1,236 research outputs found

    A Study of Accomodation of Prosodic and Temporal Features in Spoken Dialogues in View of Speech Technology Applications

    Get PDF
    Inter-speaker accommodation is a well-known property of human speech and human interaction in general. Broadly it refers to the behavioural patterns of two (or more) interactants and the effect of the (verbal and non-verbal) behaviour of each to that of the other(s). Implementation of thisbehavior in spoken dialogue systems is desirable as an improvement on the naturalness of humanmachine interaction. However, traditional qualitative descriptions of accommodation phenomena do not provide sufficient information for such an implementation. Therefore, a quantitativedescription of inter-speaker accommodation is required. This thesis proposes a methodology of monitoring accommodation during a human or humancomputer dialogue, which utilizes a moving average filter over sequential frames for each speaker. These frames are time-aligned across the speakers, hence the name Time Aligned Moving Average (TAMA). Analysis of spontaneous human dialogue recordings by means of the TAMA methodology reveals ubiquitous accommodation of prosodic features (pitch, intensity and speech rate) across interlocutors, and allows for statistical (time series) modeling of the behaviour, in a way which is meaningful for implementation in spoken dialogue system (SDS) environments.In addition, a novel dialogue representation is proposed that provides an additional point of view to that of TAMA in monitoring accommodation of temporal features (inter-speaker pause length and overlap frequency). This representation is a percentage turn distribution of individual speakercontributions in a dialogue frame which circumvents strict attribution of speaker-turns, by considering both interlocutors as synchronously active. Both TAMA and turn distribution metrics indicate that correlation of average pause length and overlap frequency between speakers can be attributed to accommodation (a debated issue), and point to possible improvements in SDS “turntaking” behaviour. Although the findings of the prosodic and temporal analyses can directly inform SDS implementations, further work is required in order to describe inter-speaker accommodation sufficiently, as well as to develop an adequate testing platform for evaluating the magnitude ofperceived improvement in human-machine interaction. Therefore, this thesis constitutes a first step towards a convincingly useful implementation of accommodation in spoken dialogue systems

    Computational modeling of turn-taking dynamics in spoken conversations

    Get PDF
    The study of human interaction dynamics has been at the center for multiple research disciplines in- cluding computer and social sciences, conversational analysis and psychology, for over decades. Recent interest has been shown with the aim of designing computational models to improve human-machine interaction system as well as support humans in their decision-making process. Turn-taking is one of the key aspects of conversational dynamics in dyadic conversations and is an integral part of human- human, and human-machine interaction systems. It is used for discourse organization of a conversation by means of explicit phrasing, intonation, and pausing, and it involves intricate timing. In verbal (e.g., telephone) conversation, the turn transitions are facilitated by inter- and intra- speaker silences and over- laps. In early research of turn-taking in the speech community, the studies include durational aspects of turns, cues for turn yielding intention and lastly designing turn transition modeling for spoken dia- log agents. Compared to the studies of turn transitions very few works have been done for classifying overlap discourse, especially the competitive act of overlaps and function of silences. Given the limitations of the current state-of-the-art, this dissertation focuses on two aspects of con- versational dynamics: 1) design automated computational models for analyzing turn-taking behavior in a dyadic conversation, 2) predict the outcome of the conversations, i.e., observed user satisfaction, using turn-taking descriptors, and later these two aspects are used to design a conversational profile for each speaker using turn-taking behavior and the outcome of the conversations. The analysis, experiments, and evaluation has been done on a large dataset of Italian call-center spoken conversations where customers and agents are engaged in real problem-solving tasks. Towards solving our research goal, the challenges include automatically segmenting and aligning speakers’ channel from the speech signal, identifying and labeling the turn-types and its functional aspects. The task becomes more challenging due to the presence of overlapping speech. To model turn- taking behavior, the intension behind these overlapping turns needed to be considered. However, among all, the most critical question is how to model observed user satisfaction in a dyadic conversation and what properties of turn-taking behavior can be used to represent and predict the outcome. Thus, the computational models for analyzing turn-taking dynamics, in this dissertation includes au- tomatic segmenting and labeling turn types, categorization of competitive vs non-competitive overlaps, silences (e.g., lapse, pauses) and functions of turns in terms of dialog acts. The novel contributions of the work presented here are to 1. design of a fully automated turn segmentation and labeling (e.g., agent vs customer’s turn, lapse within the speaker, and overlap) system. 2. the design of annotation guidelines for segmenting and annotating the speech overlaps with the competitive and non-competitive labels. 3. demonstrate how different channels of information such as acoustic, linguistic, and psycholin- guistic feature sets perform in the classification of competitive vs non-competitive overlaps. 4. study the role of speakers and context (i.e., agents’ and customers’ speech) for conveying the information of competitiveness for each individual feature set and their combinations. 5. investigate the function of long silences towards the information flow in a dyadic conversation. The extracted turn-taking cues is then used to automatically predict the outcome of the conversation, which is modeled from continuous manifestations of emotion. The contributions include 1. modeling the state of the observed user satisfaction in terms of the final emotional manifestation of the customer (i.e., user). 2. analysis and modeling turn-taking properties to display how each turn type influence the user satisfaction. 3. study of how turn-taking behavior changes within each emotional state. Based on the studies conducted in this work, it is demonstrated that turn-taking behavior, specially competitiveness of overlaps, is more than just an organizational tool in daily human interactions. It represents the beneficial information and contains the power to predict the outcome of the conversation in terms of satisfaction vs not-satisfaction. Combining the turn-taking behavior and the outcome of the conversation, the final and resultant goal is to design a conversational profile for each speaker. Such profiled information not only facilitate domain experts but also would be useful to the call center agent in real time. These systems are fully automated and no human intervention is required. The findings are po- tentially relevant to the research of overlapping speech and automatic analysis of human-human and human-machine interactions

