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ABSTRACT

In this dissertation, we address the multiframe super resolution reconstruction problem for wavelet-

encoded images and videos. The goal of multiframe super resolution is to obtain one or more high

resolution images by fusing a sequence of degraded or aliased low resolution images of the same

scene. Since the low resolution images may be unaligned, a registration step is required before

super resolution reconstruction. Therefore, we first explore in-band (i.e. in the wavelet-domain)

image registration; then, investigate super resolution.

Our motivation for analyzing the image registration and super resolution problems in the wavelet

domain is the growing trend in wavelet-encoded imaging, and wavelet-encoding for image/video

compression. Due to drawbacks of widely used discrete cosine transform in image and video com-

pression, a considerable amount of literature is devoted to wavelet-based methods. However, since

wavelets are shift-variant, existing methods cannot utilize wavelet subbands efficiently. In order

to overcome this drawback, we establish and explore the direct relationship between the subbands

under a translational shift, for image registration and super resolution. We then employ our devised

in-band methodology, in a motion compensated video compression framework, to demonstrate the

effective usage of wavelet subbands.

Super resolution can also be used as a post-processing step in video compression in order to de-

crease the size of the video files to be compressed, with downsampling added as a pre-processing

step. Therefore, we present a video compression scheme that utilizes super resolution to recon-

struct the high frequency information lost during downsampling. In addition, super resolution is a

crucial post-processing step for satellite imagery, due to the fact that it is hard to update imaging

devices after a satellite is launched. Thus, we also demonstrate the usage of our devised methods

in enhancing resolution of pansharpened multispectral images.
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CHAPTER 1: INTRODUCTION

Super resolution (SR) is the process of obtaining one or more high resolution (HR) images using

one or more degraded or aliased low resolution (LR) images of the same scene. Degradation can

be a consequence of motion, camera optics, atmosphere, insufficient sampling, etc. Hardware im-

provement is a straightforward solution to increase the resolution. An obvious way is to reduce

the pixel sizes in sensors in order to increase the sampling rate. However, this reduces the image

quality by introducing shot noise. It is because the amount of light on each photo-detector de-

creases as well. Therefore, this solution to obtain high resolution images has a limitation, which is

nearly reached by the current sensor technology. A second way of solution is to increase the num-

ber of photo-detectors in a sensor (size of a sensor chip). However, this solution would increase

the capacitance, causing lower charge transfer rate, increasing the time amount needed for image

capturing, and the cost of hardware [3–5]. Therefore, software solutions, called SR methods, are

needed as a post-processing step in order to acquire HR images from LR images, without increas-

ing the cost, or introducing shot noise. Especially, when it is hard to update the imaging devices,

e.g. in satellite imagery, or it is not feasible to mount heavy cameras, e.g. in unmanned aerial ve-

hicles, SR is the appropriate solution to obtain HR images. For this reason, SR gained popularity

in signal processing, computer vision, and machine learning communities, and has a wide range of

applications in many areas including but not limited to video surveillance, remote sensing, medical

imaging, microscopy imaging, target detection, video coding, and satellite imagery [6–10].

Super resolution methods can be divided into two groups depending on the number of LR images

used; namely, single- and multiframe. Single image methods infer an HR image from a single

LR frame. These methods have several drawbacks such as high computational complexity, ambi-

guities in matching HR and LR image patches, and trade-off between large/small image patches,

and large/small databases. Therefore, our focus in this dissertation is on multiframe super

1



resolution methods, which need multiple aliased LR images of the same scene in order to re-

construct the lost high frequency information of the HR image. Fig. 1.1 shows an example for

multiframe SR problem. Since observed LR images are required to be aliased, image registration,

the process of aligning two or more images of the same scene, plays a crucial role in pre-processing

for multiframe SR methods. Image registration methods used in SR include interpolation [11], dif-

ferential [12], direct [13], phase domain [14–20] or wavelet domain approaches [21–29], which

will be discussed thoroughly in Section 2.2. Moreover, image registration is also an important

step for many areas of image and video processing, such as change detection, medical diagnosis,

satellite imagery, video coding, and quality control in manufacturing [30, 31].

Figure 1.1: Multiframe SR example.

Recently, a considerable literature on super resolution and image registration has grown up around

wavelets due to their properties of orthogonality, signal localization, and low computing require-

ments. Wavelets have also received scholarly and commercial attention in imaging (especially in

medical imaging) [32, 33] with the aim of achieving better resolution, reduced distortions, higher

SNR, and quick acquisition time; and image/video coding [34–39] for a better compression and to

alleviate compression artifacts.

Motion compensated temporal filtering (MCTF) is a very advantageous method in video compres-

sion since less bitrate is required to code the prediction errors than the actual frames. Motion

estimation (i.e., image registration) is performed before MCTF to obtain displacements between

2



frames. Later, reference frames are warped onto target frames in order to achieve prediction errors

to be encoded. Motion compensated temporal filtering is also an essential step of numerous appli-

cations such as scalable video coding [40, 41], still image coding [38, 42], and denoising [43]. A

second method to decrease the encoded bit rate in video compression, is super resolution. When

downsampling is added as a pre-processing step of compression, super resolution can be employed

as a post-processing step in order to reconstruct the required resolution. Video compression meth-

ods are required by many applications such as video surveillance, video conferencing, and mobile

multimedia, which might have limited bandwidth [44].

Another application area of super resolution is satellite imagery. Typically, multispectral sensors

provide low-spatial-high-spectral resolution for the multispectral (MS) volume, and high-spatial-

low-spectral resolution for the panchromatic (PAN) images. This is often due to technological

limitations inherent in satellite sensors. However, numerous remote sensing applications related to

land-cover management, environmental monitoring, weather forecasting, and map updating require

high-spatial-high-spectral resolution MS images. In order to obtain these high spatial resolution

MS images, a large body of research is devoted to fuse information of MS and PAN bands, which

is called pansharpening. Super resolution can also be used to enhance the spatial-resolution of

multispectral images [45].

This dissertation is organized as follows. We will explain wavelet decomposition, image regis-

tration, motion compensated temporal filtering, super resolution, super resolution of compressed

video, and pansharpening problems in the next chapter. We will provide a survey of literature for

each problem in Chapter 3. Chapters 4, 5, 6, 7, and 8 are concerned with our methodologies de-

rived for In-band (i.e., in the wavelet domain) Image Registration, Motion Compensated Temporal

Filtering for Video Coding, Super Resolution of Wavelet-Encoded Images, Super Resolution of

Downsampling Based Compressed Video, and Super Resolution of Pansharpened Multispectral

Images, respectively. Finally, we conclude the dissertation and provide future work in Chapter 9.
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CHAPTER 2: BACKGROUND

In this chapter, we first start with a brief explanation of wavelet decomposition, and later introduce

the problem definitions and our contributions to subjects of image registration, motion compen-

sated temporal filtering, super resolution, super resolution of compressed video, and super resolu-

tion of pansharpened multispectral images, respectively.

2.1 Multiresolution Wavelet Decomposition

In this section, we will first explore 1D multiresolution analysis, and later provide the 2D extension.

A signal can be decomposed into a linear combination of a basis for the space that the signal

belongs to. Let f(t) ∈ L2(R) be a signal, where L2(R) is the vector space of square integrable

signals. Then, f(t) can be expressed as:

f(t) =
∑
j,k

aj,kψj,k(t), (2.1)

where a and ψ stand for expansion coefficients and expansion functions, respectively; and the

expansion functions ψj,k(t) are constructed by dilations (i.e., j) and translations (i.e., k) of a single

function called the mother wavelet (i.e., ψ(t)), as in:

ψj,k(t) = 2j/2ψ(2jt− k), (2.2)
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where 2j/2 is used for normalization. As an example, Haar mother wavelet is defined as follows:

ψ(t) =


1, 0 ≤ t < 1/2

−1, 1/2 ≤ t < 1

0, otherwise.

(2.3)

In order to analyze the signals in a multiresolution framework, different scales of dilation can be

used. The multiresolution analysis is based on nested approximation subspaces, Vj ⊂ Vj+1, where

j ∈ Z, with the following properties [46–48]:

1.
⋂
j Vj = {0} (separation) and

⋃
j Vj = L2(R) (density),

2. f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj+1,

3. f(t) ∈ Vj ⇐⇒ f(t− k) ∈ Vj ,

4. Vj = span{φj,k(t)}.

The intersection property indicates that the only constant function, 0, can be in all subspaces Vj ,

for j ∈ Z; while, the union property implies,
⋃

j Vj is dense in L2(R). Scaling functions, φj,k(t),

are also defined based on dilations and translations of a single function, φ(t):

φj,k(t) = 2j/2φ(2jt− k). (2.4)

As an example, Haar scaling function is defined by:

φ(t) =


1, 0 ≤ t < 1

0, otherwise.
(2.5)
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The wavelet and approximation spaces can be defined as complements, which shows that signals

can be decomposed into approximation and wavelet components:

Vj+1 = Vj ⊕Wj, (2.6)

where ⊕ shows orthogonal direct sum of the subspaces, for Wj = span{ψj,k(t)}. Therefore,

L2(R) can be written for an arbitrary scale, J , as:

L2(R) = VJ ⊕WJ ⊕WJ+1 ⊕ . . . (2.7)

Note that, this implies orthogonality between functions in Vj and Wj:

〈
φj,k(t), ψj,l(t)

〉
=

∫
φj,k(t)ψj,l(t)dt = 0, (2.8)

for k 6= l. Using Eq. (2.7), the signal f(t) can also be written in the following form:

f(t) =
∑
k∈Z

akφk(t) +
∑
j≥0

∑
k∈Z

dj,kψj,k(t). (2.9)

The scaling (i.e., ak), and wavelet (i.e., dj,k) coefficients are calculated using inner product and

orthogonality:

ak =
〈
f(t), φk(t)

〉
=

∫
f(t)φk(t)dt,

dj,k =
〈
f(t), ψj,k(t)

〉
=

∫
f(t)ψj,k(t)dt. (2.10)
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Figure 2.1: 3-level wavelet decomposition.

Using the second property of approximation subspaces, φ(t) and ψ(t) can also be written as:

φ(t) =
√

2
∑
n

h(n)φ(2t− n),

ψ(t) =
√

2
∑
n

g(n)φ(2t− n), (2.11)

where h(n) and g(n) are called scaling and wavelet function coefficients, or high and low pass

filters, for n ∈ Z.

Figure 2.1 shows a multiresolution wavelet decomposition for three levels, using high-pass and

low-pass analysis filters, h and g. When this process is reversed and synthesis filters together with

upsampling is used, the original signal can be reconstructed.

This analysis can be extended to 2D images in L2(R2), by defining the approximation subspace in

2D (i.e., V (2)
j ) with the tensor product, V (2)

j = Vj ⊗ Vj . The orthonormal scaling and wavelet basis

for V (2)
j and W (2)

j are defined by [47, 48]:

Φj,k,l(t, u) = φj,k(t)φj,l(u),

Ψh
j,k,l(t, u) = ψj,k(t)φj,l(u),

Ψv
j,k,l(t, u) = φj,k(t)ψj,l(u),

Ψd
j,k,l(t, u) = ψj,k(t)ψj,l(u). (2.12)
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Finally, the 2D signal f(t, u) can be written in terms of the approximation and wavelet functions,

for k, l ∈ Z and an arbitrary scale, J :

f(t, u) =
∑
k,l

aJ,k,lΦJ,k,l(t, u) +
∑
j≥J

∑
k,l

dhj,k,lΨ
h
j,k,l(t, u)

+
∑
j≥J

∑
k,l

dvj,k,lΨ
v
j,k,l(t, u) +

∑
j≥J

∑
k,l

ddj,k,lΨ
d
j,k,l(t, u), (2.13)

where coefficients a and dh,v,d are calculated by inner product, as in 1D case:

aJ,k,l =

∫ ∫
f(t, u)φJ,k(t)φJ,l(u)dtdu,

dhj,k,l =

∫ ∫
f(t, u)ψj,k(t)φj,l(u)dtdu,

dvj,k,l =

∫ ∫
f(t, u)φj,k(t)ψj,l(u)dtdu,

ddj,k,l =

∫ ∫
f(t, u)ψj,k(t)ψj,l(u)dtdu. (2.14)

Again, as in 1D case, the scaling and wavelet coefficients are used with synthesis filters and upsam-

pling, in order to reconstruct the original images. The formulas in Eqs. 2.9 and 2.13 demonstrate

the wavelet decomposition of 1D signals and 2D images, which will be employed in image regis-

tration and super resolution methods in the following sections in this chapter.

We will explain the problem definitions and widely applied solutions for image registration, mo-

tion compensated temporal filtering, super resolution, super resolution of compressed video, and

pansharpening of multispectral images, in the next sections.
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2.2 Image Registration

Image registration is a classic problem dealing with geometrically aligning two or more images

of the same scene, which are refered as reference and sensed images. Most of the image reg-

istration techniques consist of four main steps; feature detection, feature matching, transform

model estimation, and image resampling and transformation [31]. While distinctive objects are

detected in reference and sensed images in feature detection step; feature extraction deals with

finding correspondences between these detected features, via similarity based methods (e.g. corre-

lation or mutual information), frequency-based methods (i.e., Fourier or wavelet), optimization, or

pyramid-based methods. After feature matching step, a transform model is estimated via global or

local mapping models or interpolation and approximation functions; which is then employed for

aligning the images in the final step.

Image registration methods are generally performed by exploiting either spatial or transform do-

main features. Spatial domain methods [49, 50] often rely on image features that capture local

image distortions [12], which is the main drawback of these methods since they can be highly sen-

sitive to distortions caused, for instance, by noise. Fourier-domain methods, on the other hand, are

more resilient to spatially localized noise, and are computationally more efficient [51–54]. How-

ever, they can be sensitive to noise due to poor localization, and affected by aliasing due to low

sensor resolution. In order to reduce computational complexity and avoid local extrema, image

pyramids are also used in registration [55, 56], which are employed to find small amounts of mo-

tion in the lower levels and propagate the estimates to upper levels. Wavelets, due to their inherent

multiresolution nature, provide similar advantages as in image pyramids [57], while avoiding the

drawbacks of Fourier and spatial domain methods by exploiting their localization characteristics.

We will provide a comprehensive literature review for these groups in Section 3.1.

Image registration techniques are widely used in many areas including, but not limited to, com-
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puter vision, medical imaging, remote sensing, cartography, change detection, weather forecasting,

target recognition, and monitoring global and land usage using satellite images [58–60]. A straigh-

forward application of image registration is multiframe super resolution, due to required aliasing

between LR images. Vast majority of multiframe SR methods assume that the image registration

problem is solved a priori [61–64]. Others employ registration algorithms, generally with subpixel

accuracy, for either global or local motion. While global motion can be defined by the motion of

the object or the camera, local motion depends on the nature of the objects [5]. In this dissertation,

we will focus on global motion model in registration for super resolution application.

a b c

Figure 2.2: Image registration example a Reference image b Sensed image c Registrered and
overlapped images.

A global motion between images can be modeled as translational, rigid, affine, or projective trans-

formation [5]. We can describe a general affine model as follows:


u

v

1

 =


a11 a12 a13

a21 a22 a23

0 0 1



x

y

1

 (2.15)

where (x, y, 1) and (u, v, 1) are the homogeneous coordinates of the reference and sensed images,

10



respectively, and ai,j , for 1 ≤ i, j ≤ 3, stand for the motion parameters. The goal of image

registration is to find the parameters of transformation matrix given coordinates of the two images.

Figure 2.2 shows two satellite images (a and b) taken from Istanbul, Turkey, and the registration

result (c) by warping b onto a, after parameters are estimated (Images courtesy of ESA Earth

Observation Dataset and NASA ISS, respectively).

Several studies in SR literature employ Taylor series expansion in order to find the motion parame-

ters [49,65–67]. The general approach in these methods is to minimize the error between a sensed

image and Taylor series expansion of a reference image. In one of the first examples of this group,

Keren et al. [49] define a translational and rotational transform between reference image, I(x, y),

and sensed image, J(x, y), as in:

J(x, y) = I(x cos(θ)− y sin(θ) + tx, x sin(θ) + y cos(θ) + ty), (2.16)

where θ shows the rotation, and (tx, ty) stand for the translation in two dimensions between images.

After performing Taylor series expansion, the error function to be minimized becomes [49]:

E(tx, ty, θ) =
∑[(

I(x, y) +

(
tx − yθ −

xθ2

2

)
∂f

∂x
+

(
ty + xθ − yθ2

2

)
∂f

∂y

)
− J(x, y)

]2
(2.17)

for the overlapping area of the images. The error function is minimized by setting the derivatives

with respect to unknowns to zero. This method is mainly valid for small translational and rotational

motions; therefore, is later modified to use Gaussian pyramid to demonstrate large translations

in higher resolutions as small translations in lower resolutions of the pyramid; and extended to

be used in modeling more general transformations by dividing images into blocks with uniform

motion [65].

When the motion is more complicated, as in real videos, parametrization of the motion model can
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be difficult, leading to a group of methods called optical flow, which use dense correspondences

between images to estimate motion of each pixel [68–71]. One of the first optical flow techniques

used in literature is the Lucas-Kanade method [72] which defines the relationship between refer-

ence, I(x), and sensed, J(x), images by:

J(x) = I(Ax + t), (2.18)

where x stands for dimensions of the images (e.g. x = (x, y) in 2D), A shows the transform matrix

for a general affine transform, and t is the translational displacement vector for all dimensions. A

linear approximation of the reference image I(x) is then defined as follows:

I
(
(A + ∆A)x + (t + ∆t)

)
≈ I(Ax + t) + (∆Ax + ∆t)

∂

∂x
I(x), (2.19)

where
∂

∂x
stands for the gradient operator in n dimensions:

∂

∂x
=

[
∂

∂x1

∂

∂x2
. . .

∂

∂xn

]T
, (2.20)

where superscript T stands for transpose. In order to minimize the error function given in:

E =
∑

x

[
I(Ax + t)− J(x)

]2
, (2.21)

derivatives with respect to unknown parameters in Eq. (2.19) are set to zero, and Newton-Raphson

iteration is employed.

Optical flow methods are later used together with feature extraction methods in order to obtain

better quality HR images [73]. However, optical flow based methods, in general, have high com-

putational complexity and are prone to errors under noisy conditions and large motions [7].
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Numerous multiframe super resolution studies [54, 74, 75] have also investigated the use of fre-

quency based, specifically Fourier domain, registration methods, which exploit the transform do-

main representation of the images [31]. Majority of these methods depend on the use of shift

property of Fourier transform, and the cross power spectrum defined in [76]. When the transla-

tional shift between the images to be registered is defined as follows:

J(x, y) = I(x− tx, y − ty), (2.22)

the Fourier shift property states the relationship in the Fourier domain as:

FJ(u, v) = FI(u, v)e−i(utx+vty), (2.23)

where FI,J stand for the Fourier transformed images, and (u, v) are the coordinates in Fourier

domain. The correlation between images is then found by normalized cross power spectrum as:

FJ(u, v)FI(u, v)∗

|FJ(u, v)FI(u, v)∗|
= e−i(utx+vty), (2.24)

where ∗ shows conjugate gradient.

In an extensively employed Fourier-based method by Foroosh et al. [14], the above mentioned

relationship is extended for subpixel accuracy. Moreover, Vandewalle et al. [54] propose another

widely used method, where rotation and translation are estimated sequentially, by first transforming

the image coordinates to polar coordinates, in which rotation can also be defined by translation.

Methods in this group, as mentioned before, are prone to errors depending on aliasing and noise.

Several other registration algorithms have also been utilized in multiframe SR literature. While

hierarchical methods employ coarse-to-fine refinement for registration [56,77,78]; Bayesian-based

methods marginalize the unknowns that are either the high resolution image [79] or the registration
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parameters [80]. Furthermore, learning based methods are also used as reported in [81], where

temporal dependencies are learnt via convolutional neural network (CNN) based methods.

Since the performance of multiframe SR methods are largely dependent on the registration accu-

racy, a group of methods focus on estimating high resolution images and registration parameters

simultaneously [82–84], where the relationship between LR images are incorporated into the SR

observation model. Unfortunately, these methods suffer from complex models and extra parame-

ters [7]. More recently, researchers have also investigated multiframe SR without explicit motion

estimation, where rather than an accurate registration, a general motion model is enough to increase

resolution [85–87]. The main drawback of these methods is the computational complexity [7].

Finally, wavelet-based multiframe SR methods have also used several types of image registration

techniques, including hierarchical methods [71], Fourier-based methods [9], elastic image registra-

tion [24], and optical flow [29], while a vast majority of them assume that motion parameters are

known beforehand [88, 89]. Wavelet based image registration techniques, in general, make use of

features extracted from multiscale wavelet decomposition [23, 25–28] to find the correspondences

between reference and sensed images. These methods generally find the local maxima in wavelet

decomposition of the input images, and use these features to search for the best match. Stone et

al. [22] demonstrate the use of low-pass subbands for feature extraction, proving that these sub-

bands are not as sensitive to translational shifts under the condition that features are greater than

twice the size of wavelet blocks. As an alternative approach to the problem, Wu et al. [21] pro-

pose a coarse-to-fine wavelet-based motion model based on hierarchical basis functions by Cai and

Wang [90]. The motion model is defined as follows:

u(x, y) = u0(x, y) +
J∑
j=0

(
uhj (x, y) + uvj (x, y) + udj (x, y)

)
,

v(x, y) = v0(x, y) +
J∑
j=0

(
vhj (x, y) + vvj (x, y) + vdj (x, y)

)
, (2.25)
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where u0 and v0 demonstrate the coarsest level motion vectors for approximation coefficients,

uh,v,d are motion vectors for detail subbands expressed as:

u0(x, y) =
∑
k,l∈Z

ak,lΦk,l(x, y),

uhj (x, y) =
∑
k,l∈Z

ahj,k,lΨ
h
j,k,l(x, y),

uvj (x, y) =
∑
k,l∈Z

avj,k,lΨ
v
j,k,l(x, y),

udj (x, y) =
∑
k,l∈Z

adj,k,lΨ
d
j,k,l(x, y), (2.26)

vh,v,d are defined similarly. The motion vectors u and v are later found iteratively by minimizing a

cost function with sum of squared differences.

