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Abstract: This project presents a self-similarity-based approach that is able to use large groups of similar 

patches extracted from the input image to solve the SISR problem. It introduce a novel prior leading to 

the collaborative filtering of patch groups in a 1D similarity domain and couple it with an iterative back-

projection framework. The performance of the proposed algorithm is evaluated on a number of SISR 

benchmark data sets. Without using any external data, the proposed approach outperforms the current 

non-convolutional neural network-based methods on the tested data sets for various scaling factors. As an 

extension of this project, Discrete and Stationary Wavelet Decomposition is proposed to improve 

accuracy levels. 
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I. Introduction 

Super-resolution imaging (SR) is a class of 

techniques that enhance (increase) the resolution of an 

imaging system. In optical SR the diffraction limit of 
systems is transcended, while in geometrical SR the 

resolution of digital imaging sensors is enhanced. 

Super-resolution (SR) is a technique that allows 

increasing the resolution of a given image. Having 

applications in many areas, from medical imaging to 

consumer electronics, several SR methods have been 

proposed. Currently, the best performing methods are 

based on Convolutional Neural Networks (CNNs) and 

require extensive datasets for training. However, at 

test time, they fail to impose consistency between the 

super-resolved image and the given low-resolution 
image, a property that classic reconstruction-based 

algorithms naturally enforce in spite of having poorer 

performance. Motivated by this observation, we 

propose a new framework that joins both approaches 

and produces images with superior quality than any of 

the prior methods. Despite the breakthroughs in 

accuracy and speed of single image super-resolution 

using faster and deeper convolutional neural 

networks, one central problem remains largely 

unsolved: how do we recover the finer texture details 

when we super-resolve at large upscaling factors? The 

behavior of optimization-based super-resolution 
methods is principally driven by the choice of the 

objective function. 

Optical or diffractive super-resolution 

Substituting spatial-frequency bands:  

Though the bandwidth allowable by 

diffraction is fixed, it can be positioned anywhere in 

the spatial-frequency spectrum. 

Multiplexing spatial-frequency bands: 

An image is formed using the normal pass 

band of the optical device. Then some known light 

structure, for example a set of light fringes that is also 

within the pass band, is superimposed on the target.[8] 
The image now contains components resulting from 

the combination of the target and the superimposed 

light structure, e.g. moiré fringes, and carries 

information about target detail which simple, 

unstructured illumination does not. The “super 

resolved” components, however, need disentangling 

to be revealed.  

Multiple parameter use within traditional diffraction 

limit 

If a target has no special polarization or 

wavelength properties, two polarization states or non-
overlapping wavelength regions can be used to encode 

target details, one in a spatial-frequency band inside 

the cut-off limit the other beyond it. Both would 

utilize normal pass band transmission but are then 

separately decoded to reconstitute target structure 

with extended resolution. 

Probing near - field electromagnetic disturbance 

The usual discussion of super-resolution 

involved conventional imagery of an object by an 

optical system. But modern technology allows 

probing the electromagnetic disturbance within 

molecular distances of the source [6] which has 
superior resolution properties, see also evanescent 

waves and the development of the new Super lens. 

Geometrical or image-processing super-resolution 

Multi-exposure image noise reduction 

When an image is degraded by noise, there 

can be more detail in the average of many exposures, 

even within the diffraction limit. See example on the 

right. 
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Single-frame deblurring 

Known defects in a given imaging situation, 

such as defocus or aberrations, can sometimes be 

mitigated in whole or in part by suitable spatial-

frequency filtering of even a single image. Such 

procedures all stay within the diffraction-mandated 
pass band, and do not extend it. 

Sub - pixel image localization: The location of a 

single source can be determined by computing the 

"center of gravity" (centroid) of the light distribution 

extending over several adjacent pixels (see figure on 

the left). Provided that there is enough light, this can 

be achieved with arbitrary precision, very much better 

than pixel width of the detecting apparatus and the 

resolution limit for the decision of whether the source 

is single or double. This technique, which requires the 

presupposition that all the light comes from a single 

source, is at the basis of what has become known as 
super-resolution microscopy, e.g. stochastic optical 

reconstruction microscopy (STORM), where 

fluorescent probes attached to molecules give 

nanoscale distance information. It is also the 

mechanism underlying visual hyperacuity. [10] 

Bayesian induction beyond traditional diffraction 

limit 

Some object features, though beyond the 

diffraction limit, may be known to be associated with 

other object features that are within the limits and 

hence contained in the image. Then conclusions can 
be drawn, using statistical methods, from the available 

image data about the presence of the full object.[11] 

The classical example is Toraldo di Francia's 

proposition[12] of judging whether an image is that of 

a single or double star by determining whether its 

width exceeds the spread from a single star. This can 

be achieved at separations well below the classical 

resolution bounds, and requires the prior limitation to 

the choice "single or double?" 

