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Abstract

The study of human interaction dynamics has been at the center for multiple research disciplines in-
cluding computer and social sciences, conversational analysis and psychology, for over decades. Recent
interest has been shown with the aim of designing computational models to improve human-machine
interaction system as well as support humans in their decision-making process. Turn-taking is one of
the key aspects of conversational dynamics in dyadic conversations and is an integral part of human-
human, and human-machine interaction systems. It is used for discourse organization of a conversation
by means of explicit phrasing, intonation, and pausing, and it involves intricate timing. In verbal (e.g.,
telephone) conversation, the turn transitions are facilitated by inter- and intra- speaker silences and over-
laps. In early research of turn-taking in the speech community, the studies include durational aspects
of turns, cues for turn yielding intention and lastly designing turn transition modeling for spoken dia-
log agents. Compared to the studies of turn transitions very few works have been done for classifying
overlap discourse, especially the competitive act of overlaps and function of silences.

Given the limitations of the current state-of-the-art, this dissertation focuses on two aspects of con-
versational dynamics: 1) design automated computational models for analyzing turn-taking behavior in
a dyadic conversation, 2) predict the outcome of the conversations, i.e., observed user satisfaction, using
turn-taking descriptors, and later these two aspects are used to design a conversational profile for each
speaker using turn-taking behavior and the outcome of the conversations. The analysis, experiments, and
evaluation has been done on a large dataset of Italian call-center spoken conversations where customers
and agents are engaged in real problem-solving tasks.

Towards solving our research goal, the challenges include automatically segmenting and aligning
speakers’ channel from the speech signal, identifying and labeling the turn-types and its functional
aspects. The task becomes more challenging due to the presence of overlapping speech. To model turn-
taking behavior, the intention behind these overlapping turns needed to be considered. However, among
all, the most critical question is how to model observed user satisfaction in a dyadic conversation and
what properties of turn-taking behavior can be used to represent and predict the outcome.

Thus, the computational models for analyzing turn-taking dynamics, in this dissertation includes au-
tomatic segmenting and labeling turn types, categorization of competitive vs non-competitive overlaps,
functions of silences (e.g., lapse, pauses) and turns in terms of dialog acts.

The novel contributions of the work presented here are to

1. design of a fully automated turn segmentation and labeling (e.g., agent vs customer’s turn, lapse
within the speaker, and overlap) system.

2. the design of annotation guidelines for segmenting and annotating the speech overlaps with the
competitive and non-competitive labels.

3. demonstrate how different channels of information such as acoustic, linguistic, and psycholin-
guistic feature sets perform in the classification of competitive vs non-competitive overlaps.
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4. study the role of speakers and context (i.e., agents’ and customers’ speech) for conveying the
information of competitiveness for each individual feature set and their combinations.

5. investigate the function of long silences towards the information flow in a dyadic conversation.

The extracted turn-taking cues are then used to automatically predict the outcome of the conversa-
tion, which is modeled from continuous manifestations of emotion. The contributions include

1. modeling the state of the observed user satisfaction in terms of the final emotional manifestation
of the customer (i.e., user).

2. analysis and modeling turn-taking properties to display how each turn type influence the user
satisfaction.

3. study of how turn-taking behavior changes within each emotional state.

Based on the studies conducted in this work, it is demonstrated that turn-taking behavior, specially
competitiveness of overlaps, is more than just an organizational tool in daily human interactions. It
represents the beneficial information and contains the power to predict the outcome of the conversation
in terms of satisfaction vs not-satisfaction. Combining the turn-taking behavior and the outcome of the
conversation, the final and resultant goal is to design a conversational profile for each speaker. Such
profiled information not only facilitate domain experts but also would be useful to the call center agent
in real time.

These systems are fully automated and no human intervention is required. The findings are po-
tentially relevant to the research of overlapping speech and automatic analysis of human-human and
human-machine interactions. At the same time, the work opens up a new perspective on functions of
silence towards information flow.

Keywords
Turn-Taking Dynamics, Behavioral Cues, Overlap Discourse, Competitiveness, Silences, Vocal-Nonverbal Cues,
Computational Models
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Chapter 1

Introduction
The interpretation and the understanding of human interaction is one of the greatest scientific
challenges. Even though humans learn to interact from an early stage of their life, yet the com-
plex mechanisms that go underneath are still a big mystery for the researchers from different
fields. Social interactions do not only convey meaning but also indicate speakers’ intentions,
expression of emotions, empathy, politeness, and even dominance relationships between the
participants. Even after decades of research, the study of human interaction dynamics is still
the main focus in multiple research disciplines including computer and social sciences, conver-
sational analysis and psychology.

