2,429 research outputs found

    Robust Multivariable controller Design with the simultaneous H2 /H∞/µ for Single Person Aircraft

    Get PDF
    In a physical system several targets are normally being considered in which each of nominal and robust performance has their own strengths and weaknesses. In nominal performance case, system operation without uncertainty has decisive effect on the operation of system, whereas in robust performance one, operation with uncertainty will be considered. The target of present paper is a balance between nominal and robust performance of state feedback A new approach of present paper is the combination of two controllers of μ and H2/H∞.  The controller for robust stability status, nominal performance, robust performance and noise rejection are designed simultaneous. Controller will be achieved from solving constraint optimization problem. Where a simultaneous H2 /H∞/µ robust multivariable controller has been designed over an X-29 Single Person.  This model has three inputs and three outputs, where the state space equations of the system response to an unstable one. Simulation results show the effectiveness and benefits of the method.DOI:http://dx.doi.org/10.11591/ijece.v3i2.235

    XNOR Neural Engine: a Hardware Accelerator IP for 21.6 fJ/op Binary Neural Network Inference

    Full text link
    Binary Neural Networks (BNNs) are promising to deliver accuracy comparable to conventional deep neural networks at a fraction of the cost in terms of memory and energy. In this paper, we introduce the XNOR Neural Engine (XNE), a fully digital configurable hardware accelerator IP for BNNs, integrated within a microcontroller unit (MCU) equipped with an autonomous I/O subsystem and hybrid SRAM / standard cell memory. The XNE is able to fully compute convolutional and dense layers in autonomy or in cooperation with the core in the MCU to realize more complex behaviors. We show post-synthesis results in 65nm and 22nm technology for the XNE IP and post-layout results in 22nm for the full MCU indicating that this system can drop the energy cost per binary operation to 21.6fJ per operation at 0.4V, and at the same time is flexible and performant enough to execute state-of-the-art BNN topologies such as ResNet-34 in less than 2.2mJ per frame at 8.9 fps.Comment: 11 pages, 8 figures, 2 tables, 3 listings. Accepted for presentation at CODES'18 and for publication in IEEE Transactions on Computer-Aided Design of Circuits and Systems (TCAD) as part of the ESWEEK-TCAD special issu

    Multi-objective LQR with Optimum Weight Selection to Design FOPID Controllers for Delayed Fractional Order Processes

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.An optimal trade-off design for fractional order (FO)-PID controller is proposed in this paper with a Linear Quadratic Regulator (LQR) based technique using two conflicting time domain control objectives. The deviation of the state trajectories and control signal are automatically enforced by the LQR. A class of delayed FO systems with single non-integer order element has been controlled here which exhibit both sluggish and oscillatory open loop responses. The FO time delay processes are controlled within a multi-objective optimization (MOO) formulation of LQR based FOPID design. The time delays in the FO models are handled by two analytical formulations of designing optimal quadratic regulator for delayed systems. A comparison is made between the two approaches of LQR design for the stabilization of time-delay systems in the context of FOPID controller tuning. The MOO control design methodology yields the Pareto optimal trade-off solutions between the tracking performance for unit set-point change and total variation (TV) of the control signal. Numerical simulations are provided to compare the merits of the two delay handling techniques in the multi-objective LQR-FOPID design, while also showing the capability of load disturbance suppression using these optimal controllers. Tuning rules are then formed for the optimal LQR-FOPID controller knobs, using the median of the non-dominated Pareto solution to handle delays FO processes

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version
    corecore