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ABSTRACT

Smart antenna technology is expected to play an important role in future wire-

less communication networks in order to use the spectrum efficiently, improve the

quality of service, reduce the costs of establishing new wireless paradigms and

reduce the energy consumption in wireless networks. Generally, smart antennas

exploit multiple widely spaced active elements, which are connected to separate

radio frequency (RF) chains. Therefore, they are only applicable to base stations

(BSs) and access points, by contrast with modern compact wireless terminals with

constraints on size, power and complexity. This dissertation considers an alter-

native smart antenna system the electronically steerable parasitic array radiator

(ESPAR) which uses only a single RF chain, coupled with multiple parasitic el-

ements. The ESPAR antenna is of significant interest because of its flexibility in

beamforming by tuning a number of easy-to-implement reactance loads connected

to parasitic elements; however, parasitic elements require no expensive RF cir-

cuits. This work concentrates on the study of the ESPAR antenna for compact

transceivers in order to achieve some emerging techniques in wireless communica-

tions.

The work begins by presenting the work principle and modeling of the ESPAR

antenna and describes the reactance-domain signal processing that is suited to the

single active antenna array, which are fundamental factors throughout this the-

sis. The major contribution in this chapter is the adaptive beamforming method

based on the ESPAR antenna. In order to achieve fast convergent beamform-

ing for the ESPAR antenna, a modified minimum variance distortionless response

(MVDR) beamfomer is proposed. With reactance-domain signal processing, the

ESPAR array obtains a correlation matrix of receive signals as the input to the

MVDR optimization problem. To design a set of feasible reactance loads for a de-

sired beampattern, the MVDR optimization problem is reformulated as a convex

optimization problem constraining an optimized weight vector close to a feasible

solution. Finally, the necessary reactance loads are optimized by iterating the



convex problem and a simple projector. In addition, the generic algorithm-based

beamforming method has also studied for the ESPAR antenna.

Blind interference alignment (BIA) is a promising technique for providing an op-

timal degree of freedom in a multi-user, multiple-inputsingle-output broadcast

channel, without the requirements of channel state information at the transmit-

ters. Its key is antenna mode switching at the receive antenna. The ESPAR

antenna is able to provide a practical solution to beampattern switching (one

kind of antenna mode switching) for the implementation of BIA. In this chapter,

three beamforming methods are proposed for providing the required number of

beampatterns that are exploited across one super symbol for creating the channel

fluctuation patterns seen by receivers. These manually created channel fluctuation

patterns are jointly combined with the designed spacetime precoding in order to

align the inter-user interference. Furthermore, the directional beampatterns de-

signed in the ESPAR antenna are demonstrated to improve the performance of

BIA by alleviating the noise amplification.

The ESPAR antenna is studied as the solution to interference mitigation in small

cell networks. Specifically, ESPARs analog beamforming presented in the previous

chapter is exploited to suppress inter-cell interference for the system scenario,

scheduling only one user to be served by each small BS at a single time. In

addition, the ESPAR-based BIA is employed to mitigate both inter-cell and intra-

cell interference for the system scenario, scheduling a small number of users to be

simultaneously served by each small BS for a single time.

In the cognitive radio (CR) paradigm, the ESPAR antenna is employed for spa-

tial spectrum sensing in order to utilize the new angle dimension in the spectrum

space besides the conventional frequency, time and space dimensions. The two-

stage spatial spectrum sensing method is proposed based on the ESPAR antenna

being targeted at identifying white spectrum space, including the new angle di-

mension. At the first stage, the occupancy of a specific frequency band is de-

tected by conventional spectrum-sensing methods, including energy detector and

eigenvalue-based methods implemented with the switched-beam ESPAR antenna.



With the presence of primary users, their directions are estimated at the second

stage, by high-resolution angle-of-arrival (AoA) estimation algorithms. Specifi-

cally, the compressive sensing technology has been studied for AoA detection with

the ESPAR antenna, which is demonstrated to provide high-resolution estimation

results and even to outperform the reactance-domain multiple signal classification.
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Chapter 1

Introduction

1.1 Background

Smart multi-antenna systems are key trends for next-generation wireless communi-

cation systems, with the potential to increase channel capacity, enhance quality of

service (QoS), improve radio frequency (RF) spectrum usage, extend coverage, re-

duce power consumption and steer transparent operation across multi-technology

wireless networks. Much research has given considerable attention to the multi-

antenna system for wireless communication applications, especially in the context

of signal processing and coding architectures. A multi-antenna system can be

exploited in a variety of ways to achieve the specific goal(s).

• Beamforming: Multi-antenna systems are generally exploited for beamform-

ing functions, targeted at maximizing the array gain for certain directions

of interest, while minimizing power leakage in other directions. The capa-

bility of beamforming is the goal of a smart antenna system at the initial

development stage. Beamforming involves array signal processing: that is,

signals derived from individual antenna elements are properly weighted and

summed to produce the output of the array. Various beamforming algo-

rithms have been sufficiently studied in the literature (see [6] and references

1



Chapter 1. Introduction

Figure 1.1: The block diagram of a DBF receiver [1].

therein), within which desired signal is differentiated from co-channel in-

terference, using either a reference signal or knowledge of the directions of

desired signal and interferers. It is noted that these algorithms are mainly

designed based on a digital beamforming (DBF) array. The block diagram

of a DBF array working in the receiving model is shown as Figure 1.1. The

signal received by each element is converted to the baseband by the down

converters (D/C) and analog filter. Then the baseband signal is digitized

by the analog-to-digital (A/D) converter and passed to the digital signal

processor (DSP) sections in which the beamforming algorithms reside.

• Direction finding: Direction finding, or angle-of-arrival (AoA) estimation,

is an attractive area of research. It has been widely applied in the fields

of radar and sonar surveillance, as well as mobile radio communications.

For example, knowledge of the AoAs of desired signals and/or interferers

plays an important role in a communication system, employing some form

of spatial filtering with sectorized directional antennas, switched beam an-

tennas or adaptive antennas. A number of AoA estimation methods have

been developed, including conventional beamforming [7], Capon’s method

[8], subspace-based methods like MUSIC (MUltiple SIgnal Classification) [9]

and ESPRIT (Estimation of Signal Parameters via Rotational Invariance)

2



Chapter 1. Introduction

[10] algorithms, and the methods based on the emerging compressive sens-

ing technology [11]. The accuracy of these algorithms is evaluated by AoA

estimation and the ability to detect closely spaced signals. It is worth noting

that these algorithms are also based on the DBF array using multiple RF

chains.

• Multiple-Input-Multiple-Output (MIMO) technology: Motivated by the de-

mand for high data rate in wireless networks, MIMO technology has gained

significant attention. It has been demonstrated that the channel capacity of

the MIMO system (characterized by multiple antennas at both the transmit

and receive ends) increases almost linearly with the minimum number of

transmit-receive antennas [12–14]. On one hand, multiple antennas are used

to increase diversity to overcome multipath fading, where signals carrying

the same information are transmitted through independently faded paths to

achieve reliable reception. On the other hand, since multiple parallel spatial

channels are created between individual transmit-receiver antenna pairs with

high probability, independent information streams are transmitted in par-

allel through spatial channels. As a consequence, degree of freedom (DoF)

increases, leading to higher data rate. This effect is called spatial multiplex-

ing [15]. It is noted that high capacity is achievable under assumptions of

rich scattering and uncorrelated spatial channels.

Conventionally, multi-antenna systems refer to the DBF arrays described previ-

ously, where multiple active elements are connected to separate RF chains. Signal

processing is operated at the baseband stage to achieve intelligence. Although

multi-antenna systems have been proved, by theory and experimentation, to have

the capabilities to improve the performance of wireless communications, the use of

multi-antenna systems, indeed, increases complexity and cost, which has to be con-

sidered in establishing a practical system. On the other hand, the ongoing trend

in modern wireless terminals is toward miniature, compact and highly integrated

devices. Under small size constraints, the employment of multi-antenna systems

3



Chapter 1. Introduction

is more challenging. The limitations and challenges of multi-antenna systems for

compact deployment are summarized as follows:

• RF hardware complexity and cost: With regard to the DBF array, one RF

chain is composed of the A/D converter, digital-to-analog (D/A) converter,

low-noise amplifier (LNA), power amplifier (PA), intermediate frequency

(IF)/RF filters, etc. Since in the multi-antenna array an element is con-

nected to a separate RF chain to independently modulate/demodulate sig-

nals, it is clear that hardware cost and complexity increase with the number

of antenna elements.

• Circuit power consumption: In one RF chain, the direct current (DC) power

is mainly consumed by the PA, D/A converter, mixer, and active filters in

the transmit chain, and by the frequency synthesizer, LNA, A/D converter

and active filters in the receive chain [16]. The power consumption increases

with the number of antenna elements used in the array. It is rather costly

in terms of battery-powered devices.

• Antenna system efficiency: Smaller inter-element spacing (usually smaller

than a half-wavelength) is needed for compact device applications, which

results in strong mutual coupling among antenna elements. Strong mutual

coupling affects the input impedance seen by the RF ports, thereby leading

to a mismatch loss: that is, some of the incident power is reflected back to

the source. In addition, some of the radiated power will be absorbed by

the neighboring elements being terminated by a resistive impedance [17].

These two losses account for the matching efficiency. Without delicate de-

sign in matching efficiency, the performance of the antenna systems will be

significantly reduced.

• Spatial correlation: The antenna correlation (or spatial correlation) does im-

pact the MIMO channel capacity. In [18], Tulino et al. studied the relation

between the antenna correlation and the capacity of multi-antenna channels

and demonstrated that, for separable correlations specifically, receive corre-

lation is always detrimental due to the reduction of effective dimensionality
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without increasing captured power; transmit correlation reduces the effective

dimensionality of the transmitter with focusing power, thereby achieving an

advantage in low SNR region, but it is detrimental in high SNR region. It

has been shown that the antenna correlation is a function of antenna spac-

ing, array geometry, and angular energy distribution [19]. With regard to

the antenna spacing, the antenna correlation decreases with the increase of

antenna spacing, thereby improving channel capacity. This improvement is

more significant through enlarging antenna spacing at the transmit antenna

than that at the receive antenna [19].

• Inter-chain interference: The use of non-ideal RF components will result in

leakage among the parallel RF chains, thereby reducing the performance of

the system [17].

These limitations related to multi-antenna systems lead to challenges in applica-

tions of compact, low-complexity terminals. Parasitic antennas have been pro-

posed as the alternative to multi-antenna systems. In parasitic antennas (see

Figure 1.2), only one antenna element is active and fed by the single RF source,

and other elements, called parasitic elements, are connected to switches, or are

short-circuited and loaded by reactance values. It is noted that a parasitic el-

ement requires only a simple control circuit instead of an expensive RF chain,

thereby reducing hardware cost and circuit power consumption. In addition, a

parasitic antenna system employs mutual coupling between active and parasitic

elements to achieve beamforming. In this context, the inter-element spacing is

desired to be smaller (usually smaller than a half-wavelength), compared to that

of a multi-antenna system. Consequently, a parasitic antenna system has smaller

volume, suited to a small portable terminal.

The switched parasitic antenna can be traced back to the early work of Yagi and

Uda [20, 21], which offers a directional antenna pattern by switching the short-

circuits on parasitic elements: the antenna pattern is steered to the open parasitic

element while the others are short-circuited. Dinger [22] developed the reactively

steerable parasitic array consisting of closely coupled microstrip elements. In the
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(a) Switched parasitic antenna

(b) Reactance-assisted parasitic antenna

Figure 1.2: Diagram of parasitic antenna configurations.

reactance-assisted parasitic antenna, reactively adjusting reactance loads of par-

asitic elements, the antenna pattern can be modified. Therefore, the reactance-

assisted parasitic antenna is a more efficient and flexible solution to beamforming.

In the Advanced Telecommunications Research (ATR) laboratories of Japan, a

number of smart parasitic antennas named electronically steerable parasitic ar-

ray radiator (ESPAR) antennas have been successively developed[23–25], which

include several monopoles (one active element surrounded by several parasitic el-

ements) mounted on a ground plane. Parasitic elements are short-circuited and

connected to variable reactors (varactors), which control their reactance loads.

This work is motivated by the theoretical gains suggested by exploiting multi-

antenna systems, where antenna aspects are combined with the associated signal
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processing and other emerging techniques for transparent operation across multi-

technology wireless networks. This dissertation addresses the limitations of multi-

active antennas under compactness constraints by using the single-RF ESPAR

antenna. The beampattern of an ESPAR antenna is controllable by electronically

tuning a few easy-to-implement reactance loads of parasitic elements.

To meet the increasing demands for high data rate, multi-user MIMO techniques

have attracted significant interest, due to the potential for spectral efficiency. The

efficiency, fundamentally, results from an increase in the number of DoFs for trans-

mission use. In particular, the achievable DoFs in a single-user MIMO system are

known up to min(Nt, Nr), where Nt and Nr are numbers of transmit and receive

antennas, respectively [13]. In order to increase the DoFs without increasing Nr or

complexity at the user, a multi-user MIMO system is introduced, and it is demon-

strated that the achievable DoFs are up to min(Nt, KNr), where K is the number

of users [26]. Generally, perfect knowledge of the channel state information (CSI)

between the transmitter and receiver is required to achieve such DoFs, by using

linear zero-forced beamforming (LZFBF), dirty-paper-coding (DPC), interference

alignment, etc. However, in practical systems, acquiring the CSI at the trans-

mitter is a challenging task and also leads to signaling overheads. To this end,

a novel technique termed Blind Interference Alignment (BIA) [27] has been de-

veloped for the multi-user multiple-input-single-output (MISO) broadcast channel

(BC) to achieve an optimal DoF without requirement for the CSI at the transmit-

ter. The key to BIA is the use of a reconfigurable antenna at the receiving end to

perform antenna mode switching. Motivated by this, in this thesis, we will employ

the ESPAR as a solution to beampattern switching for practical implementation

of BIA.

Small cell networks (SCNs) (e.g., picocells and femtocells) represent the other

emerging technique introduced to improve system capacity, coverage and energy

efficiency, while offloading traffic from expensive macrocellular networks [28]. The

small cells are low-cost, low-power, user-deployed base stations (BSs), underly-

ing the existing macrocells. They are designed with auto-configuration and self-

optimization capabilities, and they leverage users’ broadband internet connect as
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the backhaul. However, to achieve the capacity expected by using small cells,

co-channel deployment of dense small cells within the macrocell is essential, which

leads to enormous inter-cell interference. Therefore, interference management be-

comes one of the technical challenges with SCNs. Generally, in the small cells, the

traditional single omni-directional antenna is deployed at both the small BSs and

user terminals, due to the size constraint. In this context, interference is generally

mitigated by power control [29, 30] and resource allocation [31, 32], which could

result in significantly increased system complexity due to the needs of message

exchange and/or cooperation across femtocells. To achieve inter-cell interference

mitigation while keeping the complexity and cost to a minimum, the smart an-

tenna has been considered as a solution. Under the compact constraints, the ES-

PAR antenna provides a solution to interference suppression with the capability

of adaptive beamforming.

The concept of cognitive radio (CR) has been introduced to identify underutilized

spectrum and allow secondary users (SUs) to opportunistically utilize the licensed

spectrum without causing unacceptable interference for the primary users (PUs)

[33]. When the interweave paradigm (where SUs exploit knowledge of the PU’s

activity in the spectrum to identify transmission opportunity [34]) is considered,

spectrum sensing is the most important component of establishing the CR systems.

Moreover, a new angle dimension can be introduced in the spectrum space for

further efficient spectrum usage. In this sense, the spectrum sensing is referred

to as spatial spectrum sensing, where the direction of primary signal should be

detected. The smart antenna systems play an important role in the CR system,

since they are exploited to perform and improve the spectrum sensing function,

and they also offer beamforming capabilities, that is, the SU equipped with a

smart antenna is able to steer the beam to the direction without causing harmful

interference to the PU (i.e., the angle dimension) [35]. However, these benefits are

not attractive in small CR terminals. A major area of study in this thesis is thus

the spatial spectrum sensing for compact CR terminals.
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1.2 Thesis Outline

Chapter 2 : In this chapter, we first describe the single-radio parasitic antenna

system – electronically steerable parasitic array radiator (ESPAR), which is the

foundation of this thesis studied as a solution for compact transceivers applications,

since the parasitic elements require no extra RF hardware. The ESPAR antenna

systems are tractably modeling as the active element response and current vec-

tor controlled by parasitic ports. Particularly, in the ESPAR antenna, parasitic

elements are terminated with variable reactors (varactors) that can continually

tuning reactance values loaded to them. The parasitic elements are strongly cou-

pled with the sole active element, due to smaller inter-element spacing. Therefore,

the ESPAR antenna is able to adjust the beampattern by tuning reactance loads of

parasitic elements. To achieve adaptive beamforming in the ESPAR antenna, the

fast convergent algorithm is required. However, the unique configuration of the

ESPAR imposes difficulty to apply sophisticated adaptive algorithms derived for

the conventional DBF array. Based on the ESPAR antenna, the minimum variance

distortionless response (MDVR) algorithm is modified, where we first processes ar-

ray signals in the reactance domain, then reformulate the MVDR algorithm as a

convex problem, and finally optimize necessary reactance loads by iterating the

convex problem and a simple projector. Beside this method, the adaptive beam-

forming based on the genetic algorithm is also studied for an ESPAR antenna,

exploiting the reference signal or desired beampattern.

Chapter 3 : For the downlink of a multi-user MISO broadcast channel, blind in-

terference alignment (BIA) [27] is a promising technique to achieve an optimal

DoF without knowledge of channel state information at the transmitter (CSIT).

BIA uses antenna mode switching (e.g., frequency, polarization and beampattern)

at the receiving end to create channel fluctuation patterns in combination with

a space-time coding structure at the transmitter to align inter-user interference.

The subject of this chapter is the application of the ESPAR antenna in small user

terminals for the implementation of BIA. Its capability of beamforming, by sim-

ply tuning a few easy-to-implement reactance loads, is exploited as the solution
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to antenna mode switching for BIA, since frequency switching will increase the

necessary frequency band, and polarization switching may be only suitable for

communication systems insensitive to transmitter and receiver orientations (e.g.,

satellites). Furthermore, the ESPAR’s beampattern can be designed to improve

receive signal-to-noise ratio (SNR), thereby improving the performance of BIA,

which is subject to high SNR requirements due to noise amplification. In par-

ticular, we propose three beamforming methods – random beamforming, sector

beampattern selection and singular value decomposition (SVD) based beamform-

ing – to provide the required number of different beampatterns across one Super

Symbol for the implementation of BIA.

Chapter 4 : Small cell networks provide a promising solution to increase system

capacity and improve indoor coverage. However, inter-cell interference becomes

enormous among small cells due to dense deployment and cell-size reduction. This

part focuses on interference mitigation methods in the residential femtocells, by

exploiting the ESPAR antenna. We first consider the system scenario: each femto-

BS serves one user for a single time. In this scenario, the ESPAR is deployed at

both the femto-BS and user terminal, and ESPAR’s analog beamforming is used to

mitigate inter-cell interference through increasing the signal-to-interference-plus-

noise ratio (SINR). This method has low complexity compared to other methods

including the resource allocation and power control methods. Then, we consider

the system scenario: each femto-BS simultaneously serves a few number of users

for a single time. The ESPAR-based BIA scheme is studied as the solution to

mitigating both the intra-cell and inter-cell interference.

Chapter 5 : Focusing on the interweave mode, spectrum sensing is essential to

build the CR system. This part of the thesis deals with the spatial spectrum

sensing problem with the signal-RF parasitic antennas equipped at the compact

cognitive radios. As the directional antenna is assumed to be adopted in the CR,

besides exploiting the conventional three dimensions in the spectrum space (i.e.,

the specific frequency subband at a certain time in a given geometry region), the

new angle dimension is available to be exploited. Therefore, in this CR system,

not only should the occupancy of a specific frequency subband be detected at a
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particular time in a given region, but also the directions of the existing primary

signals are required to be estimated. In this context, the two-stage spatial spectrum

sensing method is considered. At the first stage, the temporal spectrum sensing

methods are studied for the ESPAR antenna to identify the PU’s activity in the

three-dimension spectrum space. Once the decision has been made at the first

stage that primary users are present, at stage two, the CR receiver has to estimate

directions of present primary signals by using a high-resolution AoA estimation

method, e.g., the reactance-domain (RD) MUSIC algorithm. The problem of

the RD-MUSIC algorithm is its requirement for large number of samples and it

is applicable for uncorrelated signals. In relation to this problem, compressive

sensing is studied for the AoA estimation problem with the ESPAR antenna.

Chapter 6 : The last chapter summarizes the work of the thesis, and we also suggest

some further work that may be useful for extending the work of the thesis.

1.3 Publications

Throughout the PhD study, the following scientific papers have been published in

the forms of conference papers and journal articles:

1.3.1 Conference Proceedings

R. Qian, M. Sellathurai, D. Wilcox, “On the design of blind interference alignment

using ESPAR antenna”, In Proc. IEEE International Conference on Communi-

cations and Networking in China (CHINACOM), pages 886 – 870, 2012.

R. Qian, M. Sellathurai, “Performance of the blind interference alignment using

ESPAR antennas”, In Proc. IEEE International Conference on Communications

(ICC), pages 4885 – 4889, 2013.
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R. Qian, M. Sellathurai, “ Design of ESPAR based blind interference alignment for

cellular systems”, In Proc. Wireless Communications and Networking Conference

(WCNC), pages 3083 – 3087, 2013.

R. Qian, M. Sellathurai, T. Ratnarajah,“Directional spectrum sensing for cognitive

radio using ESPAR arrays with a single RF chain”, In Proc. IEEE European

Conference on Networks and Communications (EuCNC), pages 1 – 5, 2014.

R. Qian, M. Sellathurai, D. Wilcox, “A study on MVDR beamforming applied to

an ESPAR antenna”, In Proc. Interference Conference on Acoustics, Speech and

Signal Processing (ICASSP), April, 2015, Brisbane.

R. Qian, M. Sellathurai.“Interference mitigation in femtocell networks using single-

radio parasitic antennas”, In Proc. IEEE International Conference on Communi-

cations (ICC), June, 2015, London.

R. Qian, M. Sellathurai, J. Chambers, “Direction-of-arrival estimation with single-

RF ESPAR antennas via sparse signal reconstruction”, IEEE International Work-

shop on Signal Processing Advances in Wireless Communications (SPAWC), June

2015, Stockholm. (Submitted)

1.3.2 Journal Articles

R. Qian, M. Sellathurai, D. Wilcox, “A study on MVDR beamforming applied to

an ESPAR antenna”, IEEE Signal Processing Letters, 2015, 22(1): 67-70.

R. Qian, M. Sellathurai, “On the implementation of blind interference alignment

with single-radio parasitic antennas”, IEEE Transaction Vehicular Technology,

2015.(Submitted)

The novelties in these publications are summarized as follows. A fast convergence

beamforming algorithm based on MVDR is proposed for the ESPAR antenna.

The unique configuration (single-active element) and the non-linear relationship

between the beampattern and reactance loads impose difficulty in adaptive beam-

forming in the EAPR array. To address these problems, we exploit the convexity
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of the sub-optimal problem – optimization of the equivalent weight vector, and

introduce a simple projector for feasible reactance loads. Finally, the MVDR

beamforming is modified as an iterative algorithm for the ESAPR antenna. The

BIA [27] is a promising multi-user MISO BC technique, which provides an optimal

DoF without requirements of knowledge of CSIT, where the key is the antenna

mode switching at the receiving end. However, in most of the literature on BIA,

authors simply assume the i.i.d channels as channel coefficients associated with

different antenna modes. Thus, the results are given in the theoretic perspec-

tive. In this work, the first attempt to employing a realistic beamforming scheme

(ESPAR) for the implementation of BIA is studied. Moreover, the ESPAR beam-

pattern is also designed to further improve the performance of BIA. In the small

cell networks, interference is one of the technique challenges. To mitigate inter-

ference while maintaining minimum system cost, the smart antenna is a practical

solution. The ESPAR antenna is suitable to be applied by small modern wireless

terminals including the home base stations and the user terminals. Thus, the ES-

PAR antenna is first studied as an interference mitigation solution for femtocells,

where its capability of beamforming is used. In the CR system, with the develop-

ment of smart antenna technology, a new angle dimension can be introduced to

further efficient usage of spectrum resources. In this context, the spatial spectrum

sensing is considered based on the EPSAR antenna, where the high resolution

AoA estimation method is included. To improve the AoA estimation performance

of an ESPAR with reduced sampling numbers, the compressive sensing is first con-

sidered for a single-RF antenna array. The sparse signal is represented in terms

of an overcomplete dictionary composed of samples from array manifold. In order

to create spatial diversity for the signal-RF ESPAR antenna, we introduce a pro-

jection matrix, which is designed to divide the whole angle space of the receiver

into sectors. Thus, the use of the projection matrix enables that the sparse signals

are projected to beamspace measurements, by full scanning the whole angle space.

The AoA estimation problem is thus cast to the sparse representation problem,

where the sparse spectrum can be efficiently reconstructed by algorithms, e.g,

l1-SVD.
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Single-Radio Parasitic Antennas

and Adaptive Beamforming

The single-radio electronically steerable parasitic array radiator (ESPAR) antenna

is exploited in our work in order to address the limitations related to the use of

multi-active antenna systems under compact constraints. This chapter presents

the basic modelling of the ESPAR antenna system and deals with the adaptive

beamforming algorithms. In Section 2.1, we present working principles and the

modelling of an ESPAR antenna. An essential function of the ESPAR antenna

system is beamforming, which is achieved by tuning a small number of reactance

loads connected to parasitic elements. However, there is a non-linear relationship

between the beampattern and reactance loads. In addition, the reactance loads

are generally required to be pure imaginary values. These characteristics impose

difficulties for the adaptive beamforming of an ESPAR antenna. To this end, a

fast adaptive beamforming method based on a conventional MVDR beamformer is

proposed in Section 2.3. We also present a beamforming method by using genetic

algorithms. In addition, due to the symmetric geometry of the array, an ESPAR

antenna is able to perform as a switched-beam antenna in order to switch between

a fixed number of pre-designed sector beampatterns.
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2.1 Electronically Steerable Parasitic Array Ra-

diator

In 2000, Ohira et al. were the first to develop a smart antenna system, named the

ESPAR, as an alternative solution for adaptive beamforming [23, 24]. The ESPAR

antenna uses only a single active antenna and several parasitic elements. The sole

active element is fed by an RF source, while parasitic elements are terminated

with tunable reactance loads, rather than being connected to RF chains. The

ESPAR antenna is a smart antenna system with a significant advantage over its

counterpart (the multi-active antenna system), in that it is able to adaptively

control its beampatterns, as does any smart antenna system, while using a single

active element and a small number of parasitic elements.

Consider an ESPAR array consisting of M +1 thin electrical dipoles with a length

of a half of the carrier wavelength, as shown in Figure 2.1. A single active element

(# 0) is placed at the center of the circle, and it is surrounded by M parasitic

elements sited at equal angular separations on the circle: i.e., the m-th parasitic

element is located at the relative angle φm = (m − 1)2π
M
,m ∈ {1, · · · ,M}. It

is noted that an ESPAR antenna developed by Ohira et al. [23, 24] is designed

as a circular array. This symmetrical antenna structure simplifies the analysis

of the ESPAR antenna (especially the mutual coupling between array elements);

moreover, this structure also enables the ESPAR antenna to work as a switched-

beam antenna by simply shifting designed reactance loads of parasitic elements.

By now, most of the literature focuses on the study of the circular ESPAR antenna.

Other shapes (e.g., rectangular or linear) of parasitic arrays have been studied in

the multi-active-multi-parasitic arrays [36].

The spacing between the active element and the parasitic element is d, which is

usually smaller than a half of the carrier wavelength (d < λ/2, where λ is the wave-

length). The active element is connected to a radio transceiver which has the load

impedance Zs: that is, the input impedance of the LNA. M parasitic elements are
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loaded with reactance loads denoted by a vector x̂ = [x1, · · · , xm, · · · , xM ]. Gen-

erally, a small inter-cell spacing is undesirable in a multi-active antenna. However,

smaller inter-element spacing is required in the ESPAR array in order to achieve

strong mutual coupling. Due to this strong mutual coupling, currents can be in-

duced on the parasitic elements when the active element is fed by the RF source.

In this context, adjusting reactance values results in changes to the currents of all

elements and, consequently, the radiation pattern [37]. When a parasitic element

is loaded with an inductive load (positive reactance), it performs as a director,

radiating away from the active element. By contrast, when a parasitic element

is loaded with a capacitive load (negative reactance), it performs as a reflector,

radiating towards the active element.

Figure 2.1: Structure example of an (M + 1)-element ESPAR.

The reactance loads (jxm) are achieved by using a simple control circuit as shown

in Figure 2.2, which includes a varactor diode (or an arrangement of varactor

diodes) and two fixed inductors in series and parallel [38]. By imposing a DC

voltage to the varactor, it exhibits a junction capacitance (i.e., reactance loads).

If the voltage is then continuously adjusted, the capacitance changes according to

the voltage. Here, the two fixed inductors are used to effectively provide a wide

range reactance, since the variable capacitance range of a varactor is narrow [39].

Based on the varactor catalog data, the relationship between the digital control
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Figure 2.2: Control circuit of a parasitic element.

voltage to vatacor vcc,m and the reactance xm(m = 1, · · · ,M) has a linear equation

[40]

xm = −0.0217vcc,m − 49.21.