The traditional approach to studying human interaction is observation. This may be done
either directly, on the basis of standardized observation protocols, or indirectly, through the
collection of audio or audio-visual recordings of social interactions. The recordings are then
manually observed and coded with different characteristics such as laughing, interrupting, co-
ordinating, acknowledging, enthusiastic, friendly and polite. The resultant coding is later used
in quantitatively measuring and preparing a concise summary out of it. The methodology based
on observations depends on human perception and often is done by trained experts thus making
the process time-consuming and expensive, as suggested by [2]. The authors report that human
experts can only analyze less than 1% of the data in call centers. Apart from being time consum-
ing and labor intensive, the resulted coded data may also have a high degree of variability due
to the inter-annotator differences based on perception and human errors. Thus the process of
coding human behavior needs automated systems that can 1) detect and analyze low-level cues
to process how the conversational behavior is unfolding over time, 2) model the dynamics of the
conversation, while 3) understanding intentions of the interlocutors and predicting/summarizing
the outcomes.

To provide the machine with such abilities, interdisciplinary research domains such as be-
havioral signal processing, (BSP), have emerged. The main focus of the BSP is to design com-
putational methods that model human behavior using behavioral signals [3]. These behavioral
signals are manifested using overt and covert cues, which are processed and used by humans
explicitly or implicitly, and often time act as a fundamental information carrier in facilitating
human analysis and decision making.

Though the behavioral signals differ based on the type of social interactions, however, the
information it carries is enormous and informative. Examples of social interaction, includes
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synchronous/ asynchronous interaction in social media, dyadic phone conversations, face-to-
face (e.g., meeting) and face-to-machine (e.g., video-blog). In any interactional scenario, we
express our behavior in terms of overt and covert cues. The covert cues include physiological
signals such as heart-rate, respiratory activity and electrodermal activity. Moreover, the overt
cues include different verbal expressions such as linguistic phenomena, and non-verbal, e.g.,
as paralinguistic information, facial expressions, gestures and postures, which are displayed,
expressed and observable.

Among all the social interactions, the dyadic conversation is one of the most common real-
life inter- personal interaction scenarios. Over the years in various research domains, the dyadic
conversation is a core unit of analysis in understanding detailed interaction dynamics. Studies
on dyadic conversations can be divided into different domains, based on 1) mode of commu-
nication, 2) relationship strength of the interlocutors and 3) the style of communication. The
mode of communication, in daily life interaction, includes face-to-face, telephone conversa-
tions, emails or even classroom lectures, which dictates how the interlocutors are exchanging
information. Relationship strength of the interlocutors also varies, from the personal relation-
ship (husband-wife, siblings, friends, colleagues) to even between two complete strangers. As
for the communication styles: a conversation can be casual, e.g., between friends or family; to
task oriented for example job interviews or call center inbound calls (as shown in Example 1);
or it can involve atypical interactions like therapist-patient. Figure 1.1 shows an example of
interaction dynamics in a dyad conversation.

Speaker 1 Speaker 2 

Speaker1: 
Perception of the cues 

F2F

Speaker1: 
Expressed Behavioral cues 

Speaker2: 
Expressed Behavioral cues 

Speaker2: 
 Perception of the cues 

Mode of Communication 

Verbal and non-verbal information exchange 

Figure 1.1: Interaction Dynamics in a Dyadic conversation.

Example 1. Example of a Dyadic conversation in call center scenario, where speech overlaps
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are presented between [ and ], and (.) represents pauses with length < 1 second1.
caller: allora quest utenza stamattina è stata sospesa
caller: this morning the service was interrupted

(1.09)
operator: sì
operator: yes

(1.74)
caller: ecco la motivazione cortesemente
caller: please tell me why

(3.7)
operator: allora sì (.) vedo che c è una riduzione della potenza in

seguito a una serie di fatture non pagate che
operator: yes (.) (I) see that there is a reduction of the power due to a number of unpaied bill that

...
operator: [fanno un importo ah ]
operator: [amount to ...]
caller: [è stata sì è stata disattivata ]
caller: [this morning it was suspended]
caller: non è stata ridotta la potenza
caller: it was not a power reduction

(1.1)
operator: ah sì diciamo (.) c è stata a
operator: oh yes let us say (.) it was to
operator: noi risulta lo stato ridotto però probabilmente si è già

proceduto al distacco completo
operator: (as far as) we can see the power status was reduced but pherhaps they already

interrupted (it) completely
caller: al distacco perfetto ora eh eh su che base mi perdoni
caller: the complete interruption ... perfect! now ehm ehm due to what reason, excuse me?

