102 images. For each session, it will take the viewer 

about 10-20 minutes to accomplish the subjective testing. The order of the image pairs 

(the source image and the retargeted image) is randomly arranged, which is distinct 

for different viewers. Furthermore, in order to avoid the contextual and memory effects 

on the subjects' judgment of the quality, the retargeted images which are generated 

from the same source image will not be presented consecutively. In order to prevent the 

scaling effect, which is critical to the image retargeting results, the source image and 

the retargeted image must be displayed in their native resolution. In our experiment, 

the resolution of the screen for subjective testing is 1920x1280, which is sufficient for 

displaying the images in their original resolution. 

During the subjective test, each viewer is briefed on the objective of this subjective 

study and told how to do the quality evaluation. Before starting the test, a training 

session is conducted for all the human subjects. There are in total 7 retargeted images 

in the training session. They are generated from different source images by different 

methods in different scales. Also their corresponding perceptual qualities span from 

"Bad" to ”Excellent". The suggested quality scale is explained to each subject. After 

the training session, each subject should be clear on what they should do and how to 

provide their opinions on the retargeted image quality. 

All the subjects participating in the subjective testing are the students from the 

Chinese University of Hong Kong in Hong Kong, and Nanyang Technological University 

in Singapore. They have normal vision (with or without corrective glasses) and have 

passed the color blindness test. For the first session, 30 subjects provided their personal 

ratings on the perceptual quality of each image, where 15 viewers are experts in image 

processing and the others are not. And each image in the second session was rated by 

34 subjects, where 18 viewers are experts in image processing and the others are not. 
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Figure 6.3: The subjective scores for each image (the horizontal axes corresponds to the image 
number, and the vertical axes corresponds to the subjective scores of the viewers. The blue 
asterisk indicates the median value among all the viewers. And the red error bar indicates the 
corresponding 25th and 75th percentiles of the subjective scores). 

6.3 Data Processing and Analysis for the Database 

6.3.1 Processing of Subjective Ratings 

Subjective Agreement 

Before we process the subjective ratings to build the database, we need to firstly ex-

amine the similarity of choices between participants. Each subject has its own opinion 

to interpret the image quality. However, for a large proportion of the images in the 

database, most of the participants should have agreements on the perceptual quality. 

If the subjective results demonstrate diversity among the human subjects, the corre-

sponding image is not suitable for inclusion into the database. 

In this work, we employ the quartiles of the subjective scores for each image to 

analyze the subject agreement, which is illustrated in Figure 6.3. The lower and higher 

bound of the red error bar denotes the 25th and 75th percentiles of subjective ratings 

obtained for each image. After sorting the subjective scores, the central 50% of subject 

ratings lie within the range. The blue asterisk indicates the median value of the sub-

jective scores. The detailed information of the image number and the corresponding 

retargeted image name can be found in the Appendix B. An outlier coefficient (OC) is 
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For each subject i, find the Pik and Qik 
if 2 < Pj < 4 (normally distributed) 

if Sijk > j + 2ajk, then Pik = Pik + 1; 
if Sijk < j - 2ajk, then Qik = Qik + 1; 

else 
if Sijk > j + V20ajk, then Pik = Pik + 1; 
if Sijk < j - , then Qik = Qik + 1; 

I f " > 0.05 and p f + j f < 0.3, then R E J E C T the subject i厂 

Figure 6.4: Detailed algorithm of the subject rejection process. 

introduced to quantify the subjective agreement of the database: 

OC = fe ( 6 . 1 ) 

where Ntotai denotes the total number of the retargeted images in the database, and 

Noutlier denotes the number of the images, which are regarded as the outlier. If the 

interval between the higher bound and lower bound error bar in Figure 6.3 is larger 

than 1, the image is recognized as the outlier image. The reason is that viewers may 

have different opinions on the image quality, but they should at least have the similar 

judgement. For one image, different viewers may interpret the same image as "Good" 

or "Excellent", which are neighboring values. In most cases, the same image will not 

be scored with greatly differences, such as "Poor" or "Good". Therefore, if the central 

50% subjective ratings are constrained within the interval of 1, we believe that the 

participants have arrived at an agreement of the retargeted image quality. For the 

constructed database, 15 out of 171 are recognized as the outlier images, which implies 

OC = 8.77%. Therefore, 91.2% of the images in the database have shown the agreement 

among participants. It is believed that the images in the database will be rated as the 

similar quality if subjectively tested by the others. Consequently, these images can be 

included for building the database and further employed for evaluation of the quality 

metrics 

Screening of the Observers 

In the previous section, we have examined the subject agreement on the retargeted 

image quality. The central 50% subjective ratings of the images have shown high 

agreement. However, in order to obtain the final MOS and standard deviation value 
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for each image, the subject rejection process is suggested by [5]. Let S j denotes the 

subjective rating by the subject i to the retargeted image j in session k = 1, 2. The 

Sijk values are firstly converted to Z-scores per session [212]: 

where Nik is the number of the test images seen by the subject i in session k. It is noted 

that Z-scores are obtained per session, which accounts for any differences in subject 

preferences for the reference images, and the different human subjects between sessions. 

After converting the obtained subjective ratings into Z-scores, the subject rejection 

procedure specified in the ITU-R BT 500.11 [5] is then used to discard the scores 

from unreliable subjects. The converting process and subject rejection procedure used 

should be superior to the VQEG studies [82] [65] [213]. The mean value j and the 

variance value ajk are firstly computed for each image by accounting for the differences 

of the subjective viewers. Then whether the scores assigned by a subject are normally 

distributed is determined by the kurtosis 约 of the computed scores: 

1 

Njk… 

^jk = \l Tjx {Sijk - j )2 

. m4 ,几 E S {Sijk - j)八 
Pj =-——^ with mA ‘ 

(6.3) 

(m2) 2 — . � Njk 

If the kurtosis value Pj falls between 2 and 4, the scores are regarded to be normally 

distributed. The subject rejection procedure is detailed in Figure 6.4. By performing 

the procedure, 1 out of 30 subjects and 3 out of 34 subjects are rejected in session 1 

and session 2, respectively. 

After subject rejection, Z-scores are then linearly rescaled to lie in the range of 

[0,100]. Assuming that the Z-scores assigned by a subject are distributed as a stan-

dard Gaussian [17] [18], 99% of the scores will lie in the range [ -3 , +3]. Re-scaling is 

6.2) 

Sij 
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X Nik 
^ik 
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accomplished by linearly mapping the range [ -3 , +3] to [0, 100] by: 

Zjk = 啤 i t ( 6 . 4 ) 

Finally, the MOS value of each retargeted image is computed as the mean of the rescaled 

Z-scores, together with the standard deviation: 

MOSjk = E M Zijk ( 6 . 5 ) 

stdjk 
. Mk 

E (Zijk - MOSjk)2 Mk 
i—丄 

where Mk is the number of remaining subjects of session k after the subject rejection. 

The MOS value together with the standard deviation is recorded for each retargeted 

image, which is recognized as the ground truth representing the retargeted image per-

ceptual quality. They can be further analyzed and used for evaluating the performances 

of the quality metrics. The final subjective scores after conversion, with the standard 

deviation indicating the error bar, are illustrated in Figure 6.5. 

