347 research outputs found

    Identification and Adaptive Control for High-performance AC Drive Systems.

    Full text link
    High-performance AC machinery and drive systems can be found in a variety of applications ranging from motion control to vehicle propulsion. However, machine parameters can vary significantly with electrical frequency, flux levels, and temperature, degrading the performance of the drive system. While adaptive control techniques can be used to estimate machine parameters online, it is sometimes desirable to estimate certain parameters offline. Additionally, parameter identification and control are typically conflicting objectives with identification requiring plant inputs which are rich in harmonics, and control objectives often consisting of regulation to a constant set-point. In this dissertation, we present research which seeks to address these issues for high-performance AC machinery and drive systems. The first part of this dissertation concerns the offline identification of induction machine parameters. Specifically, we have developed a new technique for induction machine parameter identification which can easily be implemented using a voltage-source inverter. The proposed technique is based on fitting steady-state experimental data to the circular stator current locus in the stator flux linkage reference-frame for varying steady-state slip frequencies, and provides accurate estimates of the magnetic parameters, as well as the rotor resistance and core loss conductance. Experimental results for a 43 kW induction machine are provided which demonstrate the utility of the proposed technique by characterizing the machine over a wide range of flux levels, including magnetic saturation. The remainder of this dissertation concerns the development of generalizable design methodologies for Simultaneous Identification and Control (SIC) of overactuated systems via case studies with Permanent Magnet Synchronous Machines (PMSMs). Specifically, we present different approaches to the design of adaptive controllers for PMSMs which exploit overactuation to achieve identification and control objectives simultaneously. The first approach utilizes a disturbance decoupling control law to prevent the excitation input from perturbing the regulated output. The second approach uses a Lyapunov-based adaptive controller to constrain the states to the output error-zeroing manifold on which they are varied to provide excitation for parameter identification. Finally, a receding-horizon control allocation approach is presented which includes a metric for generating persistently exciting reference trajectories.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120862/1/davereed_1.pd

    Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer

    Get PDF
    This paper aims to evaluate the dynamic performance of a five-phase PMSM drive using two different observers: sliding mode (SMO) and model reference adaptive system (MRAS). The design of the vector control for the drive is firstly introduced in details to visualize the proper selection of speed and current controllers’ gains, then the construction of the two observers are presented. The stability check for the two observers are also presented and analyzed, and finally the evaluation results are presented to visualize the features of each sensorless technique and identify the advantages and shortages as well. The obtained results reveal that the de-signed SMO exhibits better performance and enhanced robustness compared with the MRAS under different operating conditions. This fact is approved through the obtained results considering a mismatch in the values of stator resistance and stator inductance as well. Large deviation in the values of estimated speed and rotor position are observed under MRAS, and this is also accompanied with high speed and torque oscillations

    Adaptive control of the interior permanent magnet synchronous motors

    Get PDF
    Thesis contains: pages – 117, drawings – 38, tables – 23. The goal of the of the thesis lies in development of the control methods of the IPMSM with the purpose of its research and improvement of efficiency and performance of the electromechanical system. In this thesis, analytical review of the inductance determination methods for the IPMSM is presented. After that two tests for inductance determination of the interior permanent magnet synchronous motors are proposed, analyzed and experimentally verified. Four methods are proposed to use to obtain static and dynamic inductances from the tests data. Speed and position control algorithms are derived basing on the non saturated model of the motor and its effectiveness was researched by means of experiment and simulation for small saturated motors. After that position control algorithm with adaptation to the mechanical parameters is designed and tested via simulation. Stability is proved using the second Lyapunov method. Derived algorithms provide asymptotic tracking of the controlled coordinates, and decoupling of the direct current component and mechanic coordinate control subsystems.Магістерська дисертація містить: 117 сторінок, 38 рисунків, 23 таблиці. Метою роботи є розробка та розвиток методів керування явнополюсними синхронними двигунами з постійними магнітами, спрямований на покращення ефективності електромеханічної системи. В роботі представлено аналітичний огляд методів визначення індуктивностей IPMSM. Запропоно та експериментально впроваджено два тести для визначення індуктивностей. Отримані в тестах данi пропонується обробити чотирьма методами для отримання значень статичної та динамічної індуктивностей. Розроблено алгоритми керування швидкістю та подоженням на основі моделі, що не враховує насичення. Ефективність алгоритмів досліджена шляхом моделювання та експериментально для двигуна з низьким рівнем насичення. Після цього синтезовано алгоритм керування положенням з адаптацією до механічних параметрів. Стабільність системи доведена за допомогою другого методу Ляпунова. Отримані алгоритми забезпечують асимптотичне відпрацювання контрольованих координат та розв’язку підсистеми керування прямою компонентою струму та підсистемою керування механічними координатами