Above mentioned image registration methods used for wavelet-based multiframe SR application

do not utilize the relationship between wavelet subbands effectively. In this dissertation, our goal

is to obtain a wavelet domain subpixel registration method that can achieve highly accurate re-

sults using wavelet coefficients directly, that will be used for wavelet-based multiframe SR, and

wavelet-encoded imaging applications. We propose a subpixel motion estimation method that

can achieve direct wavelet domain registration from a sparse set of coefficients. We make the

following contributions towards this goal: (i) We devise a method of decoupling scale, rotation,

and translation parameters in the wavelet domain, (ii) we derive explicit mathematical expressions

that define in-band subpixel registration in terms of Haar wavelet coefficients, (iii) using the de-

rived expressions, we propose an approach to achieve in-band subpixel registration, avoiding back

and forth transformations. (iv) Our solution remains highly accurate even when a sparse set of

coefficients are used, which is due to localization of signals in a sparse set of wavelet coefficients.

Extensive experiments are used to validate our method both on simulated and real data under vari-

ous scenarios.

15



In the next section, we will discuss a straightforward application of wavelet-based image registra-

tion in video coding.

2.3 Motion Compensated Temporal Filtering

Motion compensated temporal filtering (MCTF) has an important role in video coding, which

is the process of reducing the size of a video file to be stored or transmitted. Compression in

video coding methods can be achieved by either individually encoding each frame (i.e., intra-frame

coding) using image compression techniques, or revealing the redundancy between frames (i.e.,

inter-frame coding) for temporal filtering, based on the fact that consecutive frames have similar

data. Intra-frame coding techniques expose the redundancy in the same frame (i.e., I-frame), and

code pixels or pixel blocks in a frame by prediction based on previously coded ones. Our focus

in this dissertation is on inter-frame coding, since higher compression ratios can be achieved via

revealing redundancies between frames.

A straightforward solution to reveal the redundancy between frames and reduce required bits for

coding, is to encode the difference of two consecutive frames together with the reference frame,

instead of coding both original frames. Since more similar neighboring frames increase the com-

pression rate by decreasing the difference to be coded, coding motion compensated error, which

has less energy than the difference, results in more efficient compression. Therefore, motion com-

pensation is a key aspect in inter-frame coding. Figure 2.3 shows an example of two frames from

widely used Foreman video sequence (a and b), the difference between these frames (c) and motion

compensated error (d).
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a b c d

Figure 2.3: Motion compensation example a Reference image in Foreman video sequence b Target
image c Difference d Motion compensated error.

A fundamental pre-step of motion compensation is motion estimation, which predicts where the

pixels in the current frame originate in the reference frames. Prediction of inter-coded frames

can be performed in either a uni-directional or a bi-directional framework. While uni-directional

methods predict the target frames (i.e., P-frame) based on the previous frames only; bi-directional

methods take advantage of both previous and future frames in order to code the current frame (i.e.,

B-frame). Although B-frames have the highest compression rates compared to others, there might

be a delay caused by the need of future frames to be encoded before the current one.

Motion estimation can be carried out by block matching, pel-recursive matching, optical flow, or

mesh matching techniques [91]. The general idea of these motion estimation methods is based on

the optical flow formula:

|I(x, y, n)− I(x− tx, y − ty, n− 1)| = ε, (2.27)

where ε demonstrates the small change with respect to translational shifts only, since object mo-

tions are assumed to be pixel-valued translational, and occlusions and light variations are avoided.

In general, the error between frames is minimized based on either mean square, or mean absolute

difference with full search technique. Even though this exhaustive method has high computational
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cost, and there exists accelerated methods in the literature [92,93]; it is very regular, parallelizable

and easy to implement in the hardware [94]; therefore, still is the most commonly used method.

For the motion estimation step, block matching method [95] divides the target frame into usually

square blocks, and predicts where each block comes from in the reference frames. Although, in

general, blocks of size 16 × 16 are employed, some methods use smaller blocks to track small

objects in complex motions, and larger blocks to decrease image noise. Block matching method is

generally accurate for pixel level translation; however, interpolation can be used in order to obtain

half or quarter pixel accuracy. Although this method causes blocking artifacts due to quantization

of Discrete Cosine Transform (DCT) coefficients, the widely used transform in coding, it still is the

most accessible method for hardware due to its simplicity. Modifications to block matching method

are proposed by the use of overlapping blocks [96], variable size blocks [97], and hierarchical block

matching [98].

Other motion estimation methods include pel-recursive matching [99], which recursively calculates

motion vectors for each pixel using gradient methods, and can also be modified to use hierarchical

matching [100]; optical flow-based methods that approximate the derivatives for dense velocity

estimate [91]; and mesh matching method [101] which divides the blocks into triangles, and es-

timate the affine transformation using the corners of triangles. Due to their high computational

complexity, these methods are not often used in video coding.

After the motion estimation step is completed, motion compensation step is performed, where

the blocks in the reference frames are warped onto the target frames, using the estimated motion

vectors. Later, the error between the target and predicted target frames, together with the motion

vectors and reference frames are transmitted through an encoder. At the receiver, the decoder

rebuilts the target frames using provided data. This whole process is named as motion compensated

temporal filtering.
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MCTF methods perform temporal filtering in either an open-loop or a closed-loop fashion. While

open-loop framework uses the original reference images in predictions, closed-loop architecture

employs the reconstructed reference frames in the decoder side. We explore the open-loop archi-

tectures in this dissertation, since closed-loop methods are not as easy to implement for hardware,

even though their coding efficiency is relatively higher [102]. Due to the drawbacks (e.g. block-

ing artifacts) of widely utilized DCT in video coding, the recent trend is to use Discrete Wavelet

Transform (DWT) in MCTF methods. Open-loop DWT-based MCTF is performed either directly

on input images, or on their transforms; thus, can be categorized into two groups depending on the

order of temporal and spatial transforms as t + 2D [103, 104] and 2D + t [38, 41], where 2D and

t stands for spatial and temporal decompositions, respectively.

a

b

Figure 2.4: Wavelet based video coding a t+ 2D b 2D + t.
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Spatial-domain MCTF methods (i.e., t+ 2D) first decompose the frame sequence temporally, em-

ploy motion compensation on the original frames, and encode the temporally filtered frames using

wavelet-based coding schemes. In-band MCTF methods (i.e., 2D + t), on the other hand, first

decompose the frames in wavelet domain, and use motion compensation on the wavelet subbands,

which obtain the error frames to be encoded directly in the wavelet domain. Figure 2.4 demon-

strates the encoder side of the MCTF based video coding, for these two frameworks. Even though

the spatial domain MCTF methods have higher performance compared to in-band ones, they have

drifting and operational mismatch problems [39].

MCTF methods in the literature so far, perform motion estimation/motion compensation (ME/MC)

either in the temporal domain before DWT, or in the wavelet domain with the help of redundancy

(e.g. ODWT, DT-CW, etc.), due to the fact that complete (i.e., critically sampled) DWT is shift-

variant and motion estimation directly on DWT subbands is a challenging task. However, redun-

dancy in these methods leads to high computational complexity [105]. Inspired by the facts that

shift variance keeps the perfect reconstruction and nonredundancy properties of wavelets, breaks

the coupling between spatial subbands, and that wavelet codecs always operate on complete DWT

subbands [38], we propose a novel in-band MCTF method, which avoids the need of shift in-

variance, and operates directly on the original DWT coefficients of the input sequences. Since

Haar wavelets are widely utilized in MCTF methods due to the coding efficiency based on their

short kernel filters [38], our method is built on Haar subbands. For accurate ME/MC, we define

the exact relationships between the DWT subbands of input video sequences, which allows us to

avoid upsampling, inverse DWT, and calculation of redundant DWT coefficients, while achieving

arbitrary subpixel accuracy without interpolation, and high quality video even at very low-bitrates.

Experimental results demonstrate the accuracy of the proposed method, confirming that our model

for ME/MC effectively improves video coding quality.

We devote the next section to another application area of image registration, namely, super resolu-
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tion reconstruction.

2.4 Super Resolution Reconstruction

Even though our main focus in this dissertation is on multiframe SR methods, we provide a com-

prehensive review of both single and multiframe methods, in this section.

Super resolution methods can be categorized based on several criteria, including the domain of

algorithms (i.e., frequency or spatial domain), number of low resolution images used to obtain a

high resolution image (i.e., single or multiframe), or the employed methods (e.g. interpolation,

regularization etc.) [5, 106, 107]. We will use a classification similar to [5] which divides the

methods into two groups based on the domain used, namely, frequency and spatial domains. We

will first discuss the early examples of frequency based methods, in the Fourier domain; and later,

examine the spatial domain algorithms. Finally, we will investigate the more recent frequency

based approach; i.e., wavelet-based techniques.

Frequency based methods, can be performed either in Fourier or wavelet domains. Methods in

this group, first decompose the images into transform domain coefficients, make use of the alias-

ing between LR images in order to recover the high frequency information lost during the image

acquisition process, and perform inverse transform to obtain HR images.

One of the first frequency-based SR methods proposed in the literature is by Tsai and Huang [3],

where authors use the shift and aliasing properties of Fourier transform, on globally translated

images taken by Landsat 4 satellite [5]. Let us demonstrate the continuous HR scene by x(x, y).

Since the HR images are globally translated, we can define the kth HR image by xk(x, y) =

x(x+txk , y+tyk), where (txk , tyk) stand for the translations in x and y directions for the kth image,

respectively, for k = 1, . . . , K. The relationship between these HR images can be explained using
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the shift property of Continuous Fourier Transform (CFT):

Xk(u, v) = ej2π(utxk+vtyk )X(u, v), (2.28)

whereX(u, v) andXk(u, v) demonstrate the CFT of reference HR image, and k globally translated

HR images, respectively. When the HR images are sampled with sampling period T1, T2 in two

directions, sampled LR images can be defined by yk[m,n] = xk(mT1 + txk , nT2 + tyk). Then, the

relationship between these discrete LR and continous HR images can be defined using the aliasing

property of Discrete Fourier Transform (DFT) and CFT of the scenes as in [5, 108]:

Yk[p, q] =
1

T1T2

∞∑
i=−∞

∞∑
j=−∞

Xk

(
2π

T1

(
p

M
− i
)
,
2π

T2

(
q

N
− j
))

, (2.29)

where Yk[p, q] shows the DFT of LR images. By combining the equations in (2.28) and (2.29), we

can obtain:

Y = ΦX, (2.30)

where Φ demonstrates the matrix for the relationship. Equation (2.30) is later solved by a least

squares algorithm. This method assumes that the LR images are impulse sampled, which does not

take the blur into account. Later, it is modified to include the blurring effect and noise by Kim

et al. [109], and regularization is added by Bose et al. [110] to decrease registration errors. Even

though Fourier-based methods are intuitive, have low computational complexity, and parallelizable

to reduce hardware complexity [106]; due to their global nature, they only allow linear space

invariant blur (PSF), and are not appropriate for real-world applications [107]. Moreover, it is

difficult to identify a global frequency-domain a priori knowledge to overcome ill-posedness.
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Figure 2.5: Super resolution observation model.

Spatial-domain methods, on the other hand, tackle Fourier domain obstables by using interpolation,

regularization, and machine learning methods, in order to take real world scenarios into account

[64, 65, 111–114]. These methods can be performed using either single or multiple LR images.

Let x(x, y) denote the desired HR image, and yk be the kth observed LR image. The general

multiframe super resolution observation model is given by:

yk = ΛkBkMkx + nk, k = 1, 2, ..., K, (2.31)

where Mk, Bk, Λk, and nk denote matrices for motion, blurring effect, downsampling operator,

and noise term for the kth LR image, respectively, and K is the number of observed LR images.

yk and x are represented as lexicographically ordered vectors. Figure 2.5 shows the observation

model for a single frame. Given a sequence of observed LR images, yk, the goal of multiframe SR

is to reconstruct an unknown HR image, x.

In order to solve for x in Eq. (2.31), interpolation-based methods [64, 65, 115], first project all LR

images onto HR grid, then fuse the information from all images using a general interpolation tech-

nique, such as the nearest neighbor, bilinear, and bicubic. These methods are generally performed

in three steps: (1) registration, (2) interpolation, and (3) deblurring [106–108].

In one of the first works of this group, Iterative Back Projection (IBP) method is proposed by Irani
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and Peleg [65], where an initial HR guess is iteratively refined, by back projecting the error between

simulated and observed LR images, to the HR grid. The goal of IBP method is to minimize the

following cost function using the notation from Eq. (2.31):

arg min
∥∥ΛkBkMkx− yk

∥∥2
2
. (2.32)

The iterative scheme is then expressed by:

xn+1 = xn +
1

K

K∑
k=1

(
yk − ynk

)
hBP , (2.33)

where hBP is the back-projection kernel and superscript n stands for the iteration number.

This method is later modified by Irani and Peleg [116] for a general motion model; and Zomet et

al. [115] use median of differences instead of the average, for a faster algorithm. In order to avoid

occilations between solutions, IBP can also be extended to include regularization. Even though

IBP method is intuitive; there is no unique solution due to ill-posedness, and it might be hard to

choose the back-projection kernel.

The projection onto convex sets (POCS) method, on the other hand, solves the restoration and

interpolation problems together by taking prior knowledge into account [106]. The first POCS

method was proposed by Stark and Oskoui [117], where the desired HR image is restricted to be a

member of intersection of closed convex sets. These convex sets can be defined based on several

constraints [106, 108]. For example, data consistency constraint can be modeled as

Sk = {x
∣∣ δl ≤ ∣∣ΛkBkMkx− yk

∣∣ ≤ δu}, (2.34)

where δl,u represents the lower and upper bound uncertainties [5]. Having a group of M convex
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sets, the HR solution can be found iteratively, by projecting HR image onto these convex sets:

xn+1 = PMPM−1 . . .P2P1xn, (2.35)

where P demonstrates the projection operator.

The accuracy of POCS method is largely based on the motion estimation; therefore, in order to

decrease this dependency, this method is later modified by Rajan and Chaudhuri [118] to disable

the projections with estimation errors. Patti et al. [119] also extend this method to handle blur,

aliasing, and space-varying PSF. Even though POCS methods can incorporate several types of

priors easily; they have high computational cost, slow convergence, and the solution might differ

based on the initial guess [106, 108].

In order to stabilize the generally ill-posed SR problem, regularization is incorporated into the

solutions, where SR problem is cast into the Bayesian framework. As an example of regularization

based methods, the maximum likelihood (ML) method was first articulated by Tom et al. [112],

where the aim is to maximize the following cost function:

x̂ML = arg max
x

p(Y|x). (2.36)

Since the LR images, Y, are independent from the HR image, x, the conditional probability density

function (pdf) can be defined by [5, 107]:

p(Y|x) =
K∏
k=1

p(yk|x)

∝
K∏
k=1

exp

(
− 1

2σ2
k

∥∥∥yk −ΛkBkMkx
∥∥∥2)

= exp

(
−

K∑
k=1

1

2σ2
k

∥∥∥yk −ΛkBkMkx
∥∥∥2). (2.37)
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This leads to expressing the cost function as in:

x̂ML = arg min
x

∥∥yk −Hkx
∥∥2 , (2.38)

where H = ΛBM. The derivative of Eq. (2.37) with respect to x is then set to zero, in order to find

a solution as follows:

x̂ML = (HTH)−1HTY, (2.39)

where the superscript T stands for transpose of a matrix. In the above formula for the maximum

likelihood solution to HR image (i.e., x̂ML), if (H′H) is singular, then the solution is not unique,

which requires incorporating prior knowledge into the solution, leading to maximum a posteriori

(MAP) framework. Methods in this group maximize the following cost function [107]:

x̂MAP = arg max
x

p(x|Y). (2.40)

By using the Bayes’ rule, the above conditional pdf can be rewritten:

p(x|Y) ∝ p(Y|x)p(x), (2.41)

taking the logarithm,

log(p(x|Y)) = log
(
p(Y|x)

)
+ log

(
p(x)

)
= log

( K∏
k=1

p(yk|x)

)
+ log(p(x))

=
K∑
k=1

log(p(yk|x)) + log(p(x)). (2.42)
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Here, p(Y|x) is defined as in Eq. (2.37). Then, x̂MAP can be reformulated as:

x̂MAP = arg min
x

(∥∥yk −Hkx
∥∥2
2

+ λΓ(x)

)
, (2.43)

where λ is the regularization parameter which is used to control the trade-off between residual and

regularization terms, and Γ is a priori energy function. The most appropriate value for regular-

ization parameter can be found by employing several algorithms, such as L-curve, U -curve, and

generalized cross validation. Gaussian Markov Random Field (MRF) is one of the commonly used

a priori functions:

Γ(x) = x′Sx, (2.44)

where S is a symmetric positive matrix. Another widely adapted a priori function is Total Variation

(TV):

Γ(x) =‖∇x‖1 , (2.45)

where∇ stands for the gradient operator, and L1 norm is employed.

Despite the fact that it is easy to incorporate prior knowledge into the SR framework using regular-

ization based methods, they still suffer from high computational cost, and over-smoothing effects.

If the general image prior is not enough for regularization, example-based methods can be carried

out [108, 113, 114], where an HR image is obtained from generally a single LR image by utilizing

training sets of LR/HR images or patch pairs. In their seminal work, Freeman et al. [114] make

use of the MRF model to infer the lost high frequency of an HR image using a single LR image.
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Authors formulate the SR problem similar to Eq. (2.40),

x = arg max
x

p(x|y), (2.46)

where x and y stand for the high-frequency of HR, and mid-frequency of upsampled LR image

[120], respectively; and express the likelihood and prior terms as:

p(y|x) =
∏
k

p(yk|xk), (2.47)

p(x) =
∏

xj∈N(xi)

p(xi|xj), (2.48)

where the HR image patch, xj , is in the neighborhood (i.e., N) of another image patch, xi. These

likelihood and prior terms are learnt by training image sets, and desired high frequency is found

by belief propagation.

Example-based methods can also be extended to use multiple low resolution images [107]. Even

though learning-based methods provide promising results, their performance depends on several

criteria. For example, while small patch sizes cause insignificant predictions; larger ones require

immense datasets to find closer patches [108]. Since the input LR image and the training samples

should be similar for a good prediction of an HR image, learning-based methods tend to limit their

plot to use application specific prior knowledge. Furthermore, high computational cost is another

shortcoming of the methods in this category.

Above mentioned methods can also be utilized in combinations; e.g. ML and POCS [121], MAP

and POCS [8], ML and IBP [122] methods have been combined in the literature. As some general

aspects of SR methods, color images are handled most usually by converting the images to either

YIQ or YCbCr color spaces. Since human visual system is more sensitive to changes in luminance

channel, the SR method is applied on this channel, and the other channels are upsampled using
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interpolation [123]. As an alternative to this approach, all three channels can be reconstructed

using the proposed SR algorithms, in YCbCr or RGB spaces [57, 78]. Finally, the SR methods

are usually evaluated based on mean square error (MSE), peak-signal-to-noise ratio (PSNR), and

structural similarity measure (SSIM) [124].

In order to overcome the drawbacks of aforementioned frequency and spatial domain methods,

recent research in SR explores wavelet-based techniques [29,63,89,125,126]. The intuition behind

these approaches is that the observed LR images can be used to model the low-pass subbands of

the unknown HR images, in order to reconstruct the high frequency information lost during image

acquisition.

Figure 2.6: Wavelet-based SR framework.

Wavelet-based algorithms, similar to Fourier domain methods, first decompose the images into fre-

quency domain subbands, in order to reveal the correlation of low and high frequency information

of the images. The unknown high frequency subbands in finer scales are predicted, using the infor-

mation provided by lower levels of observations. Finally, inverse wavelet transform is performed

to obtain HR images. Figure 2.6 demonstrates this wavelet-based SR framework.

As one of the first wavelet-based SR methods, Nguyen and Milanfar [88] make use of the multires-
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olution representation of wavelets defined as in Section 2.1:

f(t, u) =
∑
k,l

aJ,k,lΦJ,k,l(t, u) +
∑
j≥J

∑
k,l

dhj,k,lΨ
h
j,k,l(t, u)

+
∑
j≥J

∑
k,l

dvj,k,lΨ
v
j,k,l(t, u) +

∑
j≥J

∑
k,l

ddj,k,lΨ
d
j,k,l(t, u). (2.49)

By demonstrating the sample points provided by LR images in the HR grid and ignoring the detail

subbands in Eq. (2.49), the observed data is written in the form:

f(xs+ εt, ys+ εu) ≈ aJ,k,lφJ,k(xs+ εt)φJ,l(ys+ εu), (2.50)

where s is the resolution enhancement factor, 0 ≤ εt, εu < s, and x = 0, . . . ,m−1, y = 0, . . . , n−1

with an LR image of size m × n. Authors first find approximation coefficients by a regularized

least squares approach using the above formula in a matrix form. Later, the difference between the

original image and its estimate is used to find the remaining subbands sequentially.

Wavelet-based methods in the literature so far are based on interpolation [29, 63, 88, 89, 125, 127,

128], regularization [129, 130], or learning algorithms [126, 131, 132]. While interpolation based

methods focus on interpolating the wavelet subbands (e.g. DWT or stationary wavelet transform)

instead of the spatial domain images; regularization dependent methods take advantage of the

multiscale nature of wavelet domain for image priors. On the other hand, learning based methods

aim to learn the high frequency information of the observed LR images using the correspondence

between wavelet transform of HR/LR image pairs.

One main problem with above mentioned multiview methods is that resampling from nonuniform

samples (provided by multiple images) and the inversion of the point spread function (PSF) are

highly nonlinear and ill-posed problems. Non-linearity and ill-posedness are typically overcome by

linearization and regularization, often through an iterative optimization process, which essentially
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trade off the very same information (i.e., high frequency) that we want to recover. We propose

a different point of view for multiview SR that is very much like single-image methods which

extrapolate the spectrum of one image selected as reference from among all views. However,

for this, the proposed method relies on information provided by all other views, rather than prior

constraints as in single-image methods which may not be an accurate source of information. In that

sense, our method is half-way between single-image and multiview methods, taking advantage of

the best of both worlds. We assume that displacements between the reference and other LR images

are translational and known a priori or estimated. Our contributions are as follows: (i) We establish

explicit closed-form expressions that define how the local high frequency information that we aim

to recover for the reference HR image is related to the local low frequency information in the

given sequence of LR views. (ii) We assume that the LR images correspond to the polyphase

approximation coefficients of the first level wavelet transform of unknown HR images; therefore,

the locality of derived expressions due to modeling using wavelets reduces the problem to an

exact and linear set of equations that are well-posed and solved algebraically without requiring

regularization or interpolation. Our approach is closed-form, and provides results that are superior

to the state-of-the-art. We provide the derived formulae utilizing the Haar wavelet transform as an

example due to their locality and low computational requirements; however, a general formulation

for wavelets can be derived, as well. Our exceptional results are attributed to the accuracy, well-

posedness, and linearity of the derived equations, and the inherent nature of wavelets, making them

very effective in signal localization.