As we mentioned above, the perceptual qualities of the retargeted images in the 

database should span the entire range of visual quality and exhibit good perceptual 

quality separation [16]- [18]. The histogram of the MOS values is shown in Figure 6.6. 

It can be observed that the perceptual qualities of the images range from low to high 

values. Also it demonstrates that the subjective study samples a range of perceptual 

quality in an approximately uniform fashion. The image perceptual qualities exhibit a 

good separation. 

6.3.2 Analysis and Discussion of the Subjective Ratings 

After the processing of the subjective ratings, the image retargeting database is built, 

which comprises the retargeted images and their corresponding MOS values. The 

database is analyzed from three aspects, specifically the scale, the retargeting method, 

and the source image content. 
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Figure 6.5: The obtained MOS value of each retargeted image after processing (the horizontal 
axes corresponds to the image number, and the vertical axes corresponds to the MOS value. The 
blue asterisk indicates the obtained MOS value. And the red error bar indicates the standard 
deviation of the subjective scores). 

Figure 6.6: Histogram of the MOS values in 15 equally spaced bins between the minimum 
and maximum MOS values of the image retargeting database. 
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Figure 6.7: The obtained MOS value versus the source image from the scale perspective. (The 
blue cross indicates the retargeted image in 75% scale; the red circle indicates the retargeted 
image in 50% scale). 

Retargeting Scale 

The MOS values of the retargeted images in two different scales are illustrated in 

Figure 6.7. The detailed information of the image number and the corresponding 

source image can be found in the Appendix C. Generally, it can be observed that 

the retargeted images in 75% scale (with average MOS value as 61.79) exhibit higher 

perceptual quality than the retargeted images in 50% scale (with average MOS value 

as 45.66). There are two exceptions, which were generated from the source images 

'kodim04' and 'bicycle1'. For the 'kodim04' containing the human face, the CROP 

method in 50% scale can preserve the shape information but sacrifice some content 

information, while the SCSC method in 75% will distort the human face. For 'bicycler 

with clear foreground object, the SEAM and SHIF methods in 50% scale will accurately 

preserve the shape and the content information, while the SCAL method in 75% scale 

will introduce some shape distortion. Therefore, the two images in 50% scale present 

better quality than the images in 75% scale. The reason is that the subjects prefer 

information loss rather than shape deformation. 

Furthermore, it can be observed that the MOS values of the retargeted images in 

75% scale are mostly larger than 50, except 'kodim01', 'kodim04', 'buddha', 'face', and 
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'kodim15. Referring to the attribute information of the source images, these images 

only contain either 'face and people' or 'geometric structure' attributes. It is known 

that human eyes are very sensitive to these attributes, which will greatly influence 

the perceptual quality of the retargeted image. For 'buddha' and 'face' images, other 

retargeting methods can generate higher quality images. Therefore, retargeting meth-

ods should be carefully selected for these images, which should not distort the shape 

information. For the retargeted images in 50% scale, the MOS values vary greatly. 

Some source images, such as 'bicycle1' and 'eagle', generate retargeted images with 

very good quality. Also some source images, such as 'volleyball', generate retargeted 

images with very poor quality. Therefore the source image content will influence the 

perceptual quality of the retargeted images. Moreover, the retargeted images from 

the same source image also possess perceptual qualities with great differences, such as 

'blueman'. It means that the retargeting method will also affect the image perceptual 

qualities. In the following sub-sections, the perceptual qualities of the retargeted images 

in 50% scale are analyzed from the two aspects: retargeting method, and source image 

content. 

Retargeting Methods 

As we discussed in the previous subsection, most of the algorithms produce the re-

targeted images in 75% scale with acceptable perceptual quality. In order to analyze 

the influence of the retargeting method, only the retargeted images in 50% scale are 

considered. The MOS values of the images by different retargeting methods are illus-

trated in Figure 6.8. As we mentioned before, the basic tools for retargeting are CROP, 

SCAL, WARP and SEAM. We firstly analyze these basic tools and then discuss the 

performances of the other methods. 

The images generated by SEAM method [200]- [202] (denoted by the blue cross in 

Figure 6.8) are always of the worst perceptual quality. The reason is that the SEAM 

method tries to remove the seams in the regions with low gradient magnitudes. For 

some images, such as 'kodim04' and 'kodim15', some regions of the salient object appear 

to be very smooth, which will be discarded during the retargeting process. Therefore, 

some annoying shape distortion will be introduced. And as revealed by [34], the human 

subjects prefer sacrificing some image information rather than having deformation. 
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Figure 6.8: The obtained MOS value versus the source image from the retargeting method per-
spective (in 50% scale). The blue dot is the CROP method; the blue star is the SCAL method, 
the blue cross is the SEAM method [200]- [202]; the blue triangle is the SHIF method [205]; the 
blue circle denotes the MULT algorithm [203]; the red dot denotes the WARP algorithm [198]; 
the red star denotes the ENER algorithm [206]; the red cross denotes the SCST [204]; the red 
triangle denotes the STVI method [199]; the red circle denotes the SCSC method [207]. 

The SEAM method does not consider any approaches to preserve the object shape. 

Therefore, it exhibits the worst perceptual quality, especially for images containing 

salient objects. 

The CROP method (denoted by the blue dot) can only retarget some images with 

good perceptual quality. As it only keeps part information of the source image, its 

performance depends on the source image content. For some images with a small 

region containing the salient content, the CROP method can retarget a good quality 

image, such as 'surfer'. For some images, such as ’perissa_ santorini', where all regions 

contain meaningful information, the CROP method retargets images with bad quality. 

In [34], the CROP method is suggested as the most reliable and simplest method to 

retarget images. 

The WARP algorithm [198] (denoted by the red dot) tries to squeeze the source 

image to a target size by optimizing a warping function. The shape of the object cannot 

be preserved. Therefore, the retargeted images are of bad perceptual quality. In most 
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cases, it only outperforms SEAM method, while is inferior to other methods. The SCAL 

method (denoted by the blue star) retargets images with medium perceptual quality. 

It will introduce some shape deformation into the retargeted image, but not as severe 

as the SEAM and WARP method. Therefore, the SCAL method always outperforms 

SEAM and WARP, but worse than the other methods under study. 

The other methods try to combine these basic tools together to produce an optimal 

retargeted image. Some methods, such as SCST [204] and SHIF [205], have considered 

using the saliency map to guide the retargeting. The shape information of the objects in 

the salient regions is preserved to avoid introducing unpleasant deformation. Therefore, 

these methods can obtain better performances. As shown in Figure 6.8, in most cases 

the SHIF algorithm (denoted by the blue triangle) and SCST (denoted by the red cross) 

can retarget the test images with better perceptual quality, compared with the other 

methods. 