The approach can take the form of extrapolating the 

image in the frequency domain, by assuming that the 

object is an analytic function, and that we can exactly 
know the function values in some interval. This 

method is severely limited by the ever-present noise 

in digital imaging systems, but it can work for radar, 

astronomy, microscopy or magnetic resonance 

imaging.[13] More recently, a fast single image super-

resolution algorithm based on a closed-form solution 

to   problems has been proposed and demonstrated to 

accelerate most of the existing Bayesian super-

resolution methods significantly. 

In recent years, these shortcomings have been 

partially resolved by approaches that use machine 
learning to generate a low resolution (LR) to high 

resolution (HR) mapping from a large number of 

images [29], [38]. Existing methods utilized to learn 

this mapping include manifold learning [4], sparse 

coding [42], convolutional neural networks (CNNs) 

[11], [24], [25], and local linear regression [37], [38]. 

The prior learned by these approaches has been shown 

to effectively capture natural image structure, 

however, the improved performance comes with some 

strong limitations. First, they heavily rely on a large 

amount of training data, which can be very specific for 
different kind of images and somehow limits the 

domain of application. Second, a number of these 

approaches, most markedly the CNN based one’s, take 

a considerable amount of training time, ranging from 

several hours to several days on very sophisticated 

graphical processing units (GPUs). Third, a separate 

LR-HR mapping must be learned for each individual 

up-sampling factor and scale ratio, limiting its use to 

applications was known beforehand. Finally, a number 

of these approaches [37], [38], do not support non- 

integer up-sampling factors. 

Certain researchers have addressed the SISR problem 
by exploiting the priors from the input image in 

various forms of self-similarity [20], [18], [6], [13]. 

Freedman and Fattal [18] observed that, although 

fewer in number, the input image based search results 

in “more relevant patches”. Some self- similarity 

based algorithms find a LR-HR pair by searching for 

the most similar target patch in the down-sampled 

image [18], [20], [23], [32]. Other approaches are able 

to use several self-similar patches and couple them 

with sparsity based approaches, such as Dong et al. 

[13]. Yang and Wang  [44]  are also able to self-learn a 
model for the  reconstruction  using sparse 

representation of image patches. Shi and Qi [30] use a 

low-rank representation of non-local self-similar 

patches extracted from different scales of the input 

image. These approaches do not required training or 

any external data, but their performance is usually 

inferior to approaches employing external data, 

especially on natural images with complex structures 

and low degree of self-similarity. Still, in all of them, 

sparsity is regarded as an instrumental tool in 

improving the reconstruction performance over 

previous attempts. 

In this work we propose Wiener filter in Similarity 

Domain for Super Resolution (WSD-SR), a technique 

for SISR that simultaneously considers sparsity and 

consistency. To achieve this aim, we formulate the 

SISR problem as a minimization   of reconstruction 

error subject to a sparse self-similarity prior. The core 

of this work  lies  in  the  design  of  the  regularizer 

that enforces sparsity in groups of self-similar patches 

extracted from the input image. This regularizer, 

which we term Wiener filter in Similarity Domain 

(WSD), is based on Block Matching 3D (BM3D) [7], 
[8], but includes particular twists that make a 

considerable difference in SISR tasks. The most 

significant one is the use of a  1D Wiener filter  that  

only operates along the dimension of similar patches. 
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II. Existing Methodology 

The previous conference publication of the 

proposed approach was done in [15]. The algorithm in 

this paper follows the general structure of [15], but 

introduces a novel regularizer that proved crucial for 

obtaining significantly improved performance. The 
distinctive features of the developed algorithm are: 

 1D Wiener filtering along similarity domain; 

 Reuse of grouping information; 

 Adaptive search window size; Iterative 

procedure guided by input dependent 

heuristics; 

 Improved parameter tuning. 

An extensive simulation study demonstrates the 

advanced performance of the developed algorithm as 

compared with [15] and some state-of-the-art methods 

in the field. 