(1.14)
operator: ah ascolti qui ci sono una serie di fatture malgrado
operator: Listen (please) we have here a number of unpaid bill in spite of
operator: [ci ]
operator: [(in spite of) there is ]
caller: [mh beni ]
caller: [mhm well]
operator: sia il blocco per sisma vedo che c è in <LOCATION> per
operator: the block due to the earthquake I see that there is in <LOCATION>
operator: [il sis ]
operator: [the earth-]
caller: [no no no no questo è ]
caller: [no no this is]
caller: un blocco che avete un problema voi tra uffici
caller: a block (due to) a problem you have within your (administrative) departments

1.1 Turn-Taking Dynamics
Turn-taking is one of the key aspects of conversational dynamics and is an integral part

of human-human and human-machine interaction systems. In everyday interaction, spoken
1All the name entities are removed from the example
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conversations ordinarily unfold following the norm that each speaker should take a turn of the
conversation while coordinating with one another and almost constraining the floor to one party
at a time. The practice of taking turns is intuitively familiar and contains many behavioral cues.
Each turn a speaker takes is designed to convey something. The design, placing and timing
of the turns, in a conversation indicates how the behavior manifestation is motivated by the
intention and coordination of the speakers. Thus making turn-taking an important and complex
characteristics of conversational dynamics.

The puzzle behind the turn-taking is highlighted in the context of ordinary daily conversa-
tion, which lacks a prearranged format for taking turns. The formalization of turn-taking raises
many questions which research communities seek to address:

• How long a speaker will retain the conversational floor?
• Is there going to be a speaker change?
• If so who is going to be the next speaker and how the local management in the conversa-

tion is actually done? and
• What was the motive behind the design of each turn and how it is acquired?

The study of the signals of turn-taking started with Sacks et al. [4] devoting considerable
attention to the phenomenon of turn changes, including how the next speaker is selected, in
conversations. Theoretically, there are three possible ways of organizing a turn change, i.e.,
turn-taking signals, which includes a) with no gap and no overlap b) with gap (silence in be-
tween), and c) with overlapping speech, as shown in Figure 1.2.

Speaker 1 

Speaker 2 

Silence 

Speaker 2 

Speaker 1 

Overlap 

Speaker 1 

Speaker 2 

Overlap 

Speaker 1 

Speaker 2 

1) No-gap-no-overlap 

3) Silence-in-between 

2a) Overlaps-in-between 

2b) Overlaps-in-between 

Figure 1.2: Types of turn-taking signals where 1) shows turn changes with “no-gap-no-overlap”;
2) represents turn changes with overlapping speech (2a), and the sudden insertion of another
turn in the same conversational flow (2b), and 3) shows turn changes with silence in between.

However, by analyzing substantial conversational data Sacks et al. [4] had observed that the
most common case in conversation is “one-party-at-a-time”, and that the turn changes mostly
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occur without any gaps and any overlap (i.e. “no-gap-no-overlap” in Figure 1.2). This finding
led the authors initially proposed – the projection theory – which suggests that the next speaker
can anticipates the end of current speaker’s turn based on structural and contextual information,
and then starts talking at the projected turn-ending. This concept of no-gap-no-overlap has been
a inspiration and a ground work of many researches in turn-taking and in conversational analysis
community, dedicating their studies over series of rules of conversations.

However, findings in many studies, such as [5], provides enough evidence that the timing
of turn-taking is not as precise as it is often claimed. Thus speaker changes are not strictly
no-gap–no-overlap and does not follow one-speaker-at-a-time rule. This indicate that in human
interaction the concept of minimization of gaps and overlaps are not always aimed and can be
used as a tool to express the pragmatic function behind it.

In initial studies of human conversation, overlapping speech is considered as a violation of
the fundamental rule of turn-taking. However, in a natural spoken conversation, overlapping
speech is a universal phenomenon. Studies such as [6] suggests the presence of 44% and 52%
of overlaps in face-to-face and in telephone dialogs, respectively, indicating that overlapping is
pervasive in human conversations.

Overlapping speech, apart from being a turn-taking signal (speaker change), can signal the
speaker’s intent behind the overlaps. For example, few studies have proposed that speech over-
laps are related to dominance or aggression towards the other speaker [7]. However, the picture
is more complex. Not all the overlapping occurrences are related to aggression or conflicts.
They can also be cooperative in the conversations, by providing the other speaker with cues
about the mutual understanding and supports [8]. Thus distinguishing the overlaps by the inten-
tion behind the overlaps and perception by the current speaker is an important behavioral signal
for modeling human turn-taking behavior of the conversation. In the computational literature,
over the years a widely accepted categorization of overlaps discourse is: Competitive (Cmp),
an attempt to grab the floor, and Non-Competitive (Ncm), an attempt to assist the speaker for
the continuation of the current turn.