Source Image Contents 

As mentioned above, the source images can be categorized by the containing attributes, 

which are 'face and people', 'clear foreground object', 'natural scenery', and 'geomet-

ric structure'. The 'clear foreground object' attribute is defined as the salient object 

occupying an image region smaller than 50% of the source image. If the salient object 

is preserved, the perceptual quality of the retargeted image (in 50% and 75% ratios) 

will not be very bad, as the crop margin (how much can be cropped without losing the 

object/regions of interest) is larger than 50%. The 'natural scenery' attribute is for an 

image with a large proportion of it containing the texture or smooth information. These 

images contain information with symmetric similar patterns. Therefore, cropping or 

scaling some part of the image will not introduce significant degradations in perceptual 

quality. The crop margin of these images is large. Therefore, the retargeted images in 

50% and 75% ratios are of good perceptual quality. These two attributes are regarded 

as non-salient. The 'geometric structure' attribute denotes that there are evident edges 

or lines in the source image, and 'face and people' attribute means that the faces or 

persons occupy most regions of one source image. The subjective viewers will be very 

sensitive to the edges, shapes, and faces. The distortion introduced by the retargeting 

method will severely affect the judgment of the subjective viewer. For some images 
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Figure 6.9: The obtained MOS value versus the source image. Top: source images with salient 
attributes; bottom: source images with non-salient attributes 

containing 'face and people' attribute, such as the image 'face', 'kodim15', 'kodim04', 

and 'buddha', the entire image is a human face, which is of great importance. If we 

crop some part of the image, some important content is discarded, which will result in 

very bad perceptual quality. In this respect, the crop margin of these images is very 

small (nearly 0). Therefore, if we retarget these images with unsuitable methods, the 

perceptual quality will not be good. These two attributes are regarded as the salient 

attributes. 

Each source image may contain more than one attribute. However, one attribute 

dominates each source image, while other attributes are not so significant. The detailed 
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attribute information of each source image is illustrated in the Appendix A. The at-

tributes are sorted according to their significances. According to the attribute saliency, 

the source images are divided into two classes. Note that we only utilized the most 

significant attribute to classify the source images. After the separation, we obtained 30 

images with salient attributes and the other 27 images with non-salient attributes. The 

MOS values versus the source images of different attributes are illustrated in Figure 

6.9. In this subsection, as we only care about the influence of the image content on 

the perceptual quality, the retargeting methods are not considered. The retargeted 

image with the worst perceptual quality is utilized for comparison. They are all in 

the 50% scale, which ensures a fair comparison. We calculated the mean MOS val-

ues of the retargeted images in the two classes. The mean MOS value of the images 

with non-salient attributes is 45.55, which is higher than the average MOS value of the 

database. The images with non-salient attributes contain some texture and smooth 

information, such as 'kodim13' and 'fishing', which ensures a large crop margin value. 

Therefore, the shape deformation will not be easily detected. And the region discarded 

during the retargeting process mostly contains information with symmetric or similar 

patterns, or unimportant background information. Therefore, the perceptual quality 

will not be significantly influenced. However, the mean MOS value of the images with 

salient attributes is 31.1292, which is lower than that of non-salient attribute image. As 

most regions of the source image contain salient or meaningful information, the crop 

margin of such image is very small (nearly 0). And the contents and shapes of the 

objects, faces, or humans are critical for judging the perceptual quality. Retargeting 

these images into 50% scale will significantly distort the shapes or discard important 

content information. Therefore, the perceptual quality will be very unpleasant. 

For the source images with salient attributes, Figure 6.9 shows that the CROP 

method always retargets image with the highest MOS values, such as 'kodim04' and 

'sanfrancisco'. Although only a few source images employ the CROP method to re-

target image, it can be deduced that the CROP will retarget the other images with 

highest quality as claimed by [34]. The reason is that the shape deformation is much 

more annoying to the human viewers, compared with the information discarded. For 

the salient attributes, such as 'face and human' and 'geometric structures', the shape 

distortion can be easily detected and rated badly by the subjective viewers. Therefore, 
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Figure 6.10: Recommended retargeting methods by considering the retargeting scale and 
source image content. 

for the images containing salient attributes, the CROP process is recommended, not 

only because of its simplicity but also for its best performance. This is also applied to 

retarget image into 75% scale. For the images with salient attributes, such as 'kodim01', 

'kodim04', 'buddha', 'face', and 'kodim15', the other methods other than CROP can 

introduce deformation to the object shape. That is the reason why the retargeted im-

ages in 75% are of low MOS values. For the images with non-salient attributes, most of 

the retargeted images are of good qualities, with MOS values larger than 45. However, 

there are several exceptions, such as 'perissa_ santorini', 'butterfly', and 'fishing'. It 

can be observed from Figure 6.9 that SCAL and SEAM also generate images with bad 

quality. The other methods, such as SCST, will preserve much more information, while 

the introduced shape deformation can be hardly detected by the human viewers. 

Considering the above analysis, different retargeting methods are recommended 

for different images, as shown in Figure 6.10. For images with salient attributes, the 

CROP methods are suggested for its effectiveness and low complexity. For images with 

non-salient attribute, if retargeting them into 75% scale, all the retargeting method 

can generate acceptable results, because the shape distortion can hardly perceived and 

the loss of the image content is negligible. To retarget the images with non-salient 

attributes into 50% scale, we recommend the SCSC and SHIF method. They have 

considered the saliency map, which can help to preserve the object in the image. 
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6.4 Objective Quality Metr ic for Retargeted Images 

6.4.1 Quality Metric Performances on the Constructed Image Retargeting Database 

Image retargeting quality metric has been recently researched [214]- [220], in order 

to not only evaluate the retargeted image quality automatically and reliably in lieu 

of the subjective testing, but also help to improve the performance of the retargeting 

methods. One problem is that several quality metrics are licensed or patented, such 

as the bidirectional warping in [203], and the quality metric in [219], which are not 

made publicly. In this section, we only tested the metrics which are publicly available 

and suggested in [34], specifically the earth mover's distance (EMD) [214] [215], the 

bidirectional similarity (BDS) [216] [217], edge histogram (EH) [220], and SIFT-flow 

[218]. The information about the metrics is detailed in the following. 

• EMD is based on the minimal cost that must be paid to transform one distribution 

into the other. The signature {Sj = (mj, Wj)}, which represents a set of feature 

clusters, is viewed as the histogram distribution. The point mj is the central value 

in bin j of the histogram, and Wj is to indicate the corresponding proportion. The 

definition of cluster is open. The color, position, and texture information can be 

employed to obtain the feature clusters. Only the size of the clusters in the 

feature space needs to be limited. Let P = {(pi,Wpi),... , (pm, Wpm)} be the first 

signature with m clusters; Q = {(qi,Wqi),... , (qn, Wqn)} is the second signature 

with n clusters. And D = [dij] is the ground distance matrix, where dij is the 

ground distance between clusters pi and qj. dij can be any distance and will be 

chosen according to the problem at hand. The purpose is to find a flow F = [fj], 

with fij as the flow between pi and qj, that minimizes the overall cost: 

WORK(P, Q, F) = Zm F j dij fij (6.6) 

After obtaining the optimal flow F, EMD is defined as the work normalized by 

the total flow: 

EMD(P, Q ) = 冗 帮 f f (6.7) 

• Two signals S (original image) and T (retargeted image) are considered to be 

'visually similar' if as many as possible patches of S (at multiple scales) are 
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contained in T, and vice versa. The dissimilarity can be formulated as: 

(S, T) = N- w miuQcTD(P, Q) + N- ^ minp�sD(Q, P) 

S PCS T QCT (6.8) 
� 乂 s / 

V V 
dcornplete{S,T ) dcohere(S,T ) 

P and Q denote patches in S and T, respectively. And let NS and NT denote 

the number of patches in S and T. For each patch Q C T we search for the most 

similar patch P C S, and measure their distance D(P, Q), and vice-versa. The 

patches are taken around every pixel at multiple scales, resulting in significant 

patch overlap. D(P, Q) can be any distance measurements between two patches, 

such as sum squared distances (SSD) or SSIM [68]. The two terms have important 

commentary roles. The first term, dcomplete(S, T) measures the deviation of the 

target T from 'completeness' w.r.t. S. Namely, it measures if all patches of 

S have been preserved in T. The second term dcohere(S, T) measures if there 

are any 'newborn' patches in T which have not originated from S. Therefore, 

the dcomplete(S, T) tries to represent the input image well (be complete), and 

the dcohere(S, T) makes sure the retargeted image is visually pleasing (coherent). 