In the next two sections, we explain two application areas for super resolution reconstruction, using

motion estimation; namely, compressed video and pansharpening.
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2.5 Super Resolution of Compressed Video

As we have mentioned before in Section 2.3, the goal of video compression is to reduce the size

of a video file. To this goal, the redundancy in the frames should be revealed, which is widely

performed by decomposing the frames into a transform domain (e.g. DCT, DWT), and encoding

the uncorrelated data, instead of the redundant original frames. However, quantization of the

transform coefficients (e.g. DCT) in coding, causes compression artifacts such as blocking and

ringing. Therefore, sampling these coefficients before compression, leads to more bits to encode

each coefficient, which reduces the quantization error. This pre-processing step of down-sampling

needs to be compensated at the decoder by a post-processing step of up-sampling. Nevertheless,

since down-sampling discards the high frequency information of the frames, the straigthforward

solution of general interpolation techniques are not sufficient for a high quality result at the decoder

side. Therefore, super resolution methods come in handy for post-processing of compressed video.

These methods have the advantage of both decreasing the complexity of encoder, and reducing the

bit rate [133]. Figure 2.7 shows the flowchart for the use of super resolution with downsampling-

based video compression.

One of the pioneering methods in literature which performs super resolution after decompression

is proposed by Segall et al. [134]. In this work, registration, interpolation, restoration, and post-

processing problems are jointly solved using the decompressed low resolution image sequence

in a Bayesian framework. Authors incorporate the compression process into the original super

resolution observation model by first defining the relationship between the original HR frame, x,

and observed LR frame, y, by:

yi = ΛHxi, (2.51)
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for i = 1, 2, 3..., where i shows the number of frames. Here, Λ stands for the downsampling

matrix, H shows the filtering of the ith HR image. Later, the relationship between frames within

the HR sequence is defined by using the displacements between these images:

xi = C(vi,j)xj + ri,j, (2.52)

where C(vi,j) is the matrix that maps jth frame to ith frame, (vi,j) is the displacements vector, and

r stands for the registration error.

Figure 2.7: Super resolution of downsampling-based compressed video.

Using the motion compensation framework, the relationship between the compressed LR frame, g,

and the observed LR frame, y, is defined as follows:

gi = T−1Q[T(yi −M(gj, vi,j))] +M(gj, vi,j), (2.53)
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where T and T−1 show the forward and inverse transforms, Q stands for the quantization,M(gj, vi,j)

shows motion compensation using jth compressed frame, and the motion vector that maps jth

frame to ith frame.

Finally, by combining equations in (2.51), (2.52), and (2.53), the relationship between the HR

frame, x, and the compressed LR frames, g, is defined as follows:

gi = ΛHC(vi,j)xj + ei,j, (2.54)

where e stands for the error caused by compression, registration, and acquisition. This observation

model is used in a Bayesian framework to solve registration and super resolution problems.

The relationship between the unknown HR and the compressed LR frames is employed and mod-

ified later by Belekos et al. [135] to include a new multichannel image prior model; and Zhang et

al. [10] where individual frames are initially super resolved in a Bayesian framework, and are later

used in a multiframe method.

Another group of super resolution of compressed video methods focus on mixed-resolution encod-

ing which is demonstrated in Fig. 2.8. These methods encode some of the frames in full resolution,

which are called the key frames, and the rest of the frames are downsampled, which are named as

the non-key frames. The non-key frames are later upsampled in the decoder side, using a super

resolution method. In their seminal work, Brandi et al. [133] propose a video coding scheme to

encode I-frames (i.e., key frames) in full resolution, and downsample the P and B frames (i.e.,

non-key frames), so that in the decoder side, non-key frames are upsampled using information

from the key frames. Later, this framework is employed by many researchers, adapting the number

of key/non-key frames, and the super resolution method employed. More details on these studies

are provided in Section 3.4.
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Figure 2.8: Mixed-resolution encoding for super resolution of compressed video.

Learning-based methods are also used in this area, which also will be explored in Section 3.4.

However, since the performance of these methods are mostly based on the similarity between the

LR inputs and the images in the database, these methods have the drawback of adding more noise

to the reconstruction.

The goal of all downsampling based compressed video methods is to reconstruct the high frequency

information, lost during downsampling and compression processes. The methods explained so far

do not take advantage of the transform domain coefficients. As we have mentioned before, video

coding methods tend towards wavelet-based encoding, which implies a wavelet-based super reso-

lution is more reasonable than a spatial super resolution technique, in reconstruction of compressed

video. Therefore, we propose a new framework for this problem, by combining the downsampling

and transform steps shown in Fig. 2.7. Instead of downsampling the input HR frames, and decom-

posing the downsampled frames later into a transform domain, we first perform discrete wavelet

transform on the input HR frames. Later, the low-pass subbands of these transformed frames, and

the motion vectors estimated using the original HR images, are quantized and encoded. Since our

devised technique for SR directly operates on the low-pass wavelet subbands to restore the high

frequency information, it is well-suited for post-processing the downsampled compressed video.

In the decoder side, we recover the high-pass subbands, and later perform inverse DWT. We em-

ploy our motion estimation method in Chapter 5 to estimate the motion vectors, and modify our

super resolution method in Chapter 6 to an Iterative Back Projection (IBP) scheme, in order to
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reconstruct the high-pass subbands.

We devote the next section to explain the pansharpening problem, and the use of super resolution

in enhancing the resolution of pansharpened images.

2.6 Super Resolution of Pansharpened Images

In remote sensing imaging, the spatial resolution indicates the ground area captured in one pixel;

while spectral resolution denotes the electromagnetic bandwidth of the signals [136]. Multispec-

tral sensors capture a few spectral bands, and typically provide low-spatial-high-spectral resolution

for the multispectral (MS) volume, and high-spatial-low-spectral resolution for the panchromatic

(PAN) images; where PAN images have reflectance information for a large range of wavelengths.

Low-spatial resolution of MS bands is often due to technological limitations inherent in satellite

sensors. However, numerous remote sensing applications related to land-cover management, en-

vironmental monitoring, weather forecasting, and map updating require high-spatial-high-spectral

resolution MS images. In order to obtain high spatial resolution MS images, a large body of re-

search is devoted to fuse information of MS and PAN bands, which is called pansharpening. Figure

2.9 demonstrates an example of low-spatial-high-spectral resolution MS bands, high-spatial-low-

spectral resolution Panchromatic image, and high-spatial-high-spectral MS bands after pansharp-

ening, respectively.

Based on the classification by Amro et al. [136], pansharpening methods can be categorized into

five groups as component substitution, relative spectral contribution, high-frequency injection, im-

age statistics based, and multiresolution, where the goal is to fuse high frequency information of

the PAN images into MS bands in order to increase resolution.
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a b c

Figure 2.9: Pansharpening example a Low-spatial-high-spectral resolution MS bands b High-
spatial-low-spectral resolution Panchromatic band c High-spatial-high-spectral resolution MS
bands after pansharpening.

The first step of most pansharpening methods is to upsample the MS bands to the size of PAN

image. Component substitution pansharpening methods transform these upsampled MS bands,

perform histogram matching on MS bands and PAN images to substitute components of MS bands

with the PAN images. Finally, backward transform is performed on the substituted components.

Examples of this group include Intensity-Hue-Saturation (IHS) pansharpening [137], principal

component substitution [138], and Gram-Schmidt spectral sharpening [139], which will be ex-

plained in Section 3.5.

Relative spectral contribution pansharpening methods, on the other hand, employ a linear com-

bination of bands instead of using substitution after the histogram matching step. Brovey trans-

form [140] is an example of relative spectral contribution pansharpening.

The third group of pansharpening methods perform high-frequency injection. Methods in this

group, as in the previous two groups, first upsample the MS bands. Later, a low-pass filter is

applied to the PAN image, and the difference between the original and filtered PAN images are

found to be used as the high-frequency information. This high-frequency information is added to
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the MS bands to obtain the pansharpened MS bands. High Pass Modulation method [141] is an

example of this group.

Image statistics based models use the statistical relationship between each band of the MS and

PAN images (e.g. Bayesian based techniques [142] and Price’s method [143]), and use generally

Bayesian approach to find the high-spatial-high-spectral MS bands.

The final group of multiresolution methods can also be categorized into two sets, as Laplacian

Pyramid and wavelet-based. Laplacian pyramid based methods (e.g. [144]), as in the previous

groups, first upsample the MS bands, find the Laplacian pyramid for the PAN image, and add the

details from the pyramid to the MS bands after determining weights for the Laplacian pyramid

coefficients. Wavelet-based methods (e.g. [145]), on the other hand, after upsampling the MS

bands, perform forward transform on MS and PAN images, apply fusion on the coefficients in the

transform domain, and finally perform inverse transform in order to achieve pansharpened images.

Based on the comparisons by Alparone et al. [146] and Bovolo et al. [147], a wavelet-based method

called Additive Wavelet Luminance Proportional (AWLP) [148] is a state-of-the-art pansharpening

technique, which implies the effective use of wavelets in pansharpening.

Pansharpening methods, however, do not consider the temporal information captured by the sen-

sors. Multiframe SR methods as discussed before, on the other hand, fuse a sequence of degraded

or aliased low resolution (LR) images of the same scene taken at different times, from different

view points or by different sensors, to obtain a high resolution (HR) image. Fig. 2.10 shows

an example of multispectral images taken at different times by the same sensor (i.e., Landsat 7

ETM+).
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Figure 2.10: Landsat 7 ETM+ multispectral images taken at different dates (shown in green areas)
around Sea of Marmara, Turkey (Images courtesy of USGS Glovis).

In order to take advantage of the temporal information in the multispectral images, Li et al. [45]

propose a wavelet-based multiframe SR technique, where temporal information of low-spatial-

resolution MS images are used to increase their spatial resolution, as opposed to the pansharp-

ening methods, where PAN images are employed instead of temporal data. The authors propose

using an SR method based on MAP approach with a universal Hidden Markov Tree model as a

preprocessing step for multispectral image classification, where SR is applied band-by-band to

multispectral images captured on different dates. However, although their method uses the tempo-

ral information, it does not take advantage of the high spatial resolution PAN image available with

most multispectral sensors.

In this dissertation, we propose a wavelet-based multiframe SR method that takes advantage of

both temporal and spatial information captured by multispectral sensors, in order to obtain a higher

spatial resolution MS image which exceeds the spatial resolution of the available PAN image while

keeping the high spectral resolution. To this end, we first apply a state-of-the-art pansharpening

39



method to a set of multispectral and corresponding PAN images taken at different times, to obtain

high spatial resolution MS images. We then use our proposed wavelet-based approach for SR,

band-by-band on the pansharpened MS images, in order to achieve a higher spatial resolution

MS image. For the proposed SR method, we assume that pansharpened MS images (i.e., LR)

correspond to the approximation coefficients of the first level discrete wavelet transform (DWT)

of an unknown higher spatial resolution MS image (i.e., HR). We then solve the SR problem in a

modified Iterated Back Projection (IBP) manner, as will be explained in Chapter 7. We demonstrate

our results with comparisons, on Landsat 7 ETM+ datasets.

In the next chapter, we will present a literature review on the subjects explained so far.
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CHAPTER 3: LITERATURE REVIEW

This chapter provides a survey on image registration, motion compensated temporal filtering, super

resolution, super resolution of compressed video, and pansharpening for multispectral images,

respectively.

3.1 Image Registration

We will explore subpixel image registration techniques in this section, dividing into spatial and

frequency domain categories.

We will first investigate the spatial domain methods, in a chronological order. As an early spa-

tial domain algorithm, Keren et al. [49] obtain subpixel accuracy by minimizing an error function

which depends on the overlapping part of the reference and sensed images, using Taylor series

expansion. In order to refrain from feature detection and tracking problems in image registra-

tion, Horn et al. [13] employ the so called ”direct” methods where time derivative of brightness is

used to find motion. Later, Davis et al. [149] analyze piece-wise linear interpolators, and present

a reduced bias algorithm which takes advantage of the nearly linear relation between image dis-

placement and bias that results from small displacements. The correlation coefficient function is

maximized by Karybali et al. [150] in a closed-form solution for subpixel translation; whereas, a

modified version of the correlation coefficient is maximized by Evangelidis and Psarakis [50] by

both the forward additive approach and the inverse compositional method. More recently, feature

extraction methods are introduced into spatial domain methods. While Ma et al. [59] select the

control points in a preregistration process based on the scale invariant feature transform (SIFT),

and subdivide the preliminary registered image into chips of pixels and match each chip with a cor-
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responding one from the reference image utilizing normalized cross correlation; Gonçalvez et al.

obtain subpixel accuracy integrating histogram-based image segmentation to registration problem

of satellite images; and later extend their method to use SIFT and outlier removal [151]. Further-

more, Tzimiropoulos et al. [152] extend gradient correlation by modeling the dominant singular

vectors of the 2-D gradient correlation matrix with a generic kernel, for pure translational subpixel

shifts. For the next generation optical flow algorithms that can handle complex scenes, Baker et

al. [153] provide a public dataset and evaluation methods. Finally, Ma et al. [154] propose a feature

matching method that removes outlier features using an ML framework, and solve the registration

problem with the expectation maximization technique.

We can summarize the Fourier domain subpixel registration methods as follows. The seminal

work by Kuglin [76] for phase correlation method is extended for subpixel accuracy by several

researchers. For example, Stone et al. [53] obtain subpixel accuracy by detecting and removing

the Fourier components which become unreliable due to aliasing; Foroosh et al. [14] demonstrate

that phase correlation peaks under subpixel translation are polyphase decomposition of a filtered

unit impulse, which are centered at the correspondence; and Hoge et al. [155] use low complexity

subspace identification. While Takita et al. [156] utilize a phase only correlation function to fit the

analytical model of the correlation peak to 2D data; Balci and Foroosh [17–20] present solutions

that work directly in the Fourier domain. More examples of methods that use phase correlation

include, Vandewalle et al. [54] who perform registration based on low-frequency, aliasing-free

parts of LR images; and Chen and Yap [51] who solve a set of nonlinear equations by developing a

phase relationship between images. While Guizar et al. [52] present three new approaches which

use nonlinear optimization with discrete Fourier transforms; Tzimiropoulos et al. [157] replace

image functions with complex gray-level edge maps, and find motion parameters by normalized

gradient correlation.

The earliest methods related to our work are based on image pyramids, with the aim of reducing
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computational time and avoiding local extrema. In the coarse-to-fine scheme of pyramids, motion

parameters are first estimated on the higher levels, and then refined in the lower levels with smaller

search areas. In this scheme, Szeliski and Coughlan [158] use spline representations of motion

field to deal with local deformations; and, Thévenaz et al. [56] minimize mean square intensity

difference between reference and a set of sensed images using a modified version of Marquardt-

Levenberg algorithm. While Chen et al. [60] maximize mutual information for registration; Kim

et al. [159] apply Canny edge operator for a faster algorithm. Moreover, Qin et al. [160] estimate

the displacements utilizing Taylor series expansion along with a coarse-to-fine Gaussian pyramid.

Finally, local regions of interest in images are registered by estimating deformation parameters by

Zhou et al. [161]; and automatic image registration of remotely sensed images is performed by

using SIFT and mutual information by Gong et al. [162].

Lastly, we can outline the wavelet-based methods as follows. As mentioned in Section 2.2, most

wavelet-domain methods use wavelet decomposition in order to extract features. For example, in

an early wavelet domain method, Djamdji et al. [28] find the correspondence between the fea-

tures extracted by finding the maxima of decomposition. Later, Turcajova and Kautsky [57] use

separable fast discrete wavelet transform with normalized local cross correlation matching based

on least square fit, and demonstrate the advantage of spline biorthogonal and Haar wavelets. In

other examples of feature extraction methods, Le Moigne et al. [25] utilize maxima of Daubechies

wavelet for correlation based registration; and Wu and Chung [163] utilize mutual information and

sum of differences with wavelet pyramids. Later, a combination of feature-based and area-based

registration, using wavelet-based features and relaxation based matching techniques is proposed

by Hong and Zhang [26]. More recently, Wong and Clausi [23] employ an iterative wavelet-based

feature matching method using a modified Geman-McClure M-estimation; and Alam et al. [164]

utilize approximate coefficients of curvelets with a conditional entropy-based objective function.
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3.2 Motion Compensated Temporal Filtering

In this section, we will explore the MCTF methods, based on the categorization provided in Section

2.3, which takes the order of decompositions (i.e., temporal and spatial) into account.

We can summarize the MCTF techniques which perform temporal decomposition before a spatial

transform as follows. In an early method, Kim et al. [42] propose a 3-D extension of set partition-

ing in hierarchical trees (3D-SPIHT) for a low bit-rate embedded video coding scheme; moreover,

both Secker and Taubman [165], and Pesquest-Popescu and Bottreau [166] use lifting formulation

of three dimensional temporal wavelet decomposition for motion compensated video compres-

sion. More recently, Xiong et al. [39] extend spatiotemporal subband transform to in-scale motion

compensation in order to exploit the temporal and cross-resolution correlations simultaneously, by

predicting low-pass subbands from next lower resolution and high-pass subbands from neighbor-

ing frames in the same resolution layer. In order to achieve more accurate motion data, Esche et

al. [167] propose an interpolation method for motion information per pixel using block based mo-

tion data. Furthermore, Chen and Liu [168] use an adaptive Lagrange multiplier selection model in

rate-distortion optimization for motion estimation; and Rüfenacht et al. [169] anchor motion fields

at reference frames instead of target frames to resolve folding ambiguities in the vicinity of motion

discontinuities.

Even though methods in t+2D scheme have good performance, they have drifting and operational

mismatch problems [39]. Therefore, performing spatial transform before temporal decomposition

is introduced to overcome these drawbacks. However, since complete DWT is shift variant, in order

to achieve in-band (i.e., directly in the wavelet domain) ME/MC, several methods are proposed to

tackle this problem by redundancy. While Park and Kim [41] propose a low-band-shift method

by constructing a wavelet tree by shifting low-band subband in each level for horizontal, vertical,

and diagonal directions for one pixel and performing downsampling; Van der Auwera et al. [40]
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use a bottom-up prediction algorithm for a bottom-up overcomplete discrete wavelet transform

(ODWT). More recently, Andreopoulos et al. [38] define a complete to overcomplete discrete

wavelet transform (CODWT), which avoids inverse DWT generally used to obtain ODWT. This

method is later accelerated by Liu and Ngan [105] with the of use partial distortion search and

anisotropic double cross search algorithms. Finally, Amiot et al. [43] demonstrate the usage of

MCTF for denoising, using dual-tree complex wavelet (DT-CW) coefficients.

3.3 Super Resolution Reconstruction

We will review super resolution reconstruction methods in this section, by dividing them into

spatial and frequency domain. We will first investigate the literature in Fourier domain, later go

into detail of spatial domain methods; and finally explore wavelet based algorithms.

We can summarize the Fourier domain techniques as follows. In their seminal work, Tsai and

Huang [3] exploit the relationship between Continuous Fourier Transform (CFT) of the unknown

HR scene and Discrete Fourier Transform (DFT) of the shifted and sampled LR images. Later,

Gilboa et al. [170] devise a method called forward-and-backward (FAB) adaptive diffusion that

enhances, sharpens, and denoises image features simultaneously; and Vandewalle et al. [83] per-

form joint registration and reconstruction in the Fourier domain using multiple aliased images.

More recently, in order to achieve SR using a single image, Rivenson et al. [171] utilize double

random phase encoding in the imaging process; and Zhang and Cham [172] use Fourier transform

within a learning based framework where DCT coefficients are inferred instead of pixel intensities.

Since Fourier based methods cannot handle real world applications efficiently, they are not widely

employed.

Spatial domain methods, on the other hand, can more easily be adapted for real world scenarios.
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We can divide these methods into three groups in general, which use interpolation, regularization,

and machine learning, that can also be employed in combinations. As an early example of inter-

polation based methods, Irani and Peleg [65] update the HR estimate by iteratively projecting the

difference between the approximation and observed LR images back to HR grid. Later, Papoulis

sampling theorem [173] is employed by Ur and Gross [174] in order to achieve a well-posed so-

lution to merge LR images; and by Foroosh and Chellappa [175] to fuse nonuniform samples of

multiple channels. Moreover, Zhou et al. [64] utilize multi-surface fitting.

Regularization, both in spatial and frequency domains, is widely used in SR methods, to overcome

the ill-posed nature of the problem. We can summarize the spatial domain regularization based

methods as follows. In an early example, Lorette et al. [176] investigate the contradiction between

multichannel super resolution and regularization within the adaptive regularization framework.

Later, Elad and Hel-Or [177] cast the SR problem into separate steps of deblurring and fusion

within the ML scheme. While Tipping and Bishop [79] marginalize the unknown HR image in

the Bayesian fashion; Pickup et al. [80] propose to marginalize the unknown motion parameters

instead. In order to avoid the effects of motion estimation errors in SR, Shen et al. [84] simulta-

neosly solve registration, segmentation, and SR problems in a MAP-based method, where a cyclic

coordinate descent optimization is employed; and Babacan et al. [178] perform joint estimation

of motion parameters and HR image in the Bayesian framework, where the unknowns are mod-

eled in a stochastic fashion. As examples on usage of different image priors, Farsiu et al. [62]

utilize a bilateral prior, which is minimized by L1 norm; and Belekos et al. [135] incorporate a

multichannel image prior to the MAP-based SR problem. Marquina and Osher [179] employ to-

tal variation constraint in a convolutional model, and solve the problem using Bregman iteration;

whereas, Yuan et al. [75] constrain the SR process by using a spatially weighted TV model for

different image regions. Finally, Huang et al. [180] propose to maximize the correlation between

the local neighborhoods of HR and LR images.
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A large body of research in SR focuses on learning based methods; which can employ feature

pyramids, belief network, manifold learning, dictionary learning, compressive sensing, and neu-

ral networks [5]. Literature on multiframe learning-based SR include, Glasner et al. [181] who

combine multiframe SR and example-based approaches based on the assumption that patches in

natural images recur many times inside the image; Kappeler et al. [182] who propose a video super

resolution method with a convolutional neural network (CNN) that is trained on both spatial and

temporal dimensions of videos; and Huang et al. [81] who use a bidirectional recurrent convo-

lutional network to model the temporal dependencies between video frames. On the other hand,

most of the literature based on learning is devoted to single image SR methods. Yang et al. [108]

use a compressed sensing framework, where correspondence of sparse representations between

LR and HR patches are searched. Zhang et al. [183] employ clustering and supervised neighbor

embedding. Johnson et al. [184] use training feed-forward networks using per-pixel loss together

with perceptual loss functions. In order to recover the textual details in scenes, Huang et al. [185]

employ a self-similarity based method where the internal patch search space is enlarged using geo-

metric variations. Yang and Yang [186] learn priors seperately for several subspaces of the feature

space. Timofte et al. [187] propose a fast method by using sparse learned dictionaries, global col-

laborative coding, and anchored neighborhood embedding; which is later combined with Yang’s

method [186], in [188]. Finally, the most recent research focuses on deep CNN framework. Kim

et al. [189] propose a very deep CNN to achieve contextual information of large regions; Dong

et al. [190] use deep CNNs to learn the mapping between LR and HR images; Dahl et al. [191]

present a deep CNN architecture, in order to avoid the need of strong prior information required

by conventional SR methods, to achieve HR images with high upscaling factors; and finally, Ledig

et al. [192] present a method called a generative adversarial network (GAN), which aims at recon-

tructing the details in higher magnification factors. The authors use a loss function that includes

adversarial and content loss which helps to recover natural-looking images for 4× downsampled

images.