Due to the above linear relation, we can always find a DC voltage for a required

reactance load. Therefore, in this work, we simply consider the reactance loads as

the variables of the beampattern of an ESPAR antenna.

Now, we start representing modeling of an ESPAR antenna, specifically, the beam-

pattern expression of the ESPAR antenna. We first suppose that the ESPAR

antenna is working as a transmitter. Signals transmitted at the single RF port

excite parasitic elements with induced currents. Current and voltage vectors of

the ESPAR array are respectively written as

i =
[
i0 i1 · · · iM

]T
,

and

v =
[
v0 v1 · · · vM

]T
.

Let the (M+1)-by-(M+1) matrix Z represent mutual impedances between array

elements. Due to the symmetric antenna structure, the entries of Z have the

relation Zi,j = Zj,i [40]. The values of mutual impedances are determined by

the antenna configuration (i.e., the size and location of each array element). The

values can be calculated by the analytical formulas given in [41] or the Numerical
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Electromagnetic Code (NEC) [21]. The analytical formulas suited to dipoles are

given in Appendix A. The relation between induced currents and voltages on

elements of the ESPAR array is represented using an equivalent mutual impedance

matrix model, of the following form

v = Zi. (2.1)

Assume that the driving RF port transmits signal voltage vs (with amplitude and

phase) at the active element. Thus, the excited voltages on the active element and

the parasitic elements are represented as

v0 = vs − Zsi0, (2.2a)

vm = −jxmim,m ∈ {1, · · · ,M}. (2.2b)

Define a diagonal loading matrix as

X = diag([Zs, jx̂]). (2.3)

Let a (M + 1)-dimensional vector u0 = [1, 0, · · · , 0]T be a selection vector. Then

(2.2) can be rewritten in the vector version as

v = vsu0 −Xi. (2.4)

Combine (2.1) and (2.4), then one has

Zi = vsu0 −Xi. (2.5)

After a simple mathematical manipulation, we can obtain an expression of the

current vector as a function of reactance loads:

i = vs(Z +X)−1u0 = vsw, (2.6)

wherew = (Z+X)−1u0 is the equivalent weight vector, since it plays a role similar

18



Chapter 2. Single-Radio Parasitic Antennas and Adaptive Beamforming

to that of the weight vector in conventional adaptive arrays. The far-field radiation

pattern is a superposition of current signals on all elements in an antenna array

[42]. Throughout this work, we focus on the analysis of the 2-dimensional plane

through the antenna plane, such that the directions of signals may be described

by the azimuth angle θ. Consequently, the beampattern of the ESPAR array is

given as

B(θ) = iTa(θ), (2.7)

where a(θ) is the steering vector defined by the array geometry, of the form

a(θ) =
[
1 e−j

2πd
λ

cos(θ−φ1) · · · e−j
2πd
λ

cos(θ−φM )

]T
. (2.8)

From (2.6) and (2.7), we observe that the beampattern expression is a function of

reactance loads at parasitic elements (xm,m ∈ {1, · · · ,M}).

The beampattern expression in (2.7) is derived under the assumption that the

ESPAR antenna works as a transmitter. According to the theorem of reciprocity

(the radiation pattern of an antenna in the transmit-mode is the same as that

in the receive-mode), formulation (2.7) is also available for an ESPAR antenna

working as a receiver; however, in the receive-mode, the current vector i should

be replaced by the equivalent weight vector w [43], i.e., B(θ) = wTa(θ).

In an ESPAR array, mismatching between the RF port impedance Zs and the

input impedance (Zin) seen by the active element, determines the efficiency of the

antenna system. The input impedance and related efficiency can be respectively

calculated as [44, 45]

Zin =
1

i0
uT0Zi, (2.9)

η = 1−
[
Zin − Z∗s
Zin + Zs

]
. (2.10)
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2.2 Adaptive Beamforming Algorithms

2.2.1 Overview

One important application of a smart antenna system is co-channel interference

cancellation on the premise that the desired signal and interferences arrive from

different directions. This involves adaptively designing a beampattern steering to

the desired direction, while placing nulls in the directions of interference. Many re-

searchers have proposed sophisticated beamforming algorithms based on the DBF

array [6]. In DBF arrays, signals impinging on individual elements are sampled

and stored; then, the optimal output of the beamformer is the sum of appropri-

ately weighted signals derived from individual elements. The weight coefficient in

each element branch is independently controlled. The beamformer diagram of a

DBF array is shown in Figure 2.3. Widrow et al. [46] proposed the least mean

square (LMS) algorithm based upon the steepest descent method. The minimum

square error (MSE) algorithm is proposed to obtain the optimized weights by

solving the Wiener filtering problem [6]. Capon [8] developed the MVDR beam-

former by exploiting the second-order statistics of array outputs, which usually

provides an improvement in the output SINR. However, in the DBF array each

RF chain has a low noise amplifier, filter, analog-to-digital converter, etc., prior

to the beamformer, so that power consumption and fabrication cost are increased

with the number of active elements. This causes difficulties with the application

of DBF arrays in small wireless modern terminals.

Nevertheless, the above-mentioned adaptive beamformers are not available for

ESPAR antenna applications. As described in the previous section, the working

principle of the ESPAR is based upon electromagnetic coupling among elements,

and the beampattern is reactively controlled by tuning reactance loads of parasitic

elements. In this context, an ESPAR antenna belongs to the aerial beamforming

(ABF) array, in which signal combining is operated in space rather than in circuits

[39]. The beamformer diagram of the EPSAR antenna is shown as Figure 2.4.

Overall, new adaptive beamforming algorithms for the ESPAR antenna should
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Figure 2.3: Beamformer diagram for DBF arrays.

Figure 2.4: Beamformer diagram for ESPAR arrays.

solve the following problems that arise from the unique configuration of the ESPAR

antenna:

• Signals impinging on parasitic elements cannot be observed and processed,

but they are combined and collected at the sole active element due to strong

mutual coupling.

• There is a non-linear relation between the beampattern and reactance loads

(see (2.6) and (2.7)).
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• To the best of our knowledge, there is no closed-form solution that returns

reactance loading with pure imaginary components (i.e., zero real compo-

nents).

Early on in the research, beampattern design for the ESPAR antenna is achieved

through exhaustive search of parasitic reactance loadings at the design stage.

For example, in the study of employment of the ESPAR antenna to build the

beamspace-MIMO transmitter [47, 48], where signals are mapped onto orthogonal

basis patterns, the desired transmitted beampattern (i.e., a linear combination of

basis patterns weighted by signals) is obtained by exhaustive search of reactance

loads. However, this method is only suitable at the design stage, rather than

for real-time applications. In order to achieve an efficient adaptive beamform-

ing solution for real-time applications, fast beampattern design strategies have to

be developed for the ESPAR antenna. Cheng et al. [49] propose an adaptive

beamforming for ESPAR antenna by sequentially perturbed values of reactance

loadings based on the steepest gradient theory. In [40, 50], the authors propose

stochastic based algorithms, where the objective function is the maximization of

the cross-correlation coefficient (CCC) between the reference signal (or the desired

beampattern) and the received signal (or the achievable beampattern). However,

disadvantages of these beamforming methods are that they easily become trapped

in the local minima/maxima with a poor initial guess, and require a large number

of iterations. The genetic algorithm (GA) is another option to calculate neces-

sary parasitic reactance loads for a desired beampattern [51, 52]. The benefits

of the GA-based method are that it avoids becoming trapped in the local mini-

ma/maxima and the requirement of gradient calculation; however, this is a slow-

convergence method. Wilcox et al. [45] developed a fast convergence beampattern

design strategy that iterates between a convex problem and a simple projection of

parasitic reactance loads, using knowledge of directions of desired signals as well

as interferers.
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2.2.2 Reactance-Domain Technique

Here, we first describe a signal processing method that is generally used in the

single-radio antenna array. It is known that, in array signal processing, the corre-

lation matrix of received signal is commonly exploited to perform adaptive beam-

forming and AoA estimation. In the DBF array, the correlated matrix is obtained

by measuring signals induced on individual elements. For the ESPAR antenna,

the problem is how to obtain a correlation matrix using a single output port.

To address this problem, the reactance-domain (RD) technique [43, 53, 54] is

introduced to obtain a correlation matrix for the EPSAR antenna. Indeed, this

technique is similar to the beamspace signal processing in multi-active antenna

arrays [6]. The foundation of the RD technique is the feature that an (M + 1)-

element ESPAR antenna possesses M variable reactances. We first use a set of

reactance values and then obtain a measurement from the single output. We can

always change the loaded reactance values and then obtain different measurements

from the single output port with the same transmitted signal. Therefore, the

obtained measurements are correlated across the different sets of reactance values.

We consider the propagation environment with the line-of-sight (LOS) path, ig-

noring the multipath components. Assume that there are P far-field narrow-

band signals impinging on the ESPAR array. Let rm(t),m = 1, · · · ,M + 1 de-

note the response of the m-th element of the antenna to incident signals, and let

r(t) ∈ C(M+1)×1 be the column vector of the array response. Accordingly, the

column vector r(t) is expressed as [46]

r(t) =
P∑
p=1

a(θp)sp(t) + z(t), (2.11)

where sp(t) is the p-th signal from the AoA θp, p ∈ {1, · · · , P}, and z(t) ∼

CN (0, σ2
z) is the additive noise with random variables of zero-mean and variance

σ2
z .
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Since the outputs of parasitic elements cannot be observed, instead they are elec-

tronically combined with each other and the active element. According to (2.7),

the output of the ESPAR array is collected from the single active port, taking the

following form

y(t) = wTr(t) + z(t)

=
P∑
p=1

wTa(θp)sp(t) + z(t)

= wT
[
a(θ1) · · · a(θP )

]
︸ ︷︷ ︸

A


s1(t)

...

sP (t)

+ z(t).

(2.12)

Consider that N sets of reactance loads x̂1, · · · , x̂N (thus N beampatterns defined

by w1, · · · ,wN) are used in the RD technique. Thus, one obtains measurements

y1(t1), · · · , yN(tN), expressed as

y1(t1) =
P∑
p=1

wT
1 a(θp)sp(t1) + z(t1)

...

yN(tN) =
P∑
p=1

wT
Na(θp)sp(tN) + z(tN).

(2.13)

There is a condition on the source signals in the RD technique that, during the

sampling time, the impinging signals are required to be constant: i.e., sp(t1) =

sp(t2) = · · · = sp(tN),∀p. It is clear that, if this condition does not hold, the

obtained signals are not correlated across the N different sets of reactance loads.

In general, there two methods to implement the RD technique. In [43], the RD

technique is implemented by transmitting the same information data as many

times as the number of different reactance sets used. In this case, time indices

t1, · · · , tN in (2.13) represent N sampling periods. The problem of such a repeating

transmission method is that it decreases the transmission rate. However, it is

still feasible in applications such as terminal localization or a handheld direction
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finder [53]. Another method to implement the RD technique is oversampling

signals with a proper rate over N directional beampatterns: that is, the ESPAR

antenna fast switches N beampatterns during a sampling period. In this case,

time indices t1, · · · , tN in (2.13) represent the sub-periods of a sampling time.

However, unlike oversampling applied in digital communications, this oversampling

technique should be considered as spatio-temporal oversampling. More work is

needed to clarify the implementation of the RD technique based on oversampling

strategy. For example, the SNR penalty resulting from oversampling, due to the

noise, should be considered [55]. Therefore, unless otherwise indicated, we adopt

the repeating transmission method in the RD technique.

With the constant signal condition, we have the N -dimensional output vector y,

expressed as follows (the time index is dropped to simplify discussion):

y =


y1

...

yN

 =


wT

1

...

wT
N

[a(θ1) · · · a(θP )
]

s1

...

sP

+


z1

...

zN


= W TAs+ z,

(2.14)

where W T = [w1, · · · ,wN ]T is called the RF equivalent weight matrix or RD

weight matrix.

Let us denote ard(θ) = W Ta(θ) as the modified steering vector in the reactance

domain. Thus, (2.14) can be rewritten as

y =
[
ard(θ1) · · · ard(θP )

]
︸ ︷︷ ︸

Ard

s+ z. (2.15)

The obtained measurements are similar to the signals sampled from individual

elements in the conventional DBF array.

Assuming that noises are not correlated across beampatterns and are also not

correlated to source signals, the correlation matrix, obtained by the RD technique
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with the single-port ESPAR array, is expressed by

Ryy = E{yyH}. (2.16)

2.2.3 MVDR Beamforming

In this part, we develop the MVDR beamforming algorithm (also known as Capon’s

beamforming) [8] for the ESPAR antenna. MVDR beamforming is widely used in

the DBF arrays, and is designed to minimize the power from interference while

maintaining the desired gain at the direction of interest. The direction of interest

is known.

1) MVDR for DBF Arrays

Consider a DBF array with N elements (e.g., a ULA or a uniform circular ar-

ray (UCA)). Suppose that there are P incident signals sp(t) from AoAs θp, p ∈

{1, · · · , P}. Thus, outputs of the array are denoted by an N -dimensional vector

ydbf (t), represented as

ydbf (t) =
[
a(θ1) · · · a(θP )

]
︸ ︷︷ ︸

A

s(t) + z(t), (2.17)

where a(θ) is the array geometry defined steering vector, and z(t) ∈ CN×1 are

noises corrupted on elements.

The output of a beamformer is the sum of properly weighted outputs of elements.

Mathematically, this is

ỹ(t) = ṽHydbf (t), (2.18)

where ṽ ∈ CN×1 is the weight vector of the beamformer.

In the MVDR algorithm, the weights ṽ are optimized by minimizing the power

from interference under the constraint of maintaining the distortionless response to

the direction of interest. Let R = E{ydbf (t)yHdbf (t)} denote the correlation matrix

of the array outputs. The optimization problem is formulated as the following
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linearly constrained quadratic problem [8]

min
ṽ

ṽHRṽ,

s.t. ṽHa(θd) = 1,

(2.19)

where θd is the desired direction. The closed-form solution to (2.18) is [8]

ṽmv =
R−1a(θd)

aH(θd)R
−1a(θd)

. (2.20)

2) MVDR for ESPAR Arrays

However, the MVDR beamforming algorithm described above cannot be directly

applied to the ESPAR array, as we mentioned previously. First, we need to gener-

ate the spatial correlation matrix by the ESPAR array. This can be done by the

RD technique presented in the last section. Specifically, we use N sets of reac-

tance loads {x̂1, · · · , x̂N} in the RD technique. Thus, we obtain an N -dimensional

measurement vector y, given in (2.15).

In practice, we have only finite duration of sensing time to obtain measurements to

feed back for weight adjusting. Therefore, we use estimate correlated matrix R̂ to

replace the ideal correlated matrix R. We collect L N -dimensional measurement

vectors Y = [y1,y2, · · · ,yL] through L blocks of times, and thus a total of L×N

time slots are required. Then the estimate spatial correlated matrix obtained by

the ESPAR antenna is expressed as

R̂ =
1

L

L∑
l=1

yly
H
l . (2.21)

In the N -element DBF array, the beampattern is shaped by applying appropriate

weights to outputs of N elements. Similarly, we consider applying appropriate

weights ṽ ∈ CN×1 to outputs of N beampatterns of the ESPAR array. Since

the beampattern of an ESPAR antenna is a function of the loading matrix (see

Equations (2.3) and (2.6) to (2.8)), the beamforming is achieved by optimizing
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the loading matrix X for a desired equivalent weight vector w. However, this

beamforming problem is a nonlinear problem due to the inversion in the Equation

(2.6) and also the requirement of pure imaginary values of the reactance loads

[40, 49]. In order to achieve the MVDR beamformer in the ESPAR array, we

introduce a weight vector ṽ (applied to the outputs of N different beams) as

the intermediate variable. Indeed, the final goal of the beamforming is to obtain

a desired equivalent weight vector w by optimizing X, where the intermediate

variable ṽ is exploited to perform the function of the MVDR beamformer. The

relation between ṽ and X is ṽHW T = wT = [(Z +X)−1]T . Thus, the MVDR

beamforming in an ESPAR array is to optimize the loading matrix X by solving

the following problem:

min
X ,ṽ

ṽHR̂ṽ

s.t. ṽHard(θd) = 1,

ṽHW T = [(Z +W )−1u0]T .

(2.22)

The optimization problem (2.22) is non-convex.

Since it is difficult to directly solve problem (2.22) for X. Thus, we first consider

a sub-optimal problem: i.e., optimize weight vector ṽ ∈ CN×1 by solving the

following problem

min
ṽ

ṽHR̂ṽ

s.t. ṽHard(θd) = 1.

(2.23)

It is clear that problem (2.23) is a linear problem. Suppose the solution to (2.23)

is ṽopt, then the desired beampattern of the ESPAR is given as Bd(θ) = ṽHoptard(θ).

That is, one has the optimized equivalent weight vector wT
opt = ṽHoptW

T . Then, we

will find calculate a necessary loading matrix X for the designed weight equivalent

vector wopt (thus a designed beampattern).

Now, the issue is how to achieve the desired beampattern by solving the problem

(2.23) through tuning the reactance loads of parasitic elements. Again, there is no

known closed-form solution to (2.23), which gives reactance loads with zero real
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parts. Therefore, we resort to a strategy iterating between a convex problem and

a simple projection of reactance loads, developed in [45], since the optimization

problem (2.23) can be reformulated as a convex problem. In particular, the prob-

lem (2.13) will be reformulated as an second-order cone programming (SOCP)

problem. According to the convex optimization theory [56], an SOCP problem

is with the form that the objective function is a linear combination of optimiz-

ing variables, while the constraints are either second-order-cone constraints or

linear equality (inequality) constraints. However, the objective function in prob-

lem (2.23) is quadratic, which does not satisfy the SOCP problem. Moreover,

in the ESPAR beamforming related to optimization of reactance loads, we will

show later that the optimizing beampattern has to be constrained to a feasible

set, thereby leading to difficulty in constraint of the unity distortionless response.

Therefore, both the objective function and constraint in problem (2.23) have to

be reformulated as follows.

We first reformulate the problem (2.23) as an SOCP problem. Let R̂ = Û
H
Û

be the Cholesky decomposition of the estimate correlated matrix. We introduce

a new scalar non-negative variable µ1; then the objective function in (2.23) is

rewritten as a constraint ṽHR̂ṽ = ‖Û ṽ‖2 ≤ µ1. And the distortionless response

constraint in (2.23) is rewritten as |ṽHard(θd)−1|2 ≤ µ2, where µ2 is an introduced

non-negative variable. Then, we have the following SOCP problem by modifying

(2.23)

min
µ1,µ2,ṽ

β1µ1 + β2µ2,

s.t. ‖Û ṽ‖2 ≤ µ1,

|ṽHard(θd)− 1|2 ≤ µ2,

(2.24)

where β1, β2 are auxiliary constants, and µ1, µ2 are the weights defining the Pareto-

optimal solution: that is, the weights define the importance of minimization of

output power and the distortionless response to the desired direction. In particular,

the values of constraints β1,β2 are chosen depending on the applications. That is,

when β1 is chosen to be larger than β2, the optimization problem concerns more

about the nulls; on the contrary, when β2 is larger then β1, optimization concerns
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more about high beampattern gain in the direction of interest.

Suppose the solution to (2.24) is ṽopt, and then the corresponding optimized equiv-

alent weight vector wopt can be obtained. Now the problem is how to find the

necessary reactance loads of the parasitic elements for wopt. As we emphasized,

the inversion in Equation (2.6) leads to a non-linear one-to-one mapping between

X and w. Rearranging (2.6), one has the mapping

Zw +Xw = u0. (2.25)

Define L as the set of w corresponding to feasible loadings: i.e., X is of the form

given in (2.3) (all diagonal elements are pure imaginary components, except the

first one). It is easy to verify that generally wopt 6∈ L, by using wopt as the input

to (2.25). Therefore, it is necessary to approximate wopt by a point in L. Define

PL{·} as an operator projectingwopt to L, which simply gets rid of the real parts of

the diagonal elements in Xopt calculated by (2.25), except the first one. However,

the use of PL{·} may generate a poor approximation to the desired beampattern

defined by wopt. Thus, we consider introducing constraints to make sure that the

optimizing solutions wopt are “close” to the feasible set L.

The first diagonal element of X is the loading impedance to the active element,

and we constrain it to a constant Zs. According to (2.25), this can be done by

using the following equality constraint:

[Z(ṽHW T )T ](1) + Zs[(ṽ
HW T )T ](1) = 1, (2.26)

where [·](1) represents the first element of a vector. Let Z̄L be a matrix obtained

by removing the first row of (Z +X). Given a feasible loading X that has the

corresponding w ∈ L, we can maintain the optimizing equivalent weight vector

close to the feasible point defined by X, by using the Euclidean distance metric

‖Z̄L(ṽHW T )T‖2 ≤ ε (2.27)
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where ε > 0 is some small constant, defining the distance between the w being

optimized and a feasible point in L. With these constraints, the use of PL{·}

will not destroy the characteristics of the beampattern optimized by the MVDR

algorithm, as w is close to L.

Including constraints (2.26) and (2.27) in optimization problem (2.23), we have

the final MVDR optimization problem modified for the ESPAR arrays [57]:

min
µ1,µ2,ṽ

β1µ1 + β2µ2, (2.28a)

s.t. ‖Û ṽ‖2 ≤ µ1, (2.28b)

|ṽHard(θd)− 1|2 ≤ µ2, (2.28c)

‖Z̄L(ṽHW T )T‖2 ≤ ε, (2.28d)

[Z(ṽHW T )T ](1) + Zs[(ṽ
HW T )T ](1) = 1. (2.28e)

It is obvious that (2.28) is still an SOCP problem, that can be effectively solved

by the interior-point methods [56].

The iterative beamforming strategy is described as follows. First select an initial

value X0. It is used as the input to the SOCP problem (2.28) to optimize v.

Then obtain wopt, and a corresponding X?
1 is calculated by (2.25). The projected

solution X1 is achieved by getting rid of real parts of diagonal elements of X?
1

except the first element which is constrained to a constant Zs due to (2.28e). Again,

the reactance load of each parasitic element should be restricted in a practical range

(e.g., [−300Ω, 300Ω]). The above procedure is repeated with updated values of X

until convergence.

In [58], it is demonstrated that the presence of the desired signal during the sig-

nal measurements under limited sampling numbers may lead to significant SINR

degradation of the MVDR beamformer. The impact on our proposed method will

be shown in the simulation results later. To overcome this problem, we consider

replacing the signal estimate correlation matrix R̂ by the interference-plus-noise

estimate correlation matrix R̂i+n. This may be simply achieved when the desired

user is silent, but it requires cooperation among users. Another method is using
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a pilot-assisted algorithm, like the one developed in [58], to subtract the desired

signal from measured signals before computing the estimate spatial correlated ma-

trix.

2.2.4 Genetic Algorithm based Strategy

Although the GA-based beamforming method is a slow convergence solution, so

that it might be impractical in real-time applications, it is still worth studying

for the ESPAR array, since the greatest advantage of GA is that it can avoid

becoming trapped in the local minima/maxima. Therefore, it outperforms some

stochastic based beamforming algorithms. In this section, we present the GA for

calculation of parasitic reactance loads to achieve the desired beampattern, which

will be exploited for interference mitigation schemes later.

The GAs, as one kind of “global” optimization technique, have been successfully

applied to many electromagnetic design problems which may not be readily han-

dled by other traditional optimization methods. For example, the GAs have been

used for antenna design in [59–61], antenna pattern synthesization [62], and also

calculation of reactance loads for the ESPAR array [51, 52].

In the GA-based beamforming method for the ESPAR array, variables to be opti-

mized are parasitic reactance loads xm,m ∈ {1, · · · ,M}. In this work, we consider

the binary-encoded GA, and thus a reactance load is encoded into a sequence of

binary bits that constitutes a gene – the basic building block of the GA. The value

of a reactance load is constrained in a practical range [−xlim, xlim] (e.g., xlim = 300

Ω [40]), which can be supported by the varactor control circuit. Let ∆x be the

searching resolution of a reactance value in the available range. Given the search-

ing range and resolution, we can obtain the quantization levels Nlev. Therefore,

a reactance load is encoded into Ng = round(log2(Nlev)) bits (i.e., length of a

gene). The set of M genes is called a chromosome with the length of M ×Ng bits.

Each chromosome is associated with an objective function, assigning “fitness” to

that chromosome. The objective function for each chromosome is maximization of
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the CCC between the desired beampattern denoted by Bd(θ) and an beampattern

achievable at the ESPAR denoted by Ba(θ): that is,

max f(x1, · · · , xM) =
|
∫ 2π

0
B∗d(θ)Ba(θ)dθ|√∫ 2π

0
|Bd(θ)|2dθ ·

∫ 2π

0
|Ba(θ)|2dθ

. (2.29)

In addition, if the reference signal r(t) is available, the objective function can be

modelled as the CCC between the reference signal and the received signal y(t)

(expressed in (2.12)) at the sole RF port, given by

max f(x1, · · · , xM) =
E{y(t)r∗(t)}√

E{y(t)y∗(t)}E{r(t)r∗(t)}
. (2.30)

The GA starts with randomly generating a large number (Nch) of chromosomes

which are referred to as the population of the first generation. An example of a

binary-encoded chromosome is of the form:

Chromosome = 101 · · · 1︸ ︷︷ ︸
x1

001 · · · 1︸ ︷︷ ︸
x2

· · · 110 · · · 0︸ ︷︷ ︸
xM

.

Each chromosome is evaluated according to the cost function (2.29) or (2.30) and

assigned the corresponding fitness. As the chromosomes are given as binary strings,

they have to be decoded first, and then the decoded reactance values xm are used

to calculate the achievable beampattern Ba(θ) or the received signal y(t), which

is the input to the objective functions. According to the fitness values assigned

to chromosomes, an appropriate portion of chromosomes are selected as “parents”

to reproduce offspring. To select “parents”, we adopt the roulette wheel selection

scheme [63], which is widely used in the GAs. In the roulette wheel selection

scheme, the selection probability of the i-th chromosome is represented as

Pri =
fi∑Nch
i=1 fi

, (2.31)

where fi is the fitness value assigned to the i-th chromosome. The selected chro-

mosomes are then paired to operate crossover to reproduce two offspring. Consider
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Figure 2.5: Crossover procedure.

the one-point crossover [60], in which one crossover point is randomly generated

in the paired parental chromosomes dividing the binary strings into two parts:

child 1 is given as the combination of the 1st part of parent 1 and the 2nd part of

parent 2, while child 2 is the combination of the rest of the parts from the parents.

The one-point crossover procedure is shown in Figure 2.5. In this work, we also

use Elitism to enable the fittest chromosomes to be copied to the next generation.

In particular, the Elitism means that a number of chromosomes with high fitness

level are kept and copied to the offspring.

Finally, the mutation is performed, where a small percentage of bits is randomly

selected from the list of reproduced chromosomes and they are changed from “1s”

to “0s” or vice versa. The mutation helps to increase the GA’s searching outside

the current region of parameter space. In general, the mutation level is set to 1% of

the total Nch×Ng at each iteration. It should be noted that, at the final iteration,

no mutation is performed. Once the mutation has been accomplished, the new list

of chromosomes is the new generation. The procedure described above is repeated

until convergence, or until the pre-determined maximum number of generations

(iterations) has been exceeded.

2.3 Switched-Beam ESPAR Antennas

In addition to adaptive beamforming, the ESPAR antenna provides a solution for

beam switching. Although it may not be an optimal solution, beam switching
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Figure 2.6: Example of sector beampatterns.

is sufficient in many applications (this will be described in later chapters). The

switched-beam ESPAR antenna is easier to implement, due to its low complexity.

Specifically, the reactance loads of parasitic elements can be optimized to maxi-

mize the beam gain in a look direction (e.g., 0◦), which can be achieved by using

the beamforming methods previously described. Due to the symmetric antenna

structure, circularly shifting elements of the optimal reactance loads rotates the

beampattern to different directions. With this method, an (M + 1)-element ES-

PAR can achieve M directional beampatterns, dividing its whole angle space into

M angular sectors: these are referred to as the sector beampatterns (as illustrated

in Figure 2.6). Each angular sector is accessed by the corresponding beampattern.

Directional sector beampatterns provide an SNR gain for reception and transmis-

sion of directional signals, the spatial filtering to suppress co-channel interference

and also spatial diversity, by scanning the angle space through each of the sector

beampatterns.
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2.4 Simulation Results

In this section, we show some representative results for performance evaluation

of the proposed beamforming algorithms. The simulated ESPAR antenna has

M + 1 = 7 half-wavelength thin electrical dipoles. The inter-element spacing is

set to d = λ/4. The mutual impedance matrix Z (calculated using the analytical

formulas given in Appendix A) has the following form:

Z =



Z00 Z01 Z01 Z01 Z01 Z01 Z01

Z01 Z00 Z01 Z02 Z03 Z02 Z01

Z01 Z01 Z00 Z01 Z02 Z03 Z02

Z01 Z02 Z01 Z00 Z01 Z02 Z03

Z01 Z03 Z02 Z01 Z00 Z01 Z02

Z01 Z02 Z03 Z02 Z01 Z00 Z01

Z01 Z01 Z02 Z03 Z02 Z01 Z00


where Z00 = 73.07 + j42.5, Z01 = 40.75 − j28.32, Z02 = −0.66 − j35.93, Z03 =

−12.52 − j29.9. In this work, we assume the loading impedance of the LNA is

matched to the input impedance of the ESPAR array: i.e., Zs = Zin, so that the

antenna efficiency can be considered as 100%.