The dissimilarity measurement is minimized in order to generate a retargeted 

image [216] [217]. 

• EH captures the spatial distribution of edges in the image. In order to depict the 

local edge distribution, the image is divided into 4x 4 sub-images, each of which 

is examined by 5 different orientations: vertical, horizontal, two diagonals, and 

isotropic (non-directional). For each sub-image, a normalized 5-bin histogram is 

obtained by classifying apparent edges to these five categories. The feature is 

defined to be the combination of these histograms, which results in 4 x 4 x 5 = 80 

length description. Only the intensity component is employed for edge detection. 

And the Li -norm distance is employed to measure the feature distance between 

two images, which is defined as EH(S, T) =|| EHF(S) — EHF(T) ||i, where 

EHF is the edge histogram feature. 

• SIFT-flow descriptors characterize view-invariant and brightness-independent im-

age structures. Matching SIFT descriptors allows establishing meaningful corre-

spondences across image with significantly different image content. Furthermore, 
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the pixel displacement (indicating by the SIFT correspondence matching) should 

be spatial coherent, which means that close-by pixels should have similar dis-

placement. The cost function is defined as: 

E(w) = E p II si(p) - s2(p + w) 11l + 去 Z p ( p 2 ( p ) + V2(p)) + 

Y1 (min(al"(p) - ^ ( q ) | , d ) + m i n (alV(p) - V(q)|,d)) 

(6.9) 

where w(p) = {^(p),v(p)) is the displacement vector at pixel location p = (x, y), 

si(p) is the SIFT descriptor extracted at location p in image i and e is the spatial 

neighborhood of a pixel. SIFT flow employs the SIFT for feature matching. And 

the local smoothness is preserved by the vector difference constraint. 

The algorithms are provided by the respective authors, which were tested on our 

built image retargeting quality database following the traditional evaluation process 

as introduced in Section 1.3.4. As usual, LCC, SROCC, RMSE, and OR statistical 

measurements are employed to indicate the corresponding performance. According 

to the definitions, larger values of LCC and SROCC mean that the objective and 

subjective scores correlate better, that is to say, a better performance of the metric. 

And the smaller RMSE and OR values indicate smaller errors between the two scores, 

therefore a better performance. 

EH EMD BSD SIFT-flow Fusion(EH,EMD 
and SIFT-flow 

Fusion(EH,EMD 
BSD, SIFT-flow 

LCC 0.3422 0.2760 0.2896 0.3141 0.4361 0.5217 
SROCC 0.3288 0.2904 0.2887 0.2899 0.4203 0.4514 
RMSE 12.686 12.977 12.922 12.817 12.149 11.484 
OR 0.2047 0.1696 0.2164 0.1462 0.1462 0.1287 

Table Performances of different metrics on the image retargeting database. 

The performances of different metrics are illustrated in Table 6.1. It can be observed 

that all of the metrics perform poorly on our database. For the EMD, the composed 

histogram only represents the feature distribution of the image, which cannot accurately 

depict the object shape and the content information of the image. Therefore, the shape 

distortions and content information loss, introduced during the retargeting process, 
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are not effectively described. BDS tries to capture how much information one image 

conveys of the other image in a bidirectional way. However, although it is claimed that 

the spatial geometric relationship is considered by a multiple scale approach, the order-

relationship can still not be preserved, such as the local-order of each pixel or patch. 

Therefore, the dissimilarity metric of BDS does not accurately depict the object shape 

distortion either. SIFT-flow employs the SIFT descriptor to detect the correspondence 

between two images. It is claimed that the order-relationship of the pixels or patches is 

captured. However, the content information loss during the retargeting process is not 

considered. EH employs the edge histograms to describe the image, which are organized 

in order for comparison. EH can somehow represent the object shape information in the 

image. Same as the SIFT-flow, the content information loss is not accounted. These 

are the reasons why the metrics cannot perform effectively on our image retargeting 

database. 

6.4.2 Subjective Analysis of the Shape Distortion and Content Information Loss 

As shown in the previous sections, accounting for the object shape or content infor-

mation loss alone cannot effectively evaluate the retargeted image quality. In order to 

investigate how the object shape and content information loss influence the perceptual 

quality, a subjective testing was designed. 

During the first session of our subjective test, after the human subjects provided 

their personal opinions on the retargeted image quality, they were also asked to provide 

their personal opinions on the two distortion levels: (i) the level of shape distortion; 

(ii) the level of content information loss. The shape distortion describes the distortion, 

such as face deforming, object squeezing, object boundary discontinuity, and so on. 

The content information loss gives that part information of the object or content that 

is missing in the retargeted image, compared with the source image. Both of the two 

distortion levels are recorded in 5-scale, same as introduced in Section 6.2.3. After the 

subjective testing, not only the visual quality of the retargeted image is evaluated, but 

also the distortion levels of the two factors (shape distortion and content information 

loss) that may affect the visual quality are recorded. 

Same as in Section 6.3, the level scores of the shape distortion and content informa-

tion loss are processed independently by following the Z-score conversion, the subject 
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rejection, and Z-score inverse conversion. After these procedures, the level values are 

re-scaled in the range [0,100], same as the MOS values. LCC and SROCC between 

the level scores and the MOS values are utilized to evaluate their correlation, which 

is shown in Table 6.2. It can be observed that the level of shape distortion correlates 

much more closely with MOS values than the content information loss. It means that 

the viewers are more sensitive to the shape distortions introduced in the retargeted 

images. In most cases, the human subjects tend to sacrifice the information loss rather 

than the shape distortion for recognizing a good quality image. For the information 

loss, although it correlates badly with the MOS values, it still affects the visual quality 

of the retargeted image. 

LCC SROCC 
MOS vs. Shape Distortion 0.8243 0.8371 
MOS vs. Content Information Loss 0.3264 0.4680 
MOS vs. Fusion of Shape Distortion and Content Information Loss 0.9218 0.9267 

Table 6.2: Relationship between MOS values and the levels of shape distortion and information 
loss. 

From Table 6.2, it can be observed that the shape distortion correlates closely with 

the final perceptual quality of the retargeted image. However, the three metrics, EH, 

EMD, and SIFT-flow describing the shape distortion do not prove to be efficiency, 

as shown in Table 6.1. The reason may be attributed to that none of them are able 

to accurately capture the shape distortion. Therefore, a fusion strategy is tested by 

combining the three metrics together through average process. The performance is also 

illustrated in Table 6.1. Compared with the three metrics, the fusion one performs 

better. It means that the current descriptor for capturing the shape distortion is not 

accurate enough. Furthermore, a fusion strategy by summing the shape distortion and 

content information loss together was tested. As shown in Table 6.2, the fusion result 

correlates more closely with the MOS value. The observation provides us some hints 

for designing the quality metric from the perspective of shape distortion and content 

information loss. The descriptors of shape distortion and content information loss 

should be combined together for evaluating retargeted image quality. For the current 

available metrics, EH, EMD and SIFT-flow tries to capture the object shape of the 

image. BSD tries to depict the content information loss in a bidirectional way. If 
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they are combined together, these two distortions are considered to build a quality 

metric, the performance of which is illustrated in Table 6.1. It can be observed that a 

better performance is obtained, which means that considering the shape distortion and 

content information loss together can help to improve the performances. 