On the other hand, turn changes with silence (gap) is the most frequent turn-taking signal.
It is also found in many literatures that this type of turn-changing signals is more desirable, as
minimizing gaps can risk overlapping speech. On the contrary to gaps, Lapse between speakers
(long gap) may signal signs of trouble, for example, it can indicate that the upcoming turn will
be dis-preferred or disagreeing [9]. Unlike gap and lapse, the concept of pause in [4] is not
directly associated with turn changes, even if it occurs at TRP2.

Silence has always been characterized in different forms depending on their relation be-

2Transition Relevance Place (TRP): are the points change of speakership becomes a salient possibility, whether
it is realized or not.
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tween speech and language. In addition to pause, gaps and lapse, some other types of silences
that can be found in literature are, stillness, when it is speaker’s turn, the listener listens remain-
ing silence and eloquent silence, that includes intentional silence, e.g., showing no interest to
reply, ironic silence, grammatical silence, etc. Even though it is most common phenomena in
a conversation, but most of the studies associate silence with powerlessness, the death of turn,
break in conversational flow and negativity. It was also treated as absence of: speech, meaning
and intention [10–12]. At the same time silence has also been reported as sign of power, and
politeness depending on the context and the culture [13, 14].

From speech community perspective a considerable work has been done in understanding
turn-taking dynamics. The research includes the study of durational aspects of turns, cues for
turn yielding intention and lastly for designing turn transition models for spoken dialog agents.
Compared to turn transitions very few studies have been done on overlapping speech, especially
for classifying competitive act of overlapping speech. Studies on overlap include the length,
position, and timing of overlaps along with its prosodic and temporal properties. As for silence,
in the speech community, most of the studies are in line of the distribution of gaps and pauses
along with its durational aspects, with the aim to define the systems’ response interval, i.e.,
waiting time, for spoken dialog systems.

Computa(onal	  model	  for	  Turn-‐
taking	  dynamics	  

Study overlaps and silence properties 

Classification of Overlaps 

Function of silence 

Automation of turn-taking 
segmentation and behavior labeling 

model 

Predicting 
conversational 

outcome 

Analyzing 
coordination 

between 
speakers 

Use the models in 

Figure 1.3: Key focus of the dissertation.

Given the limitation in the state-of-the-art of overlap discourse and silence function, this
dissertation mainly focused on the following topic, as also depicted in Figure 1.3:

1. Different aspects and design of Turn Taking Models
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(a) Studying the properties of overlaps and silences in turn-taking dynamics.
(b) Designing the computation models for overlap discourse classification and func-

tions of silence.
(c) Automation of segmentation and labeling of turn-taking dynamics in a spoken dyad

conversation.

2. Studying The Role of Turn Taking Dynamics:

(a) Prediction of the Conversational Outcome:
One of the desired outcomes from the conversations is to have a satisfying commu-
nication. Over the years, the study of user satisfaction dependent on using spoken or
written questionnaires and interviews. In such an evaluation, users are usually asked
to fill up questionnaires or rate certain aspects of a conversation that address users’
satisfaction, as reported in [15]. Due to the important role it plays in understanding
social interactions, user satisfaction has been addressed in different research fields,
e.g., Spoken Dialog Systems (SDS), as well in other marketing and designing fields.
In SDS, such as problem-solving [16] and tutoring [17], user satisfaction is used
as one of the metrics to assess the quality of a dialog system [18, 19]. Thus, the
increasing importance of user experience as a quality assessment demands a com-
putational model for observed user satisfaction rather than self-reported measure.
To understand the role of turn-taking behavior in predicting observed user satisfac-
tion, this dissertation has also made a novel contribution to model the state of the
observed user satisfaction regarding the final emotional manifestation of the users
in an ongoing conversation.

(b) Analyzing Coordination between Interlocutors
In a dyadic conversation, one of the important challenges is to understand how dif-
ferent behavioral cues are associated with one another and how we express them
in different interaction scenarios. In this thesis, we investigated, the association of
conversational turn-taking behavior with coordination of interlocutors in different
emotional manifestations of the speakers. For this study, in [20], the conversational
coordination between the interlocutors is defined as the tendency of speakers to pre-
dict and adjust each other accordingly on an ongoing conversation.

The study of designing automatic computational models poses many challenges (see Section
1.2), and at the same time, the outcome of these models has many application sectors such as
customer care, education, and healthcare.
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1.2 Research Challenges and Addressed Issues
Modeling human interaction is itself a complex task, but its complexity increases even more

because the human behavioral patterns and the extracted signals depends on the heterogeneity
and variability of mode and style of communication along with the relationship strength and
cultural difference. Hence designing a ‘universally useful computational system’ a very chal-
lenging task. Therefore, the current state-of-art focuses on designing a domain or application
specific system(s) with a goal of a specific behavioral aspect in mind.