2.4.1 MVDR Beamforming

In this section, we evaluate the performance of the MVDR beamforming algorithm.

Here, we use N = 7 sets of reactance loads to realize signal sampling over 7 beams

in the ESPAR array (the RD technique). As discussed in Section 2.2.3, in order to

get L = 100 measurement vectors stored in the matrix Y , a total of L×N = 700

sampling periods are required in the MVDR algorithm for the ESPAR array. The

SOCP problem (2.23) was solved using YALMIP [64] as the modelling tool and

the free optimization software SeDuMi [65].

In simulations, we first consider performance comparison in three scenarios: 1)

desired signal is from 0◦ and one interference is from 120◦; 2) desired signal is from
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90◦ and one interference is from 120◦; 3) the desired and interfering directions

are set as the same as in scenario 2, but here the measurements include only

interference and noise (R̂i+n). That is, the desired signal is subtracted form the

measurements, similar to the formulation in minimizing output energy as proposed

in [58]. Here, SNR and SIR (signal-to-interference ratio) are set to 10 dB and 0

dB, respectively.

Figure 2.7 shows that the designed beampatterns place nulls at the interfering

directions and steer to the desired direction; however, when the angular separa-

tion between the desired signal and interference becomes small (scenario 2), the

null depth is decreased by 8 dB compared to scenario 1. With the same angu-

lar separation, the performance of scenario 3 is improved compared to that of

scenario 2, where we can observe a 3 dB increment in the null depth, because

the desired signal is not present in signal measurements. Figure 2.8 shows the

convergence performance of the ESPAR-based MVDR beamforming. The results

of three scenarios are all converged within 20 iterations. Further, this illustrates

again that subtracting the desired signal from measurements leads to improvement

in beamforming performance when interference is close to the desired source. In

the MVDR algorithm, there is a projection procedure, and we use a Euclidean

metric (2.27) to make sure that the projection does not destroy the characteris-

tics of the optimized beampattern. To illustrate this, we show the projected and

optimized beampatterns in scenario 1 (ε = 0.1) in Figure 2.9. A small difference

between the two beampatterns is observed. The same results are also achievable

for scenarios 2 and 3. In these simulated beampatterns, the maximum gain does

not show 0dB (unity distortionless response in the direction of interest) like a con-

ventional MVDR beamformer in DFB arrays, because in the optimization problem

(2.28) ṽ instead of w is maintained to approach to unity.

Next, we examine the performance of the MVDR algorithm at the presence of two

interferers. The SNR and SIR are also set to 10 dB and 0 dB, respectively. The

transmit powers of two interfering signals are set to be equal to half that of the

desired signal. Moreover, in order to improve the beamforming performance, we

assume that the desired signal has been subtracted from the signal measurements.
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Figure 2.10 depicts two designed beampatterns, where the interfering signals are

from 90◦ and 270◦ for the first design, and the interfering signals are from 180◦

and 270◦ for the second design. Both beampatterns are designed with nulls placed

towards interferers. Up to a -20 dB null depth ratio is achievable.
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Figure 2.7: MVDR beamforming results under three scenarios: SNR=10 dB,
SIR=0 dB.
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Figure 2.9: Difference between the projected and optimized beampatterns
using a Euclidean metric (ε = 0.1).
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(b) Interferers at 180◦ and 270◦

Figure 2.10: MVDR beamforming results at the presence of two interferers.
SIR=0 dB, SNR=10 dB, 20 iterations.
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2.4.2 GA-based Beamforming

We will now evaluate performance of the GA-based beampattern design method.

Some parameters for simulations are summarized in Table 2.1.

Table 2.1: GAs Parameters

Parameter Value

Number of genes 6
Bits per gene 12
Reactance limit xlim 300(Ω)
Population size 100
Number of generations 100
Crossover probability 0.7
Mutation probability 0.1

We first study the case using a reference signal from the desired direction 0◦.

Consider three scenarios, where one interfering signal is from 90◦, 180◦ and 330◦,

respectively. The SNR and SIR are set to 10 dB and 0 dB, respectively. The length

of the data sample block is set to 50 bits. The cost function for each chromosome is

calculated by (2.30). In Figure 2.11, we see that the designed beampatterns place

one deep null at 90◦, 180◦ and 330◦, and all of them steer to the desired direction

at 0◦. However, we also observe that the output SINR degrades when the desired

signal is close to the interference (see Figure 2.11(c)). It is worth emphasizing that

this problem is shown in the GA-based and MVDR algorithms, due to the antenna

property. To explain this, we calculate the spatial correlation coefficient between

ESPAR’s steering vectors corresponding to the desired direction θd = 0◦ and the

varying interfering directions θi ∈ [0◦, 360◦]. The results are plotted in Figure 2.12,

where it is observed that the value of the spatial correlation coefficient increases

when the interferer becomes closer to the desired signal. It is demonstrated that

the lower the spatial correlation between the desired signal and interference, the

better the nulling performance of a designed beampattern [40].

The beamforming performance is also evaluated at the presence of two interferers.

Consider two scenarios: 1) interference from 90◦ and 270◦; 2) interference from

180◦ and 270◦. The desired direction is kept at 0◦ for both scenarios. The transmit
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(c) Interference at 330◦

Figure 2.11: GA-based beamforming simulation results. SNR=10 dB, SIR=0
dB.
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Figure 2.12: Spatial correlation coefficients between ESPAR steering vectors
corresponding to desired direction (0◦) and varying interfering direction (from

0◦ to 360◦).

power of each interfering signal is assumed to be equal to half that of the desired

signal. SNR is set to 10 dB, and SIR is set to 0 dB. Figure 2.13 shows that the

output beampatterns for both scenarios have good nulling performance towards

two interfering directions.

Finally, we examine the GA-based beamforming algorithm with the desired beam-

pattern available. For example, take the desired beampattern as Bd(θ) = 1 −

cos(θ). The cost function (2.29) is used. In Figure 2.14 the desired and simulated

beampatterns are plotted, where we can observe that the simulated beampattern

approximates to the desired one. It should be pointed out that the performance

of the GA method approaching a desired beampattern cannot always be guaran-

teed. This depends on the shape of the desired beampattern. In other words, we

cannot design an ESPAR beampattern to approach an arbitrary pattern shape:

that is a very strict requirement. However, we can still exploit the GA method to

design an ESPAR beampattern to approximate the desired beampattern as much

as possible, which may still be sufficient in some applications.
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Figure 2.13: Simulation results of GA-based beamforming at the presence of
two interferers. SIR=0 dB, SNR= 10 dB.
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Figure 2.14: Simulated beampatterns compared to the desired beampatttern.

2.5 Summary

In this chapter, we have shown the adaptive beamforming methods for an ESPAR

antenna, which is a smart antenna, uses only a single RF chain and several parasitic

elements coupled to the sole active element. Unlike a DBF array, its beampattern is

controlled by electronically tuning reactance loads connected to parasitic elements.

• In order to obtain a correlation matrix of signals with the single-active

antenna system, reactance-domain signal processing rather than element-

domain signal processing is exploited. Specifically, a fixed number of beam-

patterns defined by different sets of reactance loads connected to parasitic

elements are used. Signals derived by individual beampatterns are then ma-

nipulated to achieve a specific goal.

• The MVDR beamfomer is modified as an iterative algorithm suited to the

ESPAR antenna. In particular, the beampattern design strategy iterates

between a convex problem and a simple projector. The optimization prob-

lem, minimizing power from interference and maintaining the distortionless

response in the direction of interest, is reformulated as a SOCP problem,

using a Euclidean metric to avoid poor approximation of the optimized
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beampattern. The simulations verified its fast convergence and feasibility

in beampattern design.

• The feasibility of the GA as an adaptive beamforming for the ESPAR an-

tenna, using a reference signal or knowledge of a desired beampattern, has

also been verified.

• Finally, it has been presented that the ESPAR antenna is able to work as

a switched-beam antenna by circular permutations of a set of predesigned

reactance loads, thereby rotating beampattern to different angular sectors.

Due to the simplicity of the switched-beam antenna, it will also be adopted

in the wireless communication techniques described later.
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ESPAR-based Blind Interference

Alignment

3.1 Introduction

Recently, an emerging technique, termed interference alignment (IA), has gained

significant attention as a promising solution for interference management, thereby

improving spectrum efficiency in wireless communications. The central concept

of IA is the signal design that casts interference in a reduced subspace (time, fre-

quency, space, etc.), while remaining separate from the desired signal [66]. Based

on feasibility conditions, various transmit and receive strategies [66–70] have been

proposed for IA to achieve the maximum multiplexing gain at each receiver. Al-

though substantial capacity benefits have been demonstrated, most of these IA

schemes assume perfect, sometimes global, knowledge of the CSI at transmitters

(CSIT), prohibiting them from practical implementation. In [71, 72], the authors

claim that, without channel knowledge, DoFs of many networks, especially with

independent and identical distributed (i.i.d) fading models, will collapse to that

simply using orthogonal time-division multiple accessing (TDMA).
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To achieve a practical IA scheme, blind interference alignment (BIA) has been

introduced by Jafar [73], where “blind” means no knowledge of CSIT. Jafar stud-

ied five network communication problems – MISO BC (broadcast channel), X

channel, the M × 2 X channel, two-user MIMO interference channel and K-user

interference channel – to demonstrate that the transmitters can exploit only the

knowledge of channel coherence intervals instead of CSIT to align interference in

multi-user settings. Gou et al. [27] then extended BIA for a general K-user Nt×1

MISO BC, where Nt is the number of transmit antennas. A heterogeneous block

fading model is created with the use of a reconfigurable antenna at the receiv-

ing end to switch between Nt antenna models in a pre-determined fashion. A

reconfigurable antenna is an antenna capable of dynamically changing its antenna

modes, e.g., frequency, polarization, and beampattern, via advanced technologies

such as micro-electromechanical systems (MEMS) switches. Frequency switching

will increase the necessary frequency band, and polarization switching may be only

suitable for communication systems that are insensitive to transmitter and receiver

orientations (e.g., satellites). In this sense, beampattern switching is an easier way

to implement BIA. For many applications, a reconfigurable antenna with a single-

RF chain is more suitable, due to the space, power and cost constraints on modern

wireless terminals. A normalized DoF of NtK
Nt+K−1

is shown to be achievable in this

BIA system, with only finite symbol extensions and no channel knowledge at the

receiver to null the interference.

This chapter is devoted to the employment of the ESPAR antenna as a beam

switching solution for the practical implementation of BIA [27], which aligns inter-

user interference into a reduced subspace without CSIT in the multi-user MISO

BC. In Section 3.3 we review the original BIA scheme, where the main idea is

related to building the Super Symbol1 structure. In Section 3.4, we present the key

point of our work: the ESPAR beamforming method suited to the BIA application.

It is noted that Nt > 1 different beampatterns are required to be designed for one

channel realization use. Indeed, BIA has its own intrinsic problem, i.e., noise

1The Super Symbol is a symbol extension structure introduced as a transmission unit, that
is defined for each Nt and K [27]. It includes information about the beam-switching manner for
each receiver and the precoding method for the transmitter.
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amplification comes from the interference zero-forcing process. Thus, we also

consider exploiting directional beampatterns of the ESPAR antenna to improve

performance of BIA, by enhancing receive SNR. The greatest advantage of the BIA

is that it reduces CSIT overhead. Finally, we examine the proposed ESPAR-based

BIA scheme in comparison with other CSIT-based techniques (LZFBF), taking

into account the CSI overheads (Section 3.5).

3.2 System Model

Consider the downlink of a K-user Nt × 1 MISO BC, where the transmitter is

equipped with an Nt-element antenna array (e.g., ULA) while each of K receivers

is equipped with a reconfigurable antenna (thus only one RF chain) capable of

switching among at least Nt antenna modes. In this work, an (M + 1)-element

ESPAR antenna is adopted as the reconfigurable antenna, where M ≥ Nt. The

ESPAR antenna is required to be able to switch between Nt different beam-

patterns. Let the set B = {B1, · · · , BNt} store the required beampatterns. A

unique receiver is intended to receive an independent message from the transmit-

ter. The diagram of the system model is shown in Figure 3.1. Let the vector

h[k](Bn) ∈ C1×Nt , k ∈ K = {1, · · · , K}, Bn ∈ B, denote the channel between the

transmitter and receiver k, when the receive ESPAR antenna forms beampattern

Bn.

Figure 3.1: Diagram of the system model.
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The propagation environment is modelled as a parametric physical model con-

sidering the geometry of the scattering environment [74, 75]. Suppose that there

are Nsc paths reflected by Nsc scatterers distributed in the network. Each path

i ∈ {1, · · · , Nsc} connecting the areas of the transmitter and receiver has a single

angle of departure (AoD) θt,i, a single AoA θr,i, and a path gain αi (αi follows

flat Rayleigh fading). Assume that, the ESPAR antenna of receiver k is form-

ing beampattern Bn(θ). According to (2.7), we have the channel vector h[k](Bn)

associated with beampattern Bn, expressed as

h[k](Bn) =
Nsc∑
i=1

αiBn(θr,i)a
H
t (θt,i)

= wT
n Ar(θr)HaA

H
t (θt)︸ ︷︷ ︸

G

,

(3.1)

where Bn(θr,i) represents the n-th beampattern sampled at θr,i, wn is the equiv-

alent weight vector used to form beampattern Bn, at(θ) ∈ CNt×1 is the transmit

steering vector (defined by the geometry of the ULA). Vectors θr and θt store all

paths’ AoAs and AoDs, respectively, and thus Ar(θr) and At(θt) are matrices

with columns of receive steering vectors corresponding to Nsc AoAs and transmit

steering vectors corresponding to Nsc AoDs, respectively. Ha is an Nsc × Nsc

diagonal matrix with complex path gains αi as diagonal entries.

It is worth emphasizing that, in the channel coherence block structures, coherence

times are assumed to be long enough to ensure constant channels across a Super

Symbol [27]: that is, G in (3.1) is assume to be constant across a Super Symbol.

This is a fundamental assumption for the BIA, and we will discuss it later.

Assuming staggered beampattern switching at the receiver in a pre-determined

pattern, at time t, let receiver k switch to beampattern Bn(t), resulting in channel

h[k](Bn(t)). At time t, the received signal at receiver k is

y[k](t) = h[k](Bn(t))s(t) + z[k](t), k ∈ K, Bn(t) ∈ B, (3.2)
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where s(t) ∈ CNt×1 is the transmitted signal vector, z[k] ∼ CN (0, 1) is the addi-

tive white Gaussian noise (AWGN). The input of the channel is subjected to the

average power constraint, i.e., E{‖s(t)‖2} ≤ Pt, where Pt is the total transmit

power. Throughout this chapter, we assume no CSIT. It is noted that, although

the CSI at the receiver (CSIR) is not required in the BIA procedure, perfect CSIR

is assumed primarily in order to be able define the DoFs as the capacity pre-log

[27].

3.3 Review of Blind Interference Alignment

The original BIA scheme developed by Gou et al. [27] exploits finite symbol

extensions, jointly combined with antenna mode switching at the receiving end,

to achieve inter-user interference alignment without CSIT. Here, we first present

the general idea of the BIA scheme via the simplest 2-user 2× 1 MISO BC case.

Since the Super Symbol includes all information about the BIA, we then describe

the construction of the Super Symbol for the system with arbitrary values of K

and Nt. Thus, the staggered beampattern switching manner, precoding matrices

and post-processing methods can be obtained straightforwardly.

3.3.1 Two-User 2× 1 MISO BC

For the 2-user 2 × 1 MISO BC, the transmitter is intended to simultaneously

send two interference-free data streams to each of the two users, denoted by u[k] =

[u
[k]
1 , u

[k]
2 ]T , k = {1, 2}. The Super Symbol is constructed by staggered beampattern

switching (Figure 3.2). We drop the user index from the beampattern notation

for simplicity. We can see that the length of the Super Symbol is three symbol

periods. For the staggered beampattern switching manners for individual users,

user 1 switches to B1 at the 1st and 3rd symbol periods, and switches to B2

at the 2nd symbol period; meanwhile, user 2 switches to B1 at the 1st and 2nd

symbol periods, and switches to B2 at the 3rd symbol period. We would like to
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emphasize that the beampattern is independently designed at each receiver, so

that B
[1]
n 6= B

[2]
n , n ∈ {1, 2}.

Figure 3.2: Super Symbol for the 2-user 2× 1 MISO BC case.

The precoding matrices across the block of three symbol periods for each user are

designed based on the Super Symbol. The precoding matrix for one user is a 6× 2

matrix, storing three 2 × 2 matrices each for one symbol period across the Super

Symbol. For one 2× 2 matrix in the precoding matrix, if its corresponding symbol

belongs to the Alignment Block 2, then it is a 2 × 2 identity matrix I2; otherwise

it is a 2 × 2 zero matrix 02. The resulted precoding matrices for two users can

be found in Figure 3.2. With the precoding matrices, the transmit signal across a

Super Symbol is designed as
s(1)

s(2)

s(3)

 =


I2

I2

02

u[1] +


I2

02

I2

u[2]. (3.3)

From the above transmitted signals, it can been that, at the first time slot, both

users’ symbols are transmitted, and at the second and third time slots only one

user’s symbols are transmitted at each time slot. It is clear that the transmit

power used at the first time slot is twice that used at the second and third time

slots. This is related to large noise amplification, which will be discussed later.

2The Alignment Block is introduced in [27] as a building unit to constitute the Super Symbol.
We will explain it later.
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The transmission strategy jointly coordinates the staggered beampattern switching

at individual receivers. In consequence, the received signals across a Super Symbol

for users 1 and 2 are respectively expressed as
y[1](1)

y[1](2)

y[1](3)

 =


h[1](B1) 0 0

0 h[1](B2) 0

0 0 h[1](B1)



s(1)

s(2)

s(2)

+


z[1](1)

z[1](2)

z[1](3)



=


h[1](B1)

h[1](B2)

0


︸ ︷︷ ︸

rank = 2
desired signal

u[1] +


h[1](B1)

0

h[1](B1)


︸ ︷︷ ︸

rank = 1
interference

u[2] +


z[1](1)

z[1](2)

z[1](3)

 ,
(3.4)


y[2](1)

y[2](2)

y[2](3)

 =


h[2](B1) 0 0

0 h[2](B1) 0

0 0 h[1](B2)



s(1)

s(2)

s(3)

+


z[2](1)

z[2](2)

z[2](3)



=


h[2](B1)

h[2](B1)

0


︸ ︷︷ ︸

rank = 1
interference

u[1] +


h[2](B1)

0

h[2](B2)


︸ ︷︷ ︸

rank = 2
desired signal

u[2] +


z[2](1)

z[2](2)

z[2](3)

 ,
(3.5)

where 0 is a 1× 2 zero vector. Consider user 1: Equation (3.4) reveals that inter-

ference from user 2 is aligned in one-dimensional subspace along vector [1, 0, 1]T ,

leaving a two-dimensional subspace for the designed signal. It is also noted that

the third row of the desired signal is zero. Therefore, interference from user 2 can

be zero-forced by taking a linear combination of the received signal in the first

time slot and the third slot as follows:

ỹ[1] =

y[1](1)− y[1](3)

y[1](2)

 =

h[1](B1)

h[1](B2)


︸ ︷︷ ︸

H̃
[1]

u[1] +

z[1](1)− z[1](3)

z[1](2)

 , (3.6)

where H̃
[1]

is a post-processed 2× 2 MIMO-like channel matrix obtained by user

1.
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Equation (3.5) shows similar results for user 2, and its interference-free signal is

obtained by taking a linear combination of received signals at the first and second

time slots, as follows:

ỹ[2] =

y[2](1)− y[2](2)

y[2](3)

 =

h[2](B1)

h[2](B2)


︸ ︷︷ ︸

H̃
[2]

u[2] +

z[2](1)− z[2](2)

z[2](3)

 . (3.7)

Using the BIA method, two users obtain a total of 4 DoFs (2 DoFs for each user)

through a Super Symbol of the length of 3 time slots, and thus 4/3 normalized DoF

is achievable in this case. Notice that throughout the BIA procedure, no CSIT is

required. However, there is enhancement in noise (see (3.6) and (3.7)).

3.3.2 K-User Nt × 1 MISO BC

From the 2-user 2×1 case, it is noted that the Super Symbol (Figure 3.2) contains

the information about the number of symbol extensions (time slots) used for data

transmission, the staggered beampattern switching manner for each user, and

precoding matrices for individual users. Therefore, for the general K-user Nt × 1

MISO BC, we summarize construction of the Super Symbol [27]. With this, the

BIA procedure is ready.

1) Alignment Block

Before presenting the construction method of the Super Symbol, we first give the

definition of the Alignment Block [27], which is the building unit in the Super

Symbol used to guarantee that inter-user interference can be aligned into a reduced

subspace. Take the Super Symbol of the 2-user 2×1 MISO BC as an example (see

Figure 3.2): the Alignment Blocks of individual users are arranged orthogonal to

each other in time, which makes the interference alignment possible.

For the K-user Nt × 1 MISO BC, without loss of generality, we consider user 1.

An Alignment Block for user 1 consists of Nt time slots. At each time slot, user
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Figure 3.3: Alignment Block for user 1 in the K-user Nt × 1 MISO BC.

1 switches its beampattern, so that it goes through Nt beampatterns across an

Alignment Block. In the meantime, other users (user 2, user 3, · · · user K) do

not switch their beampatterns. Thus, across one Alignment Block of user 1, other

users listen to Nt transmissions through the same channel. The Alignment Block

defined for user 1 is shown in Figure 3.3. The Alignment Blocks for other users

are designed in the same way as that for user 1.

As mentioned earlier, one Nt × Nt matrix stocked in the precoding matrix is set

to be an Nt × Nt identity matrix INt , when its corresponding symbol belongs to

the Alignment Block. For user 1, its signals, transmitted through one Alignment

Block, are thus given as 
s(1)

s(2)
...

s(Nt)

 =


INt

INt
...

INt


N2
t ×Nt


u

[1]
1

u
[1]
2

...

u
[1]
Nt

 . (3.8)

That is, user 1’s Nt independent data symbols u
[1]
n , n ∈ {1, · · · , Nt} are repeated

Nt times.
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Consequently, received signals at user 1 across one Alignment Block are (ignoring

the noises)


y[1](1)

y[1](2)
...

y[1](Nt)

 =


h[1](B1) 0 · · · 0

0 h[1](B2) · · · 0

0 0
. . . 0

0 0 · · · h[1](BNt)


Nt×N2

t


INt

INt
...

INt


N2
t ×Nt


u

[1]
1

u
[1]
2

...

u
[1]
Nt



=


h[1](B1)

h[1](B2)
...

h[1](BNt)


︸ ︷︷ ︸
rank = Nt


u

[1]
1

u
[1]
2

...

u
[1]
Nt

 .
(3.9)

It is observed that the Nt data streams cast a Nt-dimensional shadow at receiver

1, and thus Nt DoFs are achievable using one Alignment Block.

Now, consider the interference at other users, k ∈ {2, 3, · · · , K} caused by user 1

through the Alignment Block :


y[k](1)

y[k](2)
...

y[k](Nt)

 =


h[k](Bn) 0 · · · 0

0 h[k](Bn) · · · 0

0 0
. . . 0

0 0 · · · h[k](Bn)


Nt×N2

t


INt

INt
...

INt


N2
t ×Nt


u

[1]
1

u
[1]
2

...

u
[1]
Nt



=


h[k](Bn)

h[k](Bn)
...

h[k](Bn)


︸ ︷︷ ︸
rank = 1


u

[1]
1

u
[1]
2

...

u
[1]
Nt

 .
(3.10)

Since user k’s channel state is kept fixed across the Alignment Block, the effective

channel matrix given in (3.10) has rank = 1. Therefore, symbols intended for user

1 are aligned into 1-dimensional reduced subspace at other users. Moreover, it

is noticeable that they are aligned along the Nt-dimensional vector [1, 1, · · · , 1]T ,

regardless of the channel values.
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The Alignment Block is shown as the key to achieving interference alignment.

Therefore, it is used as the building block for the Super Symbol. In other words,

the goal is to construct Alignment Blocks for individual users in the Super Symbol.

It is observed that, for the 2-user 2×1 MISO BC case, there is only one Alignment

Block for each user, and they are constructed in an interleaving way. Specifically,

the first two symbols constitute the Alignment Block for user 1, while the first and

third symbols constitute the Alignment Block for user 2. However, in the general

K-user Nt × 1 MISO BC, each user may exploit more than one Alignment Block.

2) Super Symbol Structure

In the K-user Nt × 1 MISO BC, more than one Alignment Block is required for

each user. Therefore, the Super Symbol structure is more complicated, as it is

constructed by interleaving users’ Alignment Blocks. According to the idea of in-

terference alignment (that is, the signals should be designed to achieve overlapping

shadows at the receivers where they constitute interference while remaining dis-

tinct at the receivers where they are desired [73]), two problems should be solved

in the design of the Super Symbol.

The first is the alignment problem, which can be solved by constructing each user’s

Alignment Blocks in a non-overlapping manner. The second problem concerns the

linear independence issues, including the linear independence between the desired

signals, and the linear independence between the desired signals and interference.

For the linear independence between desired signals, it is demonstrated (see Equa-

tion (3.9)) that one user’s desired signals transmitted through an Alignment Block

are linearly independent. Thus, the linear independence between desired signals

transmitted through different Alignment Blocks can be guaranteed by construct-

ing them as non-overlapping in time. On the other hand, the linear independence

of the desired signals and interference can be achieved by designing each user’s

last symbol of one Alignment Block to be orthogonal to other users’ last symbols

of their Alignment Blocks. Therefore, the Super Symbol is divided into two blocks

(referred to as Block 1 and Block 2), where Block 1 is designed to solve the align-

ment problem, while Block 2 is designed to avoid overlapping between the desired
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signals and interference from other users. Details of the design of the Super Symbol

structure are given in the following two steps.

Step 1: Design of Block 1: For the K-user Nt× 1 MISO BC, each user has a total

of (Nt − 1)K−1 Alignment Blocks, and in Block 1 only the first Nt − 1 symbols

of an Alignment Block are used. Therefore, Block 1 is comprised of (Nt − 1)K

symbols. We would like to remind readers that, across one Alignment Block, the

desired user’s channel state changes at each symbol while other undesired users’

channels are kept fixed.

In Block 1, each user’s channel state, which is related to beampattern switching

at the receiver, is designed to be changed in a periodic manner, where one period

is referred to as a building block. The building block for user k, k ∈ K is given

in Figure 3.4. It is observed that the building block for user k is further divided

into Nt − 1 sub-blocks of the length of (Nt − 1)k−1 symbols each. Therefore, user

k’s building block has a total of (Nt − 1)k symbols. The channel state is kept the

same in a sub-block while it is changed from one sub-block to another, where in

the n-th sub-block the channel values are associated with the n-th beampattern,

n ∈ {1, 2, · · · , Nt − 1}. By repeating the building block, each user can construct

its own temporal correlation signature in Block 1. Specifically, user k repeats its

building block (Nt − 1)K−k times. In this way, Block 1 of the length of (Nt − 1)K

symbols is designed for each of the K users.

Figure 3.4: Building block for user k’s Block 1 in K-user Nt × 1 MISO BC.
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Step 2: Design of Block 2: Since the first Nt − 1 symbols of one Alignment Block

of each user are used in Block 1, each symbol in Block 2 serves as the last symbol

to create the Alignment Blocks by grouping with the symbols in Block 1. Recall

that each user has (Nt−1)K−1 Alignment Blocks, and thus a total of K(Nt−1)K−1

symbols are required for K users in Block 2.

In order to determine the channel values in Block 2, symbols in Block 1 should be

first divided into (Nt− 1)K−1 groups to create (Nt− 1)K−1 Alignment Blocks with

the last symbols provided in Block 2 for each user. Again, the channel state of

the desired user changes at each symbol over an Alignment Block, and channels in

different sub-blocks within a building block are different. Therefore, a group can be

constructed by including one symbol from each of the sub-blocks within a building

block. Consider user k: since there are (Nt − 1)k−1 symbols in one sub-block, a

total of (Nt− 1)k−1 groups can be constructed using symbols in one building block

(Figure 3.4). Such grouping is repeated through user k’s (Nt − 1)K−k building

blocks.

Then the channel values in Block 2 can be determined as follows. First, Block

2 is divided into K sub-blocks, with a length of (Nt − 1)K−1 each. In the k-th

sub-block, the symbols serve as the last symbols for user k’s Alignment Blocks,

wherein user k’s channel values are equal to h[k](BNt). For all other users j,

j ∈ {1, 2, · · · , k−1, k+1, · · · , K}, their channel values in the (Nt−1)K−1 symbols

should remain fixed, and they are determined to be equal to that of the first symbol

of their corresponding groups given in Block 1.

Combining Blocks 1 and 2, the Super Symbol structure with the length of (Nt −

1)K + K(Nt − 1)K is achieved. There are (Nt − 1)K−1 Alignment Blocks for each

user, and thus each user can achieve Nt(Nt − 1)K−1 DoFs by transmitting Nt

data streams through these Alignment Blocks. Finally, the normalized DoF of the

system with K users over the Super Symbol is KNt(Nt−1)K−1

(Nt−1)K+K(Nt−1)K−1 = NtK
Nt+K−1

.