6.4.3 Discussion 

As demonstrated in previous subsections, the performances of the objective quality 

metrics for retargeted images are still not good enough. The statistical correlations 

between the subjective MOS values and the metric outputs are not close. Even fusing 

EH, EMD, BSD, and SIFT-flow together, the LCC and SROCC values are smaller than 

0.6, which indicates a bad performance of the objective metric. In this sub-section, we 

will discuss and try to figure out how to design an effective objective quality metric for 

evaluating the perceptual quality of the retargeted image. The source image content, 

retargeting scale, the shape distortion and content information loss measurement, and 

the HVS properties are the candidate factors, which are believed to benefit the objective 

metric performance. 

• Shape distortion description. As illustrated Table 6.2, the shape distortion is 

closely related to the perceptual quality of the retargeted image. Therefore, the 

recently developed metrics, such as EH, EMD, and SIFT-flow, try to capture the 

object shape of the image and measure the corresponding differences between 

the source and retargeted image. However, the performances are not good e-

nough, where the LCC and SROCC values are only about 0.35 as shown in Table 

6.1. Even combining these metrics together, we can obtain a better performance; 

but the result is still unsatisfactory. Therefore, in order to accurately depict 

the perceptual quality of the retargeted image, the shape distortions that intro-

duced by retargeting process need to be captured more precisely. Recently, A. 

D'Angelo [221] [222] proposed a full-reference quality metric to evaluate the ge-

ometrical distortions of the images. The approaches are based on that the HVS 

is sensitive to the image structures, such as edges and bars, which are identi-

fied by employing the Gabor filter. By considering this descriptor for evaluating 

the geometrical distortion, the shape distortion introduced during the retarget-

ing process is believed to be more accurately described. Therefore, it can help to 
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improve the performance of the objective quality metric. 

• Fusion of the shape distortion and content information loss. As illustrated in 

Table 6.2, the content information loss alone is not closely related to the final 

perceptual quality of the retargeted image. But combining the shape distortion 

and content information loss together can improve the performance, which has 

also been illustrated in Table 6.1. The combinations of the four objective quality 

metrics can beat the other metrics. Therefore, if we develop accurate metrics 

to capture the shape distortion and content information loss, how to fuse them 

together needs to be further considered. The fusion strategy of the two factors 

should consider their corresponding contributions to the final retargeted image 

quality. 

• Source image quality and retargeting scale. The source images that we employed 

to build our database are of different resolutions and different qualities, which 

may affect the subjective viewers' judgment of the retargeted image perceptual 

quality. Moreover, the retargeting scale will also affect the retargeted image 

quality. Given one source image, the larger the retargeting ratio, the better is the 

perceptual quality of the retargeted image. Therefore, the final perceptual quality 

index of the retargeted image needs to account for the quality of the source image 

as well as the retargeting scale. 

• Image content. As discussed in previous sections, the image content correlates 

closely to the crop margin of the source image (how much can be cropped without 

losing the object/regions of interest). If the source image contains the 'clear 

foreground object' or 'natural scenery' attribute, the crop margin will be very 

large. Therefore, retargeting the source image into 75% and 50% ratios will not 

significantly affect the perceptual quality. Otherwise, if the source image contains 

the 'face and people' or 'geometric structure' attribute, the crop margin will be 

very small. Then any retargeting methods will severely degrade the perceptual 

quality. In this respect, the image content and the crop margin of each source 

image need to be included to depict the perceptual quality of the retargeted 

image. 

• HVS saliency. Additionally, the HVS demonstrates different conspicuities over 
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different regions of the image. The shape distortions and content information loss 

in the salient regions are more sensitively perceived by the viewers than those in 

the non-salient regions. That is also the reason why several retargeting methods 

consider the saliency or visual attention map during the retargeting process, such 

as WARP [198], SCST [204], and STVI [199]. The viewers' assessment on the 

quality of the retargeted image is prejudiced during the subjective testing process. 

Therefore, the effect of the HVS saliency needs to be considered to model the 

subjective viewer's behavior, which will lead to a more effective quality metric 

for retargeted images. The simplest way of incorporating the HVS saliency is 

to weight the corresponding shape distortion and content information loss by the 

saliency map detected from the source image, which has been demonstrated to be 

effective in evaluating the perceptual quality of the traditional distorted image. 

6.5 Conclusion 

An image retargeting database is built through the subjective study in this chapter. 

Based on the subjective ratings of the human viewers, the database is analyzed from the 

perspectives of retargeting scale, retargeting method, and source image content. Also 

the publicly available quality metrics for the retargeted images are evaluated on the 

constructed database. By combining the metrics together, which independently depict 

shape distortion and content information loss, the performance can be improved. 



Chapter 7 

Conclusions 

This thesis mainly discusses perceptual quality assessment and processing for visual sig-

nals. A successful perceptual quality metric can release human beings from laborious 

works, such as visual quality monitoring in communication, visual system performance 

evaluation, vision-related tests in manufacturing environment, etc. Also the perceptual 

quality metric can employed to optimize the performances of many image/video pro-

cessing applications, such as visual signal compression, communication, watermarking, 

and so on. In this chapter, we will conclude our work in Section 7.1. And the future 

work will be discussed in Section 7.2. 

7.1 Conclusion 

• Visual Horizontal Effect 

In Section 2.1, visual horizontal effect (HE) are researched to address the HVS 

sensitivities to stimuli of different orientations over contents of different orienta-

tions. The visual HE is simply modeled by a polynomial function based on the 

obtained psycho-visual data. The visual HE is further employed to rectify the 

structural distortion map. Experimental results demonstrate that the visual HE 

modeling the HVS orientation sensitivity can improve the PQA performance. 

• Adaptive Block-Based Super-Resolution Directed Down-Sampling for 

Image Compression 

In Section 2.2, a novel perceptual image coding scheme via adaptive block-based 

super-resolution directed down-sampling is proposed. For each MB of a given 

image, whether down-sampling or not depends on the contents of the visual sig-

nal itself, which will be determined by the rate distortion optimization (RDO) 

170 
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process [104]. And the joint method of down-sampling and super-resolution is 

proposed to minimize the reconstruction errors between the original and the re-

stored MB inferred by the super-resolution method from the down-sampled block. 

At the decoder side, the super-resolution method performed in DCT domain is 

employed to recover the full-resolution MB for its simplicity. Experimental results 

demonstrated that images with much better subjective and objective quality can 

be constructed with a small number of computations introduced. 