    Fundamental frequency height as a resource for the management of overlap in talk-in-interaction.

    Get PDF
    Overlapping talk is common in talk-in-interaction. Much of the previous research on this topic agrees that speaker overlaps can be either turn competitive or noncompetitive. An investigation of the differences in prosodic design between these two classes of overlaps can offer insight into how speakers use and orient to prosody as a resource for turn competition. In this paper, we investigate the role of fundamental frequency (F0) as a resource for turn competition in overlapping speech. Our methodological approach combines detailed conversation analysis of overlap instances with acoustic measurements of F0 in the overlapping sequence and in its local context. The analyses are based on a collection of overlap instances drawn from the ICSI Meeting corpus. We found that overlappers mark an overlapping incoming as competitive by raising F0 above their norm for turn beginnings, and retaining this higher F0 until the point of overlap resolution. Overlappees may respond to these competitive incomings by returning competition, in which case they raise their F0 too. Our results thus provide instrumental support for earlier claims made on impressionistic evidence, namely that participants in talk-in-interaction systematically manipulate F0 height when competing for the turn

    Reconocimiento de acto de diálogo secuencial para debates argumentativos árabes

    Get PDF
    Dialogue act recognition remains a primordial task that helps user to automatically identify participants’ intentions. In this paper, we propose a sequential approach consisting of segmentation followed by annotation process to identify dialogue acts within Arabic politic debates. To perform DA recognition, we used the CARD corpus labeled using the SADA annotation schema. Segmentation and annotation tasks were then carried out using Conditional Random Fields probabilistic models as they prove high performance in segmenting and labeling sequential data. Learning results are notably important for the segmentation task (F-score=97.9%) and relatively reliable within the annotation process (f-score=63.4%) given the complexity of identifying argumentative tags and the presence of disfluencies in spoken conversations.El reconocimiento del acto de diálogo sigue siendo una tarea primordial que ayuda al usuario a identificar automáticamente las intenciones de los participantes. En este documento, proponemos un enfoque secuencial que consiste en la segmentación seguida de un proceso de anotación para identificar actos de diálogo dentro de los debates políticos árabes. Para realizar el reconocimiento DA, utilizamos el corpus CARD etiquetado utilizando el esquema de anotación SADA. Las tareas de segmentación y anotación se llevaron a cabo utilizando modelos probabilísticos de Campos aleatorios condicionales, ya que demuestran un alto rendimiento en la segmentación y el etiquetado de datos secuenciales. Los resultados de aprendizaje son especialmente importantes para la tarea de segmentación (F-score = 97.9%) y relativamente confiables dentro del proceso de anotación (f-score = 63.4%) dada la complejidad de identificar etiquetas argumentativas y la presencia de disfluencias en las conversaciones habladas
    corecore