47



We will summarize wavelet based methods categorizing into interpolation, regularization, and

learning based groups, as well. Interpolation based wavelet-domain SR approaches can be sum-

marized as follows. In order to reduce noise in SR methods, Robinson et al. [63] apply a combined

Fourier-wavelet deconvolution and denoising algorithm to multiframe SR. Authors first produce

a sharp and noisy image by fast Fourier based image restoration, then reduce noise by space in-

variant nonlinear wavelet thresholding. The need to invert large matrices in their method results

in solving the problem in the Fourier domain. On the other hand, to reduce degradation arti-

facts such as blurring and the ringing effect, Temizel and Vlachos [127] utilize zero padding in

the wavelet domain followed by cycle spinning. Their method adopts a simplified edge profile

and linear regression for edge degradations. Furthermore, to preserve edges, Demirel and An-

barjafari [125] use stationary and discrete wavelet transforms together in an interpolation-based

framework. However, even though better than conventional interpolation techniques, the latter two

methods still lack sharp edges. Tong and Leung [89] utilize Taylor series expansion to approxi-

mate the high frequency information. Their method is constrained to use LR images which have

specific translations (namely 1 pixel in horizontal and 1 pixel in vertical directions). Moreover,

Nguyen and Milanfar [88], contrary to the conventional interpolation based methods, use the reg-

ularity and structure in the interlaced sampling of LR images. Even though, for 2D images, they

utilize reshaping property of the Kronecker product, which only doubles the complexity for 1D,

their method is based on conjugate gradient which is still time consuming. For deblurring, Chan et

al. [193] derive iterative algorithms, which decompose HR image obtained from an iteration into

different frequency components and add them to the next iteration. Their method utilizes wavelet

thresholding for denoising, where high-frequency components are penalized, making their method

dependent on accurate noise estimation. Moreover, Ji and Fermuller [29] handle image registration

and reconstruction together, by first estimating the homographies between multiple images, then

reconstructing the HR image in a wavelet-based iterative back-projection scheme; and, Chavez-

Roman and Ponomaryov [128] propose an interpolation-based method using sparse representation
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of wavelet subbands.

Regularization based wavelet domain methods include the following works. Zhao et al. [129] solve

a constrained optimization problem utilizing wavelet domain Hidden Markov Tree (HMT) model

for the prior knowledge problem, since HMT characterizes the statistics of real world images

accurately. In order to suppress the artifacts left after employing their method, cycle spinning is

used which leads to blurring as in other interpolation based methods. Mallat and Yu [130] compute

linear inverse estimators based on different priors by calculating sparse mixing weights for image

blocks. Authors employ L1 norm minimization using regularity of signals in these blocks.

Finally, we can summarize the learning-based methods in wavelet-domain as follows. Jiji et

al. [131] handle the problem of representing the relationship between LR-HR frames with train-

ing their dataset with HR images by learning from wavelet coefficients at finer scales, followed

by regularization in a least squares manner; and Gajjar and Joshi [132] follow Jiji’s method and

employ discrete wavelet transform for training, where a cost function based on MAP estimation is

optimized with gradient descent method, employing an Inhomogeneous Gaussian Markov random

field prior. Dong et al. [126], to solve the problem of varying contents in different images or im-

age patches, learn various sets of bases from a precollected dataset of example image patches,

and select one set of bases adaptively to characterize the local sparse wavelet domain. Patel

and Joshi [194] design application-specific wavelet basis for hyperspectral image SR. They first

learn high frequency information, later refine the initial estimate by a sparsity-based regularization

method. Lastly, Mandal and Sao [195] propose edge preserving constraints in sparse coding frame-

work with patch based dictionary learning. However, these methods are all based on optimization

which requires high computational cost.

49



3.4 Super Resolution of Compressed Video

We devote this chapter to review the studies on super resolution of compressed video methods.

A large amount of literature on super resolution of compressed video is based on Bayesian frame-

work. Examples in this category include the works by Gunturk et al. [8], where authors use quan-

tization, additive noise, and image prior information in a stochastic framework; and by Segall et

al. [134], where super resolution and post-processing problems are solved simultaneously in a

Bayesian fashion. Belekos et al. [135] incorporate a new multichannel image prior to the model

defined by Segall et al. [134].

To cope with the problems of complex motion and motion estimation errors, Zhang et al. [10]

extend the Bayesian framework, by first initializing the HR frames in the Bayesian framework, and

then estimating the final HR frames in a multiframe fashion using a cost function to reject outliers.

Moreover, Barreto et al. [196] incorporate segmentation into super resolution of compressed video

problem, in order to categorize blocks in frames based on the motion and texture. The segmentation

information is later employed in decision of downsampling and super resolution processes.

Another set of super resolution of compressed video methods focuses on mixed-resolution encod-

ing. These methods encode some of the frames at full resolution (i.e., key frames), and downsample

the others (i.e., non-key frames) to be reconstructed at the decoder side. In one of the examples of

this group by Kondo and Toma [197], decoded HR images are first downsampled to the size LR

frames, then by using motion estimation between these LR frames, the unknown HR images are

synthesized by replacing the pixel values from the HR key frames. Brandi et al. [133], on the other

hand, find motion estimation parameters by using blocks from band-pass frames, instead of the

low-pass versions. When the motion parameters are established, the high frequency information

of the key frames are added to the non-key frames for super resolution.
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Learning-based methods are also utilized for super resolution of compressed video problem. Shen

et al. [44] construct a training set, and search the high frequency information of each LR frame

patch in this training set, by taking the compression artifacts into account. Song et al. [198] adopt

the mixed resolution scheme. Authors perform motion estimation in a hierarchical block matching

fashion on the LR frames, and depending on the motion compensation error, utilize either temporal

super resolution, or learning-based spatial super resolution. Finally, Kappeler et al. [199] train a

CNN on both spatial and temporal dimensions of compressed videos, and avoid the need of frame

type, motion estimation, and quantization information from the encoder.

Finally, wavelets have also been used in this area. Matsuo et al. [200] utilize wavelet-based super

resolution which optimizes the super resolution parameters adaptively, in the pre-processing step

of encoding. Estimated parameters for super resolution process is later encoded with the down-

sampled frames, and employed in super resolution after decoding.

3.5 Pansharpening of Multispectral Images

In this section, we will summarize the pansharpening literature.

One of the pioneering methods in component substitution group is the Intensity-Hue-Saturation

(IHS) pansharpening [201] which utilizes the IHS color space. Later, this method is enhanced

by Tu et al. [137] to decrease the spectral distortion. Principal component analysis (PCA) is also

used in this group by Kwarteng and Chavez [202], where PCA is used to substitute information

from PAN image to MS bands, with the first principal component containing the spatial data, and

other principal components corresponding to spectral information. Shah et al. [203] later combine

this method with a contourlet-based technique, and employ an adaptive PCA method to find the

optimal principal components to be used in substitution. Finally, Gram-Schmidt (GS) spectral
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sharpening [139] can be categorized in the component substitution group, where Gram-Schmidt

method is used to reduce the redundancy in MS bands.

Examples in relative spectral contribution group can be summarized as follows. The Brovey trans-

form [140] is one of the classical methods in this group, which uses chromaticity transform. In

order to decrease the possible spectral distortion in pansharpening methods, a smoothing filter-

based intensity modulation is employed by Liu [204].

One of the works in high-frequency injection group is proposed by Chavez [205], where high-

frequency information is extracted from the PAN image using a high-pass filter and injected to the

MS bands. High-frequency modulation method [141] is another example work in this group, where

the injection of high-frequency information is performed using a modulation coefficient [136].

Another group of pansharpening methods focus on the statistical properties of MS bands and PAN

images. One of the first works in this group is proposed by Price [143], where a linear model

is used to obtain the statistical relationship between low-spatial resolution MS, high-spatial res-

olution PAN, and high-spatial resolution MS bands. In addition, Fasbender et al. [206] propose

a pansharpening method based on the Bayesian framework, where the statistical relationship be-

tween MS bands and PAN images are used in a weighted scheme, in order to match the user needs.

Finally, wavelet-based methods include, but not limited to, the works by Zhou et al. [207] where

Landsat TM MS bands and SPOT PAN image are decomposed into wavelet subbands, and later

the approximation subbands of the MS bands together with the detail subbands of the PAN image

are used in inverse wavelet transform to merge the bands; and Kim et al. [145] where an improved

additive-wavelet fusion method is proposed using the à trous algorithm which does not decompose

the MS image to preserve the radiometric data. Moreover, Otazu et al. [148] propose a wavelet-

based method that incorporates the ”physical electromagnetic spectrum responses of sensors”, in

order to suppress the artifacts; and Garzelli and Nencini [144] model the relationship between
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the wavelet coefficients of MS bands and PAN images at a coarser resolution, and later use this

relationship to estimate the high spatial resolution MS bands. Alparone et al. [146] compare several

pansharpening methods and conclude that the multiresolution based ones and the methods that

employ adaptive models for the injection of highpass details outperform all the others.

In the following five chapters, we will provide our methodologies to solve each particular problem

discussed so far.
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CHAPTER 4: IN-BAND IMAGE REGISTRATION

In this chapter, we present our devised method for in-band subpixel registration [208] 1. We first

start by deriving an explicit relationship between Haar wavelet subbands of reference and sensed

images under translational shifts, in Section 4.1. Later, we demonstrate decoupling of rotation,

scale, and translation in the wavelet domain, in Section 4.2, and provide methodologies to recover

subpixel shift parameters. We present the experimental results and comparisons with the state-of-

the-art techniques in Section 4.3; and finally provide a summary and concluding remarks on our

method in Section 4.4.

4.1 Subpixel Shifts in the Haar Domain

We first derive mathematical expressions that define in-band (i.e., direct wavelet-domain) shifts of

an image, which will be used later for general registration under a similarity transformation (i.e.,

scale, rotation, and translation) [46].

4.1.1 Notation for Subpixel Registration Method

Table 4.1 summarizes the notations used throughout this chapter.

Superscripts of A,H, V,D show the level of wavelet decomposition. Subscripts x and y show hor-

izontal and vertical directions, respectively; and new stands for the calculated shifted coefficients.

1The content in this chapter was in part reproduced from the following article: Vildan Atalay Aydin, Hassan
Foroosh, In-band subpixel registration of wavelet-encoded images from sparse coefficient, Signal, Image and Video
Processing, Year 2017. The copyright form for this article is included in Appendix A.
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Table 4.1: Notation for Subpixel Registration Method.

I(x, y) Reference image
J(x, y, σ, θ, tx, ty) Sensed image to be registered to I
σ, θ, tx, ty Transformation parameters to be estimated: scale, rotation an-

gle, and shifts along the two axes, respectively
A,H, V,D Wavelet transform approximation, horizontal, vertical, and di-

agonal detail coefficients, respectively
` Number of hypothetically added levels
s Perceived integer shift of wavelet coefficients after the hypothet-

ically added levels (`)

4.1.2 In-band Shifts

Here, we demonstrate the derived explicit mathematical expressions for an in-band translation of a

given image.

Let I(x, y) be a 2N × 2N image, where N is a positive integer. The Haar transform of this image

consists of N levels, where level l holds approximation coefficient Ali,j and horizontal, vertical and

diagonal detail coefficients H l
i,j , V

l
i,j , and Dl

i,j , respectively, with l = 0, ..., N − 1, i = 0, ..., 2l − 1

and j = 0, ..., 2l − 1.

Let,

X l
i,j = H l−1

i,j + V l−1
i,j +Dl−1

i,j ,

Y l
i,j = −H l−1

i,j + V l−1
i,j −Dl−1

i,j ,

Z l
i,j = H l−1

i,j − V l−1
i,j −Dl−1

i,j ,

W l
i,j = −H l−1

i,j − V l−1
i,j +Dl−1

i,j . (4.1)

Also, let El
i,j be the difference between A0

0,0 and Ali,j , then, Ali,j = A0
0,0 + El

i,j .
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The following formula shows the relationship between El
i,j and its parent level l − 1;

El
i,j =



El−1
i/2,j/2 +X l

i/2,j/2, i is even, j is even

El−1
i/2,bj/2c + Y l

i/2,bj/2c, i is even, j is odd

El−1
bi/2c,j/2 + Z l

bi/2c,j/2, i is odd, j is even

El−1
bi/2c,bj/2c +W l

bi/2c,bj/2c, i is odd, j is odd

0, i = j = l = 0.

(4.2)

Equation (4.2) shows that El
i,j , for all l, can be calculated by using only the detail coefficients of

Haar transform iteratively, since E0
0,0 = 0. We utilize El

i,j to calculate the detail coefficients of the

shifted image which implies that the shifting process is in-band.

We can categorize a translational shift for a 2D image into two groups for horizontal and vertical

shifts where a diagonal shift can be modeled as a horizontal shift followed by a vertical one.

Unlike the common approach of modeling subpixel shifts by integer shifts of some upsampled

version of the given image, our method models subpixel shifts directly in terms of the original

level coefficients.

Observation 3.1. Let Haar transform of the image I(x, y) have N levels, with I(x, y) at the N th

level. Upsampling an image is equivalent to adding levels to the bottom of the Haar transform,

and setting the detail coefficients to zero while keeping the approximation coefficients equal to the

ones already in the N th level, EN+`0
i,j = EN

bi/2`0c,bj/2`0c, where 0 ≤ `0 ≤ `.

Observation 3.2. Shifting upsampled image by an amount of s is equivalent to shifting the original

image by an amount of s/2`, where ` is the upsampling factor.
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Figure 4.1: Upsampling illustration.

Fig. 4.1 demonstrates an example of the upsampling process described above for ` = 1, which

implies that only 1 level of zero detail coefficients are added. For upsampling, Haar Transform

coefficients of the original reference image are utilized as approximation coefficients with more

levels of detail coefficients which are set to be zero. Here, gray boxes demonstrate added zeros.

These observations allow us to shift a reference image for a subpixel amount without actually

upsampling it, which saves memory, reduces computation, and avoids propagating interpolation

errors.

Now, let N ′ = N + ` and k = 1 + `, ..., N + `. The horizontal detail coefficients of the shifted

image in case of a horizontal translation are computed from the reference image coefficients by:

HN ′−k
i,jnew

=

2k−t−1(i+1)−1∑
m=2k−t−1i

(
EN

bm%2N

2`−1 c,b
j1%2N

2`−1 c
+ 2

j2−1∑
n=j1+1

EN

bm%2N

2`−1 c,b
n%2N

2`−1 c

− 2

j3−1∑
n=j2+1

EN

bm%2N

2`−1 c,b
n%2N

2`−1 c
− EN

bm%2N

2`−1 c,b
j3%2N

2`−1 c

)
÷ (2× 4k−t−1), (4.3)
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where,

j1 = 2k−t−1j + bsx/2t+1c,

j2 = 2k−t−2(2j + 1) + bsx/2t+1c,

j3 = 2k−t−1(j + 1) + bsx/2t+1c.

Here, sx is the horizontal shift amount at the (N + `)th level (where s and ` are calculated based

on Observation 3.2), k is the reduction level, t is highest power of 2 by which the shift is divisible.

For the subpixel shifts, t = 0, since the shift amount at the hypothetically added level is always

an odd integer. t is essential to generalize the equation for even shifts. When k = 1, we set the

coefficients utilizing j2 in Eq. (4.3) to 0, since j2 has a non-integer value. HN ′−k
i,jnew

for vertical shifts

are obtained by interchanging the H’s with V ’s, i’s with j’s and m’s with n’s in Eq. (4.3).

By examining Eq. (4.3), it can be seen that each level of horizontal detail coefficients of the shifted

image can be calculated using the original levels of the reference image, since EN
i,j is calculated in

Eq. (4.2) using only the detail coefficients in its parent levels.

Here, we only demonstrate the formulae for horizontal detail coefficients. Approximation, vertical

and diagonal detail coefficients of the shifted image can be described in a similar manner.

4.2 Subpixel Registration

We first demonstrate that scale, rotation, and translation can be decoupled in the wavelet domain.

This is similar to decoupling of rotation and translation in Fourier domain in magnitude and phase.

We then describe the proposed method to solve the decoupled registration problem for the sepa-

rated parameters.
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Let us assume that sensed image is translated, rotated, and scaled with respect to a reference image,

in that given order. Let also p ∈ I and q ∈ J be two points, where I and J are the reference and the

sensed images, respectively. The point q can be defined in terms of the similarity transformation

(scale, rotation, translation) and the point p in terms of homogeneous coordinates as follows:

q = S R T p, (4.4)


qx

qy

1

 =


σ 0 0

0 σ 0

0 0 1




cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




1 0 tx

0 1 ty

0 0 1



px

py

1

 ,

where we assume the same scale σ for both axes. Here, S, R, and T denote the scale, rotation, and

translation matrices, and σ, θ, tx and ty denote the scale factor, the rotation angle in degrees, and

the translations along the two axes, respectively. Although we assume the order of transformations

as S,R,T, we first explain rotation recovery to demonstrate the decoupling in the wavelet domain.

Algorithm 1 shows the steps of the proposed in-band registration algorithm.

Algorithm 1 In-band Registration for Similarity Transform

� Input: I(x, y), J(x, y, σ, θ, tx, ty)

� Objective: Find similarity transform parameters
� Output: translation, rotation, scale
I Generate wavelet coefficients of both images
I Scale recovery using curvature radius on coefficients

– Rescale sensed detail coefficients to the size of reference coefficients

I Rotation recovery using angle histograms of coefficients

– Rotate sensed detail coefficients for −estimate
I Translation recovery using in-band wavelet coefficient relationship (Section 4.1.2)
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4.2.1 Rotation Recovery

Let H and V denote wavelet coefficients of the input images as in Section 4.1, where subscripts I

and J stand for the images. Wavelet transform of Eq. (4.4), can be defined as follows:

HJ = σ cos(θ)HI − σ sin(θ)VI ,

VJ = σ sin(θ)HI + σ cos(θ)VI . (4.5)

Eq. (4.5) shows the relationship between the Haar wavelet coefficients of two images under sim-

ilarity transformation, and indicate that the rotation and scale can be separated from translation,

since translation parameters do not appear in these equations. In order to recover the rotation and

scale independently, we also need to decouple σ and θ. One can see from Eq. (4.5) that dividing VJ

by HJ eliminates the scale term, the result of which is an approximation to the slopes of local image

gradients using Haar coefficients, since Haar coefficients can be viewed as an estimate of partial

derivatives. To obtain an initial estimate of the rotation angle, we use wavelet thresholding [209]

before finding the local slopes. This will both reduce noise and sparsify the coefficients. We then

find an initial estimate of the rotation angle θ by maximizing the following cross-correlation:

θ̂ = arg max
θ

(hI ? hJ(θ)), (4.6)

where ? denotes the cross-correlation, and hI and hJ are the histogram of wavelet-coefficient

slopes (HWS) for the thresholded coefficients, which we define as follows:

himg =
k∑
i=1

arctan(
Vimg(i)

Himg(i)
), (4.7)
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where k is the number of bins, and the subscript img ∈ {I, J}. We then refine the initial estimate

θ̂, in the range θ̂ ± 5◦ to get the best estimate θ̂∗:

θ̂∗ = arg min
θ̂

||HJ −RHI ||2 + ||VJ −RVI ||2. (4.8)

4.2.2 Scale Recovery

Since we already demonstrated that scale, rotation and translation can be decoupled in wavelet

domain, we can perform scale estimation independently of rotation and translation. Let us as-

sume that the two images have a scale ratio of σ. Then, the mean curvature radius calculated on

thresholded wavelet coefficients would provide an accurate estimate of the scale factor:

σ̂=
1

2


1

MI

∑MI

i=1R(HI(i))

1

MJ

∑MJ

i=1R(HJ(i))
+

1

MI

∑MI

i=1R(VI(i))

1

MJ

∑MJ

i=1R(VJ(i))

 , (4.9)

whereR shows the radius of curvature.

4.2.3 Translation Recovery

Once the scale and rotation parameters are recovered and compensated for, the translations tx and

ty along the two axes can be recovered independently by maximizing the following normalized
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cross-correlation function:

{t̂x, t̂y} = arg max
tx,ty[ ∑

x,y (HI(x+ tx, y + ty)HJ(x′, y′))√∑
x,y (HI(x+ tx, y + ty))2

√∑
x,y (HJ(x′, y′))2

+

∑
x,y (VI(x+ tx, y + ty)VJ(x′, y′))√∑

x,y (VI(x+ tx, y + ty))2
√∑

x,y (VJ(x′, y′))2

]
, (4.10)

where HI(x + tx, y + ty) and VI(x + tx, y + ty) are the shifted versions of the reference detail

coefficients (corresponding to Hnew or Vnew in the derivations of Section 4.1.2), calculated using

Eq. (4.3) (or the equivalent for the vertical coefficients); and HJ(x′, y′) and VJ(x′, y′) are the

sensed image detail coefficients after rotation and scale compensation.

Observation 3.2 implies that subpixel registration for wavelet-encoded images can be performed

directly in the wavelet domain without requiring inverse transformation. Furthermore, if the en-

coded image is also compressed (e.g. only a sparse set of detail coefficients are available), one

can still perform the registration. The latter could be for instance a case of compressed sensing

imager based on Haar wavelet sampling basis. To maximize the cost function in Eq. (4.10), we

use a branch and bound (BnB) algorithm, where split of rectangle areas in BnB are decided based

on the two maximum cross correlations of four bounds.

Algorithm 2 demonstrates the main steps of the proposed method for translation recovery. Shifted

horizontal/vertical detail coefficients for the updated bounds are calculated for a specified level

(k) using Eq. (4.3) (similar equation for the vertical coefficients), followed by application of

maximization of Eq. (4.10).
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Algorithm 2 Subpixel Shifts Estimation

� Input: I(x, y), J(x′, y′, tx, ty) (scale and rotation corrected images)
� Objective: Find translational registration parameters
� Output: (tx, ty)

I Initialize bounds for subpixel shift estimates to [−1,+1]× [−1,+1].
I Do:

◦ Generate horizontal/vertical detail coefficients of shifted versions of the reference im-
age HI(x + txi , y + tyi) and VI(x + txi , y + tyi), using Eq. (4.3) (similar equation for
vertical), where txi and tyi are the bounds at iteration i.