    High performance position control for permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, development time and associated costs are reduced. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This document presents the design and implementation of a position control system for permanent magnet synchronous drives, including a review and comparison of various related works about non-linear control systems applied to this type of machine. The overall electric drive control system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on a microcontroller and analogue circuits connected to it. The dsPIC33FJ32MC204 is used as the target processor to implement the control algorithms. The electric drive model is developed using elements existing in the Proteus VSM library. As in any high performance electric drive system, field oriented control is applied to achieve accurate torque control. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux are also simulated. Comparisons between the two control schemes are carried out for speed and position using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the hybrid fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present. Finally, the speed controllers are implemented and evaluated physically in a testbed based on a brushless DC motor, with the control algorithms implemented on a dsPIC30F2010. The comparisons carried out for the speed controllers are consistent for both simulation and physical implementation

    Nonlinear optimal control of interior permanent magnet synchronous motors for electric vehicles

    Get PDF
    At present time, research in the field of Electric Vehicles (EV) is significantly intensifying around the world due to the ambitious goals of many countries, including the UK, to prohibit the sale of new gasoline and diesel vehicles, as well as hybrid vehicles, in the near future around 2030-35. The primary goal of this Ph.D. research is to improve the propulsion system of electric vehicles' powertrains through improvements in the control of Interior Permanent Magnet Synchronous Motors (IPMSM), which are commonly used in EV applications. The proposed approaches are supported by simulations in Matlab, Matlab-Simulink and laboratory-based experiments. The research initially proposes an analytical solution in implicit view for a combined Maximum Torque per Ampere (MTPA) and Maximum Efficiency (ME) control, allowing to determine the optimal d-axis current, based on the concept of minimisation of the fictitious electric power loss. With the exception of two parameters, the equation is identical to that of the ME control. Therefore, upgrading the ME control to the combined MTPA/ME control is relatively easy and doesn't require any change in hardware beyond a few minors of controller code in the software. The presented research demonstrates an easy-to-apply combined MTPA/ME control leading to the ‘Transients Optimal and Energy-Efficient IPMSM Drive’ providing smooth transitions to the MTPA control during transients and to the ME control during steady states. A concept of ‘Nonlinear Optimal Control of IPMSM Drives’ is also introduced in this Ph.D. research. The velocity control loop develops nonlinearities when energy consumption optimisation methods like MTPA, ME, or combined MTPA/ME are added. In addition, the control system's parameters can be inaccurate and fluctuate depending on the operating point or possible uncertainties in real-time operation. In the proposed method, the control structure is the same as in the Field Oriented II Control (FOC), with the close velocity and two current loops, but the Proportional-Integral (PI) controllers are replaced by Nonlinear Optimal (NO) Controllers. The linear part of the controller is designed as a Linear Quadratic Regulator (LQR) with integral action for each loop separately. This is, in fact, a PI controller with optimal gain parameters for a specific operating point. The nonlinear part takes the required fluctuations of the control system’s optimal gain parameters in real-time operation as new control actions to improve a robust control structure. The design procedure for the nonlinear part is similar to that of the LQR, but the criterion of A. Krasovsky's generalised work is used, and the analytical derivations lead to an explicit control solution for the nonlinear optimal part. The nonlinear part emulates the adjustments for updating the linear part’s optimal LQR gains based on operating conditions, instead of employing extensive look-up tables or complicated estimation algorithms. The proposed control is robust in the allowed range of the system’s parameters. In conclusion, upgrading existing industrial IPMSM drives into a robust and optimal energy-efficient version that can be used for electric vehicle applications is the main advantage of the novel control concept described in this Ph.D. research. For this upgrade, only a small portion of the software that is related to the PI controllers needs to be changed; no new hardware is needed. Therefore, it is cost-effective and simple to transform existing industrial IPMSM drives into a better version with the proposed method. This feature also leads to the design of more adequate IPMSM drives to meet the demands of Electric Vehicle (EV) operating cycles

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Power quality improvement utilizing photovoltaic generation connected to a weak grid

    Get PDF
    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtaine

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    A Flywheel Energy Storage System (FESS) can rapidly inject or absorb high amounts of active power in order to support the grid, following abrupt changes in the generation or in the demand, with no concern over its lifetime. The work presented in this book studies the grid integration of a high-speed FESS in low voltage distribution grids from several perspectives, including optimal allocation, sizing, modeling, real-time simulation, and Power Hardware-in-the-Loop testing