The SISR algorithms can be broadly divided into 
two main classes: the methods that rely solely on 

observed data and those that additionally use external 

data. Both of these classes can be further divided into 

the following categories: learning- based and 

reconstruction-based. However, we are going to 

present below the related work in a simplified division 

of the methods that only accounts for use, or lack of 

use, of external data without any aim to be considered 

as an extensive review of the field. 

 

A. Approaches Using External Data 

This type of approaches use a set of HR images and 

their down-sampled LR versions to learn dictionaries, 

regression functions or end-to-end mapping between 

the two. Initial dictionary-based techniques created a 

correspondence map between features of LR patches 

and a single HR patch [19]. Searching in this type of 

dictionaries was performed using approximate nearest 

neighbours (ANN), as exhaustive search would be 

prohibitively expensive. Still, dictionaries quickly 

grew  in  size  with  the  amount  of  used  training  

data. Chang et al. [4] proposed the use of locally 

linear embedding (LLE) to better generalize over the 
training data and therefore require smaller  

dictionaries.  Image  patches  were  assumed to live in 

a low dimensional manifold which allowed the 

estimation of high resolution patches as a linear 

combination of multiple  nearby  patches.  Yang  et  

al.  [42]  also  tackled to problem of growing 

dictionary sizes, but using sparse coding. In this case, 

a technique to obtain a sparse “compact dictionary” 

from the training data is proposed. This dictionary is 

then used to find  a  sparse  activation  vector for a  

given LR patch. The HR estimate is finally obtained 
by multiplying the activation vector by the HR 

dictionary. Yang et al. [43], Zeyde et al. [47] build on 

this approach and propose methods to learn more 

compact dictionaries. Ahmed and Shah [1] learns 

multiple dictionaries, each containing features along a 

different direction. The high-resolution patch is 

reconstructed using the dictionary that yields the 

lowest sparse reconstruction error. Kim and Kim [26] 

does away with the expensive search procedure by 
using a new feature transform that is able to perform 

simultaneous feature extraction and nearest neighbor 

identification. Dictionaries can also be leveraged 

together with regression based techniques to compute 

projection matrices that, when applied to the LR 

patches, produce a HR result. The papers by Tim 

ofteet al. [37]–[39] are examples of such an approach 

where for each dictionary atom, a projection matrix 

that uses only the nearest atoms is computed. 

Reconstruction is performed by finding the nearest 

neighbor of the LR patch and employing the 

corresponding projection matrix. Zhang et al. [48] 
follows a similar approach but also learns the 

clustering function, reducing the required amount of 

anchor points. Other approaches do not build 

dictionaries out of the training data, but chose to learn 

simple operators, with the advantage of creating more 

computationally efficient solutions. Tang and Shao 

[36] learns two small  matrices that are  used on 

image patches as left and  right  multiplication  

operator and allow fast recovery of the high 

resolution image. The global nature of these matrices, 

however, fails to capture small details and complex 
textures. Choi and Kim [5] learns instead multiple 

local linear mappings and a global regressor, which 

are applied in sequence to enforce both local and 

global consistency, resulting in better representation of 

local structure. Sun et al. [35] learns a prior and 

applies it using a conventional image restoration 

approach. Finally, neural networks have also been 

explored to solve this problem, in various ways. 

Sidike et al. [31] uses a neural network to learn a 

regressor that tries to follow edges. Zeng et al.  [46] 

proposes the use   of coupled deep auto encoder 

(CDA) to learn both efficient representations for low 
and high resolution patches as well as a mapping 

function between them. However, a more common 

use of this type of computational model is to leverage 

massive amounts of training data and learn a direct 

low to high resolution image mapping [12], [24], 

[25], [27]. Of these approaches, only Liu et al. [27] 

tries to include domain expertise in the design phase, 

and despite the fact that testing is relatively 

inexpensive, training can take days even on powerful 

computers. 

Although these approaches learn a strong prior 
from the large amount of training data, they require a 

long time to train the models. Furthermore, a separate 

dictionary is trained for each up-sampling factor, 

which limits the available up-sampling factors during 

the test time. 

B. Approaches Based Only on Observed Data 

This type of approaches rely on image priors to  
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generate an HR image having only access to the LR  

observation.  Early  techniques  of  this  sort  are  still  

heavily  used  due   to their computational simplicity, 

but the low order signal models that they employ fail 

to generate the missing high frequency components, 

resulting  in  over-smoothed estimates. 