◦ Update bounds (reduce rectangles to half in size) based on the peak of cross correlation
in Eq. (4.10) for detail coefficients of shifted reference image and sensed image.

until maximum cross-correlation in Eq. (4.10) exceeds τ for an estimated bound, where τ is
an accuracy measure (tolerance) for cross correlation.

When the algorithm converges within an ε distance to the true solution, it often starts osculating.

So, as a modification to a general branch and bound method, we take the mid-point of osculations

as the solution, which often happens to be the true solution.

The method requires the knowledge of A0
0,0 for in-band shifts which may limit the approach to

image sizes of 2N × 2N . However, the solution can be generalized to images with arbitrary sizes

by simply applying the method to a subregion of size 2N × 2N of the original images.

4.3 Experimental Results

To demonstrate the accuracy of our algorithm, we performed extensive experiments on both simu-

lated and real data. In order to simulate reference and sensed images, a given high resolution image

is shifted (using bicubic interpolation) and rotated, then both images are downsampled, which is

a common technique employed in state-of-the-art literature [14], [54]. If different scale are as-

sumed, then the sensed image is also scaled further. We performed thorough comparisons with

state-of-the-art methods, which were given the same input images, and results were evaluated by
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measuring alignment errors. Fig. 4.2 shows some of the standard test images together with the

real data obtained from [1] and [2]. Captions for real data indicate the dataset and specific image

names utilized as reference image.

a b c

d e
f

Figure 4.2: Example of simulated and real world images used for image registration experiments.
a Lena b Cameraman c Pentagon d CIL - horizL0 [1] e Artichoke - 1 [1] f MDSP - Bookcase 1 [2].

4.3.1 Validation on Simulated Data

Here, we first performed experiments on translation, rotation and scale recovery separately. We

then carried out tests for combination of transformations.
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Table 4.2 summarizes some of the results for our translational method with simulated data, where

the results are compared with the ground truth (GT) and other baseline methods by Keren et al.

[49], Guizar et al. [52], Szeliski and Coughlan [158], in terms of estimated shifts, peak-signal-

to-noise ratio (PSNR), and mean square error (MSE). The simulated images are generated by

shifting the given reference image using bicubic interpolation, and downsampling the reference

and shifted images. The results presented in Table 4.2 are simulated for a noise free case, and

PSNR and MSE results for all methods are obtained by simulating the image generation process.

Since the expressions derived in Section 4.1.2 are exact for any arbitrary shift that can be expressed

as positive or negative integer powers of 2, in the noise-free case, exact or near-exact solutions can

be achieved, which outperforms the state-of-the-art methods. For any other shift amount, we can

get arbitrarily close within the closest integer power of 2, which when compared with the state-of-

the-art, is still outstanding.

Table 4.3 shows the PSNR, MSE and computational time for our rotation method compared to

the technique by Vandewalle et al. [54], averaged over 121 simulations. Although our technique

can recover any rotation angle, since Vandewalle’s method [54] recovers only angles in the range

[−30, 30], in order to be fair, we compared our results for every 0.5◦ in that range.

Table 4.2: Comparison of the proposed registration method with other baseline methods in esti-
mated shifts, PSNR, and MSE.

Img. Exact shift Keren [49] Guizar [52] Szeliski [158] Proposed
Estimate PSNR MSE Estimate PSNR MSE Estimate PSNR MSE Estimate PSNR MSE

a

0.5, 0.5 0.4878, 0.5427 56.91 0.11 0.56, 0.53 50.05 0.56 0.5017, 0.5009 80.91 0 0.5, 0.5 Inf 0
0.25, -0.125 0.2456, -0.1212 72.23 0.003 0.29, -0.16 53.10 0.28 0.2518, -0.1243 80.67 0 0.25, -0.125 Inf 0
-0.375, -0.4 -0.3826, -0.4146 63.99 0.02 -0.42, -0.42 52.67 0.31 -0.3732, -0.3990 80.36 0 -0.375, -0.4023 82.59 0
-0.625, 0.75 -0.6958, -0.8268 47.81 0.95 -0.70, 0.81 48.00 0.90 -0.6231, 0.7508 80.17 0 -0.625, 0.75 Inf 0

b

0.33, -0.33 0.3347, -0.3008 54.19 0.24 0.27, -0.33 45.91 1.61 0.3275, -0.3316 72.49 0.003 0.3281, -0.3438 60.74 0.05
0.167, 0.5 0.1641, 0.6154 42.08 3.91 0.11, 0.55 44.78 2.10 0.1633, 0.4977 69.04 0.007 0.1719, 0.5 67.76 0.01

-0.875, -0.33 -0.8639, -0.2986 52.58 0.35 -0.92, -0.33 48.44 0.91 -0.8783, -0.3316 70.51 0.005 -0.875, -0.3438 60.40 0.06
-0.125, 0.67 -0.1309, 0.8230 39.53 7.01 -0.08, 0.75 42.94 3.20 -0.1277, 0.6695 72.62 0.003 -0.125, 0.6719 77.60 0.001
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Table 4.3: Comparison of average PSNR and MSE for rotation recovery for 121 simulations.

Image
Vandewalle [54] Proposed

PSNR MSE Time (s) PSNR MSE Time (s)

a 32.83 6.59 0.16 42.94 1.75 0.49
b 37.53 4.09 0.16 43.53 1.81 0.49

We also ran our scale recovery method for 50 images with scale amounts 1/4, 1/2, 1, 2, 4. All

experiments returned the exact scale in under 0.09 seconds. Since wavelet transform downsamples

images by 2 in every level, we can only recover scales that are multiples of 2.

Results obtained for combination of transformations can be seen in Tables 4.4 and 4.5. While Table

4.4 shows comparisons to Vandewalle’s method for rotation and translation, Table 4.5 presents

our results obtained for several combinations of scale, rotation and translation. These tables also

confirm that our method is accurate and outperforms or at least matches state-of-the-art.

Table 4.4: Comparison of PSNR, MSE, and time for rotation and translation recovery.

Image Exact (x, y, θ) Vandewalle [54] Proposed
Estimate PSNR MSE Time (s) Estimate PSNR MSE Time (s)

a (0.5,−0.25, 20) (0.8,−0.5, 19.8) 23.2 16.4 0.1 (0.5,−0.25, 20) 25.2 13.07 5.55
b (−0.375,−0.375,−10) (−0.337,−0.62,−10.2) 21.17 19.97 0.09 (−0.406,−0.375,−10) 22.05 19.7 23.4
c (−0.4375, 0.875,−30) (−0.64, 0.526,−30) 21.01 19.02 0.09 (−0.39, 0.875,−30.3) 20.2 20.86 66
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Table 4.5: Our results for scale, rotation and translation registration.

Img Exact (x, y, θ, σ)
Results

Estimate Time (s)

a (0.5, 0.25,−50, 2) (0.5, 0.25,−50.1, 2) 25.7
a (0.5, 0.25, 50, 2) (0.5, 0.25, 49.8, 2) 4.94
b (−0.25, 0.25, 10, 1/4) (−0.28, 0.28, 10.2, 1/4) 105.3
c (−0.5,−0.375, 30, 1/2) (−0.5,−0.375, 30.1, 1/2) 93.6

Figure 4.3: Comparison of k (x axis) and τ (y axis) with PSNR (z axis) for average of 50 images
for GT shift of (0.33,−0.33).

4.3.2 Optimal Parameters

In order to find the appropriate constants τ and k for translational shift, which are the measures of

accuracy (tolerance for cross correlation function) and reduction level of Haar transform, respec-

tively, and show the accuracy of the proposed method, we tested our algorithm with 50 simulated

test images for shift amount (0.33,−0.33). Results after removing the outliers (when a local max-

ima is reached) are shown in Fig. 4.3, where PSNR = Inf is demonstrated as 100. As seen in the
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figure, the constants τ and k can be adapted depending on the trade-off between time complexity

and PSNR.

In case of the most general similarity transformation, k is decided based on the recovered scale σ̂

by choosing k = 1 if scale < 1 or k = σ̂ + 1 otherwise.

4.3.3 Validation on Real Data

In order to ensure the accuracy of our method, real world images were also utilized as input.

Results for real world examples (d, e and f in Fig. 4.2) including comparisons with the state-of-

the-art methods by Evangelidis and Psarakis [50], and Vandewalle et al. [54] are summarized in

Table 4.6. Since the GT for the used images is not known, the results are compared using PSNR

and MSE as it is common practice in the literature. All methods are given the same input, where

smaller image regions are used to adopt image sizes to work with our method as described in

Section 4.2.3. As seen in Table 4.6, our method outperforms the baseline methods in real world

examples in most cases as well.

Table 4.6: Comparison of our registration method with other methods for real world examples
from [1] and [2] in PSNR and MSE.

Dataset Reference img. Sensed img.
Vandewalle [54] Evangelidis [50] Proposed
PSNR MSE PSNR MSE PSNR MSE

Artichoke 1 2 26.88 11.59 31.5 6.78 31.8 6.72
Artichoke 27 28 26.86 11.17 42.08 1.93 31.06 6.92
CIL HorizR0 HorizR1 24.02 13.2 12.4 50.4 24.73 12.66
CIL VertR4 VertR5 20.66 21.57 22.2 18.46 20.75 22.5
MDSP Bookcase 1 2 3 26.58 11.90 12.52 60.31 25.10 14.11
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4.3.4 The Effect of Noise and Sparseness

Our proposed approaches for scale and rotation estimation already suppress noise by hard wavelet

thresholding. Therefore, here we discuss only noise in translation estimation. In Table 4.7, a

comparison of the proposed method with Foroosh et al. [14], and Chen and Yap [51] under noisy

conditions is presented. By adapting the tolerance value, τ , to be passed by the registration method,

based on the level of noise and cross validation, very accurate shift values can be achieved, as

can be seen from Table 4.7. It can be concluded that our method performs well in suppressing

Gaussian noise, which also is superior to the state-of-the-art. In order to show the accuracy under

noisy conditions, the proposed algorithm is tested for 50 images with 50 different shift amounts

for each image, with Gaussian noise. Results, after removing outliers, are shown in Fig. 4.4 for

average SNR with respect to τ and σ.

Since our method works entirely in-band (i.e., using only detail coefficients), the method is par-

ticularly applicable to wavelet-encoded imaging. Moreover, our approach can work with a sparse

subset of coefficients, e.g. compressed sensing of wavelet-encoded images. Since our scale and

rotation recovery methods already use sparse coefficients (i.e., hard-thresholded wavelet coeffi-

cients), we experimented on translational shifts under sparseness. We tested our method as the

level of sparseness varied from 2% to 100% of detail coefficients, for several simulated images

and different shifts. We then fitted a model to the average results to evaluate the trend which is

shown in Fig. 4.5. It can be noticed that, in all cases, the worst registration PSNR when using only

2%-7% of detail coefficients was above 46dB. Beyond 50% sampled detail coefficients, the PSNR

grows exponentially.

69



Figure 4.4: Average SNR (z axis) compared with changing τ (y axis) and σ (x axis), for horizontal
axis.

Table 4.7: Comparison of registration results for noisy environments with ”Pentagon” image for
(0.25, 0.75) shift.

SNR Foroosh [14] Chen [51] Proposed

10 dB 0.38 0.65 0.29 0.68 0.25 0.75
20 dB 0.31 0.71 0.28 0.74 0.25 0.75
30 dB 0.30 0.73 0.27 0.74 0.25 0.75
40 dB 0.29 0.74 0.27 0.74 0.25 0.75

4.3.5 Computational Complexity and Convergence Rate

Time complexity of our method depends on in-band shifting, parameter selection, and the level

of sparseness. In-band shifting method in Section 4.1.2, has a complexity of O((L/2N−k+1)2)

for all k = 1...N , where L is size of the image (or a sparsified version). Parameter selection

also affects the complexity since when τ is higher, the method attempts to match the images with

higher accuracy, which would increase the run time. We provide running time of our method with

comparisons in Tables 4.3, 4.4 and 4.5 on a machine with 2.7 GHz CPU and 8 GB RAM.
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Figure 4.5: Average PSNR as a function of percentage of detail coefficients (level of sparsity) used
to register for Pentagon, Cameraman, and two different shifts of Lena.

Fig. 4.6 demonstrates the convergence of our method to the global cross-correlation maximum for

Lena image with GT (0.5, 0.5) in blue circles, Pentagon image with GT (0.25, 0.5) in green stars,

and Cameraman image with GT (0.33,−0.33) in red line. The convergence is visibly exponential

and therefore we get a very rapid convergence to the solution.

Figure 4.6: Examples illustrating the convergence to optimal cross-correlation as a function.
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4.4 Conclusion

A subpixel registration technique for sparse Haar encoded images is demonstrated in this chapter.

Only a sparse set of detail coefficients are sufficient to establish the cross-correlation between im-

ages for scale, rotation, and translation recovery. Our registration process is thus performed solely

in-band, making the method capable of handling both in-band registration for wavelet-encoded

imaging systems, and sparsely sensed data for a wavelet-based compressive sensing imager. More-

over, our method conveniently decouples scale, rotation and translation parameters, while exploit-

ing Haar wavelet’s important features, such as multiresolution representation and signal energy

localization. Our method does not use image interpolation for estimating the registration parame-

ters, since the exact set of in-band equations are derived for establishing the registration and fitting

the parameters. Although the run time of our method is higher than compared methods, we achieve

far better accuracy as a reasonable trade-off. Overall, our results show superior performance, and

outperform the baseline methods in terms of accuracy and resilience to noise.
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CHAPTER 5: MOTION COMPENSATED TEMPORAL FILTERING FOR

LOW-BITRATE VIDEO CODING

We have shown, in the previous chapter, the effective use of wavelet subbands in image registration

problem. In this chapter, we will reformulate the relationship between subbands, explained in Sec-

tion 4.1.2, and investigate the effects of employing this relationship on motion estimation/motion

compensation problems in a video coding framework (i.e., motion compensated temporal filtering

(MCTF)) [210] 1. The rest of this chapter is organized as follows. We first introduce our proposed

solution to MCTF problem in Section 5.1. Later, we define the derived exact inter-subband rela-

tionships in Section 5.2, demonstrate the experimental results in Section 5.3, and finally provide a

conclusion in Section 5.4.

5.1 Motion Compensated Temporal Filtering

In this section, we explain our proposed method for in-band MCTF, operating directly on DWT

subbands.

The wavelet transform provides localization both in time and frequency; therefore, it is straight-

forward to use wavelets for MCTF. In order to perform ME/MC steps in MCTF, wavelet subbands

of the transformed signal should be estimated. However, due to decimation and expansion opera-

tions of DWT, direct band-to-band estimation is generally not practical [41]. The proposed method

overcomes this challenge by revealing the relationships between subbands of reference and target

frames.

1The content in this chapter was in part reproduced from the following article: Vildan Atalay Aydin, Hassan
Foroosh, Motion compensation using critically sampled dwt subbands for low-bitrate video coding, IEEE The Inter-
national Conference on Image Processing, Year 2017. The copyright form for this article is included in Appendix
B.
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Figure 5.1: Proposed in-band MCTF model.

The proposed in-band MCTF method is demonstrated in Fig. 5.1, as in MCTF methods shown

before in Fig. 2.4-b. Given a video sequence, first, DWT is performed on each frame for spatial

decomposition, then a temporal decomposition is performed by splitting video frames into groups.

ME/MC (D in Fig. 5.1) is performed by block matching, using reference frames (DWT (I2t)) to

predict the target frames (DWT (I2t+1)). Employing the found motion vectors (MV), reference

frames are mapped onto the target frames to generate error frames as in;

E2t = DWT(I2t+1)−D(DWT(I2t)), (5.1)

where E2t stands for the error frame at time 2t, which are then quantized and encoded/decoded by

a wavelet codec, together with the MVs for the video coding application.

We employ Haar wavelet decomposition in spatial transform due to the benefits mentioned earlier.

Since the method in Section 5.2 is accurate for any arbitrary subpixel translation defined as a

multiple of 2k, where k is the decomposition level, our method does not need interpolation for

subpixel accuracy. A block matching method with unidirectional full search is used for ME/MC
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steps which is a common method used for MCTF. Our cost function is based on squared error

minimization using all subbands, as follows:

{x̂, ŷ} = arg min
x,y

{(A− Â)2 + (H − Ĥ)2 + (V − V̂ )2 + (D − D̂)2}, (5.2)

where, {x̂, ŷ} are the estimated motion vectors,A,H, V,D denote the original target frame wavelet

subbands, and Â, Ĥ, V̂ , D̂ are the predicted subbands for the same target image, using the method

described in Section 5.2 and a reference frame.

5.2 Inter-subband Relationship

In-band (i.e., wavelet domain) shift method along with the related notation are provided in this

section.

5.2.1 Notation for MCTF Method

Here, we provide the notations used throughout this chapter, in Table 5.1.

Table 5.1: Notation for MCTF Method.

It Input video frame at time t
A,H, V,D Haar wavelet transform approximation, horizontal, vertical, and di-

agonal subbands of input image, respectively
F,K,L Matrices to be multiplied by approximation, horizontal, vertical, and

diagonal DWT subbands, used for in-band shift of reference frame
` Number of hypothetically added levels in case of non-integer shifts
s Integer shift amount after the hypothetically added levels (`)
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Bold letters in the following sections demonstrate matrices and vectors. Subscripts x and y indicate

the horizontal and vertical directions, respectively. Finally, subscript k indicates the kth video

frame, where k = 1, 2, . . . N .

5.2.2 In-band Shifts

Our goal for the MCTF method described in Section 5.1 is to achieve ME/MC in the wavelet do-

main using DWT subbands, given a video frame sequence. For this purpose, wavelet subbands

of the tranformed signal should be predicted using only DWT subbands of the reference frame.

Therefore, we derive the relationship between the subbands of transformed and reference images,

which can be described by in-band shift (i.e., in the wavelet domain) of the reference image sub-

bands. Below, we derive the mathematical expressions which demonstrate these relationships.

Let A, H, V, and D be the first level approximation, horizontal, vertical, and diagonal detail co-

efficients (i.e., subbands), respectively, of a 2D reference frame at time t, It, of size 2m × 2n,

where m and n are positive integers. Since decimation operator in wavelet transform reduces the

size of input frame by half in each direction for each subband, we require the frame sizes to be

divisible by 2. Now, the 1st level subbands of translated frame in any direction (i.e., horizontal,

vertical, diagonal) can be expressed in matrix form using the 1st level Haar transform subbands of

reference frame as in the following equations:

As = FyAFx + FyHKx + KyVFx + KyDKx,

Hs = −FyAKx + FyHLx −KyVKx + KyDLx,

Vs = −KyAFx −KyHKx + LyVFx + LyDKx,

Ds = KyAKx −KyHLx − LyVKx + LyDLx. (5.3)
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As already mentioned in Section 5.2.1, F, K, and L stand for matrices to be multiplied by the

lowpass and highpass subbands of the reference frame in order to perform in-band shift, where

subscripts x and y indicate horizontal and vertical directions. As,Hs,Vs,Ds are translated frame

subbands (in any direction). The low/high-pass subbands of both reference and transformed frames

are of size m× n, Fx, Kx and Lx are n× n, whereas Fy, Ky and Ly are m×m.

Here, we first define the matrices for subpixel shift amounts. The algorithm to reach any shift

amount using the subpixel relationship will be described later in this section.

For subpixel translation, contrary to the customary model of approximating a subpixel shift by up-

sampling an image followed by an integer shift, our method models subpixel shift directly based on

the original coefficients of the reference frame, without upsampling and the need for interpolation.

To this end, we resort to the following observations, from Section 4.1:

(1) Upsampling an image I , is equivalent to adding levels to the bottom of its wavelet transform,

and setting the detail coefficients to zero, while the approximation coefficients remain the same.

(2) Shifting the upsampled image by an amount of s is equivalent to shifting the original image by

an amount of s/2`, where ` is the number of added levels.

Transformed signals therefore can be found by using the original level subbands of the reference

image with the help of a hypothetically added level (`) and an integer shift value (s) at the added

level.

Now, the aforementioned coefficient matrices, Fx, Kx, and Lx can be defined, in lower bidiagonal
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Toeplitz matrix form as follows.

Fx =
1

2`x+1



2`x+1 −|sx|

|sx| 2`x+1 −|sx|

|sx|
. . . . . .

|sx| 2`x+1 −|sx|


,

Kx =
1

2`x+1



−sx

sx −sx

sx

. . . . . .

sx −sx


,

Lx =
1

2`x+1



2`x+1 − 3|sx|

−|sx| 2`x+1 − 3|sx|

−|sx|
. . . . . .

−|sx| 2`x+1 − 3|sx|


, (5.4)

where sx and `x demonstrate the integer shift amounts at the hypothetically added level and the

number of added levels for x direction, respectively.

Fy, Ky, and Ly matrices are defined in a similar manner by upper bidiagonal Toeplitz matrices,
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using y direction values for s and `.

As mentioned earlier, Fx, Kx and Lx are n × n, while Fy, Ky and Ly are m × m. Sizes of

these matrices also indicate that in-band shift of subbands is performed using only the original

level Haar coefficients (which are of size m × n) without upsampling. When the shift amount is

negative, diagonals of the coefficient matrices interchange. For the MCTF method proposed in

Section 5.1, the matrices are adapted for boundary condition by adding one more column/row at

the end, where subband sizes are also adjusted to be (m+ 1)× (n+ 1).

The relationship defined above for subpixel shifts, can be used to produce any shift amount based

on the fact that wavelet subbands are periodically shift-invariant. Table 5.2 demonstrates the calcu-

lation of any shift using subpixels, where % stands for modulo, bsc and dse are the greatest integer

lower than, and smallest integer higher than the shift amount s. Using circular shift of subbands

for the given amounts in each shift amount case, and setting the new shift amount to the new shift

values in Table 5.2, we can calculate any fractional or integer amount of shifts using subpixels.

Table 5.2: Arbitrary shifts defined by circular shift and subpixel amount.