Adaptive Block-Based Just Noticeable Difference 

In Section 3.1, extension from 8x8 DCT-based JND to 16x16 DCT-based JND is 

performed by conducting a psychophysical experiment to parameterize the CSF 

for the 16x16 DCT. For still images or the intra video frames, a new spatial 

selection strategy based on the spatial content similarity (SCS) is utilized to 

yield the JND map. For the inter video frames, a temporal selection strategy 

based on the motion characteristic similarity (MCS) is employed to determine 

the transform size for generating the JND map. With the developed ABT-based 

JND, a simple PQA is derived in Section 3.2. By evaluating on the publicly 

available databases, the metric is believed to be reliable for evaluating perceptual 

qualities of the visual signals. Furthermore, as the proposed PQA is very simple, it 

can be easily integrated into the video coding strategy for perceptual-based video 

coding in Section 3.4. And experimental results demonstrate that the proposed 

method can generate higher quality video sequences in terms of both objective 

and subjective measurements. 

Motion Trajectory Based Visual Saliency Map for Quality Assessment 

In Section 3.3, we propose to incorporate the motion trajectory for efficiently 

detecting the visual saliency of video sequences. A quaternion representation 

(QR) for each frame is constructed, which comprises the spatial image content, the 

motion trajectories, and the temporal residuals. Based on the QR, the quaternion 

Fourier transform (QFT) is employed to construct the visual saliency. Finally, the 

visual saliency is incorporated with several video quality metrics for evaluating 

its efficiency. Experimental results demonstrate that the proposed visual saliency 

map can improve the performances of the video quality metrics. 

§ 5.4. 
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• Reduced Reference Image Quality Assessment 

In Chapter 4, we proposed an efficient RR IQA, which can evaluate the perceptual 

quality of the image based on a limited number of bits. The statistical depen-

dencies between the DCT subbands after performing DCT still exist. Applying 

the reorganization strategy, the intra RDCT subband statistical characteristic, 

specifically the identical natural of the coefficient distribution within the RD-

CT subband, is exploited by the GGD modeling. The inter RDCT subband 

dependency is captured by the mutual information (MI) between the DCT coeffi-

cient pair in corresponding RDCT subbands, such as parent-child pair coefficient, 

brother-child pair coefficient, and cousin-child pair coefficient. And a frequency 

ratio descriptor (FRD) computed in the RDCT domain is employed to measure 

the energy distribution among different frequency components. It can be further 

utilized to simulate the HVS texture masking property. By considering the intra 

RDCT subband GGD modeling, inter RDCT subband MI values, and the image 

FRD value, an effective RR IQA is developed. Experimental results demonstrate 

that the proposed RR IQA outperforms the representative RR IQAs, and even 

the FR IQAs, such as PSNR, and SSIM. 

• Reduced Reference Video Quality Assessment 

In Chapter 5, the study deals with the RR quality assessment for compressed 

video sequences by extending the previous work RR IQA introduced in Chapter 

4. Firstly, from the spatial perspective, an energy variation descriptor (EVD) is 

proposed to measure the energy change of each distorted frame. The proposed 

EVD can also be utilized to simulate the texture masking property of the HVS. For 

the temporal distortion, the generalized Gaussian distribution (GGD) is employed 

to model the histogram distribution of the inter frame difference. The city-block 

distance (CBD) is used to calculate the histogram difference between the original 

video and the distorted one. Finally, the perceptual quality index is derived by 

combining the spatial EVD together with temporal CBD. Also these EVD and 

GGD features are efficiently encoded and represented with a small number of bits. 

And experimental results demonstrate that the proposed RR VQA outperforms 

the representative RR metrics VQM and also other quality metrics. Due to its 
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simplicity and efficiency in terms of feature representation, the proposed metric 

can be considered to be incorporated into the video quality monitoring system. 

• Image Retargeting Perceptual Quality Assessment 

In Chapter 6, a subjective study is conducted to assess the perceptual quality of 

the retargeted image to build a publicly available database. Totally, 171 retarget-

ed images (in two different scales) are generated by different retargeting methods 

from 57 source images. With the source image as the reference, the perceptual 

quality of each retargeted image has been subjectively rated by at least 30 hu-

man viewers on a pre-defined scale. After processing the subjective ratings, the 

MOS value and the corresponding standard deviation are obtained for each image. 

Based on the MOS values, the built image retargeting database is analyzed from 

the perspectives of the retargeting scale, the retargeting method, and the source 

image content. Moreover, some publicly available quality metrics for retargeted 

images are evaluated on the built database in the standardized way. Furthermore, 

a specifically designed subjective testing process is carried out to provide further 

information for developing an effective quality metric for retargeted images. 

7.2 Future Work 

• Quality monitoring system 

As discussed in Chapter 4 and Chapter 5, RR PQAs are designed for on-line 

monitoring the perceptual quality of the visual signals. In order to develop an 

effective and efficient quality monitoring system, the performances of RR PQAs, 

compression and transmission of RR features, robustness of the RR feature to 

the distortions introduced during the transmission need to be considered. This 

will be part of our future work, which can provide better quality of experience 

for users. 

• N R metrics 

As discussed in Chapter 1, in many real-world applications, we cannot access the 

reference visual signal for the quality evaluation, such as image/video denoising, 

restoration, etc., where only the distorted visual signal is available for analysis. 

Therefore, the NR PQAs are thus needed to evaluate and control the perceptual 
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quality of the processed image. In the future, NR PQAs will be researched to 

better handle the practical applications, such as image/video denoising, super-

resolution, and so on. 

• Quality metrics for retargeted images and the retargeting algorithms 

As discussed in Chapter 6, how to evaluate the perceptual quality of the retargeted 

image is still under investigation. In the future, we will consider, HVS saliency 

property, shape distortion description, source image content, etc., to develop an 

accurate quality metric. With the effective quality metric, retargeting algorithms 

can be developed, which can preserve the salient and semantic information of the 

image content, while no distortions are introduced. 

• High definition, 3D and mobile 

As electronic and communication techniques progress with a surprisingly rapid 

speed, consumers are no longer satisfied with traditional standard-definition video 

services. New types of multimedia services are being developed and delivered to 

satisfy all kinds of needs of the end users. High definition and 3D videos can pro-

vide us with more realistic and immersive viewing experiences. They will become 

dominant in the consumer market in the foreseeable future. Meanwhile, mobile 

has become an indispensable part of everyone's life. As mobile services become 

much cheaper and faster, more and more videos will be watched on mobile de-

vices. Therefore, there are great demands for accurate subjective and objective 

quality assessment methods for evaluating visual quality of high definition, 3D, 

and mobile videos. To this end, we need to investigate how the display resolu-

tion, the viewing distance, the environment brightness, etc., affect the perceptual 

visual quality. Further investigation will provide deeper understanding and more 

valuable information about how to optimize these fast developing multimedia 

services. 

• Perception-based applications 

As introduced in Chapter 1, perceptual visual quality assessment can be used to 

compare system performances, monitor multimedia service quality, and develop 

perception-based image/video applications. As the accuracy of perception models 
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improves, more and more perception-based applications have been developed. For 

example, we have done some work on perceptual video coding by implementing 

the ABT-based JND into the H.264 video codec. With deeper understanding of 

the processing mechanism of the human visual system, more accurate perception 

models will be developed. How to incorporate these perception models seaming-

lessly into many imaging and computer vision applications should be a promising 

research direction. 



Appendix A 

Attributes of the Source Image 

ski soccer surfer 

Figure A.1: Sourcce iirL£rce(3mm building the imn^^ee retargeting database. 