From designing perspective, a complete pipeline of a computational model includes design-
ing an experimental scenario, data collection focusing on capturing expressed cues in the forms
of audio/video/ physiological recordings, and then extracting the patterns to design the model
using machine learning algorithms. There are several challenges in each step of this pipeline,
shown in Figure 1.4.

At first, setting up an experiment to collect ecologically valid3 data and obtaining a repre-
sentative number of samples is a major problem and often impossible to get. Then, the collected
data needs to annotate by experts or crowds or unsupervised approach with the predefined turn-
taking discourse labels and rules. For the annotation, a concrete guideline with respects to
labels’ pragmatic functions, speaker intentions among others is needed. A consideration to the
agreement of the annotator is also needed in identifying the segment and its associated label
due to the inherent nature of subjectivity and variability of each annotator.

Designing 
Experimental 

Scenarios 

•  Selection of mode and style of 
communication and relationship 
strength  

Data Collection 
and Annotation 

•  Collecting Ecological data  
•  Finding natural distribution of labels 
•  Preparation of the guidelines 

Extracting and 
Studying the 

patterns 

•  Which behavioral cues to use 
•  Which properties to extract 
•  How to merge different cues 

Modeling the 
patterns  and 

Relevant insights 

•  How to design computation 
models 

•  How to merge information 
from individual speakers 

•  Does the context of the labels 
help 

Figure 1.4: General processes of investigating human interactions.

3Ecological validity often refers to the relation between real-world phenomena and the investigation of these
phenomena in experimental contexts [21].

8



Extracting the right kind of behavioral signals is also very challenging. We express behav-
iors by overt and covert cues and if only overt cues are considered it also has many channels
such as audio, and visual. Considering only one channel makes the computational task a dif-
ficult problem. In many interaction scenarios only spoken channel is used, such as telephone
conversations. Even though we know which behavioral cues to use, we have to analyze what
properties to be considered. Hence, extensive investigations are necessary to deal with such
scenarios. In a dyadic conversation, as soon as two people are engaged in a conversation, their
internal behavioral states are coupled and become mutually dependent [22]. This coordina-
tion is reflected in their turn-taking mechanism, which adds another layer of complexity to the
original task. Thus the challenge in modeling turn-taking in human interaction also requires the
design of computational models that can capture the interaction dynamics between interlocutors
in various information channels. After that, challenges remain to the design of computational
models.

One of the important challenge faced in the thesis, which has been hardly addressed in
the computational literature, is how to design features for studying silence (between-speaker
and within-speaker) in the flow of conversation along with how to automatically segment and
label turn-taking discourse. There have been studies where thresholds for silence to bridge the
turn-constructional units (TCU) has been studied, but all the studies depend on manual turn
segmentation.

Therefore, designing computational models involves the following challenges:

• Annotation of ecologically valid data with real behavioral expressions requires an oper-
ational definition and guidelines. For example, there has not been any operational defi-
nition for annotating and modeling competitiveness of the overlaps and function of long
silence for the call-center scenario.

• In any ecologically valid dataset, natural distribution of the class throws an important
challenge for the performance of the computational model.

• Automatically generating the turn-taking sequence poses different challenges such as seg-
mentation (and alignment) of spoken conversations, assigning thresholds and labels to the
corresponding segments.

• Since any behavioral construct such as competitiveness is manifested using different ver-
bal and vocal non-verbal cues. Therefore, it is necessary to investigate each linguistic and
acoustic information independently and in combination. This requires the investigation
of various low-level features, combination strategies at the feature- and decision- level.

• In a dyad conversation, as the dynamics of the turn-taking is mutually dependent on the
interlocutors, therefore it is essential to investigate the role of each interlocutor for each
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Figure 1.5: An application scenarios for the call centers.

discourse segments and the importance of context for the classification. This also requires
study of how to combine the interlocutor’s information for the design of computational
models.

• To use automated turn-taking information in predicting the outcome of the conversation,
the design of turn-taking behavioral features is crucial.

• Designing unsupervised annotation of the outcome of the conversation (i.e., observed user
satisfaction) is an important challenge towards the automatic prediction model.

• The way of human interaction differs in different communicative scenarios such as human-
human, human-machine. Hence, it is necessary to investigate the capability of the auto-
matic system in different scenarios.

• The design of a complete automated pipeline where no human intervention is required.

So while addressing the above challenges, in modeling turn-taking dynamics the research
question that we aimed to answer in this dissertation is
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Can we automatically identify and label the turn types
while categorizing the competitiveness in overlaps and functions of long silences?

If so, what behavioral – verbal and vocal non-verbal cues can we use?