With the Super Symbol structure, precoding matrices for K users are straightfor-

ward to obtain. In the 2-user 2 × 1 MISO BC case, there is only one Alignment

Block for each user, and thus there is one column in the precoding matrix of one
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user. However, in the K-user Nt× 1 MISO BC case, there are (Nt− 1)K−1 Align-

ment Blocks for each user, and thus there are (Nt − 1)K−1 column blocks in the

precoding matrix for one user. For each user’s precoding matrix, each column

block is obtained by stacking the Nt × Nt identity matrix at the symbol instant

belonging to its corresponding Alignment Block, otherwise stacking the Nt × Nt

zeros matrix.

3) Example: Two-User 4× 1 MIMO BC

Here, the specific case with K = 2 and Nt = 4 is used as an example to show

the Super Symbol construction described above. First, consider Block 1 comprised

of (Nt − 1)K = 9 symbols. The building blocks of users 1 and 2 are given in

Figure 3.5 (a). Then, Block 1 is obtained by user 1 repeating its building block

(Nt − 1)K−1 = 3 times and user 2 repeating its building block (Nt − 1)K−2 = 1

time (see Figure 3.5 (b)). In Figure 3.5, the different colors are used to represent

different channel values for each user. It is noted that, for simplicity, the same

colors are used for both user 1 and user 2; however, this does not mean that user

1 and 2 achieve the same channel value. Next, the symbols in Block 1 are divided

into 3 groups to create 3 Alignment Blocks for each user (see Figure 3.5 (b)). It

is observed that in each group the channel of the desired user changes at each of

3 time slots, while the channel of the undesired user is kept the same, satisfying

the requirement of the Alignment Block.

Then, consider Block 2 comprised of K(Nt−1)K−1 = 6 symbols. Block 2 is divided

into 2 sub-blocks with 3 symbols each. In the first sub-block, we provide user 1’s

last symbols of its Alignment Blocks : that is, during the 3 time slots user 1’s

channel values are equal to h[1](B4). For user 2, we find the first time slot of each

of user 1’s groups in Block 1, then set user 2’s 3 symbols in the first sub-block to

be equal to that at the found time slots. Similarly, in the second sub-block, we

provide user 2’s last symbols of its Alignment Blocks. For user 1, its symbols are

set to be equal to that at the first time slots of each of user 2’s groups in Block

1. Figure 3.6 shows the designed Super Symbol for the 2-user 4× 1 MISO BC by

combining Block 1 and Block 2.

60



Chapter 3.ESPAR-based Blind Interference Alignment

(a) Building blocks

(b) Block 1

Figure 3.5: Block 1 for the example of 2-user 4× 1 MISO BC.

Figure 3.6: The Super Symbol structure for 2-user 4× 1 MISO BC.

According to the Super Symbol, precoding matrices for users 1 and 2 are obtained

straightforwardly, with 3 column blocks corresponding to 3 Alignment Blocks
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each: 

I4 04 04

I4 04 04

I4 04 04

04 I4 04

04 I4 04

04 I4 04

04 04 I4

04 04 I4

04 04 I4

I4 04 04

04 I4 04

04 04 I4

04 04 04

04 04 04

04 04 04


︸ ︷︷ ︸

User 1



I4 04 04

04 I4 04

04 04 I4

I4 04 04

04 I4 04

04 04 I4

I4 04 04

04 I4 04

04 04 I4

04 04 04

04 04 04

04 04 04

I4 04 04

04 I4 04

04 04 I4


︸ ︷︷ ︸

User 2

.

It is clear that with the BIA scheme each user achieves 4 DoFs over one Align-

ment Block, and thus a total of 12 DoFs (over 3 Alignment Blocks) are achievable

through 15 symbol extensions. Therefore, a normalized DoF of NtK
Nt+K−1

= 8
5

can

be achieved.

4) Interference Zero-Forcing

Let us first reconsider the case of 2-user 2×1 MISO BC. Its interference zero-forcing

step is mathematically described in Equation (3.6). The essence of the interference

zero-forcing is the use of interference received over the last symbol (time slot) in

each user’s Alignment Block to cancel interference received in the previous time

slots in that Alignment Block. Notice that, for the general K-user Nt × 1 MISO

BC, each user uses more than one Alignment Block to construct the Super Symbol.

And it is worth recalling that the Alignment Blocks of each user are designed to

be orthogonal to each other in time. Thus, the interference-free data streams can

be decoded Alignment Block -wise: that is, one user’s Nt data streams transmitted
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over an Alignment Block are decoded by using only Nt symbols corresponding to

that Alignment block, while ignoring symbols corresponding to other Alignment

Blocks of that user.

Without loss of generality, consider the decoding of Nt symbols at user k over one

Alignment Block. In each of the first Nt−1 symbols of the Alignment Block, user k

encounters interference from other K−1 users, and the interference is the same in

each symbol due to the repeating code used in Block 1. Interference is orthogonal

to the desired signal received in the last symbol of the Alignment Block, since in

the last symbol only the signal of the desired user is transmitted. To zero force the

interference in each of the Nt−1 symbols, user k needs to do K−1 subtractions to

cancel interference from one of the other users each time. Mathematically, consider

the following received signal space over one Alignment Block :




h[k](B1)

...

h[k](BNt−1)

 INt−1 INt−1 · · · INt−1

0(Nt−1)×Nt INt−1 0Nt−1 · · · 0Nt−1

0(Nt−1)×Nt 0Nt−1 INt−1 · · · 0Nt−1

...
...

...
. . .

...

0(Nt−1)×Nt 0Nt 0Nt−1 · · · INt−1

h[k](BNt) 01×(Nt−1) 01×(Nt−1) · · · 01×(Nt−1)



.

The first column block of Nt dimensions is spanned by the desired signal and the

last K − 1 column blocks of Nt − 1 dimensions are occupied by interference from

other users. The interference zero-forcing procedure (i.e., K − 1 subtractions) is

equivalent to designing a projection matrix that projects the received signals onto

a subspace orthogonal to the subspace occupied by interference. The projection

matrix is designed as

P =

 INt−1 −INt−1 −INt−1 · · · −INt−1 0

01×(Nt−1) 01×(Nt−1) 01×(Nt−1) · · · 01×(Nt−1) 1


Nt×(K(Nt−1)+1)

.
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Applying the projection matrix on the received signal over one Alignment Block,

it is easy to obtain the interference-free signal, taking the following form

ỹ[k] =


h[k](B1)

h[k](B2)
...

h[k](BNt)


︸ ︷︷ ︸

H̃
[k]


u

[k]
1

u
[k]
2

...

u
[k]
Nt

+ z̃, (3.11)

where z̃ ∈ CNt×1 is the post-processed noise with the covariance matrix of the

form of:

Rz̃ =

K · INt−1 0

0 1

 . (3.12)

Therefore, with equal power allocation to every data stream, user k’s achievable

rate by transmitting Nt data streams over one Alignment Block is [27]

C [k]′ = E
{

log det

(
INt +

(K +Nt − 1)Pt
N2
tK

H̃
[k]
H̃

[k]H
R−1
z̃

)}
. (3.13)

Since each user uses (Nt − 1)K−1 Alignment Blocks in the case of K-user Nt × 1

MISO BC and thus a total of (Nt − 1)K + K(Nt − 1)K−1 time slots (symbol

extensions) in the Super Symbol, the normalized rate for user k is [27]

C [k] =
(Nt − 1)K−1

(Nt − 1)K +K(Nt − 1)K−1
E
{

log det

(
INt +

(K +Nt − 1)Pt
N2
tK

H̃
[k]
H̃

[k]H
R−1
z̃

)}
=

1

Nt +K − 1
E
{

log det

(
INt +

(K +Nt − 1)Pt
N2
tK

H̃
[k]
H̃

[k]H
R−1
z̃

)}
.

(3.14)

Finally, the normalized sum-rate achieved by the K-user Nt × 1 MISO BC using

the BIA scheme is calculated as [27]

C =
K∑
k=1

1

Nt +K − 1
E
{

log det

(
INt +

(K +Nt − 1)Pt
N2
tK

H̃
[k]
H̃

[k]H
R−1
z̃

)}
.

(3.15)
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3.3.3 Constant Transmit Power Allocation

Although the original BIA scheme described above shows an optimal DoF achiev-

able in the multi-user MISO BC scenario without CSIT, the DoF cannot be trans-

lated to rate gains in the low SNR region, due to the noise amplification emerging

in the interference zero-forcing step. This will be illustrated via a numerical exam-

ple later. To reduce the enhanced noise power level, the power allocation methods

have been developed in [76]. The main idea of the proposed power allocation

methods is to adjust the relative transmit power allocated to symbols in Blocks 1

and 2 of the Super Symbol. In the original BIA scheme the equal transmit power

is allocated to all data streams transmitted through Blocks 1 and 2.

This work considers the Constant Transmit Power Allocation scheme [76], which

is the simplest and also an efficient method. To present such a scheme, we also

take the case of 2-user 2×1 MISO BC for an example, and it is easy to extend this

approach to the general K-user Nt×1 MISO BC. The transmission strategy of the

original BIA uses equal transmit power allocation, represented in Equation (3.3).

It is observed that the transmit power in time slot 1 (s(1)) is double that in the time

slots 2 and 3 (s(2) and s(3)). In the constant transmit power allocation scheme,

appropriately scaling relative power allocated for symbols in Blocks 1 and 2 ensures

that the same transmit power is allocated in all time slots. Mathematically, this

is [76] 
s(1)

s(2)

s(3)

 =


1√
2
I2

I2

02

u[1] +


1√
2
I2

02

I2

u[2]. (3.16)

Substitute the above transmission strategy in Equation (3.4), and then user 1’s

received signals over a Super Symbol are as follows:
y[1](1)

y[1](2)

y[1](3)

 =


1√
2
h[1](B1)

h[1](B2)

0

u[1] +


1√
2
h[1](B1)

0

h[1](B1)

u[2] +


z[1](1)

z[1](2)

z[1](3)

 . (3.17)
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User 1 can thus take a linear combination of the signal received in the first and

third time slots to zero force interference: i.e.,

ỹ[1] =

√2y[1](1)− y[1](3)

y[1](2)

 =

h[1](B1)

h[1](B2)


︸ ︷︷ ︸

H̃
[1]

u[1] +

√2z[1](1)− z[1](3)

z[1](2)

 . (3.18)

From (3.18), user 1 obtains the interference-free 2 × 2 MIMO-like channel H̃
[1]

,

similar to the result derived by the original BIA scheme. Again, user 2 can obtain

the same result. Thus, using the constant transmit power allocation scheme, the

system can also achieve 4/3 DoF.

As a consequence, the normalized sum-rate for such a system with the general

value of Nt and K is given by (proof details can be found in [76])

C =
K∑
k=1

1

Nt +K − 1
E
{

log det

(
INt +

Pt
Nt

H̃
[k]
H̃

[k]H
R−1
z̃

)}
, (3.19)

where

Rz̃ =

(2K − 1) · INt−1 0

0 1

 . (3.20)

3.4 ESPAR Beamforming for Implementation of

BIA

From the BIA scheme reviewed in the previous section, it is clear that the antenna

mode (beampattern) switching at the receiver is the key, unless its DoF bene-

fits will not be achieved. As previously mentioned, beampattern switching might

be an easier way to fulfil the BIA scheme (compared to frequency switching and

polarization switching). Moreover, it is well known that directional beampattern

helps to improve receive SNR by spatial filtering. Therefore, beampattern switch-

ing could provide a solution to improving performance of the BIA by reducing the

noise amplification level.
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The single-RF ESPAR antenna provides a practical solution to beampattern switch-

ing at the receiving end for the BIA scheme, since its beampattern is controlled

by simply tuning a few easy-to-implement reactance values loaded to parasitic

elements. The target of this work is the beampattern design to realize and even

improve the BIA scheme. Notice that, as requirements of the BIA, the ESPAR

beamforming here is required to provide Nt(Nt > 1) beampatterns at one chan-

nel realization (across one Super Symbol), unlike the common beamforming where

only one beampattern is usually needed. We would emphasize that the receive

antenna beamforming at each user is operated in a distributed and uncoordinated

way; therefore, in this section, we drop the user index for notation simplicity.

3.4.1 Discussions on the BIA Scheme

Before proposing the ESPAR beamforming strategies, we first discuss some as-

pects of the BIA scheme related to the channel states generated from the receive

antenna mode switching and also the noise amplification problem. Although the

beampattern of the ESPAR antenna will be employed to realize the BIA scheme in

our work, here we discuss these aspects of the BIA via a simple numerical exam-

ple using the genetic channel vectors: entries of channel vectors are drawn from a

continuous distribution, as is generally assumed in the literature [3, 27, 76]. These

examples can provide insights into the beampattern design of the ESPAR antenna

for the BIA scheme.

1) Channel Fluctuation Patterns

It is observed from the Super Symbol structure (Figures 3.2 and 3.6) that the

channel fluctuation patterns created by the receive beampattern switching are

critical in the BIA scheme. Recall that it is assumed that the coherence times

are long enough to ensure constant channel state across a Super Symbol : i.e., G

in (3.1) is kept constant. According to (3.1), an ESPAR receiver can only switch

between Nt beampatterns defined by wn, n ∈ {1, · · · , Nt} to manually create

different channel vectors h(Bn). If the assumption of the coherent time does not
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hold, a user will see different channel vectors when the same beampattern is formed

in different time slots in the Super Symbol. Thus, interference from other users

cannot be aligned into a reduced subspace. From now on, the above assumption

is made throughout this work.

Now, we will consider some numerical examples, examining rate performance of the

original BIA scheme (given in (3.15)) under three channel state situations resulting

from receive antenna switching. The three situations are listed as follows:

a) The receive beampattern switching fails to create channel diversity, i.e., h(B1) =

h(B2) = · · · = h(BNt);

b) The receive beampattern switching results inNt i.i.d channel vectors h(Bn), n ∈

{1, · · · , Nt} – an ideal situation usually assumed in the literature;

c) The receive beampattern switching results in channel vectors having the rela-

tions h(Bn) = γn · h, n ∈ {1, · · · , Nt}, where h ∈ CNt×1 is the vector with

elements drawn from i.i.d Gaussian variables with zero-mean and unity vari-

ance, and γn is a scalar, which may be considered as different but correlated

channel vectors.

These examples are depicted in Figure 3.7, where every simulated point is aver-

aged from 1000 Monte-Carlo experiments, and elements of h(B1), h, and only

h(Bn), n ∈ {2, · · · , Nt} in situation b are assumed to be uncorrelated Gaussian

variables. In these examples, the single-user MISO BC is used as the baseline for

comparison. From the examples, one can make observations as follows.

When the receive beampattern switching fails to provide different channel vectors

(situation a), DoFs of the BIA scheme collapse, and its rate is even lower than that

of the single-user setting, since in the BIA scheme more time-frequency resources

(more time slots) are used to transmit information data to users than with the

TDMA technique.

If the i.i.d channel vectors have been achieved (situation b), the BIA scheme

achieves the DoF benefits as expected. Study of the DoFs in varying networks is
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Figure 3.7: Original BIA performances in different channel state situations
resulting from receive antenna switching.

commonly based on the i.i.d fading model. Many studies on the BIA scheme also

assume that the ideal i.i.d channel vectors are associated with different antenna

modes. However, if the practical beampattern switching is taken into account at

the receiver, it is not necessary for the resulting channel vectors to be identically

independent to each other. In this case, the study on the network DoF is intriguing,
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and thus we may consider that the DoFs derived from the i.i.d channel vectors are

the outer bounds.

Under situation c, it is shown that, when the SNR is lower than 24 dB for the

2-user 2×1 MISO BC and lower than 15 dB for the 5-user 4×1 MISO BC, the BIA

outperforms the single-user setting. However, the BIA is inferior to the single-user

MISO BC in the high SNR region. The improvement in the low/moderate SNR

region mainly results from the increase in the received power (γn). Indeed, the facts

of the poor performance in the high SNR region and the improvement reduction

with larger value of Nt and K demonstrate that, in situation c, the DoFs of the

original BIA scheme cannot be translated to rage gains due to channel correlation.

The example suggests that the beampattern design in the ESPAR array is optimal

to provide sufficient uncorrelated channel vectors, and receive SNR enhancement

can also improve performance, especially in the low/moderate SNR region.

2) Noise Amplification

Next, we examine the noise amplification aspect of BIA. This can be observed

from Figure 3.7. Consider the ideal case with i.i.d channel vectors (situation b),

where it shows that, if SNR is lower than around 17 dB (for the 2-user 2×1 MISO

BC) or 15.5 dB (for the 5-user 4× 1 MISO BC), then BIA will lose its superiority

to the single-user MISO BC.

One solution to reducing the effects of noise amplification is the power allocation

method presented previously. Figure 3.8 illustrates the comparison between the

original BIA with equal power allocation to all symbols and that with constant

transmit power allocation. The improvement with the use of constant transmit

power allocation has been shown, especially with increasing Nt and K. Specifically,

the cross point between the multi-user setting and the single-user setting moves

from around 15 dB to 7 dB for Nt = 2, K = 2. In the case of Nt = 4, K = 5, the

rate loss is negligible in the low SNR region. However, the benefits of the use of

constant transmit power allocation may not be sufficient in the case with small Nt

and K. Indeed, the BIA scheme is more suited to the case with small values of
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Figure 3.8: Comparison between the original BIA and the BIA using constant
transmit power allocation.

Nt and K, since the assumption of coherence time is more practical for the Super

Symbol with shorter length. This suggests that to further improve performance of

the BIA, the directional beamforming of the receive antenna should be taken into

account.

3.4.2 ESPAR Beamforming for BIA scheme

The above discussions suggest that ESPAR beamforming for BIA schemes should

provide Nt different beampatterns at a channel realization (across one Super Sym-

bol). Specifically, the resulting channel vectors h(Bn), n ∈ {1, · · · , Nt} are optimal

to be generic (uncorrelated) or they are able to provide SNR gains. To this end,

we propose three beamforming methods for the ESPAR array to implement BIA,

which may also improve the BIA scheme. In [77–79], the ESPAR antenna has been

studied for the BIA scheme, where only sector beampatterns have been exploited,

and the studies have been restricted 2-user 2× 1 MISO BC.
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1) Random Beampattern Method

The channel vectors associated with Nt beampatterns are optimal to be sufficiently

uncorrelated (generic) vectors. Since the channel state (G in (3.1)) is kept con-

stant across a Super Symbol, the generic channel vectors should be achieved by

forming different beampatterns at the receiver. In this context, we may consider

that beampatterns formed at one receiver are randomly generated. With this

method, the channels seen by the receiver are sufficiently uncorrelated: that is,

they are drawn from continuous distribution (not guaranteed to follow the Gaus-

sian distribution). We refer to this method as the random beampattern method.

It is known that the beampattern of an ESPAR antenna is controlled by tuning

a few analog values loaded to parasitic elements (see Equations (2.6) and (2.7)).

Thus, we design each of Nt random beampatterns, by that each reactance load,

xm ∈ {1, · · · ,M}, is randomly selected from the variable values uniformly dis-

tributed in a practical range; e.g., [−300, 300](Ω). Store the Nt sets of randomly

selected loading values x̂n, n ∈ {1, · · · , Nt}, and then they are used across a Super

Symbol according to the BIA scheme. Until the next Super Symbols, the random

beamforming procedure is repeated.

The random beampattern method is quite simple and is able to provide sufficiently

uncorrelated channel vectors for the BIA scheme. However, the beampatterns are

formed by randomly selecting reactance loads; therefore they do not take into ac-

count beamshapes to increase the receive SNR. Consequently, this beamforming

method is unable to improve performance of BIA by suppressing noise amplifica-

tion. On the other hand, due to the rich scattering propagation model, the use of

random beampatterns is feasible. The reason is that a random beampattern nulls

out signals from multiple paths with a sufficiently small probability. Moreover,

the random beampattern method is ready to be employed in a system with larger

values of Nt and K.
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2) Sector Beampattern Selection

The random beampattern method is quite simple; however, the issue of BIA related

to noise amplification has not been solved. The noise amplification problem may

hinder the application of the BIA scheme in a practical network: for example,

cellular systems. Thus, we consider a method that exploits different directional

beampatterns to reduce the noise enhancement level. The central idea is that a

fixed number of directional beampatterns are designed in advance (at the design

stage), and then each receiver dynamically selects Nt appropriate beampatterns

out of all pre-designed ones.

Recall that an ESPAR array with M + 1 elements is able to form M sector beam-

patterns accessing one sector of whole angle space each (Chapter 2, Section 2.3).

Let Bs = {Bs,1, · · · , Bs,M} denote the set of all potential sector beampatterns that

are designed in advance, and their corresponding reactance loads are stored, where

M ≥ Nt.

For one user in the K-user Nt × 1 MISO BC, it is required to dynamically select

Nt beampatterns out of the set Bs across one Super Symbol. The beampattern

selection decision is made based on the estimated receive power of each sector

beampattern. In particular, a receiver selects Nt sector beampatterns with the

largest receive powers: that is,

B?
s,1 = arg max

Bs,m∈Bs
Pr(Bs,m),

...

B?
s,Nt = arg max

Bs,m∈B̃s
Pr(Bs,m),

(3.21)

where B?
s,n, n ∈ {1, · · · , Nt} represents the n-th selected beampattern, B̃s is the

subset of Bs by removing the previously selected beampatterns, Pr(Bs,m) is the

receive power when sector beampattern Bs,m is formed.

The simplest way to implement the beampattern selection is that a user period-

ically scans all M sector beampatterns Bs and evaluates corresponding receive

powers. It is noted that due to space limits on mobile terminals, the number of
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parasitic elements M , thus the number of achievable sector beampatterns, cannot

be large. Therefore, exhaustive searching throughout all sector beampatterns is

practical in this system. During a Super Symbol, each user performs the beam-

pattern selection and stores Nt sets of corresponding loading values for the BIA

scheme, until the next Super Symbols. This beamforming method is available for

the BIA system with an arbitrary value of K, since the beampattern selection is

operated individually at one user. However, there is a limit on the number of

transmit antennas, i.e., Nt ≤M .

3) SVD-Based Beamforming

In this section, exploiting estimate channel coefficient at receiver to operate ES-

PAR adaptive beamforming. In the BIA scheme, we assume that perfect CSIR is

available. Indeed, the acquiring CSIR is more nature than acquiring CSIT, since

the receiver directly observes the signals transmitted through the channel.

SVD beamforming is a common and simple approach to improve system rate,

widely used in MIMO networks where the conventional multiple active antenna

arrays are used. We would like to exploit it in the EPSAR array to implement

the BIA scheme. However, SVD beamforming cannot be directly applied to the

ESPAR array, due to the unique configuration of an ESPAR antenna.

First, in the ESPAR array only signal impinging on the active element can be

observed and processed, while signals impinging on parasitic elements cannot be

observed, but they are electronically combined to the single-RF front-end. Sec-

ondly, there is a nonlinear relation between the beampattern and the reactance

loads of parasitic elements. To this end, we develop a two-step beamforming strat-

egy based on the SVD beamformer and exploiting the GA (presented in Chapter

2).

Step 1: The SVD beamformer aims to calculate weights based on the channel

matrix estimated by the receiver. In a conventional MIMO system with multiple

antenna arrays, the receiver estimates channels between transmit antennas and

receive antennas, straightforwardly using measurements derived from individual
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antenna elements. At an ESPAR receiver, since only signal impinging on the

active element can be observed, a MIMO-like channel matrix containing spatial

signature of the channels cannot be estimated. Therefore, in the ESPAR array,

it is not capable of directly designing the equivalent weight vector w by applying

the SVD beamformer to outputs of its individual elements. In this context, the

RD technique, which is a signal processing method usually applied for the antenna

array with a single-RF front-end [43, 53, 57], is used to obtain a MIMO-like channel

matrix analogous to that achievable in conventional antenna arrays.

Specifically, in the RD technique, an ESPAR antenna forms Ni(Ni ≥ Nt) initial

beampatterns, Φn(θ), n ∈ I = {1, · · · , Ni} on a time division basis, where the

same information signal is sent. The initial beampatterns are fixed and known.

Using the RD technique, signals received by an ESPAR receiver over Ni initial

beampatterns are represented by the Ni-dimensional vector y:

y =


h(Φ1)

...

h(ΦNi)

 s+


z1

...

zNi

 = HΦs+ z, (3.22)

where HΦ ∈ CNi×Nt denotes the MIMO-like channel matrix obtained by the RD

technique, in which the (i, j)-th entry is the channel coefficient between the i-

th initial beampattern formed by the receive ESPAR and the j-th antenna at

the transmitter. We assume that HΦ is known at the receiver. The vector z ∈

CNi×1 contains noises corrupted at individual initial beampatterns, and they are

assumed to be uncorrelated across the initial beampatterns. Perform singular

value decomposition of the channel matrix HΦ, then one has

HΦ = UΣV H , (3.23)

where unitary matrices U ∈ CNi×Ni and V ∈ CNt×Nt respectively contain eigen-

vectors of HΦH
H
Φ and HH

ΦHΦ, Σ ∈ RNi×Nt is a diagonal matrix with rank(Σ) =

min(Ni, Nt) = Nt dominant singular values in a descending order as diagonal

entries.
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In the BIA K-user Nt × 1 MISO BC system, Nt different beampatterns are re-

quired. Thus, the SVD beamformer applies the first Nt column vectors of U ,

denoted by U 1:Nt , to the received signal vector in (3.22). U 1:Nt contains Nt singu-

lar vectors corresponding to the Nt dominant singular values. The output of the

SVD beamformer is expressed as the following Nt × 1 vector

ysvd = UH
1:Nty = UH

1:NtHΦs+UH
1:Ntz, (3.24)

where the noises UH
1:Ntz are still AWGNs, since U is a unitary matrix.

Step 2: The problem then turns to how to calculate Nt sets of parasitic reactance

loads to form beampatterns approximating the outputs of the SVD beamformer

(3.24). As we emphasized previously, there is a nonlinear relation between the

beampattern and parasitic reactance loads. To calculate Nt sets of necessary

reactance loads, we resort to the GAs; details of the use of GAs for ESPAR

beamforming can be found in Chapter 2. Here, we only give the objective function

of the SVD-based beamforming problem. To approximate the outputs of the SVD

beamformer, the objective function can be set as the CCC between the outputs

of the SVD beamformer ysvd and the achievable output of the ESPAR antenna y.

Mathematically, it is written as

max f(x1, · · · , xM) =
E{yy∗svd(i)}√

E{yy∗}E{ysvd(i)y∗svd(i)}
, i ∈ {1, · · · , Nt}, (3.25)

where ysvd(i) is the i-th element of outputs of the SVD beamformer.

Consequently, using the GA, each receiver can obtain Nt sets of reactance loads

for Nt beampatterns approaching outputs of the SVD beamformer. Then, they

are used across a Super Symbol according to the BIA scheme, until the next Super

Symbols.
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3.5 CSI Estimation Overheads

The greatest benefit of the BIA scheme is the reduction of CSIT overheads while

achieving the optimal DoF in the multi-user MISO BC. However, the majority of

studies on the multi-user MIMO techniques do not take into account the CSI cost,

when the performance evaluation is operated. In order to make a fair comparison

between CSIT-based multi-user MIMO techniques and the novel BIA scheme using

the ESPAR antenna, in this section we present the CSI (including CSIT and CSIR)

cost for a given technique.

In this work, the LZFBF technique [71, 80, 81], which is a simple and common

technique exploiting the CSIT to simultaneously transmit data streams to multiple

users, is studied as the exemplary CSIT-based MIMO BC transmission scheme for

comparison with the BIA scheme. For the LZFBF technique, perfect CSIT is

always assumed.

3.5.1 Linear Zero-Forcing Beamforming

In the LZFBF technique, the goal of the beamforming (here digital beamforming,

as mentioned in Chapter 2) is to separate users’ streams with different beamform-

ing directions, by exploiting available knowledge of CSI. For ease of explanation

and for comparison with the BIA scheme, we assume that each user is equipped

with a single antenna (it can be the ESPAR antenna due to a single-RF chain),

so that the study focuses on the multi-user MISO BC. Moreover, we also assume

that K ≤ Nt users are simultaneously served by the system.

Let u[k], v̂[k] ∈ CNt×1 and P
[k]
t be, respectively, the information data (single

stream), beamforming vector and transmit power scaling factor for user k, k ∈

{1, · · · , K}. The channel between user k and the Nt transmit antennas is denoted

by the vector h[k] ∈ C1×Nt , and thus let H = [h[1]T ,h[2]T , · · · ,h[K]T ]T denote the

system channel matrix by storing channel vectors of all K users as rows. Similarly,
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let the Nt×K matrix V̂ = [v̂[1], v̂[2], · · · , v̂[K]] store all K users’ beamforming vec-

tors as columns. The signal received by user k is thus given by (dropping the time

index for simplicity, since there is no symbol extension in this technique)

y[k] = h[k]v̂[k]u[k]︸ ︷︷ ︸
Desired signal

+
K∑

j=1,j 6=k

h[k]v̂[j]u[j]

︸ ︷︷ ︸
Interference

+z[k], (3.26)

where the beamforming vector for each user is unit-norm, i.e., ‖v̂[j]‖ = 1,∀j.