Shift amount Circular shift New shift amount

s%2 = 0 s/2 0
s%2 = 1 bs/2c 1
dse%2 = 0 dse/2 s− dse
bsc%2 = 0 bsc/2 s− bsc

If the shift amount (or the new shift amount in Table 5.2) is not divisible by 2, in order to reach an

integer value at the (N + `)th level, the shift value at the original level is rounded to the closest

decimal point which is divisible by 2`.
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5.3 Experimental Results

In this section, we demonstrate the results obtained with our method compared to the methods

which perform in-band MCTF for video coding. We report our results on CIF video sequence

examples with resolutions 352 × 240 and 352 × 288. We set our block size to 8 × 8 or 16 ×

16 depending on the resolution of the sequences (in order to have integer number of blocks in

subbands) and the required accuracy. Even though our MCTF method is based on 1-level DWT, we

perform 2 more spatial decomposition levels after ME/MC steps before encoding, since compared

methods use 3 spatial decomposition levels in total. Motion vectors and error frames are encoded

using context-adaptive variable-length coding (CAVLC) and global thresholding with Huffman

coding methods, respectively.

Fig. 5.2 shows the comparison of our method with respect to two conventional in-band methods,

which are direct wavelet subband matching (i.e., band-to-band) and wavelet-block low-band-shift

(LBS) [41] for CIF video sequence ”Football”. The graph demonstrates rate-distortion curves for a

predicted frame of the Football sequence, where the shown bitrates are for error frame only (same

as in the compared methods), and the accuracy for our method is set to 1/4 pixel. As seen in this

figure, our method improves PSNR compared to conventional in-band methods by 0.1− 1 dB.

We demonstrate our results for several video sequences at different bitrates in Fig. 5.3, where

bitrates include the luminance component only, for the error frame, and MVs. The graph on the

left shows the results with 1/2 pixel accuracy using 16 × 16 blocks, and the one on the right uses

1/4 pixel accuracy with 8 × 8 blocks. We also show the residual images for a predicted frame of

the Foreman sequence in Fig. 5.4, for 0.1 and 0.02 bpp, respectively. The examples show how our

method reduces the residual signal energy even at very low bitrates by providing more accurate

reconstruction (prediction).
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Figure 5.2: Rate-distortion comparison for Football sequence.

Figure 5.3: PSNR performance of proposed MCTF method, lower bitrates on the right.

Finally, while the compared wavelet-block LBS method has 10 frames memory requirement for

3-level transform, our method requires only 1 frame memory (since upsampling is avoided). Com-

putational complexity of our method is based on the matrix multiplications defined in Section 5.2,

and full search method. We also reduce computational complexity by avoiding IDWT.
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a b

Figure 5.4: Residual images for predicted frames of Foreman for a 0.1 bpp b 0.02 bpp.

5.4 Conclusion

In this chapter, we propose a novel wavelet-based ME/MC method for MCTF focusing on low-

bitrate video coding, where DWT is applied before temporal decomposition, and ME/MC steps

are performed directly on DWT subbands. We avoid the need of shift-invariance property for

non-redundant DWT (required by conventional methods), by deriving the exact relationships be-

tween DWT subbands of reference and transformed video frames. Our method avoids upsampling,

inverse-DWT (IDWT), and calculation of redundant DWT while achieving high accuracy even at

very low-bitrates. Experimental results show the accuracy of presented method, confirming that

our model effectively improves video coding quality by reducing the residual energy in the error

frames. The proposed ME/MC scheme can also be adapted for several image/video processing

applications such as denoising, or scalable video coding.
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CHAPTER 6: SUPER RESOLUTION OF WAVELET-ENCODED IMAGES

In this chapter, we will incorporate our devised methodology explained before in Section 5.2, in a

Super Resolution framework [211] 1. We will employ the relationship between low-pass subbands

(i.e., LR images), in order to reconstruct the lost high-frequency information of a reference HR

image. The remainder of this chapter is organized as follows. The notations used throughout the

chapter along with a brief explanation on the use of derived closed-form linear relationships from

Section 5.2 are provided in Section 6.1. Sections 6.2 and 6.3 present the proposed approach, and

the stability analysis, respectively. Finally, in Section 6.4, we present the experimental results and

comparisons with both single and multiframe state-of-the-art techniques; and in Section 6.5 we

provide concluding remarks.

6.1 Subpixel Shifts of a Low Resolution Image

The relationship between low-pass subbands in the wavelet domain is explored in detail and the

related notations are provided in this section.

6.1.1 Notation for SR Method

Here, we provide the notations used throughout this chapter in Table 6.1.

Bold uppercase letters in the following sections demonstrate matrices whereas bold lowercase ones

indicate vectors. The subscripts h, v, d demonstrate horizontal, vertical, and diagonal translations,

1The content in this chapter was in part reproduced from the following article: Vildan Atalay Aydin, Hassan
Foroosh, A linear well-posed solution to recover high-frequency information for super resolution image reconstruc-
tion, Multidimensional Systems and Signal Processing, Year 2017. The copyright form for this article is included in
Appendix C.
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and x, y stand for x and y directions, respectively; and the subscript k indicates the kth LR or HR

image.

Table 6.1: Notation for SR Method.

I(2m, 2n) Reference HR image
A,H, V,D 1st level Haar wavelet transform approximation, horizontal, vertical,

and diagonal detail coefficients of I(2m, 2n), respectively
F,K Matrices to be multiplied by approximation and detail coefficients

(i.e., A,H, V,D) of the reference HR image, that are used to define
in-band shift of the reference LR image (i.e., A)

` Number of hypothetically added levels in case of non-integer shifts
s Integer shift amount after the hypothetically added levels (`)

6.1.2 Subpixel Shifts

Our goal for the proposed SR method is to reconstruct the lost high frequency information of

an unknown HR image, given a sequence of subpixel shifted LR images. For this purpose, we

first derive the relationship that relates these LR images to the high frequency information of the

unknown reference HR image. This relationship can be described by in-band shift (i.e., in the

wavelet domain) of a reference LR image, as in Section 5.2.

In order to find the aforementioned relationship, we first assume that the reference HR image is

known. The reference LR image is the approximation coefficients obtained by decomposing the

HR image for 1-level Haar Transform. Then, we define shifted LR images based on the resultant

Haar coefficients of the HR image. The shifting process is illustrated in Fig. 6.1, where shifted LR

images (i.e.,Ah, Av, Ad) are described based on the first level approximation and detail coefficients

of the reference HR image (i.e., A,H, V,D).
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Figure 6.1: In-band shift of a reference LR image (i.e.,A) in the Haar domain, using high frequency
information of the related HR image (i.e., H,V,D).

Below, we derive the mathematical expressions which demonstrate this relationship, for each trans-

lation direction. The derived equations relate the high-frequency part (i.e., detail wavelet coef-

ficients) of a reference HR image to the low-frequency information provided by the LR image

sequence.

Here, we will address the derived relationship between LR images as a reminder from Section

5.2. Let A, H, V, and D be the first level approximation (i.e., reference LR image), horizontal,

vertical, and diagonal detail coefficients, respectively, of a 2D reference HR image, I(2m, 2n), of

size 2m × 2n, where m and n are positive integers. Since 1-level wavelet transform reduces the

size of HR image by half in each direction for approximation and detail coefficients, we require

the size of HR image to be divisible by 2. Now, a translated LR image in an arbitrary direction can

be expressed in matrix form using the 1st level Haar transform of I(2m, 2n) as in the following

equation:

As = FyAFx + FyHKx + KyVFx + KyDKx, (6.1)
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where F and K stand for matrices to be multiplied by the first level lowpass and highpass subbands

of the reference HR image, subscripts x and y indicate horizontal and vertical directions; and As

stands for a shifted image in any direction. The low/high-pass subbands together with As are of

size m× n, Fy and Ky are m×m, whereas Fx and Kx are n× n.

Examination of the translational shifts between two LR images reveals that horizontal translation

reduces Ky to zero and Fy to the identity matrix. This could be comprehended by examining the

coefficient matrices defined later in this section (namely, Eq. (6.3)), by making related vertical

components zero (specifically, sy and `y). This observation lets us define a horizontally shifted im-

age Ah by using only approximation and horizontal detail coefficients. Likewise, vertical transla-

tion solely necessitates approximation and vertical detail coefficients, in which case Kx is reduced

to zero and Fx is equal to the identity matrix.

As a result, the equation shown above in Eq. (6.1), can be expressed for each translation direction

as in:

Ah = AFx + HKx,

Av = FyA + KyV,

Ad = FyAFx + FyHKx + KyVFx + KyDKx. (6.2)
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Now, we can define the matrices, Fx, Fy, Kx, and Ky in bidiagonal Toeplitz matrix form as follows.

Fx =
1

2`x+1



2`x+1 −|sx|

|sx| 2`x+1 −|sx|

|sx|
. . . . . .

|sx| 2`x+1 −|sx|


,

Fy =
1

2`y+1



2`y+1 −
∣∣sy∣∣ ∣∣sy∣∣

2`y+1 −
∣∣sy∣∣ ∣∣sy∣∣

. . . . . .

∣∣sy∣∣
2`y+1 −

∣∣sy∣∣


,

Kx =
1

2`x+1



−sx

sx −sx

sx

. . . . . .

sx −sx


,
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Ky =
1

2`y+1



−sy sy

−sy sy

. . . . . .

−sy sy

−sy


, (6.3)

where sx,y and `x,y demonstrate the integer shift amounts at the hypothetically added level and the

number of added levels for x and y directions, respectively.

As mentioned earlier, Fx and Kx are n × n, while Fy and Ky are m × m. These matrices show

that a 2-pixel neighborhood in the approximation and detail coefficients of a reference HR image

is utilized to shift a reference LR image in-band. When the shift amount is negative, diagonals

of the matrices interchange. We leave these matrices as square for them to be nonsingular in the

SR process, otherwise these matrices could be adapted for periodic boundary condition by making

them rectangular as in our devised MCTF method.

6.2 Super Resolution Reconstruction

We will explain our proposed model in this section. As in the underlying idea of wavelet-based SR

algorithms, we assume that the given LR image sequence is the lowpass subbands (i.e., approxima-

tion coefficients of 1-level Wavelet Transform) of unknown HR images. The goal is to reconstruct

the unknown highpass subbands (i.e., detail coefficients of 1-level Wavelet Transform) of one of

these HR images which is chosen as the reference one. The SR method described below is the

inverse process of the method described in Section 6.1, where HR images are unknown, and high

frequency information for one of these underlying HR images is estimated by solving a related

linear system.
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Figure 6.2: Proposed method for Super Resolution Image Reconstruction.

The relationship between two subpixel shifted LR images depends on the highpass subbands of

the underlying reference HR image, as demonstrated in the previous section. This fact is used to

construct a linear system of equations based on known LR images (i.e., A,Ah,Av,Ad in Section

6.1) and unknown highpass subbands of the reference HR image (i.e., H,V,D in Section 6.1)

using related formulae from Eq. (6.2) depending on the translation direction. Since there are

three unknowns (i.e., horizontal, vertical, and diagonal detail coefficients of the unknown HR

image), three shifted LR images together with the reference LR image are required to solve the

linear system. Once this system is solved for the unknowns, inverse Haar transform utilizing the

reference LR image and the estimated highpass subbands of the underlying unknown reference HR

image gives the reconstructed HR image.

Fig. 6.2 shows a pictorial explanation of the proposed method, where solid boxes indicate known

or estimated coefficients and dotted boxes show unknown ones. Images with the hat symbol (i.e.,

ˆ) stands for estimated coefficients. As the figure demonstrates, assuming the LR sequence is first

level approximation coefficients of the wavelet transform, we estimate the unknown high frequency

information of the reference HR image in order to reconstruct the estimated HR image.

In the scope of this chapter, we assume that the registration between images are known a priori or
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has been estimated. Even though the equations derived in Section 6.1 are for subpixel shifts, we

apply the proposed SR method to the intersection area of any given shift, which may include an

integer part, as well.

The proposed algorithm can also be explained step by step as in Algorithm - Super Resolution

Image Reconstruction.

Algorithm Super Resolution Image Reconstruction
• Input: Observed LR images, registration information

• Objective: Estimate high frequency information of the unknown reference HR

• Output: Reconstructed HR image

I Imaging Process

� Shift a given High Resolution image randomly in order to obtain three more HR images

� Blur with Gaussian kernel, downsample, and add Gaussian noise with zero variance to
acquire observed shifted LR images

� If shift amount is not subpixel, remove integer parts to find intersection of images which
can be defined as subpixel translation

I Super Resolution Image Reconstruction Process

� Solve a linear system of equations comprised of the formulae in Eq. (6.2) based on the
direction of the translation, for highpass subbands H, V, and D of the reference HR
image, using observed LR images and known displacements

� Perform inverse Haar Transform on the reference LR image and estimated highpass
subbands (i.e., detail coefficients) to reconstruct the HR image

6.3 Stability Analysis

In this section, we will investigate the stability of our method.

As mentioned in Section 6.2, our method constructs a linear system of equations based on given

LR images and related shifts. Since the LR images (i.e., A, Ah, Av, and Ad) and the displacements
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between them are known, H,V, and D are the only unknowns of the constructed system. This

linear system may appear in four forms which include:

◦ 1 horizontally, 1 vertically, 1 diagonally shifted image

◦ 1 horizontally, 2 diagonally shifted images

◦ 1 vertically, 2 diagonally shifted images

◦ 3 diagonally shifted images

along with the reference LR image, A, where second and third cases demonstrate the same prop-

erties. Thus, we will consider the first, second, and last cases in our analysis.

Case 1 (1 horizontal, 1 vertical, 1 diagonal) : This case constructs a linear system of equations

exactly as shown in Eq. (6.2). This linear system is solved first for H using the equation for Ah,

then for V using the equation for Av, and finally for D using the equation for Ad and substituting

the information found for H and V. Since the coefficient matrices are invertible, this system is

stable.

Case 2 and 3 (1 horizontal/vertical, 2 diagonal) : Here, we will explore Case 2 with 1 horizontally

and 2 diagonally shifted images. Case 3 will demonstrate similar features as mentioned above.

This case includes one Ah and two Ad from Eq. (6.2) for one horizontal and two diagonally shifted

images, where the linear system takes the form:

Ah = AFx + HKx,

Ad1 = Fy1AFx1 + Fy1HKx1 + Ky1VFx1 + Ky1DKx1 ,

Ad2 = Fy2AFx2 + Fy2HKx2 + Ky2VFx2 + Ky2DKx2 . (6.4)
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Again, as in Case 1, the first equation is stable, therefore H can be found easily. Solving equations

for Ad1 and Ad2 for V results in:

V(Fx1Kx1
−1 − Fx2Kx2

−1) = Ky1
−1SKx1

−1 −Ky2
−1TKx2

−1, (6.5)

where

S = Ad1 − Fy1AFx1 − Fy1HKx1 ,

T = Ad2 − Fy2AFx2 − Fy2HKx2 .

In order to tackle the instability problem caused by inverting multiplication and summation of

matrices in Eq. (6.5), we right multiply this equation with Kx1 . Since Kx1 and Kx2 differ only

by the shift value for the two diagonally shifted images, Kx2
−1Kx1 results in the identity matrix

multiplied by a scalar which depends only on the shifts. Thus, the equation for V becomes:

V(Fx1 − Fx2α) = Ky1
−1S−Ky2

−1Tα, (6.6)

where

α = Kx2
−1Kx1 ,

where α is defined as a constant. Truncated Singular Value Decomposition (TSVD) is used with

the resulting equation in (6.6) to find V. Rank of TSVD method is decided based on minimizing

the following cost function:

arg min
r
||X−1r Xr − U||F , (6.7)
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where U shows the identity (i.e., unit) matrix, subscript F is Frobenius norm, and Xr stands for

rank-r approximation of a matrix X.

In order to successfully truncate X at r, we follow a theorem by [212] (Theorem 3.2), which implies

that there must be a well-determined gap between the two consecutive singular values at r (i.e., σr)

and r + 1 (i.e., σr+1).

As one can see in Eq. (6.6), the stability of our method is partially dependent on the closeness of

shift amounts.

Case 4 (3 diagonal) : The final case includes three diagonally shifted images together with the

reference image. Therefore, the linear system is constructed as:

Ad1 = Fy1AFx1 + Fy1HKx1 + Ky1VFx1 + Ky1DKx1 ,

Ad2 = Fy2AFx2 + Fy2HKx2 + Ky2VFx2 + Ky2DKx2 ,

Ad3 = Fy3AFx3 + Fy3HKx3 + Ky3VFx3 + Ky3DKx3 . (6.8)

Solving the system above in Eq. (6.8) for H, we find a generalized Sylvester equation as in:

P1HQ1 − P2HQ2 = R, (6.9)
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where

P1 = Ky1
−1(Fy1 −Ky1Ky2

−1Fy2),

P2 = Ky2
−1(Fy2 −Ky2Ky3

−1Fy3),

Q1 = Kx1(Fx1 − Fx2Kx2
−1Kx1)

−1,

Q2 = Kx2(Fx2 − Fx3Kx3
−1Kx2)

−1,

R = [(Ky1
−1Ad1 −Ky1

−1Fy1AFx1)

−(Ky2
−1Ad2 −Ky2

−1Fy2AFx2)Kx2
−1Kx1 ]

× (Fx1 − Fx2Kx2
−1Kx1)

−1

− [(Ky2
−1Ad2 −Ky2

−1Fy2AFx2)

−(Ky3
−1Ad3 −Ky3

−1Fy3AFx3)Kx3
−1Kx2 ]

× (Fx2 − Fx3Kx3
−1Kx2)

−1.

By examining Pi for i = 1, 2, in the generalized Sylvester equation, KyiKyi+1

−1 could be changed

by multiplication by a scalar (as in Kx2
−1Kx1 in Eq. (6.6)), which leaves Fyi − KyiKyi+1

−1Fyi+1

as an upper bidiagonal matrix, since Fyi is also upper bidiagonal. Moreover, since Ky is an upper

bidiagonal matrix, inverse of Ky is an upper triangular matrix [213]. Therefore, by multiplication

of two upper triangular matrices, we obtain upper triangular matrices for Pi. By following similar

analysis, we observe that Qi are lower triangular matrices.

Here, we refer to a theorem by [214] for a generalized Sylvester equation to have a unique solution.

Interested reader can find the proof for this theorem in the referred paper; we include the theorem

here to make this dissertation self-contained.

Theorem: The matrix equation in (6.9) has a unique solution if and only if
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1. P1 − λP2 and Q2 − λQ1 are regular matrix pencils, and

2. ρ(P1,P2) ∩ ρ(Q1,Q2) = ∅,

where λ shows the generalized eigenvalues of the matrix pencils, ρ defines the spectra of the

generalized eigenvalues, and (., .) demonstrates a matrix pencil.

The matrix pencils constructed as (P1,P2), and (Q1,Q2), using the given P1,P2,Q1 and Q2 in Eq.

(6.9), are not guaranteed either to be regular, or to have empty intersection of generalized eigen-

value spectra. For instance, when any of the two LR images have negative horizontal shift amount,

the related Qi has zero diagonals, and a zero element on the diagonal makes the matrix pencil

singular when a matrix pencil is upper/lower triangular [215]. Since we know that Pi, and Qi,

for i = 1, 2, are upper and lower triangular matrices, respectively, forming upper/lower triangular

matrix pencils, two images with negative horizontal shifts satisfy requirements for singular matrix

pencils.

Based on these facts, solution methods utilized for generalized Sylvester equation cannot be em-

ployed here. Therefore, in order to find a solution to the system in Eq. (6.8), we first vectorize the

equations using Kronecker tensor product, before solving for the unknowns:

adi = (Fyi ⊗ FTxi)a + (Fyi ⊗KT
xi

)h + (Kyi ⊗ FTxi)v + (Kyi ⊗KT
xi

)d, (6.10)

for i = 1, 2, 3. Here, lowercase bold letters indicate column-vise vectorized versions of Adi ,A,H,V,

and D, and these vectors have size mn× 1. The Kronecker tensor products in parenthesis result in

matrices of size mn×mn, where m and n are the size of LR images.

By solving Eq. (6.10) for h, we find the following equation which appears similar to the equation
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for V in Eq. (6.5):

[W−1
1 Y1 −W−1

2 Y2]h = W−1
1 Z1 −W−1

2 Z2, (6.11)

where

Wi = (KF)i − (KK)i(KK)−1i+1(KF)i+1,

Yi = (FK)i − (KK)i(KK)−1i+1(FK)i+1,

Zi = adi − (KK)i(KK)−1i+1adi+1

−[(FF)i − (KK)i(KK)−1i+1(FF)i+1]a,

for i = 1, 2, and

FF = Fy ⊗ FTx ,

FK = Fy ⊗KT
x ,

KF = Ky ⊗ FTx ,

KK = Ky ⊗KT
x .

Here, in order to solve for h, we follow a similar approach to the one used to reach Eq. (6.6) from

Eq. (6.5), where Eq. (6.11) is left multiplied by W1 in order to reduce the instability. Again, TSVD

is utilized to solve the equation with the same cost function used in Eq. (6.7).

As in Cases 2 and 3, the stability of our solution depends partly on the closeness of shift values

which affects the matrix inversions.
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6.4 Experimental Results

In this section, we first present the implementation details, followed by results for the proposed

method along with comparisons to the recent state-of-the-art and conventional techniques. Com-

parisons are made based on qualitative and quantitative evaluations on both commonly adapted test

examples and real world images to demonstrate the influence of compression artifacts and sensor

noise on the proposed method. LR image sequences are synthetically generated. Computational

time efficiency of the proposed method against other methods are also presented. Moreover, HR

and LR reference images for all test cases and zoomed parts in detailed areas for each image are

provided.

6.4.1 Implementation Details

LR image sequences are synthesized by the method explained in Section 6.2 (Imaging Process in

Algorithm). LR images are divided into overlapping blocks of size 32 × 32, in order to reduce

memory usage and decrease computational time.

To simulate the motion estimation error for the proposed method, HR reference image is shifted

randomly for a shift amount which is not necessarily divisible by 2` and shifts are rounded to the

closest decimal divisible by 2` for the calculations, as described before in Section 6.1.

For the cases when the shift amounts are not subpixel (which might be integer or include an integer

part), we find the intersection area of the images which can be described as subpixel shift. We

apply the same method to the intersected area, where boundaries are lost for the maximum integer

amount among all shifts.

In order to reduce the boundary problem caused by square coefficient matrices Fx,y and Kx,y which
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does not include the information in the boundaries, the last rows and columns of calculated H,V,

and D are extrapolated.

Color images are handled by the conventional approach, in YCbCr color space, where only the

illuminance channel of images are dealt with the proposed method, since human visual system is

more sensitive to changes in illuminance channel. The chrominance channels are upsampled using

bicubic interpolation.