• An alternative approach to image modeling 

draws from the concept of self-similarity, the idea that 

natural images exhibit high degree of repetitive 

behavior. Ebrahimi and Vrscay [14] proposed a super-

resolution algorithm by exploiting the self- similarity 

and the fractal characteristic of the image at different 

scales, where the non-local means [3] is used to 

perform the weighting of patches. Freedman and 

Fattal [18] extended the idea by imposing a limit on 

the search space and, thereby, reduced the complexity. 

They also incorporated incremental up-sampling to 

obtain the desired image size. Suetake et al. [34] 
utilized the self-similarity to generate an example 

code-book to estimate the missing high-frequency 

band and combined it with a framework similar to 

[19]. Glasner et al. [20] used self-examples within and 

across multiple image scales to regularize the 

otherwise ill-posed classical super-resolution scheme. 

Singh et al. [33] proposed an approach for super-

resolving the image in the noisy scenarios. Egiazarian 

and Katkovnik [15], introduced the sparse coding in the 

transform domain to collectively restore the local 

structure in the high resolution image. Dong et al. [13] 
also employs self-similarity to model each pixel as  a  

linear  combination  of its non-local neighbors. Cui et 

al. [6] utilized the self- similarity with a cascaded 

network to incrementally increase the image 

resolution. Recently, Huang et al. [23] improved the 

search strategy by considering affine transformations, 

instead of translations, for the best patch match. 

Further, various search strategies have been proposed 

to improve the LR-HR pair based on textural pattern 

[32], optical flow [49] and geometry [17]. 

III Proposed Approach 

The proposed regularizer, WSD, is highly influenced 
by the BM3D collaborative filtering scheme that 

explores self- similarity of natural images 

  

 

As shown in Fig. 1 and further described in 

Procedure 2, WSD operates in two sequential stages, 

both filtering groups of similar patches, as measured 

using the Euclidean distance. The result of each stage 

is created by placing the filtered patches back in their 

original locations and performing simple average for 

pixels with more than one estimate. The two stages 

employ different filters on the patch groups. The first 
stage, which is producing a pilot estimate used by the 

second stage, uses HT in the 3D transform domain. 

The second stage on the other hand, which is 

generating the final result, uses the result of the first 

stage to estimate an empirical Wiener filter in the 1D 

transform domain, operating only along the inter-

patch dimension, which we call the similarity domain. 

This filter is then applied to the original input data. 

The use of the 1D Wiener filter in the second stage 

sets this approach apart from both Egiazarian and 

Katkovnik [15] and Wang et al. [40]. It allowed to not 

only achieve much sharper results and clearer details, 
but also reduce the computational cost. Furthermore, 

the employed grouping procedure includes two 

particular design elements that further improved the 

sys- tem’s performance and reduced its computational 

complexity: reuse of block match results and adaptive 

search window size. Finally, as described in the 

previous section, WSD is applied iteratively in what 

we term WSD-SR. This requires the modulation of the 

filtering strength in such a way that it is successively 

decreased as the steady-state is approached, in a sort 

of simulated annealing fashion [21]. We present input 
dependent heuristics for the selection of both the 

minimum number of iterations and the filter strength 

curve. 

Overall, the main features of our proposal are: 

I. Wiener filter in similarity domain; 

II. Stateful operation with grouping information 

reuse; 

III. Adaptive search window size; 

IV. Input dependent iterative procedure 

parameters. 

These design decisions, as well as the parameters 

selection are studied in this section. Empirical 
evidence is presented for each decision, both in terms 

of reconstruction quality (PSNR) and computational 

complexity (speed-up factor). The tests were 

conducted on Set5 [2] using a scale factor of 4, and 

sampling operator H set to bicubic interpolation with 

anti- aliasing filter. In all tables, only the feature under 

analysis changes between the different columns and 

the column marked with a * reflects the final design. 