According to the zero-forcing criterion, the beamforming vector v̂[k] for user k is

designed to project h[k] onto the nullspace of {h[j]}j 6=k: i.e.,

h[k]v̂[j] = 0, ∀k 6= j, 1 ≤ j, k ≤ K. (3.27)

One easy way to achieve the beamforming matrix V̂ under the zero-forcing con-

dition (3.27) is to use the pseudoinverse of H , taking the following form:

V̂ = H† = HH(HHH)−1. (3.28)

Using LZFBF and assuming that the transmit power is allocated equally to each

of the K users, the signal received by user k is therefore reduced to

y[k] = h[k]v̂[k]u[k] + z[k]. (3.29)

Finally, the sum-rate achievable for this system is

CZF =
K∑
k=1

E
{

log

(
1 +

Pt
KNt

|h[k]v̂[k]|2
)}

. (3.30)

3.5.2 CSI Estimation and Pilot Costs

Consider a frequency-division duplex (FDD) system using multi-user MIMO tech-

niques. To obtain knowledge of CSIT, first, each user is required to estimate
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Figure 3.9: CSI training and feedback overheads in the FDD system [2].

CSI-based downlink estimation pilots (EPs) transmitted by the BS (transmitter);

secondly, users quantize the estimated channel coefficients and then these are fed

back via the uplink channel. In addition, dedicated pilot symbols are inserted in

training symbols to provide CSIR for coherence detecting (CD) by users [3].

In [2], the authors analyzed the pilot symbol overhead and its effect on the net

throughput through a dimensionality count of the resources per time-frequency

block that is used for CSI estimation (Figure 3.9). Let ρcsi, ρcd denote the fraction

of the total downlink transmit resource used for EPs per transmit antenna, and

for CD per user, respectively. And let ρfd be the fraction of the total transmit

resource used to re-allocate to the uplink supporting the uplink feedback per user

per transmit antenna. Thus, overheads related to the EPs, CD and feedback are

given by Π1ρcsi, Π2ρcd and Π3ρfd, where Πi, i = {1, 2, 3} ≥ 0 and they are specified

at a given system implementation. Here, we consider the multi-user MISO BC

using the LZFBF and BIA schemes. Following the discussions in [3], the CSI

overheads are summarized in Table 3.1 for the given techniques. Notice that for

the ESPAR-based BIA schemes using the random beamforming and sector-beam

selection approach, their CSI overheads are the same as those presented for the

original BIA scheme. However, for the ESPAR-based BIA scheme using SVD

beamforming, the CSI overheads should be Ni times that of the original BIA.
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Table 3.1: Summary of CSI overheads [3]

Type LZFBF Original BIA ESPAR-based BIA (SVD)

EPs Ntρcsi 0 0
FB Kρfb to KNtρfb 0 0
CD Kρcd Ntρcd to (Nt)

2ρcd NtNiρcd to (Nt)
2Niρcd

3.6 Simulations

In this section, we evaluate the performance of the proposed BIA schemes employ-

ing the ESPAR antenna as a solution to beampattern switching. A comparison

between the ESPAR-based BIA and LZFBF is also provided: the metric is the

sum-rates calculated by (3.19) and (3.30), respectively. The result of each point

is averaged from 1000 Monte-Carlo simulations. In the propagation environment,

suppose that there are Nsc = 20 scatterers.

The transmit antenna array is assumed to be an Nt-element ULA of a λ/2 inter-

element spacing. The simulated ESPAR antenna is composed of M + 1 = 7 thin

electrical dipoles with a length of λ/2 each. The inter-element spacing is set to

λ/4. EPSAR’s mutual impedance matrix Z is as the same given in Chapter 2,

Section 2.4.

We first consider the performance of the BIA schemes using three proposed ESPAR

beamforming approaches, without consideration of the CSI overheads. In the

following simulations, the single-user MISO BC is considered as the baseline for

comparison. It is noted that for fair comparison, in the single-user MISO BC,

the ESPAR antenna is also adopted as the receive antenna, and omni-directional

beampattern is formed by the ESPAR receive antenna.

To randomly generate Nt different beampatterns across a Super Symbol, each re-

ceive ESPAR randomly selects Nt sets of reactance loads x̂n, n = {1, · · · , Nt},

in which each element xm,m = {1, · · · , 7} is uniformly drawn from the practical

range [−300, 300](Ω) with the resolution 1 Ω. The Nt selected reactance loads are

then stored and used across the Super Symbol, until the next Super Symbols.
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Figure 3.10: Simulated results of ESPAR-based BIA with receive antenna
switching between random beampatterns.

Figure 3.10 shows sum-rates achieved by the BIA scheme exploiting random beam-

patterns of the receive ESPAR antenna across a Super Symbol, compared to that

of the single-user MISO BC. From the simulated results, we can believe that the

use of random beampatterns provides sufficiently uncorrelated channel vectors for

one user, since the rate gains achieved by the BIA scheme are larger than that

achieved by the single-user MISO BC in the high SNR region. That is, the SNR is

larger than 17.5 dB for the 2-user 2×1 MISO, and 10 dB for the 5-user 4×1 MISO

BC. This tendency is similar to the numerical example discussed in Section 3.4

(situation b). However, without delicate design on the beamshape for the random

beampatterns, the ESPAR-based BIA does not show its benefits in the low SNR

region. Figure 3.10 also suggests that rate gains provided by the BIA increase

with larger values of Nt and K, where the cross point moves to 10 dB when K

increases to 5 and Nt increases to 4. Although performance of the BIA with the

random beamforming method may loss its superiority in the low SNR region as

the same as the original BIA scheme [27], this beamforming method is simple and

with low computational complexity, and it is ready to be extended to the BIA

system with the arbitrary values of K and Nt.

The 6 sector beampatterns of a 7-element ESPAR antenna are pre-designed.
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Figure 3.11: Simulated results of ESPAR-based BIA with receive antenna
switching between dynamically selected sector beampatterns.

Firstly, optimize values of reactance loads x̂1 = [x1, · · · , x6] to maximize the

beam gain to the look direction 0◦. The optimized values are x1 = 23.38, x2 =

41.43, x3 = −205.09, x4 = −205.09, x5 = 41.43, x6 = 23.38. Then, the remaining 5

sector beampatterns are obtained circularly shifting elements of x̂1. As there are

only 6 sector beampatterns, it is practical for each user to scan all sector beam-

patterns to identify the Nt ≤ 6 beampatterns with the largest receive powers.

As shown in Figure 3.11, with the use of sector beampatterns dynamically selected

by each receiver, the BIA scheme outperforms the single-user MISO BC over all

SNR values, since the directional beampatterns increase the receive SNR. More-

over, rate gains of the BIA with increasing Nt and K are observed over almost all

the SNR values, where the loss in the low SNR region is negligible. However, it is

clear that this beampattern design method is suited to MISO BC with the number

of transmit antennas not exceeding the number of available sector beampatterns.

To operate SVD-based beamforming, an ESPAR receiver first uses a fixed number

of initial beampatterns to obtain the estimate of a MIMO-like channel matrix

HΦ derived from outputs of the initial beampatterns. Here, we simply use the 6

sector beampatterns given above as the initial beampatterns. The conventional

SVD beamformer uses HΦ to calculate weights applied to outputs of the initial
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beampatterns. Finally, Nt sets of necessary reactance loads are optimized by the

GAs, where the outputs of the SVD beamformer are used as the reference signals.

The parameters for the GA are the same as those summarized in Table 2.1 in

Chapter 2.

Figure 3.12 depicts the sum-rates obtained by the BIA using SVD-based beam-

forming, where we can see that the rate performance of the BIA is superior to

that of the single-user MISO BC over most of the SNR region. For the multi-

user MISO BC with Nt = 2 transmit antennas, the BIA scheme provides large

rate gains compared to the achievable rate of the single-user MISO BC over the

whole SNR region. However, when the number of transmit antennas increases to

Nt = 4, rate gains provided by the BIA scheme do not show until the SNR is

higher than 5 dB. And the benefit of the BIA with large Nt does not shown until

17 dB. The reason may be that, by increasing the number of transmit antennas Nt,

the BIA requires more beampatterns designed by SVD-based beamforming, and

SVD-based beamformer designs beampatterns by adaptively weighting outputs of

the fixed number of initial beampatterns (Ni = 6 here). Given a number of initial

beampatterns, when Nt is smaller, a user benefits from more flexible beamform-

ing. If we can provide more initial beampatterns in SVD-based beamforming, the

benefits of the BIA may be also shown in the low and moderate SNR region when

Nt = 4. However, increasing the number of initial beampatterns is not practicable,

since CSI overheads and complexity are increased (this will be discussed later).

Therefore, SVD-based beamforming is more suitable for the system with a small

number of transmit antennas.

Finally, comparing results given in Figures 3.10, 3.11 and 3.12, it is observed that

the BIA with SVD-based beamforming outperforms that with random beamform-

ing and sector beampattern selection for the 2-user 2×1 MISO BC; however, when

Nt = 4, its superiority is shown when SNR is larger than around 13 dB. When the

computation complexity is considered, the sector beampattern selection method is

a better solution, which can also provide rate gains over most of the SNR region,

by enhancing receive SNR.
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Figure 3.12: Simulated results of ESPAR-based BIA with received antenna
switching between beampatterns designed based on SVD beamformer.

Next, we compare the performance of the ESPAR-based BIA schemes to that of

the LZFBF technique using perfect CIST. For the LZFBF technique, the trans-

mitter is also equipped with Nt-element ULA while each receive is equipped with

a 7-element ESPAR, which forms the omni-directional beampattern, as that is

assumed for the single-user MISO BC, for fair comparison.

Figure 3.13 (a), (b) and (c) depict the sum-rates achieved by the LZFBF, com-

pared to that of the BIA schemes exploiting three ESPAR beamforming methods

respectively, where the simulations do not take into account the CSI overheads.

It is not surprising that the rate performance of LZFBF is superior to that of the

BIA schemes. Moreover, in the BIA scheme the transmitter can simultaneously

serve K ≥ Nt users; however, there is a constraint on the number of users K ≤ Nt

for the LZFBF. From the figures, we can observe that, when the number of users

increases to 10, the sum-rates achieved by BIA schemes are higher than those

achieved by the LZFBF. In the simulations, it is also seen that, when K ≥ 10 no

significant rate gains are shown in the considered SNR region (i.e., [0, 30] (dB))

compared to the case with K = 10. In other words, the BIA scheme could benefit

in rate gain with larger values of K(K ≥ 10) only when higher transmit power

is used. It is suggested that, in a fixed SNR region and given a fixed number of
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(a) Random beampattern method
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(b) Sector beampattern selection
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Figure 3.13: Rate performance comparison between LZFBF and ESPAR-
based BIA schemes without considering CSI overheads.
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transmit antennas, there is a threshold for the number of active users for the BIA

system; by exceeding that threshold, the DoFs do not lead to a higher achievable

rate.

Indeed, the benefits of the BIA scheme result from the reduction of CSIT over-

head, so that the above comparisons (Figure 3.13) are not fair. Therefore, we

consider both CSIT and CSIR overheads in the performance comparison be-

tween the LZFBF and ESPAR-based BIA schemes. As presented in previous

discussions (summarized Table 3.1), two cases are referred to as “OHL” (opti-

mistic CSI overheads) and “OHU” (pessimistic CSI overheads). In particular, for

the LZFBF, the overhead cost ratio is Ntρcis + Kρfb + Kρcd under OHL, and

Ntρcsi+KNtρfb+Kρcd under OHU; for the ESPAR-based BIA, the overhead cost

ratio is Ntρcd (or NtNiρcd) under OHL, and (Nt)
2ρcd (or (Nt)

2Niρcd) under OHU.

When the CSI overheads are considered, the net-rate of a given scheme (i.e., the

LZFBF or ESPAR-based BIA) is the rate without CSI overheads times one minus

corresponding overhead cost ratio [2].

Figure 3.14 (a), (b) and (c) show the simulated net-rates of the LZFBF and

ESPAR-based BIA employing three proposed beamforming methods for the multi-

user 2×1 MISO BC, with ρcsi = ρcd = 1% and two distinct ρfd values 1% and 3%.

It is observed that, in the OHL case, the BIA schemes with sector beampattern

selection and SVD-based beamforming are superior to the LZFBF in the low SNR

region for the system with K = 2 users, while the superiority is observed over most

of the SNR region when the user number increases to K = 10. However, the rate

gain of the BIA with random beampatterns is almost negligible. Moreover, the

figures reveal that, for BIA schemes with random beampattern method and sector

beampattern selection, there is no significant difference between the rate perfor-

mances under OHL and OHU. Nevertheless, a large rate loss is observed by the

BIA scheme with SVD-based beamforming and LZFBF under OHU, suggesting

the importance of the CSI overhead designs in both schemes.

Figure 3.15 (a), (b) and (c) depict simulated results for the multi-user 4 × 1

MISO BC, with the same settings in Figure 3.14. As the figures show, when CSI
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overheads are taken into account, net-rates achieved by the BIA schemes with

the random beampattern method and sector beampattern selection approach to

those achieved by the LZFBF, and they are even superior to the LZFBF in the

OHU case with large feedback costs (ρfd = 3%). However, for the BIA scheme

with SVD-based beamforming, its rate gains are lost (especially in the OHU case),

suggesting that CSI overhead design is critical to SVD-based beamforming, due

to the penalty of the use of the RD technique for channel matrix estimation.
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0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

18

20

SNR(dB)

Ra
te

(b
ps

/H
z)

 

 
LZFBF(Nt=2,K=2)−OHL, ρfd=1%
LZFBF(Nt=2,K=2), ρfd=3%

LZFBF(Nt=2,K=2)−OHU,ρfd=1%
LZFBF(Nt=2,K=2),ρfd=3%

BIA(Nt=2,K=2)−OHL
BIA(Nt=2,K=2)−OHU
BIA(Nt=2,K=10)−OHL
BIA(Nt=2,K=10)−OHU

(b) Sector beampattern selection

0 5 10 15 20 25 30
2

4

6

8

10

12

14

16

18

20

SNR(dB)

Ra
te

(b
ps

/H
z)

 

 
LZFBF(Nt=2,K=2)−OHL, ρfd=1%
LZFBF(Nt=2,K=2), ρfd=3%

LZFBF(Nt=2,K=2)−OHU,ρfd=1%
LZFBF(Nt=2,K=2),ρfd=3%

BIA(Nt=2,K=2)−OHL
BIA(Nt=2,K=2)−OHU
BIA(Nt=2,K=10)−OHL
BIA(Nt=2,K=10)−OHU

(c) SVD-based beamforming

Figure 3.14: Rate performance comparison between LZFBF and ESPAR-
based BIA schemes taking CSI overheads into account for the 2× 1 MISO BC.
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(c) SVD-based beamforming

Figure 3.15: Rate performance comparison between LZFBF and ESPAR-
based BIA taking CSI overheads into account for the 4× 1 MISO BC.
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3.7 Summary

In this chapter, we made the first attempt to implement the BIA, using the ES-

PAR antenna for the beam switching at the receiving end. First, the general

idea of the BIA [27] is simply reviewed. In our work, the key is how to design

the required number of beampatterns to fulfil – and even improve – the BIA. We

proposed three beampattern design methods. The first is simply the design of

random beampatterns with randomly selected reactance loads for each parasitic

element from a practical range. The aim of this beamforming approach is to cre-

ate mimic generic channel vectors seen by a user. The rate gains observed in the

simulations illustrate the feasibility of the use of random beampatterns in BIA.

However, it only works well in a high SNR regime, since the noise amplification

problem has not been addressed by this method. In the second approach, a user

dynamically selects beampatterns with the largest receive powers from a fixed

number of pre-designed sector beampatterns. The selected directional beampat-

terns can improve performance of the BIA, especially in the low SNR region, since

the received SNR has been enhanced. The last beamforming method is based on

the SVD beamformer: this is achieved by two steps, where first the output of the

SVD beamformer is obtained by using a fixed number of initial beampatterns,

and then the outputs are used as the reference signal input to the GA algorithm.

From the simulation results, SVD-based beamforming algorithms can also provide

rate gains, even in the low SNR region. However, with the increase in transmit

antennas, the performance of the BIA with SVD-based beamforming is degener-

ated in low SNR region, which suggests that as required beampatterns increase,

more initial beampatterns should be used. Due to the complexity limitation, SVD-

based beamforming is more suitable for the MU-MISO case with a small number

of transmit antennas. Finally, the ESPAR-based BIA is compared with the CSIT-

based LZFBF technique, taking account of CSI overheads, where the achievable

sum-rates are comparable to those of the LZFBF technique. These results indicate

the importance of CSI overheads design in a practical communication system.
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Interference Mitigation in Small

Cell Networks

A recent development in small cell networks is femtocells, also known as home

BSs, which are user-installed BSs with short range, low cost and low power [82].

They are introduced for better indoor voice and data communications. Femtocells

connect to the service provider’s network via a broadband connection such as

digital subscriber line, cable modem, or a separate RF backhaul channel. In this

chapter, we show the ESPAR antenna as a solution to interference mitigation in

femtocell networks, while keeping the system complexity and cost at a relative

low level compared to the power control and resource allocation methods. The

ESPAR-based techniques presented in the previous chapters will be exploited to

achieve the goal of reducing interference among femtocells.

In [83–86], it is suggested that the switched multi-element antenna (single RF-

chain) can be deployed at the femto-BS as a means of interference suppression,

where one directional beampattern or a combination of beampatterns is dynami-

cally selected to the serving user terminal (UT). It is demonstrated that greater

capacity gains are obtained by using direction antennas at the femto-BSs than

by using single omni-directional antennas. Based on this, we can expect that the
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exploitation of directional antennas at both the femto-BS and UT will lead to fur-

ther capacity gains. This is an ongoing trend in next-generation systems, with the

development of smart antenna technology. Thus, we consider the ESPAR antenna

being deployed at both the femto-BSs and UTs, and the beamforming methods

presented in Chapter 2 are used to suppress inter-cell interference.

In addition, a small number of antennas may be deployed at femto-BSs, providing

a chance for exploiting some promising but more complex methods, such as IA or

multi-cell processing, to minimize interference [87] to support a multi-user scenario.

In this context, we consider the ESPAR antenna as the receive antenna, and thus

the ESPAR-based BIA scheme (presented in Chapter 3) is used for interference

management for the multi-user MISO BC in multi-femtocell settings. Indeed, the

small cell environment is more suitable for implementing BIA algorithms since

the practical issues of IA and the assumptions needed for BIA are ameliorated

[88]. Specifically, we would like to remind readers that in the BIA technique given

in the last chapter, it is assumed that the channel remains constant during one

Super Symbol to achieve alignment of inter-user interference. However, if one

considers traditional macrocell-based cellular networks, where the BS is equipped

with a large number of antennas and serves a large number of users, the length

of one Super Symbol is designed to exploit many symbol periods. In practice,

the assumption of a fixed channel across long periods cannot be held. On the

other hand, in the femtocell networks, femto-BSs have fewer transmit antennas

and serve only a limited number of users. Therefore, the Super Symbol is designed

to be much shorter and the fixed channel assumption is more practical.

4.1 System Model

4.1.1 System Architecture

This part of the thesis focuses on residential femtocells. As shown in Figure 4.1,

the system has a group of Nfc rooms spanning an area of 20 × 20 square meters
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Figure 4.1: Femtocell networks architecture.

per room, and they are lying within the coverage of a macrocell. One femto-BS

is installed at the center of each room, whose transmit power is adjusted to cover

the room. Therefore, a room is a femtocell. All femto-BSs are assumed to be

connected to the control unit by the backhaul. It is assumed that each femto-

BS simultaneously serves a small number of UTs (up to 2 users here), which are

uniformly distributed within a femtocell. In this femtocell system, we consider the

exclusive spectrum allocation scheme, which allocates different frequency bands to

the macrocell and femtocell. The other scenario is that we may also consider this

system as a CR system, where the femtocells work as SUs, while the macrocell is

the PU. In the context of the CR, SUs communicate when the PU is silent. Neither

the exclusive spectrum scheme nor the CR system results in cross-tier interference

(i.e., macrocell-to-femtocell interference). Based on these assumptions, we focus

on the interference among femtocells (i.e., co-tier interference).

We further classify this femtocell system by two scenarios based on interferences

seen by UTs:

• Scenario 1: The ESPAR antenna is deployed at both the femto-BS and UT.

After scheduling, each femto-BS serves one UT randomly located within

the room, for a single time slot. Consequently, UTs suffer from inter-cell
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interference only. This is the downlink of a single-input-single-output (SISO)

system.

• Scenario 2: Each femto-BS is equipped with a 2-element ULA, while each

UT is equipped with an ESPAR antenna. After scheduling, each femto-

BS simultaneously serves two UTs randomly located within the room, for a

single time slot. Consequently, UTs suffer from both intra-cell and inter-cell

interferences. This is the multi-user MISO BC system.

4.1.2 Channel Model

For the residential femtocells, we consider a model of indoor wireless channels, tak-

ing into account the clustered-wave propagation and detailed environment model.

The concept of a clustering phenomenon of impinging waves was first introduced

by Saleh and Valenzuela for indoor multipath channels [89]. Their measurements

suggest that the multipath channel can be modelled as multiple clusters, each of

which is associated with a set of rays.

Spencer et al. [90] extended the work of Saleh and Valenzuela to include the AoA

statistics of a cluster in the channel model (see Figure 4.2). In particular, the

AoA statistic is expressed by a power angular spread (PAS) which represents the

angular distribution of impinging rays within a cluster. The PAS, denoted by

A(θ), can be parameterized by a mean AoA (θ̄) and an angular spread σθ. It was

found to closely match the Laplacian distribution, expressed as [91]

A(θ) =
1√
2σθ

e
−
√

2|θ−θ̄|
σθ . (4.1)

Furthermore, in [92], the authors extended Spencer’s model by taking into account

the spatial statistics at both receive and transmit sides for the indoor MIMO

channel.

In the presence of angular distribution of an impinging wave described by the PAS

A(θ), the calculation of the directivity gain of an ESPAR antenna is related to
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Figure 4.2: An illustration of the AoA statistic of clusters impinging on an
ESPAR antenna.

compute the distributed directivity gain (DDG), taking the following form [44, 93,

94]

G(θ) = η

∫ 2π

0

g(θ)A(θ − θ̄), (4.2)

where g(θ) is the normalized directional beampattern, of the form

g(θ) =
|B(θ)|2

1
2π

∫ 2π

0
B(θ)B(θ)∗dθ

. (4.3)

For multiple clusters (e.g., two clusters), the PAS can be rewritten as

A(θ) =
1

2
√
σθ

(
e−|
√

2(θ−θ̄0)/σθ)| + e−|
√

2(θ−θ̄1)/σθ)|
)
, (4.4)

where the angular spreads of the two clusters are assumed to be the same: i.e.,

σθ,0 = σθ,1 = σθ. Thus, the DDG is given as [94]

G(θ) =
1

2
G0(θ, θ̄0) +

1

2
G1(θ, θ̄1), (4.5)

where G0(θ, θ̄0) is the DDG calculated when only cluster 0 is present using (4.2).

Similarly, G1(θ, θ̄1) can be calculated using (4.2).

The above DDG calculation is given at one side (the transmitter or receiver).

When both the transmit and receive sides are assumed to exploit the directional
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beampattern of the ESPAR antenna, the joint directivity gain should be considered

by incorporating the directivity gains at both link ends. Here, the AoD statistics

are assumed to follow the same distribution of AoA (i.e., Laplacian distribution).

It is noted that in this work we focus on analysis with one cluster. Alternatively,

it can be considered that the beams are steered towards one cluster, and thus the

impact of other clusters can be ignored because of spatial filtering. The directional

channel is thus given by [92, 94]

h =
√
gr(θr) ∗ h(θr, θt) ∗

√
gt(θt)

=
√
Gr(θr)

√
Gt(θt)α,

(4.6)

where α is the complex gain of the cluster assumed to follow the Rayleigh fading,

and Gr(θ), Gt(θ) are DDGs of receive antenna and transmit antenna, respectively.

For scenario 2, where 2-element ULA (omni-directional) is exploited at the trans-

mit side while the ESPAR antenna is equipped at the receive side, the directional

channel h ∈ C1×2 is modified as [92, 94]

h =
√
gr(θr) ∗ h(θr, θt) ∗ at(θt)

=
√
Gr(θr)hα,

(4.7)

where hα ∈ C1×2 follows the Rayleigh fading, with elements E{|hα(i)|2} = 1, i =

1, 2.

However, the above channel model is merely a statistical model. Therefore, we

include some effects resulting from the geometry of the simulated indoor environ-

ment, listed as follows [83]:

• Path loss: The path loss is modelled as 38.5 + 20log10(d) + Lwall, where d

in meters is the distance between a femto-BS and a UT, Lwall denotes the

penetration loss of the wall set to 5 dB per wall for indoor links.

• Shadowing: Shadow fading is modelled as a log-normal random variable ξ

(dB) with a mean of 0 dB and a standard deviation of σs = 4 dB for the

indoor femtocells.
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• Receiver noise: The receiver noise power is calculated as 10log10(kTNFWb),

where Wb is the effective noise bandwidth in Hz, kT = 1.3804× 10−23× 290

(Watt/Hz), and NF (dB) is the noise figure at the UT.

4.2 Interference Mitigation by Analog Beamform-

ing

In scenario 1, there is only inter-cell interference. Without loss of generality, we

consider the UT in the i-th femtocell, where i ∈ {1, · · · , Nfc}. Its received signal

is given by

yi(t) =
√
Pr,ihisi(t)︸ ︷︷ ︸

desired signal

+

Nfc∑
j=1,j 6=i

√
Pr,jhjsj(t)︸ ︷︷ ︸

inter-cell interference

+zi(t), (4.8)

where Pr,j = Pt ·10(ξ−L(dj))/10 is the receive power from femto-BS j with a distance

of dj, hj is the channel coefficient between femto-BS j and UT i expressed in (4.6)

taking into account the directional beampatterns at both link ends, sj(t) is the

signal transmitted by femto-BS j, and zi(t) is the additive noise. Thus, the SINR

achieved by UT i is given by

SINRi =
Pr,i|hi|2∑Nfc

j=1,j 6=i Pr,j|hj|2 +N0

, (4.9)

where N0 represents the noise power. The achievable sum-rate of the system is

thus given as

C =

Nfc∑
i=1

log(1 + SINRi). (4.10)

It is well known that the use of directional beampatterns is beneficial in nulling

interference while improving quality of the receive signal, thereby enhancing SINR.

For scenario 1, we exploit the analog beamforming of the ESPAR antenna to

mitigate interference from other femtocells [95].
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4.2.1 Beam Switching for Femtocells

We first consider a simple method, where the ESPAR antenna is exploited as

a switched-beam antenna. We would remind readers that an (M + 1)-element

ESPAR is able to form M sector beampatterns Bm(θ),m = {1, · · · ,M} which

divide the whole angle space of the ESPAR transmitter/receiver into M sectors.

In general, the femto-BS and UT in the i-th femtocell individually select one

beampattern from the M sector beampatterns to maximize the receive SINR, i.e.,

max
Bt,im ,Br,im

SINRi, m ∈ {1, · · · ,M}, (4.11)

where Bt,i
m and Br,i

m represent the beampatterns selected by the femto-BS and

UT in the i-th femtocell, respectively. Here, we assume that every femto-BS has

knowledge of the direction of its UT, which can be achieved by using the direction

estimation method (to be discussed in the next chapter). Similarly, every UT

also knows the direction of its anchor femto-BSs. Under this assumption, femto-

BS i simply selects a sector beampattern accessing the angular sector containing

the direction of UT i. In the same way, UT i is able to choose an appropriate

sector beampattern for communication. The beam switching method is quite

simple and practical, without message exchange, cooperation across femtocells, or

requirement of CSI. However, the beam switching is less flexible compared to the

adaptive beamforming solution.

4.2.2 Adaptive Beamforming for Femtocells

Now, we consider the adaptive beamforming method for interference mitigation in

femtocells. Although it increases computation complexity compared to the beam

switching method, adaptive beamforming provides a better solution for interfer-

ence mitigation. We assume that UTs only know the directions of their anchor
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femto-BSs, since UTs do not exchange messages. However, femto-BSs are as-

sumed to have knowledge of the directions of all UTs in the networks, which can

be achieved by exchanging their measurement results through backhaul.

Based on these assumptions, the femto-BS uses a fast beamforming algorithm

developed for the ESPAR array [45], since the desired direction as well as in-

terfering directions are available. Suppose that femto-BS i wants to design a

beampattern placing nulls at Nint interfering directions, denoted by the vector

θnull = [θ1, · · · , θNint ]. Let the matrix Anull = [a(θ1), · · · ,a(θNint)] store steer-

ing vectors corresponding to Nint interfering directions. The desired direction is

denoted by θd. The beampattern is designed by solving the following problem

wopt = argmin
w

µ1‖AT
nullw‖2 + µ2|aT (θd)w − 1|2, (4.12)

where µ1 and µ2 are weights on the importance of the nulls and desired direction

magnitudes. This is analogous to the pattern synthesis problem in a conventional

DBF array. Again, there is no closed-form solution to (4.12) for parasitic reactance

loads with pure imaginary components. Fortunately, it is clear that (4.12) is

a convex problem. Therefore, the beamforming algorithm can be modified as

the method iterating between a convex problem and a simple projector, similar

to MVDR beamforming. For simplicity, we do not repeat the detailed convex

problem reformulation of (4.12), taking into account reactance loads design. The

convex problem is given as [45]:

min
µ1,µ2,w

β1µ1 + β2µ2, (4.13a)

s.t. ‖AT
nullw‖2 ≤ µ1, (4.13b)

|aT (θd)w − 1|2 ≤ µ2, (4.13c)

‖Z̄Lw‖2 ≤ ε, (4.13d)

[Zw](1) + Zsw(1) = 1. (4.13e)

For UT i, since it knows only the desired direction, we use MVDR beamforming.