6.4.2 Qualitative Comparison

We compared our method with both multiframe and single image SR techniques including inter-

polation based ones which are Bicubic interpolation and Robust Super Resolution by Zomet et

al. [115], regularization-based methods by Babacan et al. [178] and Farsiu et al. [62], a learning-

based method by Yang et al. [108], a wavelet-based method by Mallat and Yu [130], and finally a

wavelet-domain learning-based method by Dong et al. [126]. Compared methods were given the

same input images and knowledge of registration (if required).

Figs. 6.3 to 6.8 show results obtained with our method, the state-of-the-art, and conventional ones.

As can be seen from these figures, in zoomed areas particularly, the proposed method generates

sharper edges with less artifacts compared to other methods.

While bicubic interpolation ((c) parts in all related figures) tend to introduce blur to the images,

Robust SR technique by Zomet et al. [115] leaves jaggy artifacts on the edges which are easily seen

in (d) parts of Figs. 6.3, 6.4, and 6.5 of Lena, Car tag, and Resolution chart images. Babacan’s

method [178] ((e) parts in figures) alleviates the jaggy artifacts in most cases, yet the final results

remain overly smoothed; whereas, Farsiu’s method [62] does not reconstruct details that can be

observed especially in part (f) of Figs. 6.5 and 6.6 of Resolution chart and Mandrill images. While
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Yang’s method [108] tend to obtain blurry images as in part (g) of Figs. 6.4 and 6.8; Mallats

results [130] include many noticeable visual artifacts that can be observed especially in part (h)

of Figs. 6.3, 6.7, and 6.8. Dong’s method [126], even though better at removing artifacts and

achieving natural looking results compared to the other methods, also is prone to leave blurry

images as can be recognized without difficulty in (i) parts of Resolution chart, Mandrill and Car

images in Figs. 6.5, 6.6, and 6.8. In addition, compared methods fail to recover fine details which

is mostly recognized in car tags and numbers in Figs. 6.4, 6.5, 6.7, and 6.8.

a HR image b LR reference image c Bicubic d Zomet [115] e Babacan [178]

f Farsiu [62] g Yang [108] h Mallat [130] i Dong [126] j Ours

Figure 6.3: Lena image comparison (×2), with zoomed parts in green.

On the other hand, the proposed method, seen in (j) parts of Figs. 6.3, 6.4, and 6.5 to 6.8, is able

to recover sharp edges without visual artifacts, or blurring the images which leads to generating

the closest results to the ground truth. Particularly, Resolution chart, Mandrill and Car images in

Figs. 6.5, 6.6, and 6.8 demonstrate the high quality achieved with the proposed method. Recovered

texture details with our method can be observed in all test cases upon a closer look, specifically in

the feather texture of Lena’s hat in Fig. 6.3 and hair texture in cheeks of Mandrill image in Fig.

99



6.6. Overall, the proposed method removes artifacts and blur while preserving sharp edges without

sacrificing a natural look.

a HR image b LR reference image c Bicubic d Zomet [115] e Babacan [178]

f Farsiu [62] g Yang [108] h Mallat [130] i Dong [126] j Ours

Figure 6.4: Car tag image (MDSP dataset [2]) comparison (×2), with zoomed parts below recon-
structed ones.

6.4.3 Quantitative Comparison

To further investigate the effectiveness of our method, we also conduct a comparison based on

objective measurements PSNR, RMSE and SSIM [124], which are the evaluation metrics for SR

methods used by state-of-the-art, summarized in Table 6.2. Comparisons are based on the illumi-

nance channel of images reconstructed with all methods. While Zomet’s and Babacan’s methods

perform the worst based on most measurements for all images, Dong’s method has much better re-

sults compared to the other methods since in order to alleviate the correspondence ambiguity, their
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method uses different patches in a single image to learn various sets of bases. However, as can be

seen also from Table 6.2, in most cases, quantitative comparisons confirm visual ones which shows

that our method outperforms the state-of-the-art. Even though the quantitative measurements for

some images are better for Yang’s method, with a closer look in the zoomed squares of images, it

can be seen that details are recovered better in our method.

a HR image b LR reference image c Bicubic d Zomet [115] e Babacan [178]

f Farsiu [62] g Yang [108] h Mallat [130] i Dong [126] j Ours

Figure 6.5: Resolution chart image comparison (×2), with zoomed parts below reconstructed ones.
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a HR image b LR reference image c Bicubic d Zomet [115] e Babacan [178]

f Farsiu [62] g Yang [108] h Mallat [130] i Dong [126] j Ours

Figure 6.6: Mandrill image comparison (×2), with zoomed part in green.

a HR image b LR reference image c Bicubic d Zomet [115] e Babacan [178]

f Farsiu [62] g Yang [108] h Mallat [130] i Dong [126] j Ours

Figure 6.7: Circles (MDSP dataset [2]) image comparison (×2), with zoomed part in green.
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a HR image b LR reference image c Bicubic d Zomet [115] e Babacan [178]

f Farsiu [62] g Yang [108] h Mallat [130] i Dong [126] j Ours

Figure 6.8: Car image comparison (×2), with zoomed part in green. Image is captured by a cell-
phone camera.

6.4.4 Computational Efficiency

The computational complexity of the proposed method depends on matrix multiplications (O(n3))

along with the TSVD method (O(nr2) where r is the approximation rank). Since all blocks have

the same size and use the same shift information, matrix inversions are handled only once, and

the proposed super resolution method is applied to all blocks in parallel. Our method can also be

applied as a sparse method in order to reduce time complexity, considering the fact that coefficient

matrices are either bidiagonal or at most triangular matrices.

Time complexity of the proposed method and state-of-the-art is compared in Table 6.3, where

average time taken for different size LR images is shown in seconds, where all methods are run

in the same computational framework. Block size for our method in all compared cases are set to

32 × 32. As can be seen from the table, the proposed method outperforms regularization based
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methods of Babacan et al. [178] (where outliers of [178] are removed for a fair comparison) and

Mallat et al. [130], and learning based methods of Dong et al. [126] and Yang et al. especially

when the image sizes are relatively large.

Table 6.2: Comparison of proposed SR method with other methods in PSNR, RMSE, SSIM.

Lena Car tag Res. chart Mandrill Circles Car

Bicubic
PSNR 27.33 24.88 24.76 21.8 32.36 24.53
RMSE 9.34 13.35 13.35 16.64 5.56 13.65
SSIM 0.86 0.84 0.97 0.61 0.99 0.84

Zomet [115]
PSNR 24.54 21.83 24.14 20.69 24.13 23.03
RMSE 13.67 20.63 19.29 18.91 16.02 18.83
SSIM 0.78 0.72 0.95 0.55 0.97 0.73

Babacan [178]
PSNR 17.66 21.00 18.50 13.79 21.89 22.42
RMSE 33.39 22.72 30.29 52.12 20.49 19.30
SSIM 0.81 0.84 0.94 0.63 0.97 0.84

Farsiu [62]
PSNR 25.61 23.72 23.78 21.44 27.68 23.78
RMSE 11.4 15.32 15.01 17.33 9.50 14.94
SSIM 0.82 0.82 0.93 0.57 0.98 0.81

Yang [108]
PSNR 28.95 28.24 27.39 22.40 33.20 26.06
RMSE 7.74 10.11 10.87 15.55 5.00 12.10
SSIM 0.90 0.91 0.98 0.69 1.00 0.87

Mallat [130]
PSNR 25.64 23.04 23.79 21.26 27.25 23.32
RMSE 11.34 16.37 15.53 17.73 10.06 15.59
SSIM 0.83 0.80 0.95 0.57 0.98 0.8

Dong [126]
PSNR 28.45 24.94 24.89 21.48 34.63 24.23
RMSE 8.22 12.40 12.47 17.27 4.07 13.46
SSIM 0.89 0.89 0.96 0.67 1.00 0.86

Ours
PSNR 28.99 28.07 28.07 23.39 37.29 26.63
RMSE 7.73 9.08 9.28 13.41 3.17 10.49
SSIM 0.89 0.93 0.99 0.76 1.00 0.89
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A comparison of block sizes with time in seconds and PSNR for the proposed method is shown

in Fig. 6.9. The results are calculated for 100 different images for 100 random shift amounts, and

the average time and PSNR are shown in the graphs (after removing the outliers). As one can see

from the graph, as block sizes increase, PSNR improves; however, time complexity increases at

the same time. Therefore, the block sizes can be decided based on the application depending on

the importance of time or accuracy. Although the graph demonstrates the results for square sized

blocks, the block sizes are decided based on the image sizes, which can as well be rectangular.

Table 6.3: Comparison of proposed SR method with other methods in time (s).

LR Image size Bicubic Zomet [115] Babacan [178] Farsiu [62] Yang [108] Mallat [130] Dong [126] Proposed

32 × 32 0.3 9.7 19 1.2 2.6 14 12 7
64 × 64 0.3 9.6 36 1.2 12 64 33 12

128 × 128 0.3 9.8 217 1.2 59 287 140 35
256 × 256 0.3 9.8 976 1.2 157 1298 440 122

a b

Figure 6.9: a Average PSNR based on block size b Average runtime (s) based on block size.
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6.5 Conclusion

As a final remark, a direct wavelet-based super resolution technique is proposed by first deriving

exact in-band relationships between two subpixel shifted images, then utilizing these relationships

in a linear system to reconstruct high frequency information of a low resolution reference image.

Our results outperform the conventional as well as advanced recently published methods. We

attribute this to the accuracy, well-posedness and the linearity of the equations derived in Section

6.1 and the inherent local nature of wavelets, making them very effective in signal localization.

In summary, we present herein a method for super-resolution by effectively estimating the high

frequency information in the Haar domain, which in a sense is a hybrid approach between single

image and multiview methods, taking advantage of the best of both worlds.
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CHAPTER 7: SUPER RESOLUTION OF DOWNSAMPLING-BASED

COMPRESSED VIDEO

The previous two chapters demonstrate the use of the relationship between wavelet-subbands of

two translationally shifted images, for motion estimation in video coding and super resolution

problems. In this chapter, we will utilize the motion estimation method described in Chapter 5,

and modify our super resolution method in Chapter 6 into an iterative back projection framework,

in order to employ these methods in super resolution of downsampling-based compressed video

problem. We describe our proposed solution to this problem in Section 7.1, explain the modifica-

tion to our super resolution solution in Section 7.2, present experimental results in Section 7.3, and

conclude this chapter in Section 7.4.

7.1 Super Resolution of Compressed Video

We explain our proposed method for super resolution of compressed video, in this section.

We propose a wavelet-based super resolution method, for which the flowchart is shown in Fig. 7.1.

Given a video sequence, as we have experimented before in Chapter 5, we first perform DWT on

each frame of the sequence. Using the wavelet subbands of the original HR frames, we calculate

the motion estimation block by block, between a reference frame, and target frames in the group

of pictures. Motion estimation process is performed as described before in Section 5.1.

After the motion estimation step, high frequency information of all the frames in the sequence

are discarded, in order to obtain the downsampled frames to be encoded. These LR frames, to-

gether with the motion estimation information for each block within them, are later encoded into a

bitstream.
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Figure 7.1: Proposed super resolution of compressed video model.

In the decoder side, after the LR frames and motion vectors are decoded, a wavelet-based mul-

tiframe super resolution reconstruction method, which will be described in the next section, is

performed on these frames. In Fig. 7.1, estimated high frequency information of decoded LR

frames are shown in dashed lines.

After the super resolution process is performed on each frame in the group, inverse discrete wavelet

transform (IDWT) is performed to estimate the required HR frames, which are also demonstrated

in dashed lines in Fig. 7.1.

7.2 Iterative Back-Projection Based Super Resolution

In this section, we describe the modification of our super resolution method in Chapter 6.
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7.2.1 Notation for Super Resolution of Compressed Video Method

Here we provide the notation used throughout this chapter.

Table 7.1: Notation for Super Resolution of Compressed Video Method.

I Reference HR frame
A,H, V,D Haar wavelet transform approximation, horizontal, vertical, and diagonal

subbands of HR frame, respectively

As before, uppercase bold letters in the following sections demonstrate matrices and lowercase

bold ones show vectors. Subscripts x and y indicate the horizontal and vertical translation direc-

tions, respectively.

7.2.2 Modified Observation Model

In this subsection, we describe the modification to the original super resolution observation model.

Let I(σm × σn) denote the desired HR frame, and Ak be the kth observed LR image, with a

downsampling ratio of σ. The SR observation model, as defined before in Section 2.4, is given by:

ak = ΛkBkMki + nk, k = 1, 2, ..., K, (7.1)

where Mk, Bk, Λk, and nk denote motion, blurring effect, downsampling operator, and noise term

for the kth LR image, respectively, and K is the number of images. In the above formula, LR and

HR frames are rearranged in lexicographic order; therefore, i is of size σ2mn × 1, ak and nk are

mn× 1, Bk and Mk are σ2mn× σ2mn, and Λk is mn× σ2mn.

Assuming the same downsampling ratio for all LR images, we can modify the above observation
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model as follows:

ak = ΛBkMki + nk, k = 1, 2, ..., K. (7.2)

As in [63], we change the order of motion and blur matrices, which is assumed to be equivalent to

the above model in (7.2):

ak = ΛMkBki + nk. (7.3)

Given a sequence of decompressed LR images, ak, our goal is to reconstruct the unknown HR

frames, i.

7.2.3 Super Resolution Reconstruction

As before, we assume that the given LR image sequence (i.e., decompressed LR frames) corre-

sponds to the lowpass subbands of unknown HR images. The goal is to reconstruct the unknown

highpass subbands of these HR frames. Fig. 7.2 shows the SR process for one of the LR frames,

where gray areas in dashed lines indicate unknown images and coefficients, input LR sequence in

white solid lines stand for the decoded LR frames, and dashed lines present the estimated subbands

and images. This process is performed for all LR frames in the decoder side.

SR process consists of two parts as image registration and image reconstruction. For the image

registration step, we employ our devised methodology in Chapter 5, by dividing the images into

blocks, and estimating motion for each block using uni-directional full search. We calculate the

motion vectors from a reference LR frame to three more target LR frames, and use the information

of these motion vectors to create the F , K, and L matrices, derived in Section 5.2.
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Figure 7.2: Super resolution of decoded LR frames.

For the image reconstruction part, in order to decrease the motion estimation errors caused by

moving objects in the scenes, as a modification to the general IBP algorithm described first by

Irani and Peleg [65], we propose updating the high-frequency information for the reference LR

frame only, and we use the proposed method in Section 5.2 to calculate the high-pass coefficients

of the target images. Therefore, the high-pass subbands of the unknown HR image is estimated

iteratively by the following formula:


Ĥ

V̂

D̂


(n+1)

=


Ĥ

V̂

D̂


(n)

+ λ
∑
k

(Ak − Â
(n)

k )hBP , (7.4)

where n stands for the iteration number, λ is a step size, Â
(n)

k is the estimated LR frame at iteration

n, and hBP is a back projection kernel as defined in [65].

We estimate Âk using the reference frame, the high-pass subbands H, V, and D for the reference

frame at the current iteration, and the motion vectors. Back projection is also performed using

our method in Section 5.2 by first upsampling the difference between observed and estimated LR

frames, translating the subbands of difference images in-band, back to the reference image grid,

and deblurring, respectively. Before updating the reference image subbands, we employ bilateral
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filtering on the error images as in [216], in order to avoid the ringing effects caused by IBP.

The proposed algorithm can also be explained step by step as in the following algorithm.

Algorithm Super Resolution of Compressed Video
• Input: Decoded LR frames and motion vectors for each block

• Objective: Reconstruct high frequency information for decoded LR frames

• Output: HR frames

� Choose a reference LR frame

� Initialize horizontal, vertical, and diagonal detail coefficients

� Construct coefficient matrices (i.e., F , K, L) derived in Section 5.2 for all target LR frames,
using motion vectors for each block

� Until a predefined maximum number of iterations, do:

– Use wavelet subbands of reference LR frame with constructed matrices to estimate
target LR frames

– Upsample the difference between observed and target LR frames, and perform DWT
on the error frames

– Translate high-pass subbands of the error frames back to reference frame coordinates

– Filter subbands of the error frames with bilateral filtering

– Update reference subbands

� Perform inverse DWT on reference LR frame and estimated high-pass subbands

7.3 Experimental Results

This section is devoted to demonstrate the results and comparisons for the super resolution of com-

pressed video method. We use CIF video sequences of resolution 352 × 288. We set the block

size for motion estimation method to 32 × 32; therefore, the results are based on 320 × 256 re-

gions of the sequences. Since H.264 is the state-of-the-art encoder used by most super resolution
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of compressed video methods [44, 133, 135, 197, 199], we encode the LR frames using H.264 in-

tra coding, with several values of quantization parameter. Moreover, motion vectors are encoded

using context-adaptive variable-length coding (CAVLC). We compare our results to bilinear inter-

polation, bicubic interpolation, and iterative back projection (IBP) method [65]. The comparisons

are based on the PSNR value, which is the measurement method used for evaluation, in super

resolution of compressed video studies.

Figure 7.3: PSNR results for different quantization parameters (QP) of H.264 encoder.

Figure 7.3 demonstrates the results obtained by our method, bilinear, bicubic interpolations and

the IBP algorithm. We can see from the graphs that, even when the quantization parameter is high

(i.e., QP = 40), the PSNR results of our method outperform the compared methods.

Figures 7.4 and 7.6 show a subjective comparison of the methods, for a zoomed part of Bus and

Mobile video sequences, respectively, with QP = 20; while, Figures 7.5 and 7.7 demonstrate

the results for QP = 40. The reference image is selected as the first frame in the sequence,

and reconstruction is performed using four frames. The details of reconstruction for the proposed

method can especially be observed around the white pillar of the car in Bus sequence, and the

sunshade of the store (on the right) in Mobile sequence. We can observe the edges of the sunshade

in Fig. 7.7, even with QP = 40.
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a b c

d e f

Figure 7.4: Comparison of reconstructions with QP = 20 for Bus video sequence a HR reference
image b LR reference image c Bilinear interpolation d Bicubic interpolation e IBP f Ours.

a b c

d e f

Figure 7.5: Comparison of reconstructions with QP = 40 for Bus video sequence a HR reference
image b LR reference image c Bilinear interpolation d Bicubic interpolation e IBP f Ours.
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a b c

d e f

Figure 7.6: Comparison of reconstructions with QP = 20 for Mobile video sequence a HR reference
image b LR reference image c Bilinear interpolation d Bicubic interpolation e IBP f Ours.

a b c

d e f

Figure 7.7: Comparison of reconstructions with QP = 40 for Mobile video sequence a HR reference
image b LR reference image c Bilinear interpolation d Bicubic interpolation e IBP f Ours.
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7.4 Conclusion

In this chapter, we present a framework for video compression, which encodes low resolution

images, instead of full resolution images, in order to decrease the required bitrate to encode the

video files. These low resolution images are encoded together with the motion information, and

are later upsampled by a wavelet-based super resolution method in the decoder side. Since the goal

of super resolution of compressed video problem is to reconstruct the high-frequency information

lost during downsampling and compression, our super resolution methodology, which utilize the

wavelet low-pass subbands to recover the high-pass subbands and work directly in the wavelet-

domain, is well-suited for this problem. Experimental results also demonstrate the accuracy of

the proposed framework, which can also be enhanced further, using a bidirectional search with

variable block sizes for motion estimation, to decrease the error caused by moving objects.
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CHAPTER 8: SUPER RESOLUTION OF PANSHARPENED

MULTISPECTRAL IMAGES

Chapters 4 and 7 demonstrate that in-band image registration and super resolution methods result

in more accurate motion estimation and higher quality reconstruction of images. This chapter is

devoted to demonstrate the effective usage of these methods in a satellite imagery area, for enhanc-

ing the resolution of pansharpened multispectral images. This chapter is organized as follows. In

Section 8.1, we introduce our solution to increase the resolution of multispectral images together

with the pansharpening method used; and in Sections 8.2 and 8.3, we demonstrate the experimental

results and conclude this chapter, respectively.

8.1 Super Resolution of Pansharpened Multispectral Images

In this section, we will first present the notation used throughout the chapter, and later explain the

employed pansharpening and super resolution methodologies.

8.1.1 Notation for Super Resolution of Pansharpened Multispectral Images Method

Table 8.1: Notation for Super resolution of Pansharpened Multispectral Images Method.

I Reference HR frame
A,H, V,D Haar wavelet transform approximation, horizontal, vertical, and diagonal

subbands of HR frame, respectively
F,K Matrices to be multiplied by approximation and detail coefficients (i.e.,

A,H, V,D) of the reference HR image

Again, uppercase bold letters in the following sections demonstrate matrices, lowercase bold ones
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show vectors, and subscripts x and y indicate the directions.

8.1.2 Pansharpening

We chose Additive Wavelet Luminance Proportional (AWLP) [148] method for the pansharpening

step of our algorithm, based on the comparison results obtained by Alparone et al. [146] and

Bovolo et al. [147].

The AWLP method is an extended version of the additive wavelet luminance technique (AWL)

which is designed for three-band (RGB) multispectral images and works in the IHS domain. This

method injects high frequency information of the PAN image to MS images proportional to their

original values in order to preserve the radiometric signature of MS images. The AWLP method

generalizes the AWL method to include arbitrary number of bands, as in the formula below:

APi
= Ai +

Ai∑L
i=1Ai

n∑
j=1

DWT (P ), (8.1)

where A and AP are low resolution and pansharpened MS bands, and P shows the PAN image, re-

spectively. L is the number of bands, n is the number of DWT decomposition levels, andDWT (P )

is the DWT decomposition of the PAN image. Fig. 8.1 demonstrates pansharpening for four sets

of multispectral bands and PAN images.

8.1.3 Super Resolution of Pansharpened Images

Spatial resolution of PAN images differ based on the multispectral sensors. For example, while

Landsat 7 ETM+ sensors provide 15 m spatial resolution PAN images, Quickbird sensors increase

this amount upto 61 cm. In order to increase the available spatial resolution of PAN images while
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keeping the spectral resolution provided by MS bands, we propose using both temporal and spa-

tial information accessible via most multispectral sensors. In order to achieve our goal, we use

pansharpened MS images to perform multiframe SR in order to exceed the spatial resolution of

available PAN images. Fig. 8.1 shows a pictorial explanation of the proposed scheme.

Figure 8.1: Flowchart of the proposed method for super resolution of pansharpened multispectral
images.

We can demonstrate the SR observation model, using the pansharpened multispectral images as

follows:

aPi,k
= ΛMi,kBi,kii + ni,k, (8.2)

where aP shows the pansharpened multispectral image and i demonstrates the desired higher reso-

lution multispectral image, in lexicographical order. Λ, M, B, and n indicate downsampling (same
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scale for both directions), motion, blur, and noise, as before. Subscript i and k indicate the number

of bands and number of images in the LR set, respectively, for i = 1, ..., L, k = 1, ..., K.