The source images for building the image retargeting database are illustrated in Figure 

A.1. We have considered four attributes, specifically 'face and people', 'clear foreground 

object', 'natural scenery', and 'geometric structure'. We define the clear foreground 

object attribute as that the salient object should occupy the image region smaller than 

50% of the source image. The 'natural scenery attribute means that a large proportion 

of the image contains the texture or smooth information. And the 'geometric structure 
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attribute denotes that there are evident edges or lines in the source image. The detailed 

attribute information of each source image is illustrated in Table A.1. Firstly, it can be 

observed that one image may contain more than one attributes. Secondly, the dominant 

attribute of each source image is illustrated. We sort the attributes of each source image 

according to the attribute significance. 

Table A.1: The attribute information of the source image. (1 indicates the attribute of 'face 
and people'; 2 indicates the attribute of 'clear foreground object'; 3 indicates the attribute of 
'natural scenery'; 4 indicates the attribute of the 'geometric structure'. The attributes are sorted 
according to their corresponding significances. The left attribute denotes the most significant, 
while the right one is the least significant.) 

Source Image Name Attributes Source Image Name Attributes 

'kodim01.png' 4 'kodim22.png' 4;3 

'kodim03.png' 2 'kodim23.png' 2 

'kodim04.png' 1 'kodim24.png' 4 

'kodim05.png' 3;1 'monarch.png' 2 

'kodim06.png' 2;3 'ArtRoom.png' 4 

'kodim07.png' 2;3 'Lotus.png' 2 

'kodim08.png' 4 'Perissa_ Santorini.png' 3 

'kodim09.png' 2;3 'Sanfrancisco.png' 4;3 

'kodim10.png' 4 'Umdan.png' 1;4 

'kodim11.png' 3;2 'bicycle1.png' 2;1;3 

'kodim12.png' 2;1;3 'blueman.png' 4 

'kodim13.png' 3 'buddha.png' 1 

'kodim14.png' 1;2;3 'butterfly.png' 2 

'kodim16.png' 3 'car1.png' 4 

'kodim17.png' 1;4 'car.png' 4;2 

'kodim18.png' 1;3 'child.png' 2;1 

'kodim19.png' 4 'colosseum.png' 2;1;4 

'kodim20.png' 2;4 'eagle.png' 2 

'kodim21.png' 3;4 'face.png' 1 

'obama.png' 1 'fish.png' 2 

'pencils.png' 4 'fishing.png' 3;1 
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Table A.1 - continued from previous page 

'penguins.png' 3 'getty.png' 3;4 

'pigeons.png' 1;2;4 'girls.png' 1 

'ski.png' 1;3 'jon.png' 1 

'soccer.png' 1 'kids.png' 1 

'surfer.png' 2;1 'kodim02.png' 3;4 

'tiger.png' 4 'kodim15.png' 1 

'venice.png' 2;3 'mnm.png' 4 

'volleyball.png' 1 



Appendix B 

Retargeted Image Name and the Corresponding 
Number 

There are in total 171 retargeted images in the built database. The retargeted image 

name and the corresponding number are shown in Table B.1, which corresponds to the 

image no. listed in Figure 6.3 and Figure 6.4 of the thesis. It can be observed that 

each source image generates 3 retargeted images by different methods and in different 

scales. 

Table B. retargeted images and their corresponding image no. 

Retargeted image name Image No. Retargeted image name Image No. 

'kodim01_ scsc_ 0.50.png' 1 'getty- seam 0.75.bmp' 87 

'kodim03_ scst_ 0.75.bmp' 2 'girls_ seam 0.50.bmp' 88 

'kodim04_ crop_ 0.50.bmp' 3 'jon_ ener_ 0.50.png' 89 

'kodim05_ seam_ 0.50.bmp' 4 'kids_ crop_ 0.75.png' 90 

'kodim06_ scsc_ 0.75.png' 5 'kodim02_ scsc_ 0.50.png' 91 

'kodim07_ scst_ 0.75.bmp' 6 'kodim15_ scsc_ 0.50.png' 92 

'kodim08_ scst_ 0.50.bmp' 7 'mnm_ scst_ 0.75.png' 93 

'kodim09_ scst_ 0.50.bmp' 8 'obama_ ener_ 0.75.png' 94 

'kodim10_ crop_ 0.50.bmp' 9 'pencils- seam_ 0.50.bmp' 95 

'kodim11_ scaL 0.50.bmp' 10 'penguins- scaL 0.50.bmp' 96 

'kodim12_ scaL 0.50.bmp' 11 'pigeons- ener_ 0.50.png' 97 

'kodim13_ crop— 0.50.bmp' 12 'ski- ener_ 0.50.png' 98 

'kodim14_ crop— 0.50.bmp' 13 ’soccer- seam 0.50.bmp' 99 

'kodim16_ scaL 0.50.bmp' 14 'surfer_ crop_ 0.50.bmp' 100 
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Table B.1 - continued from previous page 

'kodim17_ crop_ 0.50.bmp' 15 'tiger_ ener_ 0.75.png' 101 

'kodim18_ scaL 0.50.bmp' 16 ’venice_ seam_ 0.50.bmp' 102 

'kodim19_ scsc_ 0.50.png' 17 'volleyball- mult_ 0.75.png' 103 

，kodim20_ seam_ 0.50.bmp' 18 'ArtRoom_ scaL 0.50.bmp' 104 

'kodim21_ scaL 0.50.bmp' 19 'Lotus_ scst_ 0.50.png' 105 

'kodim22_ seam_ 0.50.bmp' 20 'Perissa_ SantorinL mult_ 

0.50.png' 

106 

'kodim23_ scsc_ 0.50.png' 21 'Sanfrancisco_ seam_ 

0.50.bmp' 

107 

，kodim24_ seam_ 0.50.bmp' 22 'Umdan_ scst_ 0.50.png' 108 

'monarch_ crop_ 0.75.bmp' 23 'bicycled seam_ 0.50.bmp' 109 

'kodim01_ scsc_ 0.75.png' 24 'blueman_ scaL 0.50.bmp' 110 

'kodim03_ seam_ 0.50.bmp' 25 'buddha_ seam 0.50.bmp' 111 

，kodim04_ scsc_ 0.75.png' 26 'butterfly- shiL 0.50.png' 112 

’kodim05_ warp_ 0.50.bmp' 27 ，car1_ shiL 0.50.bmp' 113 

'kodim06_ scst_ 0.50.bmp' 28 ’car_ seam_ 0.50.bmp' 114 

'kodim07_ seam_ 0.50.bmp' 29 'child- seam_ 0.50.bmp' 115 

'kodim08_ seam_ 0.50.bmp' 30 'colosseum_ seam_ 0.50.bmp' 116 

'kodim09_ seam_ 0.50.bmp' 31 ’eagle- seam— 0.75.bmp' 117 

，kodim10_ scsc_ 0.75.png' 32 'face- scst- 0.75.png' 118 

'kodim11_ scst_ 0.50.bmp' 33 'fish_ scaL 0.50.png' 119 

'kodim12_ scsc_ 0.50.png' 34 'fishing_ mult_ 0.50.png' 120 

'kodim13_ scst_ 0.50.bmp' 35 'getty_ stvi_ 0.75.png' 121 

’kodim14_ scaL 0.75.bmp' 36 'girls- stvL 0.75.png' 122 

'kodim16_ scsc_ 0.50.png' 37 'jon_ seam 0.50.png' 123 

'kodim17_ seam_ 0.50.bmp' 38 ，kids_ seam 0.50.bmp' 124 

'kodim18_ scsc_ 0.75.png' 39 ，kodim02_ seam_ 0.50.bmp' 125 

'kodim19_ scsc_ 0.75.png' 40 'kodim15_ seam_ 0.75.bmp' 126 

’kodim20_ shiL 0.50.bmp' 41 'mnm_ seam_ 0.50.bmp' 127 

，kodim21_ scsc_ 0.75.png' 42 ，obama_ mult- 0.75.png' 128 
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Table B.1 - continued from previous page 