The MVDR beamforming algorithm for an ESPAR antenna has been presented
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in Chapter 2, where we do not repeat it here. It is worth noting that we need to

replace the LOS channel model in (2.12) by

yi(t1) =

Nfc∑
j=1

√
Pr,jhj(B1)si(t1) + z(t1)

...

yi(tN) =

Nfc∑
j=1

√
Pr,ijhj(BN)sj(t1) + z(tN),

(4.14)

hj(Bn) is the channel coefficient between femto-BS j and the n-th initial beampat-

tern of UT i, where n = {1, · · · , N} and N is the total number of initial beampat-

terns used for signal measurements. According to the RD technique, (4.14) can

be rewritten in vector form

yi =


h̃1,1 · · · h̃1,Nfc

...
. . .

...

h̃N,1 · · · h̃N,Nfc


︸ ︷︷ ︸

H


s1

...

sNfc

+


z1

...

zN

 , (4.15)

where h̃n,j =
√
Pr,jhj(Bn). Thus, a number of measurement vectors is used to

calculate the estimate correlation matrix for use in the MVDR algorithm.

4.3 Interference Mitigation by Blind Interference

Alignment

We exploit the ESPAR-based BIA scheme presented in Chapter 3 to mitigate

interference in system scenario 2. However, it is noted that the original BIA scheme

is designed to cancel intra-cell interference. Thus, its direct application in the

multi-cell setting will not help to suppress inter-cell interference. In this section,

we first review two BIA code structures – synchronized and non-synchronized

code structures – via a simple two-cell system, then present the design of the BIA

scheme suited to multiple femtocells.
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Figure 4.3: The two-cell MU-MISO system.

4.3.1 BIA Code Structures

As a prelude to examining the BIA code structures in the presence of interferences

from the other cells, we consider the simplest two-cell system (Figure 4.3). Again,

the case with Nt = 2, K = 2 is used as the driving example; i.e., each BS in the

two cells is equipped with Nt = 2 antennas, and K = 2 users are simultaneously

served in each cell.

Without loss of generality, consider cell 1 as the cell of interest. Femto-BS 1

exploits the transmit signal structure defined by the BIA scheme (see (3.16)) to

deliver streams u[1],u[2] to its two users. At the same time, femto-BS 2 applies the

BIA code to deliver streams u
[1]
I ,u

[2]
I to its two users, where the subscript denotes

that they are interfering data streams from the other cell. Let γk be the SIR at user

k in cell 1. For simplicity of discussion, here we assume that receive powers at users

in cell 1 from femto-BS 1 is normalized to unity; thus, the quantity −10log10(γ) is a

measure of the SIR in dB. Each user follows the staggered beampattern switching

process defined by the BIA scheme. Then, received signal at user k in cell 1 at

time t, when Bn is formed by the receive ESPAR antenna, is given by

y[k] = h[k](Bn)s(t) +
√
αkh

[k]
I (Bn)sI(t) + z[k](t), k = 1, 2, (4.16)

where h
[k]
I (Bn) ∈ C1×Nt is the channel vector between antennas at BS 2 and user

k in cell 1 associated with beampattern Bn.
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The performance of the BIA scheme in the cell of interest (cell 1) will be examined

for two different BIA code structures. They are presented as follows.

1) Synchronized BIA Code Structure

In the synchronized BIA code structure, femto-BS 1 and femto-BS 2 synchronize

their transmission across one Super Symbol in time, at the mean time, users in

each cell using the corresponding beampattern switching manner defined in the

Super Symbol structure. Consider user 1 in cell 1: according to (3.16), its received

signals across one Super Symbol are
y[1](1)

y[1](2)

y[1](3)

 =


1√
2
h[1](B1)

h[1](B2)

0

u[1] +


1√
2
h[1](B1)

0

h[1](B1)

u[2] +


z[1](1)

z[1](2)

z[1](3)



+
√
γ1


1√
2
h

[1]
I (B1)

h
[1]
I (B2)

0

u[1]
I +
√
γ1


1√
2
h

[1]
I (B1)

0

h
[1]
I (B1)

u[2]
I .

(4.17)

Then user 1 in cell 1 cancels interference from user 2 in the same cell (intra-cell

interference), using the post-processing step represented in (3.18). Therefore, user

1 achieves the following receive model

ỹ[1] =

h[1](B1)

h[1](B2)


︸ ︷︷ ︸

H̃
[1]

u[1] +
√
γ1

h[1]
I (B1)

h
[1]
I (B2)


︸ ︷︷ ︸

H̃
[1]
I

u
[1]
I +

√2z[1](1)− z[1](3)

z[1](2)


︸ ︷︷ ︸

z̃[1]

(4.18)

where z̃[1] ∼ CN (0,Rz̃) is the post-processed noise vector, with Rz̃ given by

(3.20).

As Equation (4.18) reveals, when the same BIA code is used across two cells in

a synchronized way, a user is able to cancel the intra-cell interference and leave

only one user’s interference from the other cell. It is easy to verify that, when the

synchronized BIA code structure is applied in the general K-user Nt × 1 MISO

BC case, the same result can be achieved for each user [76].
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Assuming that the instantaneous interference-plus-noise covariance matrix is known,

and treating the remaining inter-cell interference as noise, the achievable rate for

user k in the cell of interest (cell 1) is thus given by

C [k]
syn =

1

Nt +K − 1
E
{

log det

(
INt +

Pt
Nt

H̃
[k]
H̃

[k]H
(R[k]

v,syn)−1

)}
, (4.19)

where R[k]
v,syn represents the instantaneous covariance matrix of the interference

plus noise experienced by user k in the cell of interest, i.e.,

Rv,syn = Rz̃ +
Ptγk
Nt

H̃
[k]

I H̃
[k]H

I . (4.20)

2) Non-synchronized BIA Code Structure

Again, femto-BS 1 and femto-BS 2 use the same standard BIA code given in (3.16).

However, they are not synchronized in time. Thus, femto-BS 1 and femto-BS 2

transmit the data streams intended for two users in different time slots across one

Super Symbol. We also consider cell 1 as the cell of interest. Given a block of

three time slots, assume that signals transmitted by femto-BS 1 have the exactly

same structure as that given in (3.16), while signals transmitted by femto-BS 2

are shifting by one symbol (or two symbols) of the original signal structure given

in (3.16). Mathematically, signals transmitted by femto-BS 2 across the block of

three time slots are represented as
sI(1)

sI(2)

sI(3)

 =


02

1√
2
I2

I2

u[1]
I +


I2

1√
2
I2

02

u[2]
I . (4.21)

Comparing (4.21) with (3.16), the signals are shifted by one symbol. Indeed, one-

symbol shifted signals and two-symbol shifted signals are equivalent from the point

of view of ergodic rate performance.

Without loss of generality, user 1 in cell 1 is considered here. With the signal

structure given in (4.21) and corresponding beampattern switching manner defined

in the Super Symbol (Figure 3.2), receive signals at user 1 across a block of three
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time slots are given by
y[1](1)

y[1](2)

y[1](3)

 =


1√
2
h[1](B1)

h[1](B2)

0

u[1] +


1√
2
h[1](B1)

0

h[1](B1)

u[2] +


z[1](1)

z[1](2)

z[1](3)



+
√
γ1


0

1√
2
h

[1]
I (B2)

h
[1]
I (B1)

u[1]
I +
√
γ1


h

[1]
I (B1)

1√
2
h

[1]
I (B2)

0

u[2]
I .

(4.22)

Again, user 1 follows the zero-forcing post-processing step (3.18) to cancel intra-

cell interference. Substituting (4.22) to (3.18) yields the following post-processed

measurements at user 1 in cell 1

ỹ[1] =

h[1](B1)

h[1](B1)


︸ ︷︷ ︸

H̃
[1]

u[1] +

√2z[1](1)− z[1](3)

z[1](2)


︸ ︷︷ ︸

z̃[1]

+
√
γ1

√2h
[1]
I (B1)u

[2]
I − h

[1]
I (B1)u

[1]
I

1√
2
h

[1]
I (B2)(u

[1]
I + u

[2]
I )


=H̃

[1]
u[1] +

√
γ1H̄

[1]
I uI + z̃[1],

(4.23)

where uI =
[
u

[1]T
I ,u

[2]T
I

]T
, and H̄

[1]
I is expressed as

H̄
[1]
I =

h[1]
I (B1) 01×2

01×2 h
[1]
I (B2)

B[1]
I , (4.24)

where the 4× 4 matrix B
[1]
I is user specific, i.e.,

B
[1]
I =

 −I2
1√
2
I2

√
2I2

1√
2
I2

 . (4.25)
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With the same BIA code structure and procedure, user 2 in cell 1 obtains similar

post-processed measurements taking the following form

ỹ[2] = H̃
[2]
u[2] +

√
γ2H̄

[2]
I uI + z̃[2], (4.26)

where

H̄
[2]
I =

h[2]
I (B1) 01×2

01×2 h
[2]
I (B2)

B[2]
I , (4.27)

with the 4× 4 matrix B
[2]
I given by

B
[2]
I =

− 1√
2
I2

1√
2
I2

I2 02

 . (4.28)

It is noted that similar results can be derived for the general K-user Nt× 1 MISO

BC, where the matrix B
[k]
I is user specific, given K and Nt. When the instanta-

neous interference-plus-noise covariance matrix is known at the desired user (user

k in cell 1), then treat the inter-cell interference as noise. User k’s achievable rate

is expressed as

C [k]
nsyn =

1

Nt +K − 1
E
{

log det

(
INt +

Pt
Nt

H̃
[k]
H̃

[k]H
(R[k]

v,nsyn)−1

)}
, (4.29)

where the interference plus noise covariance matrix R[k]
v,nsyn is represented as

R[k]
v,nsyn = Rz̃ +

Ptγk
Nt

H̄
[k]
I H̄

[k]H
I . (4.30)

From the point of view of the ergodic rate, the performance of the synchronized

BIA code structure is superior to that of the non-synchronized BIA code structure,

especially when Nt and K are large. Since non-synchronized BIA code is being

used, the interference from the other cell cannot be reduced. We illustrate this as

the numerical results given in Figure 4.4, where, for simplicity, we use the generic

channel vectors, instead of the directional channel vector related to the EPSAR

antenna beampatterns. It is clear that the observations will hold in the case where
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Figure 4.4: Ergodic rate versus SNR, SIR = 10 dB.

the ESPAR antenna is considered. Thus, in the following study, we will always

assume that the BIA code structure used across femtocells is synchronized, in

order to minimize inter-cell interference.

4.3.2 Synchronized BIA and Virtual BIA for Femtocells

When multiple users are simultaneously served by each femto-BS, a UT suffers

from both intra-cell and inter-cell interference. Let h
[k,i]
j (Bm) ∈ C1×2 denote

the channel between the j-th femto-BS and UT k in femtocell i associated with

beampattern Bm, where k ∈ {1, · · · , K} and i, j ∈ {1, · · · , Nfc}. Then, the

received signal at user k in the i-th femtocell is represented as

y[k,i](t) =
√
Pr,ih

[k,i]
i (Bm)si(t)︸ ︷︷ ︸

desired signal plus
intra-cell interference

+

Nfc∑
j=1,j 6=i

√
Pr,jh

[k,i]
j (Bm)sj(t)︸ ︷︷ ︸

inter-cell interference

+z[k,i](t), (4.31)

where sj(t) ∈ C2×1 is signal transmitted by femto-BS j, and z[k,i](t) ∼ CN (0, σ2
z)

is the additive white noise.
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Figure 4.5: Synchronized BIA code structure applied across a group of four
femtocells, each of which serves two UTs.

In particular, we will consider two BIA schemes – synchronized BIA and virtual

BIA – for the multi-cell setting, to deal with both intra-cell and inter-cell interfer-

ence.

1) Synchronized BIA Scheme

The simplest way to exploit BIA in the femtocell network is to apply the same

BIA code structure across femtocells in a synchronized manner, as we described

previously via a simple two-cell system. Specifically, each femto-BS uses the same

beamformer for transmission. For individual UTs, the same receive beampat-

tern switching patterns given in the single-cell setting are employed. The idea

is illustrated in an environment where there are four femtocells, each of which

simultaneously serves two UTs across one Super Symbol, as shown in Figure 4.5.

Consider user 1 (colored as black) in femtocell 1, with synchronized BIA. We know

that after user 1 cancels the interference from user 2 (colored as red) in the same

cell, inter-cell interference from femtocells 2, 3 and 4 related to the data intended

for red users can also be cancelled out, while interference related to data meant for

black users in the neighboring cells remains. Normalized rate achievable at user k

in i-th femtocell is thus given by
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C
[k,i]
synbia =

1

Nt +K − 1
E
{

log det

(
INt +

Pr,i
Nt

H̃
[k,i]

i H̃
[k,i]H

i R−1
v

)}
, (4.32)

where Rv ∈ CNt×Nt is the covariance matrix of noise plus interference of the

following form

Rv = Rz̃ +

Nfc∑
j=1,j 6=i

Pr,j
Nt

H̃
[k,i]

j H̃
[k,i]H

j , (4.33)

H̃
[k,i]

j =
[
h

[k,i]T
j (B1) h

[k,i]T
j (B2) · · · h

[k,i]T
j (BNt)

]T
, (4.34)

Rz̃ is given in (3.20).

2) Virtual BIA Scheme

Using the synchronized BIA scheme in the multiple cell setting, there is still resid-

ual interference from the other cells. In order to completely cancel inter-cell inter-

ference, we consider a group of Nfc femtocells as one virtual cell, simultaneously

serving a total number of Nfc ·K users. In this context, inter-cell interference is

thus seen as “intra-cell” interference. Therefore, the original BIA scheme derived

for the single-cell setting can be directly applied to the virtual cell to cancel all

kinds of interference. This is referred to as a virtual BIA scheme or an extended

BIA scheme [88].

The idea is illustrated via an environment with four femtocells, each of which

serves two users (Figure 4.6). In the virtual BIA scheme, this femtocell system is

considered as a single virtual cell having one virtual femto-BS equipped with two

transmit antennas and simultaneously serving eight active UTs. According to the

original BIA scheme [27], the Super Symbol structure for the 8-user 2 × 1 MISO

is given as Figure 4.6 (b).
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(a) Virtual femtocell example.

(b) Super Symbol for the virtual femtocell

Figure 4.6: Illustration of virtual BIA scheme for a group of four femtocells,
each of which serves two UTs.

To avoid data exchange across the four femto-BSs in the virtual BIA scheme, we

assume that data streams intended for each user are transmitted by its anchor

femto-BS, using the precoding matrix defined in the Super Symbol. The precoding

matrices for 8 users used by four femto-BSs are given by
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.

With this strategy, UT k in cell i, k ∈ {1, · · · , 8} and i ∈ {1, · · · , 4}, is able to

completely cancel both intra-cell and inter-cell interference with a simple zero-

forcing processing step: i.e.,

ỹ[k,i] =

√8y[k,i](1)− y[k,i](k + 1)

y[k,i](k)


=

h[k,i]
i (B1)

h
[k,i]
i (B2)

u[k,i] +

√8z[k,i](1)− z[k,i](k + 1)

z[k,i]

 .
(4.35)

It is noted that the virtual BIA scheme uses more symbol extensions than does

the synchronized BIA scheme. It is easy to extend this virtual BIA scheme to the

case with arbitrary values of K and Nt. However, large values of K and Nt are

not practical, due to the requirement for a longer Super Symbol. Consequently,

the achievable normalized rate of user k in cell i is

C
[k,i]
virbia =

1

Nt +NfcK − 1
E
{

log det

(
INt +

Pr,i
Nt

H̃
[k,i]

i H̃
[k,i]H

i R−1
z̃

)}
. (4.36)

Notice that the inter-cell interference is completely cancelled by the virtual BIA
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scheme at the cost of increasing the length of the Super Symbol. Thus, the scheme

is more suitable to be employed in a scenario with a high interference power

level; that is, where users are mainly located at the cell-edge. In contrast, in the

scenario where users are mainly located in the cell-center, directly applying the

synchronized BIA code structure may be superior to the virtual BIA strategy,

since the interference power level is weak here and the longer Super Symbol leads

to a smaller achievable rate at each user.

4.4 Simulations

In this section, we evaluate the interference mitigation performance of the proposed

methods by employing the ESPAR antenna. Here, the 7-element ESPAR antenna

is adopted again as the simulated ESPAR antenna, whose parameters are given in

Chapter 2. For the ESPAR-based BIA scheme, each femto-BS is equipped with

2-element ULA with inter-element spacing of λ/2. Table 4.1 summarizes some

key parameters used in simulations. The simulated results are averaged from 1000

Monte-Carlo experiments.

Table 4.1: Simulation Parameters

Symbol Description Value

Nfc Number of femtocells 1-9
Rf Femtocell radius 10 m
Pt FBS’s transmit power 20 dBm
Lwall Penetration loss of wall 5 dB
σs Shadowing standard deviation 8 dB
Wb Noise effective bandwidth 3.84 MHz
NF Noise figure at UT 7 dB
Bomni Beampattern gain of omni-directional antenna 5 dB
σθ Angular spread in PAS 10◦
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4.4.1 ESPAR analog beamforming for scenario 1

We first consider the interference mitigation for scenario 1, where the ESPAR

antenna is deployed at both the femto-BS and UT, and a single user is sched-

uled to be served by each femto-BS for one time slot. We examine two proposed

approaches: beam switching and adaptive beamforming. For the beam switch-

ing, a 7-element ESPAR antenna is able to form 6 sector beampatterns. One

femto-BS/UT dynamically selects an appropriate beampattern out of the 6 sector

beampatterns, according to knowledge of direction of the desired UT/femto-BS.

For the adaptive beamforming, the convex optimization problems (see (4.13) and

(2.26)) were solved using the free optimization software SeDuMi [65] and mod-

elling language YALMIP [64]. In the convex problem (4.13), we limit the number

of nulls to 3; i.e., directions of UTs in the 3 nearest neighboring femtocells. The

iteration number is set to 20. The single omni-directional antenna is used as a

baseline for comparison, where its antenna gain is set to 5 dB in all directions. In

each femtocell, we generate 200 realizations of the UT locations.

Figure 4.7 (a) shows the cumulative distribution function (CDF) of SINRs of

UTs in the 9-femtocell network. It is observed that the increment of the average

SINR (i.e., the SINR value corresponding to the CDF of 0.5) is about 8.9 dB

by ESPAR beam switching (compared to the omni-directional antenna), and the

increment is around 11.7 dB by ESPAR adaptive beamforming. In addition to the

mean SINR, we would like to check the worst 5-percentile of users’ performance,

which is important information for the operator. According to Figure 4.7 (a), the

worst 5-percentile users’ SINR is improved by 8.9 dB using the ESPAR antenna.

However, the difference between beam switching and adaptive beamforming can

be ignored here. Finally, we check the 95-percentile users’ SINR. It is illustrated

in Figure 4.7 (a) that the 95-percentile users’ SINR is 16.1 dB for omni-directional

antennas, 25.9 dB for ESPAR beam switching, and 30.4 dB for ESPAR adaptive

beamforming. Overall, adaptive beamforming is superior to the beam switching

scheme at the cost of computational complexity. Correspondingly, similar trends
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Figure 4.7: Performance gain of ESPAR scheme over omni-directional antenna
in a 9-femtocell network.

are observed in the CDF of the rates of UTs in the 9 femtocells (see Figure 4.7

(b)).

In the femtocell networks, the smart antenna system is generally assumed to be

suitable only for small BSs: for example, switched-beam antennas are used at the

femto-BSs in the literature [83–86]. Here, we also evaluate the performance where

the ESPAR antenna is deployed only at the femto-BSs, while the UTs are equipped
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Figure 4.8: Performance gain of ESPAR antenna only adopted by FBSs in a
9-femtocell network.

with a single omni-directional antenna, as illustrated in Figure 4.8. From Figure

4.8 (a), we can see that the increment of the mean SINR is about 4.8 dB by ESPAR

beam switching (compared to the omni-directional antenna), and the increment is

around 6.8 dB by ESPAR adaptive beamforming. The mean SINRs are reduced to

a half of that when the ESPAR antenna is deployed at both link ends. The worst

5-percentile users’ SINR is 4.5 dB with ESPAR beam switching, and 5.59 dB with
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ESPAR adaptive beamforming. These values are again reduced to half of that

given in Figure 4.7 (a). Nevertheless, comparing these two cases, the 95-percentile

users SINR has not been doubled. The reason is that for UTs located at the

center and with low interference power, the effects of the directional beampattern

are less sensitive than for the cell-edge UTs. Similar trends are observed in the

CDF of the rates of UTs in Figure 4.8 (b). Overall, these results suggest that,

with the compact deployment of smart antennas at both small BSs and UTs in

future networks, the performance gains will be significant, while system costs and

complexity will be reduced.

Figure 4.9 depicts the achievable sum-rate for the system with a varying number

of femtocells. We can observe, from the case using omni-directional antennas (no

interference mitigation), that the system sum-rate is degraded with increasing

femtocell numbers when Nfc ≤ 5, due to higher interference power level. For the

cases using ESPAR antennas (at both the femto-BSs and UTs), the system sum-

rate has been significantly improved. Again, the performance gains achieved by

adaptive beamforming outperform that by beam switching, at the cost of increased

computational complexity.
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Figure 4.9: System sum-rate vs. femtocell number.
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4.4.2 ESPAR-based BIA for scenario 2

In this part, we examine the performance of the proposed ESPAR-based BIA

schemes for scenario 2, where each femto-BS is equipped with a 2-element ULA

while two UTs served by each femtocell have a 7-element ESPAR antenna each. We

consider a 9-femtocell network. In particular, we evaluate the achievable sum-rate

in the center cell, which encounters the highest number of interferences from the

neighboring cells. Moreover, the performance of the ESPAR-based BIA schemes

is compared with that of the LZFBF described in Chapter 3, Section 3.5.1.

In order to analyze the effect of the inter-cell interference, we first assume that

two UTs in the center cell move from cell center to cell edge, while UTs in other

cells are fixed, as shown in Figure 4.10. The achievable sum-rate in the center

femtocell is calculated for the synchronized BIA and virtual BIA schemes, given

respectively by (4.32) and (4.36), where we consider three ESPAR beamform-

ing methods (random beamforming, sector beampattern selection and SVD-based

beamforming, described in Chapter 3). For SVD-based beamforming, we assume

that the receiver only knows the channels from its serving BS; therefore, the SVD

beamformer uses this knowledge to design beampatterns.

The results are shown in Figure 4.11. As expected, the synchronized BIA outper-

forms the virtual BIA when users are located near the femto-BS. The cross points

are about 2.3 m with the random beampatterns, and around 3.6 m with the se-

lected sector beampattern and the SVD-based beamforming. Since the femtocell

system is an interference-limited system with cell-size reduction, performance of

the virtual BIA scheme is better than that of the synchronized BIA scheme in most

of the distance range from the cell-edge to the cell-center, through completely can-

celling inter-cell interference. Although the ESPAR-based BIA schemes are inferior

to the LZFBF in the cell-center, their rate gains are larger than the LZFBF at

the cell-edge. The other observation is that the BIA schemes using selected sector

beampatterns, and beampatterns designed based on SVD beamforming, provide

higher sum-rates compared to those using random beampatterns, since the di-

rectional beampatterns are selected/designed to enhance the receive SINR/SNR.
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Figure 4.10: The 9-cell network used for simulations.

However, the difference between the SVD beamforming and sector beampattern

selection is not significant. The reason may be that, with SVD beamforming, the

beampatterns are only designed to enhance receive SNR using the CSIR from the

desired femto-BS, without suppressing the inter-cell interference. However, the

computational complexity of SVD-based beamforming is higher than that of the

other two methods. In the next simulations, we only consider the performance of

the BIA scheme, using random beampatterns and selected sector beampatterns.

Now, we simulate the CDF of the sum-rate of two users in the center cell, where

200 realizations of users’ locations are generated and for each location realization

is averaged from 1000 Monte-Carlo simulations. Figure 4.12 shows the simulated

results, from which one can make the following observations. With respect to the

mean sum-rate as well as the worst 5-percentile users’ performance, the ESPAR-

based BIA schemes provide significant rate gains compared to the LZFBF, where

the increment of mean sum-rate is up to 3.6 dB , and the increment of worst

5-percentile users’ sum-rate is up to 4.2 dB employing virtual BIA with selected
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Figure 4.11: Achievable sum-rate in the center femtocell versus users’ distance
to the femto-BS.
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Figure 4.12: CDR of the sum-rate in the center femtocells.

sector beampatterns. From the comparison between the BIA schemes, the vir-

tual BIA scheme outperforms the synchronized BIA scheme, since the inter-cell

interference has been completely cancelled.
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4.5 Summary

This chapter employs the ESPAR antenna as a solution for interference mitigation

in the residential femtocells, thereby improving system rate. In particular, the

interference mitigation approaches are proposed under two scenarios.

• Scenario 1: one user is scheduled to communicate in each femtocell for one

time slot, where users are subject only to inter-cell interference. For this

scenario, we adopt the ESPAR antenna at both the femto-BSs and UTs,

and then ESPAR’s capability of beamforming is exploited to enhance the

receive SINR. In particular, the switched-beam antenna and the adaptive

beamforming algorithm proposed in Chapter 2 are exploited in the femtocell

networks, to show their feasibility in mitigation interferences from other

cells. This indicates the importance role of deployment of the smart antenna

system for compactness applications in future networks.

• Scenario 2: two users are scheduled to communicate in each femtocell at one

time slot, where users are subject to both intra-cell and inter-cell interfer-

ence. For this scenario, we consider that the ESPAR antenna is deployed

at the UTs, while the femto-BSs are equipped with a 2-element ULA each.

Thus, the ESPAR-based BIA scheme, presented in Chapter 3, is considered

as a means to address both intra-cell and inter-cell interference. In order

to extend the BIA scheme in the multi-cell setting, the synchronized and

non-synchronized BIA code structures are studied. It is demonstrated that

only the synchronized BIA code structure is able to minimize inter-cell in-

terference. Based on this, two BIA schemes are considered in the femtocell

networks: synchronized BIA scheme and virtual BIA scheme. Since the fem-

tocell system is an interference-limited system due to cell size reduction, in

general, the virtual BIA scheme is superior to the synchronized BIA scheme,

especially at the cell-edge. Moreover, the BIA schemes perform better than

the LZFBF at the cell-edge, by minimizing inter-cell interference.
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Chapter 5

ESPAR Antennas for Spatial

Spectrum Sensing in Cognitive

Radios

In this chapter, the cognitive radio (CR) system is considered. CR is a novel

technology: a wireless communication system intended to enable a secondary user

(SU) to operate in the same frequency subband as that originally allocated to the

primary user (PU), thereby addressing the problem of underutilization of the lim-

ited spectral resource [34]. As we mentioned in Chapter 4, the CR technology can

be introduced in the SCNs to mitigate cross-tier interference (i.e., macrocell-to-

femtocell interference), where the macrocell can be considered as the primary link,

while the femtocells are the secondary links. Thus, the femtocells communicate

without causing harmful interference to the macrocell. In particular, this work

focuses on the CR system with the interweave paradigm, in which the SU exploits

knowledge of the PU’s activity in the spectrum to identify transmission opportu-

nity [34]. In this context, spectrum sensing is the most important component for

establishing the CR system.

Conventionally, spectrum sensing is a task to gain awareness of PU activity in

a brand of frequencies at a particular time in a particular geographic area. It
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takes into account only three dimensions of the spectrum space: frequency, time

and geographic space. Besides these dimensions, the angle dimension can also

be introduced in spectrum space to further efficient use of the spectral resource

[35]. With the development of smart antenna technology (beamforming), the SU

transmitter is able to transmit its data over a subband of frequency (even with

the presence of the PU in the same geographical area and without interfering with

the PU), by steering its beampattern in different angular directions. To exploit

the new angle dimension, the SU is required not only to sense conventional three-

dimensional spectrum space but also to estimate the AoA of the existing PU. This

is referred to as spatial spectrum sensing. Indeed, spatial spectrum sensing has

not attracted attention for small CR terminal applications, since, in most of the

literature, multi-active antenna arrays are assumed to operate the spatial spectrum

sensing function.

This chapter employs the ESPAR antenna to perform spatial spectrum sensing

at compact CR terminals. In Section 5.1, the CR system model is presented,

and a two-stage spectrum sensing method is also described. At the first stage, the

ESPAR receiver performs Temporal spectrum sensing to detect whether a subband

of frequency is occupied by the PU. If the decision is made that the PU is absent,

the sensing procedure finishes; otherwise, at the second stage, the ESPAR receiver

detects the AoA of the existing PU. temporal spectrum sensing is referred to as

traditional spectrum sensing in terms of 3-directional spectrum space without

angle dimension. Sensing methods, including the energy detector and eigenvalue-

based detection, have been studied for ESPAR cognitive radio terminals in [44,

45], and are exploited in the first stage of our strategy (Section 5.2). However,

in [44, 45], the authors have not considered the high resolution AoA estimation

method for spatial spectrum sensing with the ESPAR array.