    Integration of Flywheel Energy Storage Systems in Low Voltage Distribution Grids

    Get PDF
    Mit dem Ziel, den Stromsektor zu dekarbonisieren und dem Klimawandel zu begegnen, steigt der Anteil erneuerbarer Energieressourcen in den Energiesystemen rund um den Globus kontinuierlich an. Aufgrund des intermittierenden Charakters dieser Ressourcen kann die Aufrechterhaltung des momentanen Gleichgewichts zwischen Erzeugung und Verbrauch und damit der Netzfrequenz ohne angemessene Maßnahmen jedoch eine Herausforderung darstellen. Da erneuerbare Energiequellen mit Umrichterschnittstellen dem System selbst keine Trägheit verleihen, nimmt gleichzeitig die kumulative Systemträgheit ab, was zu schnelleren Änderungen der Netzfrequenz und Bedenken hinsichtlich der Netzstabilität führt. Ein Schwungrad-Energiespeichersystem (Flywheel Energy Storage System, FESS) kann schnell große Leistungsmengen einspeisen oder aufnehmen, um das Netz nach einer abrupten Änderung der Erzeugung oder des Verbrauchs zu unterstützen. Neben der schnellen Reaktionszeit hat ein FESS den Vorteil einer hohen Leistungsdichte und einer großen Anzahl von Lade- und Entladezyklen ohne Kapazitätsverlust während seiner gesamten Lebensdauer. Diese Eigenschaften machen das FESS zu einem gut geeigneten Kandidaten für die Frequenzstabilisierung des Netzes oder die Glättung kurzfristiger Leistungsschwankungen auf lokaler Ebene. In dieser Dissertation wird die Netzintegration eines Hochgeschwindigkeits-FESS auf der Niederspannungsebene aus mehreren Perspektiven untersucht. Zunächst wird das Problem der Platzierung und Dimensionierung eines FESS in Niederspannungsverteilnetzen für Leistungsglättungsanwendungen behandelt. Um den am besten geeigneten Standort für ein FESS zu finden, wird eine datengetriebene Methode zur Abschätzung der relativen Spannungsempfindlichkeit vorgestellt, die auf dem Konzept der Transinformation basiert. Der Hauptvorteil der vorgeschlagenen Methode besteht darin, dass sie kein Netzmodell erfordert und nur Messwerte an den interessierenden Punkten verwendet. Messergebnisse aus einem realen Netz in Süddeutschland zeigen, dass mit dem vorgeschlagenen Ansatz die Netzanschlusspunkte mit einer höheren Spannungsempfindlichkeit gegenüber Wirkleistungsänderungen, welche am meisten von einem durch FESS ermöglichten, glatteren Leistungsprofil profitieren können, erfolgreich zugeordnet werden können. Darüber hinaus wird eine neue Methode zur Dimensionierung von Energiespeichersystemen unter Verwendung von Messdaten eingeführt. Der vorgeschlagene Ansatz erkennt wiederkehrende Verbrauchsmuster in aufgezeichneten Leistungsprofilen mit Hilfe des "Motif Discovery"-Algorithmus, die dann zur Dimensionierung verschiedener Speichertechnologien, einschließlich eines FESS, verwendet werden. Anhand von gesammelten Messdaten aus mehreren Niederspannungsnetzen in Deutschland wird gezeigt, dass die Speichersysteme mit den aus den detektierten Mustern abgeleiteten Charakteristika während der gesamten Messperiode effektiv für ihre Anwendungen genutzt werden können. Als nächstes wurde ein dynamisches Modell eines Hochgeschwindigkeits-FESS entwickelt und mit experimentellen Ergebnissen in mehreren Szenarien, unter Berücksichtigung der Verluste und des Hilfsenergiebedarfs des Systems, validiert. In den untersuchten Szenarien wurde eine maximale Differenz von nur 0,8 % zwischen dem Ladezustand des Modells und dem realen FESS beobachtet, was die Genauigkeit des entwickelten Modells beschreibt. Nach Festlegung des erforderlichen Aufbaus wurde die Leistungsfähigkeit eines 60 kW Hochgeschwindigkeits-FESS während mehrerer Frequenzabweichungsszenarien mit Hilfe von Power Hardware-in-the-Loop-Tests beurteilt. Die Ergebnisse der PHIL-Tests zeigen, dass das Hochgeschwindigkeits-FESS sehr schnell nach einer plötzlichen Frequenzabweichung reagiert und in knapp 60 ms die erforderliche Leistung erreicht, wobei die neuesten Anforderungen der Anwendungsregeln für die Frequenzunterstützung auf der Niederspannungsebene erfüllt werden. Um schließlich die Vorteile des schnellen Verhaltens des FESS für Energiesysteme mit geringer Trägheit zu demonstrieren, wurde ein neuartiger adaptiver Trägheits-Emulationsregler für das Hochgeschwindigkeits-FESS eingeführt und seine Leistung in einem Microgrid mit geringer Trägheit durch Simulationen und Experimente validiert. Die Simulationsergebnisse zeigen, dass die Verwendung des FESS mit dem vorgeschlagenen Trägheits-Emulationsregler die maximale Änderungsrate der Frequenz um 28 % und die maximale Frequenzabweichung um 44 % während der Inselbildung des untersuchten Microgrid reduzieren kann und mehrere zuvor vorgestellte adaptive Regelungskonzepte übertrifft. Der vorgeschlagene Regler wurde auch auf einem realen 60 kW FESS mit dem Konzept des Rapid Control Prototyping implementiert, und die Leistungsfähigkeit des FESS mit dem neuen Regelungsentwurf wurde mit Hilfe von PHIL-Tests des FESS validiert. Die PHIL-Ergebnisse, die die allererste experimentelle Validierung der Trägheitsemulation mit einem FESS darstellen, bestätigen die Simulationsergebnisse und zeigen die Vorteile des vorgeschlagenen Reglers
    corecore