Here, we assume that the pansharpened MS bands are the lowpass subbands of unknown higher

resolution MS bands. The goal is to reconstruct the unknown highpass subbands of the reference

MS bands. We can write the iterative procedure as follows:

In+1
i = Ini + λ

∑
k

(APi,k
− ÂPi,k

)hBP , (8.3)

In+1
i = Ini

+ λ
∑
k


Ai,k +

Ai,k∑L
i=1 Ai,k

n∑
j=1

DWT (P)k

− tr(Xi)

hBP , (8.4)

where tr indicates the trace of matrix X, and,

X =



Fyk

Fyk

Kyk

Kyk





Ai,1 +
Ai,1∑L
i=1 Ai,1

∑n
j=1DWT (P)k

Ĥ
n

V̂
n

D̂
n





Fxk

Kxk

Fxk

Kxk



Equation 8.4 shows the relationship between the low-spatial resolution MS bands (A), PAN images

(P), and the unknown higher-spatial resolution MS bands (I) that we want to recover. We perform

the proposed scheme on each band (i.e. i) of multitemporal pansharpened MS images.

As we have explained before in Section 7.2, SR process consists of two parts as image registration

and image reconstruction. Since satellite images are assumed to have translational shifts between

them, we generalize our in-band subpixel shift method to be used for this task. To this goal, we

incorporate our motion estimation method in Chapter 5 to the subpixel method in Chapter 4. We

first perform full search for pixel accuracy, by using our in-band shift method in Section 5.2. In
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order to decrease the computational complexity, we divide the search into two steps. First, full

search for every five pixels is performed. The result obtained in the first step is later refined to

pixel accuracy with full search for every pixel, in a [−5, 5] range. Finally, we perform the proposed

subpixel registration method in Section 4.2.3.

Since we assume that bands of an MS image captured by the same sensor are already aligned, we

perform registration between MS images taken at different dates, on one band only, and apply the

same registration parameters to all bands.

The proposed algorithm can also be explained step by step as in Algorithm - Super Resolution

Reconstruction of Pansharpened MS images.

Algorithm SR of Pansharpened MS images
• Input: Multitemporal MS and PAN bands

• Objective: Obtain high resolution MS images, exceeding the PAN band spatial resolution

• Output: High spatial/high spectral resolution MS images

I Pansharpening

� Perform pansharpening using AWLP, on a set of multispectral bands and PAN images,
taken at different dates

I Super Resolution

� Image registration

∗ Register the first band of all target images to the first band of reference pansharp-
ened image

� Image reconstruction (do for all bands)

∗ Initialize high-frequency information for the HR image
∗ Construct coefficient matrices defined in Section 5.2 for all LR images, using reg-

istration parameters found for translation
∗ Until a predefined number of maximum iterations, do:
· Use wavelet subbands with constructed matrices to estimate LR images
· Update HR image using Eq. (8.4)
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8.2 Experimental Results

We test our proposed method using Landsat 7 ETM+ images taken at different dates, which have

seven MS bands together with a PAN band. The spectral resolution of MS bands range from

0.45µm to 2.35µm, while PAN bands span 0.52 − 0.9µm spectrum; and the spatial resolution of

MS bands are 30 m, whereas PAN bands are 15 m. We select four multispectral image groups

together with their PAN bands from a region in Istanbul, Turkey, captured on July 2, September 4,

in 2000, and May 18, August 6, in 2001, shown in Fig. 8.2 (Images are courtesy of USGS Glovis).

We conduct two sets of tests which are categorized as simulated and real experiments. All tests are

carried after MS and PAN bands are fused in pansharpening.

Figure 8.2: Real pansharpened MS images (RGB bands).

8.2.1 Simulated Dataset

Since there is no ground truth for the proposed method, first test is a simulated experiment where

one of the pansharpened MS images is chosen as reference, all its bands are shifted in horizontal,

vertical, and diagonal directions for one pixel, convolved with a Gaussian filter, and downsampled,

which is a conventional method used for simulated SR experiments [217]. The pansharpened MS
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image bands chosen as reference is then used as the ground truth in comparisons.

For image registration, one of the bands of the reference pansharped MS image is chosen as the

reference band, and image registration is performed for the same band of all datasets. Since we

define our in-band shift method using subpixels and circular shifts, image regions are adjusted in

order to cover the same area, after the registration step. We then initialize our HR estimate using

the inverse transform of known reference LR and upsampled wavelet subbands of this LR image.

The iterative method described in Section 8.1 is then applied in order to estimate the reconstructed

HR image. We compare our results both qualitatively and quantitatively with conventional interpo-

lation techniques and the Iterated Back Projection (IBP) method [65], since the proposed method

is a modified IBP model. All compared methods are given the same pansharpened MS images as

input. Quantitative comparisons are based on Peak-Signal-to-Noise-Ratio (PSNR) and Structural

Similarity Index (SSIM).

Fig. 8.3 (a) shows the reference image used in simulated tests. All figures for simulated and real

experiments, show a composite of R, G, and B bands.

Fig. 8.3 shows reference HR and reference LR images together with the compared methods in-

cluding Bilinear interpolation, Bicubic interpolation and IBP method [65]. In order to comprehend

the results, Figs. 8.4 and 8.5 provide zoomed areas of all images in Fig. 8.3. As can be seen

from these figures, the proposed method preserves spectral information of the MS bands while in-

creasing the spatial resolution. Quantitative comparisons of the figures confirm that the proposed

method reconstructs edges better than the compared ones, while preventing ringing artifacts as in

the compared IBP method.
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a HR reference b LR reference c Linear

d Bicubic e IBP [65] f Ours

Figure 8.3: Simulated dataset results comparison.

Table 8.2 demonstrates the qualitative results based on PSNR and SSIM values for each band, for

a resolution enhancement factor of two. Since pansharpening methods use MS bands numbered

1, 2, 3, 4, 5, and 7 for Landsat 7 ETM+, we compare the results for these bands. Qualitative com-

parisons also validate the quantitative ones. In general, the proposed method preserves the spectral

information better while increasing the spatial resolution.

124



a HR reference b LR reference c Linear

d Bicubic e IBP [65] f Ours

Figure 8.4: Zoomed areas of simulated dataset results in Fig. 8.3.

Table 8.2: Comparison of proposed method with other methods in PSNR, MSE, SSIM.

Band
Linear Bicubic IBP Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 32.47 0.87 34.12 0.90 27.62 0.72 37.08 0.95
2 34.61 0.92 36.71 0.95 29.51 0.82 40.21 0.97
3 36.15 0.93 38.22 0.95 31.54 0.84 41.70 0.98
4 33.20 0.94 35.04 0.96 27.04 0.85 37.88 0.98
5 31.79 0.81 33.23 0.85 27.03 0.64 35.88 0.92
7 32.49 0.85 34.23 0.89 27.41 0.69 37.21 0.94
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a HR reference b LR reference c Linear

d Bicubic e IBP [65] f Ours

Figure 8.5: Zoomed areas of simulated dataset results in Fig. 8.3.

8.2.2 Real Dataset

For the second test, we use pansharpened MS bands as our LR image set, and estimate an HR

image without a ground truth; where we compare the results qualitatively. Fig. 8.2 shows the real

dataset used for the experiments.

Fig. 8.6 demonstrates the reconstruction results obtained by Nearest Neighbor, Bilinear and Bicu-

bic interpolation, IBP method, and the proposed model. When ground area changes over time (e.g.

see in Fig. 8.2, caused by ships on the Sea of Marmara), the accuracy of SR decreases due to the

fact that multitemporal images are fused with the proposed method. The zoomed subregions in
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Figs. 8.7 and 8.8 of the results in 8.6, that have mostly constructions and forests that have the least

change during the used time period, demonstrate the reconstruction details better.

a LR reference b Nearest neighbor c Linear

d Bicubic e IBP [65] f Ours

Figure 8.6: Real dataset results comparison.

Experiments with the real dataset also approve the ones with the simulated results. One can see

that the edges of roads and constructions in Fig. 8.6 (f) are well reconstructed. As seen in the

zoomed areas in Figs. 8.7 and 8.8, proposed method smoothes jaggy artifacts, generates sharper

edges, while keeping the spectral information at the same time.
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a LR reference b Nearest neighbor c Linear

d Bicubic e IBP [65] f Ours

Figure 8.7: Zoomed areas of real dataset results in Fig. 8.6.

a LR reference b Nearest neighbor c Linear

d Bicubic e IBP [65] f Ours

Figure 8.8: Zoomed areas of real dataset results in Fig. 8.6.
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8.3 Conclusion

Numerous multispectral satellite imaging applications such as change detection, weather forecast-

ing, and land-cover classification require high-spatial/spectral resolution MS images; yet, MS sen-

sors provide low-spatial-resolution MS and high-spatial-resolution PAN images separately. Pan-

sharpening or SR methods are used in order to obtain high-spatial resolution MS bands without

losing spectral data. However, these methods either use only the spatial information of PAN im-

ages, or only multitemporal data in MS bands. In this chapter, we propose employing pansharpen-

ing and SR methods together, to exceed the spatial resolution available in the PAN bands, by using

both spatial and temporal data captured by multispectral sensors. We perform a state-of-the-art

pansharpening method before the proposed image reconstruction technique. SR is performed in

a modified IBP manner by revealing the interband relationship of multitemporal image subbands.

Experimental results demonstrate that the proposed scheme indeed exceeds the spatial resolution

of PAN bands, while keeping the spectral information of MS images.
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CHAPTER 9: CONCLUSION

We devote this chapter to summarize and conclude the works explained in the previous chapters.

In this dissertation, we mainly focus on the multiframe super resolution problem. The resolution

of an image can be expressed as the details within the image, and several applications such as med-

ical imaging, satellite imagery, and video coding require images with high resolution. Hardware

solutions which can be used to increase the resolution of images by adapting the sensor specifica-

tions, has already reached its limitations. Super resolution techniques are therefore required as the

software solutions to this problem.

The goal of multiframe SR is to fuse information from several LR images. In order for multiframe

SR problem to use data from different LR frames, these images should be degraded or aliased

with respect to each other. Therefore, a pre-processing step of image registration (i.e., motion

estimation) is required to obtain the change between the LR images.

Recent trend in multiframe SR and image registration techniques tends toward wavelet-based

methodologies. The main reason behind the use of wavelets is their localization property, both

in time and frequency. Due to the benefits such as low computing requirements and orthogonality,

wavelets have also attracted attention in imaging (e.g. medical imaging), and image/video coding

technologies. Therefore, we concentrate on motion estimation and super resolution methods in the

wavelet-domain, which can be employed in wavelet-based imaging and coding frameworks.

We first present, in Chapter 4, a wavelet-based image registration technique. In order to use our

method in a wavelet-domain technology with wavelet-encoded images, we use wavelet subbands

of the images to be registered, and estimate motion directly in the wavelet-domain (i.e., in band),

without back and forth transformations. We propose a registration technique, where a sparse set
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of high-pass subbands are used to obtain the registration parameters for scale, rotation, and trans-

lation. To achieve our goal, we first decouple scale, rotation, and translation parameters in the

wavelet domain (as an analogy to the Fourier domain). Based on the assumption that Haar wavelet

subbands can be used to approximate the partial derivatives, we devise methods to recover scale

and rotation sequentially, using the relationship between wavelet detail coefficients of two images.

After scale and rotation are compensated, translation recovery is performed by using the direct

relationship between the subbands of two subpixel shifted images. Extensive experimental results

demonstrate the accuracy of the proposed method compared to the state-of-the-art techniques. We

utilize standard test images, together with real world examples in our experiments, which are com-

pared under several conditions (e.g. noisy environments, similarity transform, Euclidean trans-

form etc.). Even though the computational complexity of the proposed method is higher than the

compared state-of-the-art methods, we observe that the high accuracy of our method can be an

acceptable trade-off.

In Chapter 5, we modify our image registration technique, to be used in a practical area, which is

motion compensated temporal filtering. MCTF is a method that is widely used for video coding

schemes, in order to decrease the bits required to encode video files. The goal of MCTF is to

encode the difference between two consecutive frames, instead of the original frames. In order

to decrease the difference further, MCTF employs a motion estimation step, and compensates the

motion between the frames to find the difference. The most common approach in this area is to find

the motion in the spatial domain, and later encode the wavelet transform coefficients. However, this

process has drawbacks such as blocking artifacts. A solution to this problem is proposed by finding

the motion directly in the transform domain, and later encoding these coefficients. However, since

wavelet-transform is shift-invariant, the trivial solution is to use redundancy via overcomplete or

dual-tree wavelets. We propose avoiding the need of shift-invariance by using the direct relation-

ship between the two frames. Since the assumption behind MCTF methods is that two consecutive
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frames in a video differ only by a small translational amount, our devised methodology for image

registration can easily be adopted for this problem. Therefore, we propose an MCTF method that

follows the concept of performing wavelet transform before motion estimation, and estimate mo-

tion using wavelet-domain coefficients directly. We then encode the motion compensated error in

the wavelet-domain. Our proposed methodology prevents upsampling, inverse wavelet transform,

and redundancy, which leads to reduced memory usage. We test our method using standard CIF

video sequences, and demonstrate the accuracy of the proposed method.

After accomplishing the required pre-processing step of image registration for the multiframe SR

problem, we explore the proposed wavelet-based multiframe SR problem in Chapter 6. The in-

trinsic idea behind wavelet-domain multiframe SR methods is to consider the observed LR images

as the approximation coefficients (i.e., low-pass subbands) of the wavelet transform for unknown

HR images. Since the wavelet transform decomposes the image into approximation and detail co-

efficients, the goal is then to recover the unknown high-frequency (i.e., high-pass) subbands. In

general, this problem is solved in literature by estimating the high-frequency information for all

LR images, which is later fused before performing inverse wavelet transform using a reference LR

image and estimated subbands.

We propose a different point of view to the wavelet-based multiframe SR problem, by express-

ing the relationship between the LR frames, in the wavelet domain. To this goal, we first derive

equations to express the relationship between low-pass subbands of two subpixel shifted images.

This relationship, which depends on the high-pass subbands of the reference LR frame, is then

employed to construct a linear system of equations. By solving the linear system, high-pass sub-

bands are estimated. Since we extrapolate the high-frequency information of one of the LR frames

using several others, our method can be considered as a hybrid technique between single and

multiframe techniques, taking advantage of best of the both groups. The results on standard test

images, obtained by our proposed method outperforms the state-of-the-art based on accuracy and
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computational complexity (especially compared to regularization-based techniques).

Multiframe super resolution methods are required by many applications. In this dissertation, we

present two straightforward applications of our proposed method, which are super resolution of

compressed video and super resolution of pansharpened multispectral images. Due to the fact that

video coding and pansharpening methods are performed efficiently in the wavelet domain, methods

that use wavelet subbands directly are necessary for these areas. Therefore, we first demonstrate

the use of our in-band SR method in a compressed video application. As mentioned before, the goal

of video coding is to reduce the bits to store or transmit video files. Instead of encoding the motion

compensated error as in MCTF methods, a growing amount of literature focuses on encoding LR

frames, and employing SR techniques after decoding. Following this concept, we propose a new

design of compressed video framework, which first performs wavelet transform on the original

frames. We then use our proposed motion estimation method, in order to find the change between

blocks in consecutive frames. The motion vectors and LR frames are then encoded into a bitstream.

After the decompression step, LR frames and motion vectors are used in an SR technique. In order

to decrease the errors caused by motion estimation, we reformulate our SR methodology into an

iterative back projection framework. Instead of updating the entire HR estimate in every iteration,

we assume that the LR frames are the real low-pass subbands of the wavelet transform of unknown

HR frames; and update high-pass subbands only. In order to reduce the ringing artifacts caused by

the original IBP algorithm, we perform bilateral filtering on the back projected errors. Again, as

in the MCTF method, we use standard CIF video sequences to show the accuracy of the proposed

framework.

Finally, we also present the effective usage of our wavelet-based multiframe SR method, in a

satellite imaging area. Satellite sensors provide images with different spectral and spatial resolu-

tions. We focus on the multispectral sensors, which provide a few spectral bands with low-spatial-

high-spectral resolution (i.e., multispectral bands), and one panchromatic image (i.e., PAN) with
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high-spatial-low-spectral resolution. Many applications including change detection and weather

forecasting need high resolution MS bands, which can be achieved by injecting the high-frequency

information of PAN bands to each MS band. These methods are employed to increase the resolu-

tion of MS bands to the spatial resolution of available PAN images. Our goal, on the other hand,

is to exceed this resolution, in order to reach the resolution that could be captured by different

sensors, in a more costly manner. Therefore, we propose to use information from both spatial and

temporal domains. Given LR MS band sequences taken at different times, from the same ground

area, we first pansharpen these bands using the spatial information of PAN images. Later, we

assume that these pansharpened images are low-pass subbands of unknown higher resolution MS

bands; and, utilize the pansharpened images in our wavelet-based SR methodology. We employ

a state-of-the-art pansharpening method, that is performed in the wavelet domain. Later, we gen-

eralize our subpixel translation recovery in Chapter 4 to find translational shift between images.

As in the proposed super resolution of compressed video methodololgy, we use our SR method in

iterative back projection fashion to find the high-resolution images for MS bands, sequentially. We

demonstrate our results on Landsat ETM+ images taken at different times, and demonstrate the

effective recovery of high-pass subbands, while still keeping the spectral information.

As a conclusion, we have highlighted in this dissertation, the effective and efficient usage of the

inter-subband relationship of wavelets, in practical areas. Our findings provide evidence that the

growing trend in wavelet-based imaging technologies would benefit from the methodologies de-

scribed in the previous chapters, due to the fact that these techniques are designed solely using

wavelet-subbands. In the future, we would like to employ our devised MCTF and SR of com-

pressed video methods in a straightforward product of scalable video coding, where the resolution

of the decoded video depends on the user needs. By using a base layer of bitstream, together with

enhancement layers, scalable video coding adapts the resolution on the decoder side based on the

needs of the receiver end. Furthermore, another possible area of future research would be to inves-
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tigate the generalization of the relationship defined for Haar wavelet transform, to other wavelet

transforms, which could also be generalized to include affine transform of subbands, instead of

only translational shifts. The generalization to other wavelets and affine transformation between

images, can be applied in a dense matching scheme, where instead of matching the pixels of im-

ages, dense image patches are aligned to match different scenes. Dense matching is a growing

interest in the recent years, which can be used for applications such as face recognition and image

classification. Moreover, considering the fact that learning-based methods have emerged as a pow-

erful tool in SR techniques, we would like to employ our wavelet-based methods in learning-based

frameworks as future research.
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[130] Stéphane Mallat and Guoshen Yu. Super-resolution with sparse mixing estimators. Image

Processing, IEEE Transactions on, 19(11):2889–2900, 2010.

156



[131] CV Jiji, Manjunath V Joshi, and Subhasis Chaudhuri. Single-frame image super-resolution

using learned wavelet coefficients. International journal of Imaging systems and Technol-

ogy, 14(3):105–112, 2004.

[132] Prakash P Gajjar and Manjunath V Joshi. New learning based super-resolution: use of dwt

and igmrf prior. Image Processing, IEEE Transactions on, 19(5):1201–1213, 2010.

[133] Fernanda Brandi, Ricardo de Queiroz, and Debargha Mukherjee. Super resolution of video

using key frames. In Circuits and Systems, 2008. ISCAS 2008. IEEE International Sympo-

sium on, pages 1608–1611. IEEE, 2008.

[134] C Andrew Segall, Aggelos K Katsaggelos, Rafael Molina, and Javier Mateos. Bayesian

resolution enhancement of compressed video. IEEE Transactions on image processing,

13(7):898–911, 2004.

[135] Stefanos P Belekos, Nikolas P Galatsanos, and Aggelos K Katsaggelos. Maximum a poste-

riori video super-resolution using a new multichannel image prior. Image Processing, IEEE

Transactions on, 19(6):1451–1464, 2010.

[136] Israa Amro, Javier Mateos, Miguel Vega, Rafael Molina, and Aggelos K Katsaggelos.

A survey of classical methods and new trends in pansharpening of multispectral images.

EURASIP Journal on Advances in Signal Processing, 2011(1):79, 2011.

[137] Te-Ming Tu, Ping Sheng Huang, Chung-Ling Hung, and Chien-Ping Chang. A fast

intensity-hue-saturation fusion technique with spectral adjustment for ikonos imagery. IEEE

Geoscience and Remote sensing letters, 1(4):309–312, 2004.

[138] Pats Chavez, Stuart C Sides, Jeffrey A Anderson, et al. Comparison of three different

methods to merge multiresolution and multispectral data- landsat tm and spot panchromatic.

Photogrammetric Engineering and remote sensing, 57(3):295–303, 1991.

157



[139] Craig A Laben and Bernard V Brower. Process for enhancing the spatial resolution of

multispectral imagery using pan-sharpening, January 4 2000. US Patent 6,011,875.

[140] Alan R Gillespie, Anne B Kahle, and Richard E Walker. Color enhancement of highly

correlated images. ii. channel ratio and chromaticity transformation techniques. Remote

Sensing of Environment, 22(3):343–365, 1987.

[141] Robert A Schowengerdt. Remote sensing: models and methods for image processing. Aca-

demic press, 2006.

[142] Rafael Molina, Miguel Vega, Javier Mateos, and Aggelos K Katsaggelos. Variational poste-

rior distribution approximation in bayesian super resolution reconstruction of multispectral

images. Applied and Computational Harmonic Analysis, 24(2):251–267, 2008.

[143] John C Price. Combining multispectral data of differing spatial resolution. IEEE Transac-

tions on Geoscience and Remote sensing, 37(3):1199–1203, 1999.

[144] Andrea Garzelli and Filippo Nencini. Interband structure modeling for pan-sharpening of

very high-resolution multispectral images. Information Fusion, 6(3):213–224, 2005.

[145] Yonghyun Kim, Changno Lee, Dongyeob Han, Yongil Kim, and Younsoo Kim. Improved

additive-wavelet image fusion. IEEE Geoscience and Remote Sensing Letters, 8(2):263–

267, 2011.

[146] Luciano Alparone, Lucien Wald, Jocelyn Chanussot, Claire Thomas, Paolo Gamba, and

Lori Mann Bruce. Comparison of pansharpening algorithms: Outcome of the 2006 grs-s

data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 45(10):3012–

3021, 2007.

158



[147] Francesca Bovolo, Lorenzo Bruzzone, Luca Capobianco, Andrea Garzelli, Silvia Marchesi,

and Filippo Nencini. Analysis of the effects of pansharpening in change detection on vhr

images. IEEE Geoscience and Remote Sensing Letters, 7(1):53–57, 2010.
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