Our work thus includes the study of the high-resolution AoA estimation algorithms

for ESPAR-based CR terminals at the second stage to fulfil spatial spectrum sens-

ing. For the ESPAR antenna, some subspace algorithms such as RD-MUSIC

[43, 96] and RD-ESPRIT [53, 54] have been developed, which are able to provide

121



Chapter 5. ESPAR Antennas for Spatial Spectrum Sensing in Cognitive Radios

high-resolution estimation performance. It is noted that these subspace meth-

ods require Nyquist-rate sampling of the received signals to estimate directions

of a small number of source signals, which may be very expensive in some appli-

cations. Moreover, the unique configuration of the ESPAR antenna with a single

active element requires that its signal processing operates in the reactance-domain

(or beamspace) instead of the element-domain. Thus, an AoA estimation method

with reduction of sampling numbers is more important for the ESPAR receiver

in order to reduce complexity. Recently, the emerging field of compressive sens-

ing (CS) [97] has provided an alternative solution to the AoA estimation problem

with super resolution, while exploiting only a small number of samples. In Section

5.3, we study the sparse signal representation problem for a solution to direction

finding for the ESPAR antenna; this will be compared with the subspace method

– RD-MUSIC. We begin with proposing the sparse signal representation of the

AoA estimation problem for the ESPAR array. Since the model of a small num-

ber of signals impinging on a receive antenna array implies a sparse spectrum in

the spatial domain, we use an overcomplete dictionary which is constructed by

discretizing the angle space and then synthesizing array outputs for each discrete

angle. As the outputs of the parasitic elements cannot be observed, instead they

are electronically combined and collected from the sole active element. To this

end, the sparse signal in the ESPAR array is considered to be projected on to

a set of directional beampatterns; that is equivalent to introducing a projection

matrix in the sparse signal representation. Finally, the recovery of the sparse sig-

nal spectrum can be solved by the l1-SVD multiple measurement vectors (MMV)

problem [11], which combines the SVD of the subspaces algorithms with the l1-

norm relaxation for sparse spectrum recovery and can be reformulated as a SOCP

problem.
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5.1 Two-Stage Spatial Spectrum Sensing with

ESPAR Antennas

5.1.1 System Model

In the CR system, an ESPAR antenna with M + 1 elements is considered as the

transceiver for a cognitive radio (i.e., SU), so the SU transmitter is capable of

adaptive beamforming. Consequently, this CR system is ready to apply the new

angle dimension in the spectrum resource. In this chapter, the ESPAR antenna

works as a switched-beam antenna, as described in Chapter 2, Section 2.3. Recall

that an (M + 1)-element ESPAR antenna is able to form M sector beampatterns

dividing the whole angle space into M sectors.

Here, we focus on the far-field narrowband scenario; thus, source signals can be

modeled as point sources. Assume that there are P (P ≤ M) PUs in the ge-

ographic area under consideration, where signal sp(t) is from the direction θp,

p ∈ {1, · · · , P}. During the sensing period, the ESPAR receiver scans its whole

angle space via M sector beampatterns formed on a time division basis. The

M sector beampatterns are denoted by Bm(θ) = wT
ma(θ), with the maximum

beam gain at φm = (m − 1)2π/M , m = {1, · · · ,M}. Thus, the receiver ob-

tains measurements via M sector beampatterns written in the M -dimensional

y = [y1, · · · , ym, · · · , yM ]T . The signal received over the m-th sector beampattern

is given by

ym(t) =
P∑
p=1

Bm(θp)sp(t) + em(t)

=
P∑
p=1

wT
ma(θp)sp(t) + em(t), m = {1, · · · ,M},

(5.1)
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Figure 5.1: Diagram for two-stage spatial spectrum sensing.

where em(t) (em(t) ∼ CN (0, σ2
e)) are additive noises assumed to be uncorrelated

to source signals sp(t). The receive SNR at the m-th beampattern is given as

SNRm =
1

σ2
e

(
P∑
p=1

Pt,p|Bm(θp)|2
)
, (5.2)

where Pt,p is the power of the p-th source signal.

5.1.2 Two-Stage Spatial Spectrum Sensing

In this CR system, we employ a two-stage spatial spectrum sensing method based

on the ESPAR antenna, which is used in [98, 99]. The diagram of the two-stage

sensing method is shown in Figure 5.1. At the first stage, the ESPAR receiver

senses the channel to detect whether the frequency subband is occupied by PUs at

a certain time in a given region, using conventional spectrum sensing algorithms

which are referred to as temporal spectrum sensing. In particular, the energy

detector and the eigenvalue-based detectors are considered at the first stage. If

the decision is made that primary signals are absent, sensing is finished; otherwise,

we go to the next stage. At the second stage, the ESPAR estimates the AoAs of the
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existing primary signals using the high-resolution algorithms. The AoA estimation

method via the sparse signal reconstruction, especially, is studied for the ESPAR

antenna, and is compared to the RD-MUSIC algorithm. As a result, the spectrum

white space is found to be all directions in the absence of the PUs, or the different

directions causing no interference to the PUs when the PUs are present.

5.2 Temporal Spectrum Sensing

At the first stage of spatial spectrum sensing, the ESPAR receiver detects occu-

pancy by the PU over a specific subband at a certain time in a geographic area. A

number of different sensing approaches have been developed for temporal spectrum

sensing. Each method has its own performance advantages and disadvantages for

the sensing scenario [35].

In [44, 45, 99], sensing methods (including energy detector and eigenvalue-based

techniques) have been studied for the switched-beam ESPAR receiver. It is demon-

strated that the switched-beam ESPAR antenna is suited to be an alternative for

spectrum sensing applied by compact CR terminals. Furthermore, the use of di-

rectional beampatterns helps to improve sensing performance (when compared to

that using isotropic beampattern), by increasing receive SNR. Here, we simply re-

view these temporal spectrum sensing methods for use at the first stage of spatial

spectrum sensing.

5.2.1 Problem Formulation

In the temporal spectrum sensing problem, the decision on the occupancy of a

frequency subband can be made by comparing the test statistics T (also called

the decision metric) against a fixed threshold κ. This is equivalent to distinguishing

between two hypotheses: H0, absence of primary signals; H1, presence of primary

signals. For the CR receiver exploiting M sector beampatterns, the two hypotheses
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are mathematically written as

H0 : ym(t) = em(t), m = {1, · · · ,M}, (5.3a)

H1 : ym(t) =
P∑
p=1

Bm(θp)sp(t) + em(t), m = {1, · · · ,M}. (5.3b)

The performance of a specific sensing algorithm is summarized by two probabil-

ities: probability of detection PD and probability of false alarm PF . PD is the

probability of deciding that the frequency subband is occupied when the primary

signals are truly present (under H1). Thus, a large value of PD is desired. PD is

formulated as

PD = Prob{T > κ|H1} =

∫ ∞
t0

f1(t)dt, (5.4)

where f1(t) is the PDF of the test statistics T under H1. PF is the probability of

deciding that the frequency subband is occupied when the primary signals actually

are absent (under H0). Thus, PF is required to be as small as possible. PF can be

written as

PF = Prob{T > κ|H0} =

∫ ∞
t0

f0(t)dt, (5.5)

where f0(t) is the PDF of the test statistics T under H0.

In the following sections, we summarize the test statistics T and thresholds κ

for energy detector and eigenvalue-based algorithms based on the switched-beam

ESPAR receiver, which are proposed in [44, 45, 99].

5.2.2 Energy Detector

In the energy detector, the test statistic is formulated as the received power over

one sector beampattern (e.g., Bm(θ)) integrated over the observation time interval

[0, T ], which can be approximated as [44]

Tm =

∫ T

0

|ym(t)|2dt ≈
Ns∑
i=1

|ym(i)|2 , (5.6)
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where ym(i) is the i-th sample of ym(t) and Ns is the number of samples.

When the primary signals are absent (under H0), Tm is the sum of Ns squared

AWGNs, i.e., Gaussian variables with zero-mean and variance σ2
e . Thus, the test

statistic follows a central chi-square distribution with 2Ns DoFs. According to the

CDF of Tm, the probability of false alarm is given by [100]

PF,m = Prob{Tm > κ|H0} =
Γ(Ns

2
, κ

2σ2
e
)

Γ(Ns
2

)
, (5.7)

where Γ(·) and Γ(·, ·) are the Gamma function and the unregularized upper in-

complete Gamma function, respectively [101]. Similarly, when the primary signals

are present (under H1), the test statistic Tm follows a chi-square distribution with

a non-centrality parameter Ns · SNRm (SNRm is given in (5.2)), and thus, ac-

cording to the CDF of the test statistic, the probability of detection is calculated

as [100]

PD,m = Prob{Tm > κ|H1} = QNs/2

(√
Ns · SNRm,

√
κ

σ2
e

)
, (5.8)

where Qa(·, ·) is the generalized Marcum Q-function [101].

It is observed that PF,m given in (5.7) is not related to the receive SNR, since

primary signals are not present. On the contrary, PD,m is a function of SNRm.

Therefore, using the sector beampattern can increase the receive SNR for some

directions, thereby improving the sensing performance. Indeed, in the energy de-

tector, only one sector beampattern is needed to fulfil sensing function, since there

is no requirement for the correlation matrix to receive signals in the algorithm.

However, since the M sector beampatterns access different angular sectors, sens-

ing performance obtained via only one sector beampattern may be poor when the

directions of primary signals do not occur in that angular sector. Here, the CR

receiver is assumed to scan the whole angle space via M sector beampatterns, and

to perform energy detection over each sector beampattern to obtain the probabil-

ities of detection PD,m,m = {1, · · · ,M}. Finally, the probability of detection is
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the largest one, i.e.,

PD = max
m∈{1,··· ,M}

PD,m. (5.9)

The threshold κ can be selected for finding an optimum balance between PD and

PF [35]. In practice, κ is selected to achieve a certain false alarm rate [102].

5.2.3 Eigenvalue-Based Detection

In the eigenvalue-based technique, the correlation matrix of the receive signal is

required. Thus, the RD technique is used to ensure that each of P primary signals

is correlated across M sector beampatterns. The statistical correlated matrix of

signals obtained by the switched-beam ESPAR receiver under two hypotheses can

be expressed as

Ryy = E{yyH} =

 B(θ)ΣBH(θ) + σ2
eIM H1

σ2
eIM H0

(5.10)

where the (m, p)-th element of the matrix B(θ) ∈ CM×P is Bm(θp) = wT
ma(θp),

i.e., the farfield response of the m-th beampattern due to the p-th source signal.

Σ ∈ RP×P is a diagonal matrix containing powers of P primary signals as diagonal

entries. The matrix B(θ) can be considered as the manifold matrix as that in the

conventional DBF array.

Note that the above correlation matrix Ryy is the ideal asymptotic representation

for the infinite sample case. In practice, we can only obtain finite samples during a

sensing period. Therefore, the estimate correlation matrix denoted by R̂yy is used

to replace the ideal correlation matrix Ryy in the following description. Let the

receiver collect Ns sample vectors, y(1),y(2), · · · ,y(Ns), each with M elements

sampled via M sector beampatterns. Then, we have the estimate correlation

matrix, as follows:

R̂yy =
1

Ns

Ns∑
i=1

y(i)y(i)H . (5.11)
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For the noise only case (under H0), the estimate correlation matrix of the received

signals becomes the complex Wishart matrix, represented by

R̂ee =
1

Ns

Ns∑
i

e(i)e(i)H , (5.12)

where the M -dimensional vector e(i) = [e1(i), e2(i), · · · , eM(i)]T contains noises

seen by M sector beampatterns, which are assumed to be uncorrelated across

beampatterns. Let E ∈ CM×Ns be the matrix with e(i) as columns (i.e., E ∼

CN (0, σ2
eIM ⊗ INs)), and thus (5.12) is rewritten as [45]

NsR̂ee = EEH = W , (5.13)

where W is the complex central Wishart matrix and its distribution is denoted

by CWM(Ns, σ
2
eIM) [103].

Under H0, the eigenvalues of R̂yy, λmax = λ1 > λ2 > · · · > λM = λmin, are all

equal to noise power, i.e., λi|H0 = σ2
e ,∀i. Under H1, the eigenvalues become

λi|H1 =

 σ2
i + σ2

e 1 ≤ i ≤ P

σ2
e P + 1 ≤ i ≤M,

(5.14)

where σ2
p, p = {1, · · · , P} represents the received power of the p-th primary signal.

It is clear that the eigenvalues of R̂yy are suitable to be employed as a test statistic

for distinguishing the two hypotheses H1 and H0.

A number of eigenvalue-based detection algorithms have been developed, includ-

ing the maximum eigenvalue (MAX), maximum-minimum eigenvalue (MME), en-

ergy to minimum eigenvalue detector (EME) and blind general likelihood ratio

test method (BGLRT) [4, 5]. We summarize their test statistics and estimation

thresholds in Table 5.1. It is noted that, in the thresholds presented, only κMAX

is related to the noise power, whereas the other eigenvalue-based algorithms are

insensitive to noise uncertainty.
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Table 5.1: Test statistics and thresholds for eigenvalue-based detectors [4, 5]

Algorithm Test statistics Thresholds

MAX TMAX = λ1

{
= σ2

e , H0

> σ2
e , H1

κMAX = σ2
e

MME TMME = λ1

λM

{
= 1, H0

> 1, H1
κMME = 1

EME TEME =
∑M
i=1 λi
λM

{
= M, H0

> M, H1
κEME = M

BGLRT TBGLRT = λ1∑M
i=1 λi

{
= 1

M
, H0

> 1
M
, H1

κBGLRT = 1
M

5.3 Angle-of-Arrival Estimation

Although study of the AoA estimation based on the ESPAR antenna is not suffi-

cient, there has been increasing interest in this field. The earliest attempt at AoA

estimation with a seven-element ESPAR antenna is discussed in [104]: a power

maximizing method is proposed. Twelve directional beampatterns are predeter-

mined by means of different sets of reactance values, then an AoA is estimated as

the look direction of the beampattern with the highest output power. However,

with twelve beam-steering angles equally distributed in the full azimuth plane, this

simple method is able to detect only one incoming signal with a coarse precision

of 30◦. To improve precision of the AoA estimation without increasing receiver

complexity in the ESPAR array, Taillefer et al. [105] proposed a power pattern

cross-correlation method, exploiting the correlation between a number of mea-

sured beampatterns and the corresponding power outputs of the antenna. Similar

to the power maximizing method, the power pattern cross-correlation method is

only applicable for the scenario with one source signal; moreover, if the antenna

cannot form narrower beampatterns, this method still suffers from low precision

capabilities.

In [106], the authors investigated the possibility of employing the high-resolution

MUSIC algorithm for the switched parasitic antenna, where directional beampat-

terns, formed by switching the short circuits connected to the parasitic elements,

are used. As mentioned earlier, the ESPAR antenna, which is reactance-assisted,
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is more flexible in beamforming than the switched parasitic antenna [107, 108].

The RD technique allows an ESPAR antenna to obtain a correlation matrix from

the single-port output. Based on this, the conventional subspace algorithms such

as MUSIC and ESPRIT are thus modified as RD-MUSIC [43, 96] and RD-ESPRIT

[53, 54] for the ESPAR antenna, estimating directions of multiple incoming sig-

nals. Although RD-MUSIC and RD-ESPRIT have been demonstrated to be high-

resolution AoA estimation methods applicable for the ESPAR array, they rely on

the statistical properties of the data, and thus need a sufficiently large number of

samples for accurate estimation. Moreover, in order to obtain the correlation ma-

trix, in the RD-MUSIC and RD-ESPRIT algorithms, the same data information

is required to be repeated as often as the number of beampatterns used, thereby

reducing the transmission rate.

Recently, the emerging field of CS has provided an alternative solution to the

AoA estimation problem with super resolution, while using only a small number

of samples. In [109], the authors proposed a recursive weighted minimum-norm

algorithm termed “FOCUSS” to achieve the sparse representation of the AoA esti-

mation problem. Cotter [110] combines the multiple measurement vectors (MMV)

and matching pursuit (MP) as a solution to a joint-sparse recovery problem in AoA

estimation. The l1-SVD algorithm developed by Mlioutov et al. [11] is one pop-

ular sparsity recovery method for AoA estimation. It combines the SVD of the

subspace algorithms with the l1-norm relaxation for sparse spectrum recovery. It

is noted that these studies consider a DBF array as the sensor array.

To reduce the cost for AoA estimation in the ESPAR array, while providing high-

resolution and robust performance, we study the AoA estimation problem via

the sparse signal representation problem for the ESPAR antenna. Moreover, this

method does not reduce transmission rate, as the RD-based subspace methods do.

In this part, we first summarize the RD-MUSIC algorithm as the representative of

the subspace direction sensing method for the ESPAR antenna. Then, we present

the sparse signal representation for the AoA estimation with the ESPAR antenna.
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5.3.1 Problem Formulation

The goal of AoA estimation with an antenna array is to find the directions of

the source signals impinging on the array. Since we are familiar with the array

signal processing in a DBF array, we can consider the switched-beam ESPAR

antenna, switching between M sector beampatterns as a virtual array with M

active elements in the beam domain (equivalent to reactance domain). Under the

condition that the presence of P primary signals (from directions θ = [θ1, · · · , θP ])

have been detected at the first stage, we have the measurements on the virtual

M -element array taking the following form

y(t) = B(θ)s(t) + e(t), (5.15)

where y(t) = [y1(t1), · · · , yM(tM)]T , and similarly s(t) = [s1(t), · · · , sP (t)]T and

e(t) = [e1(t1), · · · , eM(tM)]T . The matrix B(θ) ∈ CM×P is analogous to the

manifold matrix, whose (m, p)-th element represents the delay and gain informa-

tion from the p-th source to the m-th virtual element. The columns ard(θp), p =

{1, · · · , P}, of B(θ), are thus the steering vectors in reactance domain. B(θ)

is unknown, since it depends on unknown source directions θ. Given the mea-

surements y(t) and the mapping θ → B(θ), the goal is to find θp,∀p. This is a

nonlinear parameter estimation problem. In this work, we assume that the number

P (the number of the existing PUs) is known.

5.3.2 Reactance-Domain MUSIC Algorithm

The MUSIC algorithm [9] utilizes the eigenstructure of the array correlation matrix

of the form

R̂yy =
1

Ns

Ns∑
i=1

y(i)yH(i) = B(θ)ΣBH(θ) + σ2
eIM . (5.16)

The underlying idea is to separate the signal and noise subspaces spanned by their

corresponding eigenvectors. Performing the eigenvalue decomposition of R̂yy, we
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obtain

R̂yy = QΛQH

= QsΛQ
H
s + σ2

eQeQ
H
e ,

(5.17)

where Q and Λ form the eigenvalue decomposition of R̂yy. Similarly, Qs and Λs

represent the eigen-space spanned by the primary signals, while the eigen-space

spanned by noise is expressed by Qe and Λe = σ2
eI(M−P ). Since M ≥ P and pro-

viding non-singular Σ, the matrix B(θ)ΣBH(θ) has a rank of P . Consequently,

the first P eigenvalues of R̂yy result from the combined signal plus noise sub-

space, and the remaining M −P eigenvalues result from the noise subspace alone.

Mathematically, this is represented as

R̂yy =
P∑

m=1

(λ̂m + σ2
e)qmq

H
m + σ2

e

M∑
m=P+1

qmq
H
m, (5.18)

where λ̂m,m = {1, · · · , P} is the eigenvalues of the signal subspace, i.e., the

diagonal entries of Λs, and qm is the eigenvector, that is, the m-th column of the

matrix Q. This information is used to separate two eigen-subspaces spanned by

the signal and noise, respectively.

Once the noise subspace has been found, the signal directions can be computed ac-

cording to the orthogonality between the noise subspace and the manifold matrix,

i.e., BH(θ)Qe = 0. Notice that the steering vector contained inB(θ) is equivalent

to that in the RD technique ard(θp) (see Chapter 2). Thus, the spectrum of the

RD-MUSIC is computed as

PMU(θ) =
1

aHrd(θ)QeQ
H
e ard(θ)

. (5.19)

The directions of the present primary signals are estimated as peaks in the com-

puted MUSIC spectrum PMU(θ).
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5.3.3 Compressive Sensing-based AoA Estimation

Compressive sensing deals with the recovery of a high-dimensional sparse signal

vector from a low-dimensional linear measurement vector [97, 111]. We begin by

proposing the sparse signal representation of the AoA estimation problem based

on an ESPAR antenna. We then present a numerical solution to recovery of the

sparse signal spectrum.

1) Overcomplete Representation for a Single Snapshot

In compressive sensing theory, a different framework is used. We begin by for-

mulating the AoA estimation problem as a sparse representation problem for a

single snapshot. The single-snapshot formulation in this section modifies the one

in [11, 109], which was presented based on the DBF array, where the sparse signal

is represented in terms of an overcomplete dictionary.

For a conventional DBF array with M elements (e.g., an M -element ULA), the

overcomplete dictionary is constructed as follows. First, discretize the whole az-

imuth plane of the receive antenna into a sampling grid of all potential AoAs

denoted as the vector θ̃ = [θ̃1, θ̃2, · · · , θ̃Nθ ], where the number of all AoAs of inter-

est (Nθ) is typically much larger than the number of source signals and the number

of sensors, i.e., Nθ � P and Nθ � M . The overcomplete dictionary is thus con-

structed as a matrix composed of steering vectors corresponding to Nθ potential

AoAs, i.e., Ã = [a(θ̃1),a(θ̃2), · · · ,a(θ̃Nθ)]. In this framework, Ã is known and

does not depend on the true source AoAs θ = [θ1, · · · , θP ].

The sparse signal field is presented as an Nθ-dimensional vector s̃(t), whose n-th

element is nonzero and equal to the p-th source signal when it occurs for that

potential direction; that is,

s̃n(t) =

 sp(t) θ̃n = θp,

0 otherwise,
(5.20)
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where n = {1, 2, · · · , Nθ}, and p = {1, 2, · · · , P}. Thus, the vector s̃(t) is P -sparse.

For a single snapshot, the problem is reduced to

y = Ãs̃+ e, (5.21)

where y ∈ CM×1 represent measurements from the M -element DBF array, and

e ∈ CM× is the additive noise vector. Consequently, in a conventional DBF array,

the use of the overcomplete dictionary Ã allows one to transform the problem of

parameter estimation of θ to the problem of sparse spectrum estimation of s̃.

Note that the equality θ̃n = θp may not occur in practice from n ∈ {1, · · · , Nθ}. In

other words, the angle grid θ̃ cannot include all potential AoAs, so source direction

might be off grid. To solve the problem, one approach is to make the angle grid

in Ã dense enough to ensure θ̃n ≈ θp closely. The remaining modelling error is

assumed to be included in z. However, this method will increase computation

complexity. Another approach is the adaptive grid refinement developed in [11].

The main idea of this method is that the refinement of the grid is only performed

around the regions where source signals are presented; where the source signals

positions are estimated, using an original rough grid.

Unlike a DBF array, in the ESPAR array, signals impinging on the parasitic ele-

ments cannot be observed and processed. Instead, they are electronically combined

to the sole active element. Our goal is thus to recreate the spatial diversity with a

single-active ESPAR antenna analogous to that derived from outputs of individual

elements in a DBF array. The ESPAR antenna possesses M tunable reactances.

It is known that, when we specify a set of reactance loads x̂1 (thus a directional

beampattern defined by w1), one corresponding measurement y1(t) is obtained

(see the signal model (5.1) and ESPAR modelling (2.6)). Then, we can change

to a different set of reactance loads x̂2 (thus w2) to obtain a measurement y2(t).

By repeating this process M times, we can obtain M measurements where spatial

diversity is recreated. To avoid noise enhancement resulting from fast switching

between M directional beampatterns within a symbol period, here we exploit each

of the M directional beampatterns in one sampling period. Unlike the RD-MUSIC
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algorithm, a receive signal is not required to be correlated across the used direc-

tional beampatterns. Therefore, in this method the same information data is not

required to be repeated during scanning throughout M beampatterns. We only

assume that, during the block of M sampling periods, the directions of the P

source signals are unchanged.

The above procedure is mathematically equal to introducing a projection matrix

W = [w1, · · · ,wM ]T ∈ CM×(M+1), where each row is an equivalent weight vector

defining one directional beampattern. Thus, the sparse representation of the AoA

estimation problem in the ESPAR antenna is given by

y = WÃs̃+ e. (5.22)

It is noted that, although we express the sparse representation problem (5.22) as

a “single snapshot” form for simplicity, it indeed requires a total of M periods to

achieve. Thus, the latency of the estimation of an ESPAR antenna increases with

M , when compared with the conventional DFB array.

In a sparse representation problem, the sparsity of s̃ is significant, unless this

problem is ill-posed. An ideal measure of the sparsity is the count of the number

of nonzero elements in s̃, which is denoted by the l0-norm (‖s̃‖0). Mathematically,

recovering the sparse spectrum s̃ is to find the sparest solution by solving the

following optimization problem:

(P0) min
s̃
‖s̃‖0 s.t. ‖y −WÃs̃‖2 ≤ ε, (5.23)

where ε is a parameter determining the level of the acceptable error. However,

problem (P0) is in general NP-hard, since solving this problem essentially requires

exhaustive searching over all subsets of columns of WÃ, which is intractable for

even a moderately sized problem [112].

Over the past decades, many approximations have been developed for alternative

solutions to the problem (P0), including greedy approximations (e.g., matching
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pursuit [113], stepwise regression [114] and their variants) and the l1-norm and lp-

norm (p < 1) relaxations [115, 116]. It has been verified that if s̃ is “sparse enough”

with respect to the overcomplete dictionary/orthogonal basis, the approximations

are able to provide the exact solutions.

In many researches, the l1-norm relaxation is of interest, since the optimization

problem is a convex and global optimum, and there is no initialization in this

approximation. The objective function of the lp-norm relaxation is nonconvex, and

its convergence to a global minimum is thus not guaranteed. The unconstrained

objective of the l1-norm relaxation is expressed as [117, 118]

(P1) min
s̃

‖y −WÃs̃‖2 + β‖s̃‖1. (5.24)

The l2-norm forces the residual y−WÃs̃ to be small, whereas the l1-norm (‖s̃‖1 =∑Nθ
n=1 |s̃n|) enforces sparsity of the representation. The parameter β controls the

trade-off between the residual norm and the sparsity of the spectrum. This l1-norm

minimization problem is also known as the basis pursuit (BP) or basis pursuit de-

noise (BPDN) problem.

For real-valued data, a numerical solution to (5.24) can be readily found by

quadratic programming [115, 119]. For complex data, the problem (P1) can be

reformulated as a SOCP problem, as presented in [11, 116].

2) Projection Matrix

The early work on CS assumes that the projection matrix is drawn at random,

e.g., Gaussian and Bernoulli (binary) matrices; this has been proved for exact

recovery of sparse spectrum with overwhelming probability [120–123]. However,

the projection matrix in our work has a specific meaning: W is comprised of

M equivalent weight vectors corresponding to M directional beampatterns (or

M different sets of reactance loads). With regard to the relation between the

reactance loads and the equivalent weight vector (see (2.6)), it is a complicate

work to construct a matrix W whose elements are drawn from the i.i.d Gaussian
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entries or±1, by tuning the reactance loads of the parasitic elements. This imposes

difficulty for the employment of a random projection matrix in this work.

For the projection matrix W , we known that it is related to M directional beam-

patterns formed by the ESPAR antenna. Thus, the use of the matrix W projects

the sparse signal into measurement outputs of directional beampatterns: that is,

it projects the sparse signal into beamspace. Therefore, design of the projection

matrix W is the same as designing M beampatterns of the ESPAR antenna by

adjusting reactance loads.

We design the directional beampatterns (thus W ) as follows. First, the reactance

loads of parasitic elements are optimized for directivity in a look direction. Then,

due to the symmetrical antenna structure, circular permutations of the optimized

reactance loads rotate the beampattern to different angular positions, dividing the

whole angle space around the ESPAR receiver into several angular sectors. An

(M + 1)-element ESPAR possesses M reactance variables; the permutation can

be performed M − 1 times. As a consequence, it is able to form M directional

beampatterns, each corresponding to one angular sector, that is, sector beampat-

terns. Therefore, the projection matrix W defined by the M sector beampatterns

is used to enable an ESPAR antenna to scan its whole angle space; moreover, the

use of directional beampatterns helps to enhance the receive SNR.

3) AoA Estimation with Multiple Snapshots

Although single snapshot processing has been widely discussed in some CS sys-

tems, in the DoA estimation problem, signal processing with multiple snapshots

is more practical.

Repeating the procedure to obtain a single snapshot (described in the previous

section) Ns times, we can obtain Ns measurement vectors denoted by the M ×Ns

matrix Y = [y(1),y(2), · · · ,y(Ns)], taking the following form

Y = WÃS̃ +E, (5.25)
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where S̃ = [s̃(1), s̃(2), · · · , s̃(Ns)] with each column containing P primary signals

as non-zero elements, and similarly E = [e(1), e(2), · · · , e(Ns)]. In this multi-

snapshot model, we assume that the directions of primary signals θ are time

invariant; that is, during the Ns “snapshots”, the locations of the existing primary

signals do not change. Therefore, supports of s̃ are fixed for all Ns snapshots. In

other words, only P rows of S̃ are dominant peaks. Such a matrix is called a jointly

P -sparse matrix. In this context, the AoA estimation problem is transformed to

the multiple measurement vectors (MMV) problem, which aims to recover S̃ given

Y .