I. Wiener Filter in Similarity Domain 

The original work on collaborative filtering [8] 

addresses the problem of image denoising, hence, 
exploits not only the correlation between similar 

patches but also between pixels of the same patch. It 

does so by performing 3D Wiener filtering on groups 

of similar patches. The spectrum of each group is 
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: 

computed by a separable 3D transform  composed  of  

a 2D spatial transform T2D and a 1D transform T1D 

along the similarity dimension. However, when 

 

 

Fig. 1: WSD Block Diagram 

dealing with the problem of noiseless super-

resolution, employing a 3D Wiener filter results in 
spatial smoothing, which is further exacerbated by the 

iterative nature of the algorithm. In order to avoid this 

problem we use T2D  I ,  which  means  performing  

1D Wiener filtering along the inter-patch similarity 

dimension. More specifically, given  a  match  table  

m, a  pilot  estimate x pilot , and an operation x( , m) 

that extracts from x the patches addressed by m as 
columns, a 1D empirical Wiener filter  W  of strength 

τtheta is estimated as follows: 

 

The filter is applied by performing point-wise 

multiplication with the spectrum of the group of 

similar patches extracted from the input image x , 

using the same match table m that was used to 

estimate the Wiener coefficients W : 

 

 

 

The resulting filtered group of patches gwiener is 

ready to be aggregated. 

These operations are presented in Procedure 2 

using sym- bolic names. There, the Group() operation 

stands for x( , m), EstimateWiener() stands for 

equations (23)-(24) and Wiener- Filter() stands for 

equations (26)-(28). 

 

 

Besides dramatically improving the reconstruction 

quality, this feature significantly reduces the 
computational complexity of WSD when compared to 

a 3D transform based approach, as suggested by the 

empirical evidence in Table I. 

II. Grouping Information Reuse 

In the proposed approach, we apply collaborative 

filtering iteratively on the input image. However, 

because the structure of the image does not change 

significantly between iterations, the set of similar 

patches remains fairly constant. Therefore, we 
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decided to perform block matching sparsely and 

reuse the match tables. We observed that in doing so, 

we not only gain in terms of reduced computational 

complexity, but also in terms of reconstruction 

quality. We speculate that the improved performance 

stems from the fact that by using a set of similar 
patches for several iterations we avoid oscillations 

between local minima, and by revising it 

sporadically, we allow for small structural changes 

that reflect the contribution of the estimated high 

frequencies. 

 Each iteration of the collaborative filter 

typically requires the execution of the grouping 

procedure twice, the first time to generate the 

grouping for HT and the second one to generate the 

grouping for Wiener filtering. We observed that this 

iterative procedure is fairly robust to small changes on 

the grouping used for the HT stage, to the point that 
optimal results are achieved when that match table is 

computed only once.  The same is not true for the 

Wiener  stage’s match table, which still needs to be 

computed every few iterations, 

K pilot in Procedure 2. Table II presents the empirical 

evidence concerning these observations. 

 

TABLE II 

Match Table Reuse Effect On Performance 

(Set5, X4). K Pilot=5. Speedup Is A Factor 

Relative To Match Table Reuse: Disabled 

 

 

III. Adaptive Search Window Size 

A straightforward solution to define the search 

window size for block matching would be to use the 

whole image as the search space. In doing so, we 

would be in the situation of global self-similarity and 

guarantee the selection of all the available patches 

meeting the similarity constraint. There are, however, 
two drawbacks to this solution. First, it incurs a 

significant computational overhead as the complexity 

grows quadratically with the radius of the search 

window. Second, it inevitably results in the 

inclusion of certain patches that, although close to 

the reference patch in the Euclidean space, represent 

very different structures in the image.  

This effect can be  observed  in  Fig.  2a,  specifically  

on  the  top patch, where global self-similarity results 

in the selection of patches which do not  lie  on  the  

butterfly  and  have  very  differ-  ent surrounding 

structure compared to the reference patch. An 

alternative solution would be limit the search window 

to a small neighborhood of the reference patch. 
However, if the search window is too small, it might 

happen that not enough similar patches can be found, 

as exemplified in Fig. 2b. In our proposal we use an 

incremental approach that starts with a small search 

window and enlarges it just enough to find a full 

group of patches which exhibit an Euclidean distance 

to the reference patch smaller that a preset value. Fig. 

2c  

 

Fig. 2. Three types of search strategies. Global, 

local and incremental. Red blocks indicate the 

reference patches. Green patches denote the 

matching patches for the reference patch at the 

top of the butterfly. Yellow patches denote the 

matching results corresponding to the reference 

at the bottom of the butterfly. (a) Global. (b) 

Local. (c) Incremental. 

shows an example where this incremental strategy 

finds similar patches from the local region for both 

reference blocks. 