To understand what roles turn-taking dynamics plays towards the outcome and coordination
of the conversation, the research question we addressed is

How do we model observed user satisfaction (as an outcome)
of a conversation without any human intervention?

Moreover, can we use turn-taking dynamics to predict this outcome
and learn speakers’ coordination inside an emotional episode?

While figuring out the answer to this research question we had an application scenario in
mind as depicted in Figure 1.5. In this application scenario, agent and customer are interacting
in a call center, and the idea is to automatically analyze the turn-taking behavior (competitive-
ness in overlapping speech, the function of each turn and silences, etc.) of the conversation
while predicting the outcome of the conversation. The system then prepare a descriptive sum-
mary using the information of the predicted behaviors. The descriptive summary can facilitate
domain experts such as call center managers, decision makers and it can also help the agent in
real time while accumulating and updating the profile of the speakers.

Apart for the above scenarios, the computational models of turn-taking behaviors have many
other application sectors. From tutoring robots [23, 24] to designing the game for children
with autism [25] along with designing and improving the naturalness of other spoken dialog
agents [26, 27].

1.3 Terminology
This Section highlight the terminology and concepts that are relevant for the dissertation.
Behavior: It is defined as “... quite broadly to include anything an individual does when

interacting with the physical environment, including crying, speaking, listening, running, jump-
ing, shifting attention, and even thinking.” [28].

Behavioral Signals/Cues: Signals that are direct manifestations of individual’s internal
states being affected by the situation, the task and the context. Cues are patterns of the signals
and they can be overt or covert. Examples of overt cues are changes in the speaking rate or lips
getting stiff. Examples of covert cues are changes in the heart-rate or galvanic skin response.

Turn: A turn is a time during which a single participant speaks.
Turn-taking: Turn-taking is the principal unit of description in conversational structure. It

is used for discourse organization of a conversation by means of explicit phrasing, intonation,
and pausing, and it involves intricate timing.
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Figure 1.6: A example of overlapping scenario.

Overlapping speech: Overlapping speech is a conversational phenomena where the more
than one person is holding the conversation floor (i.e., talking simultaneously) at the same time
in the same conversation, as shown Figure 1.6. The alternative terms for overlapping speeches
are: double talking and (negative) response times [29], double talk and interruptions [30], si-
multaneous speech [31], (negative) switch time or switch overlaps [32], and (negative) floor
transfer offsets [33]. The term used to call incoming speaker who initiated the overlapping
speech is overlapper and the current speaker holding the floor is overlappee through out this
dissertation.

Competitive overlap: Competitive overlap represent the pragmatic function of overlaps
where the intervening speaker starts prior to the completion of the current speaker while at-
tempting to display interest in the turn even though the current speaker is eager to keep the turn
for themselves, and thus both speakers perceive the overlap as problematic. An example of
competitive overlaps can be seen in Example 2.

Example 2. Example of Competitive Overlap

operator: allora sì (.) vedo che c è una riduzione della potenza in
seguito a una serie di fatture non pagate che

operator: yes (.) (I) see that there is a reduction of the power due to a number of unpaied bill that
...

operator: [fanno un importo ah ]
operator: [amount to ...]
caller: [è stata sì è stata disattivata ]
caller: [this morning it was suspended]
caller: non è stata ridotta la potenza
caller: it was not a power reduction

12



Non-competitive overlap: Non-competitve overlap represents pragmatic scenario where
another speaker starts in the middle of an ongoing turn, and shows no evidence for grabbing
the turn for themselves. The intervening speaker use it to signal the support for the current
speaker’s continuation of speech and both speakers perceive the overlap as non-problematic
event. Example of non-competitive overlaps can be seen in Example 3.

Example 3. Example of Non-Competitive Overlap

operator: ah ascolti qui ci sono una serie di fatture malgrado
operator: Listen (please) we have here a number of unpaied bill in spite of
operator: [ci]
operator: [(in spite of) there is ]
caller: [mh beni ]
caller: [mhm well]
operator: sia il blocco per sisma vedo che c è in <LOCATION> per
operator: the block due to the earthquake I see that there is in <LOCATION>

Pause: Silences within the same speaker turn. There are very few terminology associated
with pause in the literature. They are resumption times [29] and within-speaker silence/pauses.
For the dissertation, pause and within-speaker silence are used synonymously.

Lapse-within: Longer (or extended) silences within same speaker turns.

Gap: Short silences at TRP, when current speaker completed his turn without selecting
the next speaker and before anyone select themselves as a new speaker, a brief presence of si-
lence. Terminology used to describe this event in conversation are between/inter speaker/turn
silences/intervals. Other terminolgy used to describe the similar events include (positive) re-
sponse times [29], switching pauses [31], (positive) switch time or switch pauses [32], transi-
tion pauses [34], alternation silences [30], (positive) floor transfer offsets [33], or just silent or
unfilled pauses [35, 36].