'kodim22_ seam_ 0.75.bmp' 43 'pencils- stvL 0.75.png' 129 

'kodim23_ scsc_ 0.75.png' 44 'penguins_ scst_ 0.75.png' 130 

，kodim24_ seam_ 0.75.bmp' 45 'pigeons- mult_ 0.50.png' 131 

’monarch_ scst_ 0.50.bmp' 46 'ski- mult- 0.50.png' 132 

’kodim01_ scst_ 0.50.bmp' 47 ’soccer_ seam_ 0.75.bmp' 133 

'kodim03_ seam_ 0.75.bmp' 48 'surfer_ seam_ 0.50.bmp' 134 

，kodim04_ seam_ 0.50.bmp' 49 'tiger_ seam_ 0.50.bmp' 135 

'kodim05_ warp_ 0.75.bmp' 50 'venice_ shif_ 0.50.bmp' 136 

'kodim06_ shif_ 0.50.bmp' 51 'volleyball- seam_ 0.50.bmp' 137 

'kodim07_ seam 0.75.bmp' 52 'ArtRoom seam_ 0.50.bmp' 138 

'kodim08_ seam 0.75.bmp' 53 'Lotus_ warp_ 0.50.png' 139 

'kodim09_ seam_ 0.75.bmp' 54 'Perissa_ SantorinL shif_ 

0.50.png' 

140 

'kodim10_ seam_ 0.50.bmp' 55 'Sanfrancisco_ warp_ 

0.50.bmp' 

141 

'kodim11_ seam_ 0.50.bmp' 56 ’Umdan_ seam_ 0.50.png' 142 

'kodim12_ scst_ 0.50.bmp' 57 'bicycled shif_ 0.50.bmp' 143 

'kodim13_ seam_ 0.50.bmp' 58 'blueman_ seam_ 0.50.bmp' 144 

'kodim14_ scst_ 0.50.bmp' 59 'buddha- seam 0.75.png' 145 

，kodim16_ scst_ 0.50.bmp' 60 ’butterfly- warp_ 0.50.png' 146 

'kodim17_ warp_ 0.75.bmp' 61 'car1_ warp_ 0.50.bmp' 147 

'kodim18_ scst_ 0.50.bmp' 62 'car_ warp_ 0.50.bmp' 148 

'kodim19_ scst_ 0.50.bmp' 63 'child- warp_ 0.50.bmp' 149 

'kodim20_ warp_ 0.75.bmp' 64 'colosseum_ shif_ 0.50.bmp' 150 

'kodim21_ scst_ 0.50.bmp' 65 'eagle- warp_ 0.50.bmp' 151 

'kodim22_ warp_ 0.50.bmp' 66 'face- seam- 0.50.bmp' 152 

'kodim23_ scst_ 0.50.bmp' 67 fish_ shiL 0.50.png' 153 

’kodim24_ shif_ 0.75.bmp' 68 'fishing_ warp_ 0.50.png' 154 

'monarch_ seam_ 0.50.bmp' 69 ，getty_ warp_ 0.50.bmp' 155 

’ ArtRoom- crop— 0.50.bmp' 70 'girls- warp_ 0.50.bmp' 156 
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Table B.1 - continued from previous page 

'Lotus_ scaL 0.50.png' 71 'jon_ stvL 0.50.png' 157 

’Perissa_ SantorinL crop_ 

0.50.png' 

72 'kids_ warp_ 0.50.bmp' 158 

’Sanfrancisco_ crop_ 

0.50.bmp' 

73 ’kodim02_ shif_ 0.50.bmp' 159 

'Umdan_ ener_ 0.50.png' 74 'kodim15_ shif_ 0.75.bmp' 160 

'bicycled scaL 0.75.bmp' 75 'mnm_ stvL 0.75.png' 161 

’blueman- crop— 0.50.bmp' 76 ，obama_ warp_ 0.50.bmp' 162 

'buddha_ mult_ 0.75.png' 77 'pencils_ warp_ 0.50.bmp' 163 

'butterfly_ scaL 0.50.png' 78 'penguins- seam_ 0.75.bmp' 164 

’car1_ seam_ 0.50.bmp' 79 ，pigeons_ warp_ 0.50.png' 165 

'car_ crop_ 0.50.bmp' 80 'ski- warp_ 0.50.png' 166 

'child- scaL 0.50.bmp' 81 'soccer- warp_ 0.50.bmp' 167 

'colosseum_ crop_ 0.50.bmp' 82 'surfer— warp_ 0.50.bmp' 168 

'eagle_ scaL 0.50.bmp' 83 'tiger_ stvL 0.75.png' 169 

'face_ ener_ 0.75.png' 84 'venice_ warp_ 0.75.png' 170 

'fish_ mult_ 0.50.png' 85 'volleyball- warp_ 0.50.bmp' 171 

'fishing_ ener_ 0.50.png' 86 
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Source Image Name and the Corresponding Number 

The source image and the corresponding image no. are shown in Table C.1, which 

corresponds to the image no. listed in the Figure 6.7, Figure 6.8, and Figure 6.9 of the 

thesis. 

Table C.1: 57 source images and their corresponding image no. 

Source Image Name Image No. Source Image Name Image No. 

'kodim01.png' 1 'blueman.png' 30 

’kodim03.png' 2 'buddha.png' 31 

’kodim04.png' 3 'butterfly.png' 32 

’kodim05.png' 4 'car1.png' 33 

'kodim06.png' 5 'car.png' 34 

'kodim07.png' 6 'child.png' 35 

'kodim08.png' 7 'colosseum.png' 36 

’kodim09.png' 8 'eagle.png' 37 

'kodim10.png' 9 ，face.png' 38 

’kodim11.png' 10 'fish.png' 39 

'kodim12.png' 11 'fishing.png' 40 

'kodim13.png' 12 'getty.png' 41 

'kodim14.png' 13 'girls.png' 42 

'kodim16.png' 14 'jon.png' 43 

’kodim17.png' 15 'kids.png' 44 

'kodim18.png' 16 'kodim02.png' 45 

'kodim19.png' 17 'kodim15.png' 46 
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Table C.1 - continued from previous page 

'kodim20.png' 18 'mnm.png' 47 

'kodim21.png' 19 'obama.png' 48 

'kodim22.png' 20 'pencils.png' 49 

'kodim23.png' 21 'penguins.png' 50 

'kodim24.png' 22 'pigeons.png' 51 

'monarch.png' 23 'ski.png' 52 

'ArtRoom.png' 24 'soccer.png' 53 

'Lotus.png' 25 'surfer.png' 54 

'Perissa_ Santorini.png' 26 'tiger.png' 55 

'Sanfrancisco.png' 27 'venice.png' 56 

'Umdan.png' 28 'volleyball.png' 57 

'bicycle1.png' 29 
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