We tested the three different definitions of the search 

space here discussed, aiming to find 32 similar 

patches, resulting    in Table III. It can be observed 

that for some images, the use of global search results 

in a drop of performance, while the use of incremental 

search never compromises the reconstruction quality. 

IV. Iterative Procedure Parameters 

The iterative nature of the  proposed  solution  

introduces the need to select two global parameters 

that significantly affect  the  overall  system  

performance:  the  total  number  of iterations and the 

collaborative filter strength curve, τθ . 

We use an inverse square filter strength curve, with 

fixed starting and end point, as described in the 

following equation: 
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Here K is the total number of iterations, k is the 

current iteration and s is the scale factor.  This curve 

will lead to slower convergence when more iterations 

are used and vice-versa, allowing the number of 

iterations to be adjusted freely. 

In order to devise a rule for the selection of the 
number   of iterations, we studied the convergence of 

the method by reconstruction various images of Set5 

using a different number of iterations.  

 

IV Results 

 

A. Quantitative Analysis: It can be observed that the 

proposed approach outperforms all but the more recent 

CNN based methods: VDSR and DRCN. Note that 

these two methods used external data and reportedly 

require 4 hours and 6 days to generate the necessary 

models, contrary to our approach that relies solely on 
the image data. Comparing to the only other self-

similarity based method, SelfEx [23], the proposed 

method shows considerable better performance, 

implying that the collaborative processing of the 

mutually similar patches provides a much stronger 

prior than the single most similar patch from the input 

image. We also note that for high up-sampling factors 

of Urban100, the performance of the proposed method 

is in par with even the CNN based methods, showing 

that this approach is especially suited for images with 

a high number of edges and marked self-similarity. It 
also confirms that hypothesis that the self-similarity 

based priors, although less in number, are very 

powerful, and can compete with dictionaries learned 

over millions of patches. Finally we note that the use 

of Wiener filter in similarity domain shows a 

significant performance improvement over the use of 

Wiener filter in 3D transform domain, which further 

supports our hypothesis that this specific feature is 

indeed crucial for the overall performance of the 

proposed approach. 

B. Qualitative Analysis: So far we evaluated the 

proposed approach on a benchmark used for SISR 
performance assessment. Here we extend our 

analysis by providing a discussion on the visual 

quality of the results obtained by various methods. 

The analysis is conducted on results obtained with 

up-scaling factor of 4. 

C. Comparison With Varying Number of Iterations 

We investigate the effect of having a fixed number of 

iterations on the performance of the proposed 

approach, when compared with other approaches, as 

opposed to using the estimation method presented in 

Section V-D. We can see that with a few dozen 
iterations our method outperforms most of  the  other  

approaches,  most  notably  the self-similarity based 

SelfEx. With a further increase in number of iterations 

it is even capable of achieving similar results as the 

state of the art convolutional network based approach 

VDSR. 

Next, we plot the computation time against the 

number of iterations. We also show the computation 

time of the other approaches in a way that allows easy 

comparison. 

 

 

 

Fig. 3 Single Image Super Resolution 

 

Note however that the number of iterations is only 

relevant to WSD-SR. All other approaches were 

executed in their canonical state, using the publicly 

available codes. As expected, for WSD-SR the 

computation time increases linearly with the 
number of iterations. It can be observed that the 

proposed approach is generally slower than the 

dictionary based methods. Note also that even at 

400 iterations, the proposed approach still performs 

faster than the only method for which we can’t 

match the reconstruction performance, DRCN. 

Compared to the self-similarity based approach 

[23], the proposed algorithm is able to achieve 

comparable results much faster, and about 1dB 

better at the break even point. In WSD-SR, the 

number of iterations can provide a trade-  off 

between the performance and the processing time of 
the algorithm. 

Conclusion 

The main progress in SRtechniques can basically be 

divided into three stages. In the first decade, 

researchers shifted their attention from the study of 

frequency domain methods to spatial domain 

algorithms. Regularized multi frame SR frame work 

were the main focus in the second stage. This work 

shown that 1D Wiener filtering along the similarity 

domain is more effective for the specific problem of 

SISR and results in much sharper reconstructions. Our 
novel collaborative filter, WSD, is able to achieve 

state-of-the-art results when coupled with iterative 
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back-projection, a combination we termed WSD-SR. 

combination of DWT and SWT yields an excellent 

results for super resolution enhancement with atmost 

optimized parameters. 
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