Lapse-between: Longer (or extended) silences between turns.

Coordination: The conversational coordination between the interlocutors (speakers) is de-
fined as the tendency of speakers to predict and adjust each other accordingly on an ongoing
conversation.

Emotional Episodes/State: The state of an individual’s emotions. An emotional state is a
product of the psychological and physiological processes that generate an emotional response,
and that contextualize, regulate, or otherwise alter such responses [37].

Observed User Satisfaction: This dissertation defines observed satisfaction of a user/speake
as the final manifestation of emotional states of the speaker in a conversation. Depending on
the states of the final emotion, the observed user satisfaction is categorized into three labels as
Positive (Pos), Negative (Neg), and Neutral (Neu).
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1.4 Thesis Contributions
The primary focus of this dissertation is to design computational models for turn-taking dy-

namics using expressed behavioral (overt) cues by investigating a large ecologically valid real
call center data. Following which, this dissertation focus on understanding its role by predict-
ing the outcome of the conversation and by analyzing the speakers’ coordination in emotional
episodes inside the conversation. In the following subsections, a brief description of the main
contributions of the thesis is discussed.

1.4.1 Unsupervised Study of Turn-Takings
Understanding turn taking is a critical element in human conversation process analysis, and

it varies a lot depending on the mode of communication and style. While most of the previous
studies have focused on meeting corpora or other small datasets to study and model turn-takings,
this work is concentrated on a large dataset of ecologically valid, inbound Italian call-center
spoken conversations where customers and agents are engaged in real problem-solving tasks.

In this dissertation, we investigate these phone conversations for different characteristics of
turns especially for understanding unsupervised properties of overlapping speech turns using
low-level acoustic and lexical features. Most of the previous studies relied on a small set of
prosodic features. Whereas in this study we investigate a large set of low-level features such
as spectral, cepstral features among others, and their derivatives, projected onto statistical
functionals, such as mean and range, which is also a novelty in modeling overlaps. The pur-
pose of the study is to understand if there are any visible distinctions between the overlaps in
our dataset and if these low-level features could represent properties of these overlaps. While
studying the overlapping turns, we also investigated the duration distribution of silences present
in the dataset for understanding the response interval for the automatic system.

1.4.2 Annotation and Overlapping Speech Classification
Even though overlapping speech is a violation of one-speaker-at-a-time rule, however, it

is one of the most common phenomena in spoken conversation. So to understand behavioral
manifestations, which unfolds in turn-taking, we needed an operational model to categorize the
competitiveness in overlapping speech. However, to model such discourses, we needed a novel
overlap annotation guideline.

One of the main and novel contributions of the dissertation is to design of an annotation
guideline for segmenting and annotating the speech overlaps with the competitive and non-
competitive labels in a typical call center conversation in a continuous time scale with informa-
tion from speech signals only. The annotation guideline includes functional rules, which can be
transferred to any domain any time.
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Most of the effort of the dissertation is directed in modeling overlapping speech classi-
fication models. The research first focused on features: the low-level acoustic features, as
mentioned in Section 1.4.1, to evaluate the distinguishing capabilities of the features while
categorizing competitiveness in overlaps while incorporating both the interlocutors’ channel
information. Another novelty of the dissertation is the use of lexical and psycholinguistic fea-
tures in overlap classification task. This dissertation also includes a novel study of the role of
individual speakers with and without context in providing information regarding the overlap
discourse. In terms of model design, this thesis contributed to the designs of both linear and
non-linear computational models. In addition, the thesis also studied different feature- and
decision- combination techniques and its impact on the performance of the classifications.

1.4.3 Functions of Long Silence
The occurrence of silence inside a spoken conversation is the most natural phenomena. Over

the years speech and computer science communities have been studying silence to identify the
response interval of the spoken dialog systems.

One of the novel contributions of this dissertation is to shed lights on the function of long
silence towards the information flow of a conversation. The study includes identifying the long
silence instances, designing features for the categorization of the functions of between- and
within- speaker silences using a hierarchical concept learning4 technique. In order to better un-
derstand and obtain general functional categories from hierarchical tree we selected and merged
the clusters (i.e., sub-trees) based on their functional similarity. We have done this selection and
merging process with human supervision.

1.4.4 Automatic Turn-Taking Segmentation and Labeling
Another contribution of this dissertation is to design an automated system that can automati-

cally segment and label turns along with the discourse. The system can take only speech signal,
in the case of absence of transcription, as input to model the turn-taking discourse. This task has
been achieved with the help of the computational models discussed in Sections 1.4.2 and 1.4.3
along with the contributions to create state-of-the-art human-human Automatic Speech Recog-
nition (ASR) system, dialog-act segmentation and classification systems, and other systems like
speech-vs-nonspeech segmenter among others.