The MMV problem is generally solved by the mixed norm problem, expressed by

min
˜S
‖S̃‖p,q,

s.t. ‖Y −WÃS̃‖2
F ≤ ε,

(5.26)

where for some integers p, q the mixed norm ‖S̃‖p,q is defined as follows

‖S̃‖p,q =

 M∑
i=1

(
Ns∑
j=1

∣∣∣S̃(i, j)
∣∣∣p)q/p

1/q

. (5.27)

A number of numerical solutions to the above mixed norm problem have been

sufficiently studied in the literature. Cotter et al. [124] use p = 2, q ≤ 1; Trop

[125] works on p = 1, q = ∞; Eladar et al. [126] use p = 2, q = 1; in [127], the

authors study p = 2, q = 0. These methods all show good recovery performance

for the sparse spectrum.

In [11], a numerical method termed l1-SVD is developed. In essence, it uses the

mixed l1,2 norm. In particular, the SVD of the measurements are operated before

computing sparse signal spectrum, in order to reduce the dimensionality of the

multiple measurement vectors. The, the reconstruction of the processed sparse

signal model is formulated as l1-norm relaxation problem, i.e., the l1-norm is used

to enforce sparsity while the Frobenius norm is used to minimize the error. This

is a popular method widely used in CS systems for numerical solutions, since it
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is convex, and it reduces the computation complexity. Therefore, we adopt this

method as the numerical solution to the CS-based AoA estimation problem.

First, perform SVD of the measurement matrix Y :

Y = UΣV H , (5.28)

where U ∈ CM×M and V ∈ CNs×Ns contain eigenvectors of Y Y H and Y HY ,

respectively. Σ ∈ RM×Ns is a diagonal matrix with singular values as entries

in a descending order. Then, one can construct a reduced M × P matrix given

as Y svd = UΣDP = Y V DP , where DP = [IP ,0]T with P × (Ns − P ) zero

matrix 0. Similarly, let S̃svd = S̃V DP and Esvd = EV DP . Thus, the reduced

measurements are [11]

Y svd = WÃS̃svd +Esvd. (5.29)

Define s̃l2i = ‖[S̃svd(i, 1), S̃svd(i, 2), · · · , S̃svd(i, Ns)]‖, i ∈ {1, · · · , Nθ}, which is the

Euclidean norm of the i-th row of the matrix S̃svd. As a result, one has the Nθ-

dimensional vector s̃l2 = [s̃l21 , s̃
l2
2 , · · · , s̃l2Nθ ]

T . It is clear that S̃svd is still P -jointly

sparse. Thus, the l1 penalty can be imposed on the vector s̃l2 , and then recovering

s̃l2 is achieved by minimizing

min ‖Y svd −WÃS̃svd‖2
F + β‖s̃l2‖1. (5.30)

The optimization problem given in (5.30) can be reformulated as the SOC pro-

gramming, given in Appendix B.

5.4 Simulations

In this section we consider the spatial spectrum sensing performance using an ES-

PAR antenna with seven elements (one active element and six parasitic elements).

The elements are assumed to be thin electrical dipoles with the length of a half-

wavelength, and the array radius is set to a quarter-wavelength. As a consequence,
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the mutual impedance matrix Z is calculated as given in Appendix A. To operate

sensing function, a 7-element ESPAR antenna switches across 6 sector beampat-

terns for signal sampling. There are 6 DoF in this antenna array. The reactance

loads for parasitic elements to form sector beampattern are chosen as table 5.2.

Therefore, we compare performance of the ESPAR array to that of a 6-element

UCA with a radius of λ/2. It is noted that the 7-element ESPAR antenna must

perform spectrum sensing across 6 sector beampatterns sequentially, thus 6×Ns

detection periods are required. In contrast, for the 6-element UCA to get 6×Ns

samples Ns detection periods are sufficient because the 6 antennas in the array

can simultaneously measure the signals in a single detection period. Therefore,

the latency of the ESPAR sensing increases with 6.

Table 5.2: Reactance loads for a 7-element ESPAR antenna to form 6 sector
beampatterns

Beam index Look direction Reactance loadings x̂

B1 0◦ [−33.4,−160.7, 80.7,−160.1,−33.2,−71.9]

B2 60◦ [−71.9,−33.4,−160.7, 80.7,−160.1,−33.2]

B3 120◦ [−33.2,−71.9,−33.4,−160.7, 80.7,−160.1]

B4 180◦ [−160.1,−33.2,−71.9,−33.4,−160.7, 80.7]

B5 240◦ [80.7,−160.1,−33.2,−71.9,−33.4,−160.7]

B6 300◦ [−160.7, 80.7,−160.1,−33.2,−71.9,−33.4]

5.4.1 Performance of Temporal Spectrum Sensing

In this section, we evaluate the performance of the temporal spectrum sensing used

at the first stage. The following simulations consider two scenarios: 1) one PU in

vicinity of the ESPAR receiver from the AoA 20◦; 2) there are two PUs presenting

around the ESPAR receiver and their AoAs are 20◦ and 50◦, respectively. In

the simulations in this section, each result is averaged from 1000 Monte-Carlo

experiments.

We first consider the performance using the energy detector (ED) with varying

SNR values under scenario 1, where the test threshold is chosen to achieve a target
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PF = 0.1. The results are depicted in Figure 5.2. It is observed that, in general, the

ESPAR antenna outperforms the UCA, because the use of the sector beampatterns

enhances the receive SNR, compared to that using the omni-directional antenna

elements in the UCA. In the simulations, we consider the energy detector with

noise power uncertainty, following the approach proposed in [128], where the noise

uncertainty is uniformly distributed over an interval [− log10(b), log10(b)], and is

randomly generated at each Monte Carlo experiment. The bounds (log10(b)) on

the noise uncertainty are set to 0.5 dB, 1 dB and 1.5 dB, respectively. We can

see that the performance of the energy detector with both the ESPAR and UCA

is affected significantly by the noise uncertainty. Moreover, the reduction of the

sampling numbers Ns also decreases the values of PD for both the ESPAR and

UCA.

In Figure 5.3 we show the probability of detection of the eigenvalue-based detectors

versus varying SNRs, under scenario 1. Again, the results suggest the superiority

of the ESPAR antenna over the UCA, using the eigenvalue-based detectors. The

reason for this is the same as with the use of the energy detector. However, the

performance gains provided by the ESPAR antenna using the eigenvalue-based

detectors are smaller than those using the energy detector without noise uncer-

tainty, since the probability of detection by the energy detector (given in equation

(5.8)) is directly related to the receive SNR. It is also seen from the figure that

the reduction of sampling numbers affects the sensing performance. In Figure

5.4, we evaluate the performance of the MAX and MME detectors with the noise

uncertainty as described for the energy detector. It demonstrates that the MAX

detector is susceptible to noise uncertainty, while the MME detector is not af-

fected, because its test statistic form cancels the noise uncertainty parameter (see

Table 5.1). It is clear that the EME and BLGRT detectors have the same property

as the MME algorithm.

Finally, we evaluate the performance of the energy detector and MME detector

(as the representative of the eigenvalue-based techniques) under scenario 2, where

SNRs for both source signals are equal and PF = 0.1. It is observed from Figure

5.5 that when 2 PUs are present the sensing performance has trends similar to
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Figure 5.2: Probability of detection using the energy detector, PF = 0.1
(scenario 1).

that with 1 PU present. Specifically, the ESPAR antenna outperforms the UCA,

and the reduction of the sampling numbers decreases the probability of detection.
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Figure 5.3: Probability of detection using the eigenvalue-based detectors,
PF = 0.1 (scenario 1).
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Figure 5.5: Probability of detection using the energy detector and MME
detector (scenario 2), PF = 0.1.
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5.4.2 Performance of AoA Estimation

In this section we examine the AoA estimation of the ESPAR antenna using the

proposed CS-based method compared to that using the RD-MUSIC algorithm.

We also compare the performance of the ESPAR antenna to that of the UCA.

For the CS-based method, the overcomplete dictionary Ã is constructed using

the angle grid with 1◦ sampling Nθ = 360. The reasons for using 360 samples

in the overcomplete dictionary are: first, in the simulations, the ESPAR antenna

with 6 parasitic elements (thus 6 beampatterns) is considered, and the number

of source signals can be recovered is up to 5 (5 is much smaller than 360), thus

using 360 samples in the overcomplete dictionary is enough to represent a sparse

signal in the AoA estimation problem; secondly, increasing the number of samples

leads to the increase in computational complexity significantly, which may impose

difficulty especially for applications of the small-size low-power terminals; last but

not the least, the adaptive grid refining method can be employed to achieve better

precision.

We first examine the performance of the ESPAR antenna under scenario 1, where

there is one primary signal coming from the AoA of 20◦. Figure 5.6 shows the

simulated results using Ns = 1000 samples, with varying SNR values. We can see

that both the RD-MUSIC and the CS method based on both the ESPAR antenna

and UCA are able to detect the direction of the source, even the SNR value is

dropped to -10 dB. In particular, we can observe the spectrum peak (maximum

energy response) occurs 20◦, which is the direction of the signal source.

Then, we reduce the sampling number to Ns = 200, and present the results in

Figure 5.7. We can make the observations as follows. First, for the UCA, the

CS method outperforms the MUSIC algorithm, when SNR drops -10 dB, where

there is a big deviation from the true direction. Second, for teh ESPAR antenna,

in this scenario the difference between the CS method and MUSIC algorithm is

not significant. Finally, the ESPAR antenna performs better than the UCA when

SNR=-10 dB, due to the use of directional beampatterns.
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Figure 5.6: AoA estimation performance with 1 PU from 20◦, Ns = 1000.
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(a) MUSIC based on an ESPAR
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(b) MUSIC based on a UCA
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Figure 5.7: AoA estimation performance with 1 PU from 20◦, Ns = 200.
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Now, we will examine the AoA estimation performance in the presence of two

source signals from 20◦ and 50◦ respectively, i.e., scenario 2. Since we are more

concerned about the estimation performance of these algorithms with a smaller

number of samples, in the following simulations, we set Ns = 200. From Figure

5.8, we can make the following observations. First, for the MUSIC algorithm,

when SNR=10 dB, both the ESPAR antenna and UCA can recover the source

signals: that is two peaks in the plots occurs 20◦ and 50◦ respectively, which are

true AoAs of the sources. Second, the increase in the number of sources degrades

the performance of the MUSIC algorithms with both the ESPAR antenna and the

UCA. When SNR= 0 dB, the EPSAR antenna cannot resolve the sources using

the RD-MUSIC algorithms. On the contrary, in this context, the CS method

outperforms the MUSIC algorithm.
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Figure 5.8: AoA estimation performance with 2 PUs from 20◦ and 50◦, Ns =
200.
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Figure 5.9: RMSE of DoA estimation versus SNRs.

To further check the performance of the ESPAR antenna using different algorithms,

in Figure 5.9, we show the comparison of the root mean square error (RMSE) of

DoA estimation versus input SNR, computed through 200 Monte Carlo trials.

Note that we have used the adaptive grid refinement approach proposed in [11] to

improve the accuracy: 1◦ uniform sampling is used for the rough grid and then

0.2◦ uniform sampling is used for the refined grid. It is shown that the CS method

performs better in the low SNR region.

The CS-based AoA estimation method is well known for its capability of dis-

tinguishing two closely spaced sources. Thus, we would like to check the AoA

estimation performance of an ESPAR antenna when 2 source signals are closer.

Figure 5.10 shows the results when 2 sources are from 200◦ and 215◦, respectively,

where SNR=10 dB and Ns = 200. It is seen that, when the separation between two

incoming signals reduces to 15◦, only the CS-based method is able to distinguish

two signals.

Next, we consider the performance of the ESPAR antenna when the two exist-

ing sources are correlated, which may be resulted from the multipath effects in

practice. Again, assume that the two source signals are from the 20◦ and 50◦,

respectively, and are strongly correlated with a coefficient of 0.95. The simulated
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Figure 5.10: Simulated results with 2 PUs from 200◦ and 215◦, SNR=10dB,
Ns = 200.
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Figure 5.11: AoA estimation performance with an ESPAR antenna for two
correlated source signals from 20◦ and 50◦,SNR=15 dB, Ns = 200.

results are depicted in Figure 5.11, where SNR=15 dB and Ns = 200. From Fig-

ure 5.8, we know that the RD-MUSIC would be able to resolve two uncorrelated

source when SNR is larger than 10 dB. However, it is observed from Figure 5.11

the correlation of the sources degrades the performance of the RD-MUSIC; on the

contrary, the CS-based method is able to recover two correlated sources.
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5.5 Summary

In the context of CR, a two-stage spatial spectrum sensing method is proposed

with the use of an ESPAR antenna for compact CR terminal applications. The

two-stage sensing method is used to identify the white spectrum space with the

dimensions of frequency, time, geographic space and angle. Therefore, not only the

temporal spectrum sensing methods but also the high-resolution AoA estimation

methods have been studied for the ESPAR array.

• In the two-stage method, temporal spectrum sensing methods, including the

energy detector and eigenvalue-based techniques, are exploited at the first

stage to detect occupancy of a frequency subband at a particular time in

a given region. If the decision is made that the PU is absent, the sensing

process finishes; otherwise, at the second stage the high-resolution AoA es-

timation is performed by the ESPAR receiver to detect the directions of the

existing PU.

• The energy detector and the eigenvalue-base detectors have been studied for

the ESPAR antenna for the two-stage method applications. We compared

the sensing performance of the ESPAR antenna to that of the ULA. The

results demonstrated that the ESPAR antenna outperforms the ULA, since

the use of directional beampatterns enhances receive SNR.

• The CS-based AoA estimation method is proposed for the ESPAR antenna

and it is compared to the RD-MUSIC algorithm. In order to achieve a sparse

representation problem based on the ESPAR antenna, we first use an over-

complete dictionary composed of samples from the array manifold. We then

introduce a matrix for projecting the sparse signal field into measurements of

sector beampatterns, where the sector beampatterns are designed to enable

the receive ESPAR scan through its angle space and also increase the receive

SNR. The spare spectrum is recovered by using the l1-SVD method. It is

demonstrated that the CS-based method provides a high resolution, as does

the RD-MUSIC, with one existing source signal, even with a small number
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of samples and low SNR. However, it outperforms the RD-MUSIC with two

closely spaced PUs and two correlated primary siganls.
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Chapter 6

Conclusions and Further Work

In this thesis, the single-RF ESPAR antenna has been studied for compact wireless

terminal applications, combining the emerging techniques ranging from blind in-

terference alignment, small cell networks, and spectrum sensing for cognitive radio

to compressive sensing. The ESPAR antenna system is exploited as the alternative

to the smart multi-antenna systems which impose challenges in compact terminal

applications. The contributions of this work are summarized as follows:

• Chapter 2: In this chapter, adaptive beamforming methods are proposed for

single-RF reactance-assisted parasitic antenna systems. First, in the single-

active antenna array, the signal processing is operated in the reactance-

domain, instead of the element-domain as in a multi-active antenna array.

In particular, a number of different sets of reactance values (thus a number of

different beampatterns) are used on a time division basis to measure signals.

In order to achieve signal correlation in the reactance domain, the repeat-

ing transmission strategy is employed. However, this method leads to low

transmission rate. Based on RD signal processing, MVDR algorithms are

developed for the ESPAR array. Due to the lack of a closed-form solution

for reactance loads, the beamforming algorithm is developed as an itera-

tive method based on a convex problem and a projector of reactance loads.

This algorithm is verified as a fast and efficient adaptive beampattern design
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method. Moreover, the genetic algorithm is also studied as a beamforming

method for the ESPAR antenna, exploiting a reference signal or knowledge

of the desired beampattern. Although the genetic algorithm-based method

is a slow convergence method, it might be useful in some applications, since

it has the advantage of avoiding becoming trapped in local minima/maxima.

• Chapter 3: Chapter 3 studied the ESPAR antenna as a beam switching so-

lution to practically implement blind interference alignment (BIA). The key

to BIA is the beam switching at the receiving end, to create heterogeneous

block channels seen by different users. In this context, our work is devoted

to designing a required number of beampatterns suited to BIA applications.

To mimic generic channel vectors seen by a user though beam switching,

the random beamforming method (randomly choosing reactance loads from

a feasible range) is considered. Sum-rate gains have been found by random

beamforming. However, the intrinsic problem of BIA – noise amplification –

prohibits applications of BIA in a realistic system such as a cellular system.

In this context, we also consider that the beampattern design of the ESPAR

antenna can help to improve performance of BIA by enhancing receive SNR.

To this end, the sector beampattern selection method and SVD-based beam-

forming are proposed. Both proper directional beampattern selection and

the adaptive beampattern design based on CSIR have been proved to pro-

vide sum-rate gains even in the low SNR region, which means that the noise

amplification level has been reduced. The ESPAR-based BIA schemes have

been compared to the CSIT-based LZFBF technique. It is demonstrated

that when the CSI overheads are considered, ESPAR-based BIA provides

performance gains comparable with those of the LZFBF.

• Chapter 4: In this chapter, the ESPAR antenna has been employed for in-

terference mitigation in femtocells, where the adaptive beamforming of the

ESPA antenna as well as the ESPAR-based BIA studied in the previous

chapters are used here. In small cell networks, a single omni-directional

antenna is generally deployed at both the small BS and the user terminal,
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due to size limitation. The use of directional antennas for interference mit-

igation in the small cell networks is a simple and low-complexity solution.

The directional antenna system with a single RF is quite suited to applica-

tions of small cell networks. Here consider two scenarios. The first considers

that one user is scheduled in each femtocell, i.e., ones that are affected by

inter-cell interference. For this scenario, the ESPAR antenna is adopted

at both the femto-BSs and UTs. Thus, the ESPAR antenna can operate

as a switched-beam to dynamically select a proper sector beampattern to

enhance users’ SINRs, or operate as an adaptive antenna to design beam-

pattern steering to the desired direction, placing nulls to interferers using

knowledge of directions. The feasibility of these processes has been shown

in the simulations. In scenario 2, two users are scheduled in each femtocell,

and thus they are affected by both intra-cell and inter-cell interference. To

address both intra-cell and inter-cell interference, we assume that the ES-

PAR antenna is adopted at the UTs, while each femto-BS is equipped with

a 2-element ULA. Then, the ESPAR-based BIA scheme studied in Chap-

ter 3 is considered for interference mitigation here. The synchronized BIA

and virtual BIA schemes are evaluated in this multiple small cell setting. It

is shown that the synchronized BIA is more suited for cell-center users; in

contrast, virtual BIA works better for cell-edge users.

• Chapter 5: This chapter studied the ESPAR antenna as a CR receiver for

spatial spectrum sensing. A two-stage sensing method is proposed to identify

the white spectrum space with the dimensions of frequency, time, geographic

space and angle. At the first stage the temporal spectrum sensing methods

including the energy detector and the eigenvalue-based detectors for the

ESPAR antenna to detect occupancy of a frequency subband at a particular

time in a given region. The sensing performance of the ESPAR antenna

is shown to be better than that of the ULA, due to the use of directional

beampatterns. At the presence of the PU, the ESPAR receiver performs

AoA estimation of the primary signals. A CS-based AoA estimation method

is proposed for the ESPAR antenna. The compassion with the RD-MUSIC
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demonstrates that the CS-based method provides higher resolution without

a large number of samples, with lower sensitivity to SNR and to correlation

of the source signals.

6.1 Further Work

In this thesis, the analysis of the ESPAR antenna focuses on the 2-dimensional

channel model, i.e., we assume that the incident signal is from the the same plane

as the antenna array. Thus, the array response to the signal is represented as the

azimuth plane. In practice, this assumption cannot hold. In order to provide a

more accurate examination of the performance of the ESPAR in a realistic com-

munication system (e.g., SCNs), a 3-dimensional channel model should be studied,

which takes into account the array responses in both the azimuth plane and the

elevation plane. The study of the 3-dimensional channel mode, in turn, is able to

help the design of the ESPAR antenna, especially in terms of antenna efficiency,

which has not been discussed in this thesis.

A first attempt to apply CS theory to the parasitic antenna is presented in this

work for the AoA estimation problem. However, the design of the projection

matrix (as well as the overcomplete dictionary/orthogonal basis) is mainly based

on the properties of the antenna array. Indeed, the performance of sparse spectrum

recovery is related to both the projection matrix and the overcomplete dictionary.

That is defined by some conditions, such as the restricted isometry property (RIP)

and mutual coherence. In order to improve the compressive sensing based on an

ESPAR antenna, an optimization method for the projection matrix or a learning

method for the dictionary would help.
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Appendix A

Analytical Formulas for

Impedance Matrix

In this work, we consider that the parasitic array is comprised of M + 1 electrical

thin dipoles with finite length l = λ/2: distance between dipoles is denoted by r.

The array can be modelled by an impedance matrix Z, in which the entry Zi,i is

the self-impedances and Zi,j, i 6= j is mutual impedance between the i-th and j-th

element, where i, j = {1, · · · ,M + 1}. Since identical dipoles are used in an array

with symmetrical geometry, we have Z0,0 = Z1,1 = · · · = ZM+1,M+1 and Zi,j = Zj,i.

An approached expression of the self-impedance (Zi,i) of a dipole is calculated

by the impedance of an n half-wavelength long isolated dipole denote by Zi,i =

Ri,i + jXi,i, where the input impedance resistance Ri,i is calculate by [129]

Ri,i =
ηf
2π

{
γ + ln(πn)− Ci(πn) +

1

2
cos(πn)

[
γ + ln

(π
n

)
+ Ci(2πn)− 2Ci(πn)

]}
,

(A.1)

and the reactance Xi,i is calculated by [129]

Xi,i =
η

4π
{2Si(πn) + cos(πn) [2Si(πn)− Si(2πn)]} , (A.2)
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where γ ≈ 0.5772 is the Euler’s constant, ηf = 120π is the free-space impedance,

and Si(x) and Ci(x) are the sine and cosine integral functions, respectively ex-

pressed as

Si(x) =

∫ x

0

sin(t)

t
dt, (A.3)

Ci(x) =

∫ x

∞

cos(t)

t
dt. (A.4)

The coupling impedances Zi,j = Ri,j+jXi,j, i 6= j are calculated using the induced

electromotive force method (EFM) [41]

Ri,j =
ηf
4π

[2Ci(υ0)− Ci(υ1)− Ci(υ2)], (A.5a)

Xi,j = − ηf
4π

[2Si(υ0)− Si(υ1)− Si(υ2)], (A.5b)

where parameters υ0, υ1 and υ2 are determined by the array configuration: i.e.,

υ0 = kd, (A.6a)

υ1 = k(
√
d2 + l2 + l), (A.6b)

υ2 = k(
√
d2 + l2 − l). (A.6c)
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SOC Programming for l1-SVD

Relaxation

The general second-order cone (SOC) program is defined as [130]

min
x

fTx (B.1a)

s.t. ‖Aix+ bi‖ ≤ cTi x+ di, i = 1, · · · , N, (B.1b)

where x ∈ Rn×1 is the variable being optimized, and the problem parameters are

denoted by f ∈ Rn×1, Ai ∈ R(mi−1)×n, bi ∈ R(mi−1)×1, ci ∈ Rn×1 and di ∈ R. The

constraint (B1.b) is called a second-order cone constraint of dimension mi. The

standard or unit second-order cone of dimension mi is defined as [56]

Kmi =


u
t

∣∣∣∣∣∣u ∈ R(mi−1)×1, t ∈ R, ‖u‖ ≤ t

 . (B.2)

For mi = 1, the unit second-order cone reduces to

K1 = {t|t ∈ R, 0 ≤ t}. (B.3)

We need to rewrite the unconditional optimization problem (5.30) as the form of

SOC program defined above, i.e., the objective function should be linear while the
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constraints can be second-order cone form or linear inequality. First, we introduce

two non-negative variables µ1 and µ2, and thus (5.3) is rewritten as a conditional

optimization problem as follows

min
µ1,µ2,

˜Ssvd

µ1 + ηµ2, (B.4a)

s.t. ‖Y svd −WÃS̃svd‖F ≤ µ1, (B.4b)

‖s̃l2‖1 ≤ µ2, (B.4c)

where η is a constant controls the trade-off between the residual norm and the

sparsity of the spectrum.

Recall that the elements of the vector s̃l2 are computed from the l2-norm of rows

of S̃svd. They are guaranteed to be non-negative real values. Therefore, the

constraint (B.4c) reduces to a linear inequality constraint taking the following

form:

‖s̃l2‖1 =

Nθ∑
i=1

s̃l2i ≤ µ2. (B.5)

Then let Z̃ = Y svd −WÃS̃svd, and define its vectorization form as z̃ = vec(Z̃).

Thus, the constraint (B.4b) is able to reformulated as a SOC constraint, as follows

‖Y svd −WÃS̃svd‖F = ‖z̃‖ ≤ µ1. (B.6)

Finally, the full SOC programming for the l1-SVD relaxation (5.30) is given by

min
µ1,µ2,s̃l2

µ1 + ηµ2, (B.7a)

s.t. ‖z̃‖ ≤ µ1, (B.7b)

z̃ = vec(Y svd −WÃS̃svd), (B.7c)

Nθ∑
i=1

s̃l2i ≤ µ2. (B.7d)
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performance through switched multi-element antenna systems in heteroge-

neous networks. IEEE Trans. Veh. Technol., PP:1–13, August 2014.

[87] J. Hoydis, M. Kobayashi, and M. Debbah. Green small-cell networks. IEEE

Veh. Technol. Mag., 6(1):37–43, March 2011.

[88] Furkan Can Kavasoglu, Yichao Huang, and Bhaskar D Rao. Semi-blind

interference alignment techniques for small cell networks. IEEE Trans. Signal

Process., 62(23):6335–6348, December 2014.

[89] A. Saleh and R. Valenzuela. A statistical model for indoor multipath prop-

agation. IEEE J. Sel. Areas Commun., 5(2):128–137, Feburary 1987.

[90] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst. Modeling the statisti-

cal time and angle of arrival characteristics of an indoor multipath channel.

IEEE J. Sel. Areas Commun., 18(3):347–360, March 2000.

[91] Y. Cho, J. Kim, W. Yang, and C. Kang. MIMO-OFDM wireless communi-

cations with MATLAB. John Wiley & Sons, 2010.

[92] J. Wallace and M. Jensen. Modeling the indoor MIMO wireless channel.

IEEE Trans. Antennas Propag., 50(5):591–599, May 2002.

[93] J. B. Andersen and R. Vaughan. Channels, Propagation and Antennas for

Mobile Communications. IEE Electromagnetic Waves Series, 50, 2003.

[94] C. Sun, T. Hunziker, and M. Taromaru. Employing directional antennas

in double-directional radio channel. In IEEE Int. Symposium on Wireless

Communication Systems, pages 581–585, 2005.

171



Bibliography

[95] R. Qian and M. Sellathurai. Interference mitigation in femtocell networks

using singleradio parasitic antennas. In IEEE International Conference on

Communications (ICC), London, June 2015.

[96] E. Taillefer, C. Plapous, J. Cheng, K. Iigusa, and T. Ohira. Reactance-

domain MUSIC for ESPAR antennas (experiment). In Proc. IEEE WCNC,

volume 1, pages 98–102, 2003.

[97] E. J. Candès and M. B. Wakin. An introduction to compressive sampling.

IEEE Signal Process. Mag., 25(2):21–30, March 2008.

[98] J. Xie, Z. Fu, and H. Xian. Spectrum sensing based on estimation of direction

of arrival. In IEEE International Conference on Computational Problem-

Solving (ICCP), pages 39–42, 2010.

[99] R. Qian, M. Sellathurai, and T. Ratnarajah. Directional spectrum sensing

for cognitive radio using ESPAR arrays with a single RF chain. In IEEE

Eur. Conf. Networks and Communications (EuCNC), pages 1–5, 2014.

[100] F. F. Digham, M Alouini, and M. K. Simon. On the energy detection of

unknown signals over fading channels. IEEE Trans. Commun., 55(1):21–24,

Janurary 2007.

[101] L. R̊ade and B. Westergren. Beta β mathematics handbook. Studentlitteratur

Chartwell-Bratt, 2 ed., 1990.

[102] J. Lehtomaki, M. Juntti, H. Saarnisaari, and S. Koivu. Threshold setting

strategies for a quantized total power radiometer. IEEE Signal Processing

Lett., 12(11):796, November 2005.

[103] T. Ratnarajah. Spatially correlated multiple-antenna channel capacity dis-

tributions. In IEE Proc. Communications, volume 153, pages 263–271, April

2006.

[104] T. Ohira and K. Gyoda. Hand-held microwave direction-of-arrival finder

based on varactor-tuned analog aerial beamforming. In Proc. IEEE Asia-

Pacific Microwave Conf. (APMC), volume 2, pages 585–588, 2001.

172



Bibliography

[105] E. Taillefer, A. Hirata, and T. Ohira. Direction-of-arrival estimation using

radiation power pattern with an ESPAR antenna. IEEE Trans. Antennas

Propag., 53(2):678–684, Feburary 2005.

[106] T. Svantesson and M. Wennstrom. High-resolution direction finding using a

switched parasitic antenna. In Proc. IEEE Signal Processing Workshop on

Statistical Signal Processing, pages=508–511, year=2001,.

[107] S. L. Preston, D. V. Thiel, T. A. Smith, S. G. OḰeefe, and J. Lu. Base-
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