1.4.5 Predicting the Conversational Outcome
To understand the role of turn-taking behavior in predicting the outcome of the conversation,

the dissertation contributed to automatically predict observed user satisfaction as a measure of
4As a concept learning technique, we used Cobweb clustering algorithm.
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the conversational outcome. Unlike the traditional approach, e.g., self-reported satisfaction,
this research model observed user satisfaction as the final emotional manifestation of the con-
versation, which can be either positive, negative or neutral. To design the computational model
for prediction, the turn-taking features are engineered using the turn-taking model in Section
1.4.4. Thus the novelties in this part are defining observed user satisfaction using the final emo-
tional manifestation, engineering turn-taking features and designing a prediction model for the
observed user satisfaction.

1.4.6 Coordination between Interlocutors inside Emotional Episodes
To understand how different behavioral cues are associated with one another and how we ex-

press them in different interaction scenarios, this dissertation contributed to find the association
of turn-taking dynamics with different emotional segments. Thus one of the many contributions
is, investigating the coordination of interlocutors behavior in different emotional segments and
how conversational turn-taking dynamics are associated with emotional manifestations of the
agent and customer.

1.5 Publications Relevant to the Thesis
The following publications are relevant to this thesis, which are revised in the preparation

of the thesis.

1. Shammur Absar Chowdhury and Giuseppe Riccardi, A Deep Learning Approach to Mod-
eling Competitiveness in Spoken Conversation, in Proc. of ICASSP. IEEE, 2017, New
Orleans, USA.

2. Firoj Alam, Shammur Absar Chowdhury, Morena Danieli, Giuseppe Riccardi, How In-
terlocutors Coordinate with each other within Emotional Segments?, COLING, Osaka,
Japan, 2016.

3. Shammur Absar Chowdhury, Evgeny A. Stepanov and Giuseppe Riccardi, Predicting
User Satisfaction from Turn-Taking in Spoken Conversations, in Proc. of Interspeech-
2016, San Francisco, USA.

4. Shammur Absar Chowdhury, Evgeny A. Stepanov and Giuseppe Riccardi, Transfer of
Corpus-Specific Dialogue Act Annotation to ISO Standard: Is it worth it?, in Proc. of
10th edition of the Language Resources and Evaluation Conference (LREC), 23-28 May
2016, Portorož (Slovenia).
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5. Giuseppe Riccardi, Evgeny A. Stepanov and Shammur Absar Chowdhury, Discourse
Connective Detection in Spoken Conversations, in Proc. of ICASSP. IEEE, 2016, Shang-
hai, China.

6. E. A. Stepanov, B. Favre, F. Alam, S. A. Chowdhury, K. Singla, J. Trione, F. B’echet,
G. Riccardi, Automatic Summarization of Call-center Conversations, IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU 2015), Scottsdale, Arizona,
USA, 2015.

7. Shammur Absar Chowdhury, Morena Danieli, and Giuseppe Riccardi, The Role of Speak-
ers and Context in Classifying Competition in Overlapping Speech, in Proc. of Interspeech-
2015, Dresden, Germany.

8. Shammur Absar Chowdhury, Morena Danieli, and Giuseppe Riccardi, Annotating and
Categorizing Competition in Overlap Speech, in Proc. of ICASSP. IEEE, 2015, Brisbane,
Australia.

9. Shammur Absar Chowdhury, Giuseppe Riccardi, Firoj Alam, Unsupervised Recognition
and Clustering of Speech Overlaps in Spoken Conversations, Workshop on Speech, Lan-
guage and Audio in Multimedia (SLAM 2014), Penang, Malaysia.

1.6 Structure of the Thesis
The research on spoken conversation analysis has been done over decades and is still in the

center for multiple research disciplines, this dissertation starts with introducing the challenge
and the underlining complexity of the spoken interaction.

A brief review of studies done on turn-taking, mainly in overlapping speech and silences,
and its related research are then mentioned in Chapter 2.

In Chapter 3, the dissertation introduce the (SISL) Human-Human Dyadic Conversation
corpus and the sub-corpus used for the experimental and analytical research during the thesis.
The chapter also presents the detailed guidelines for the annotation of overlap discourse, eval-
uation matrices for the annotation quality and corpus analysis. Apart from SISL corpus, the
chapter also focus on LUNA human-human Italian corpus and details of the dialog-act annota-
tion of the corpus.

After introducing the corpus and the annotation of the discourse label, the dissertation in-
vestigates the properties of overlaps using unsupervised technique in Chapter 4, using low-level
acoustic and lexical features. This study helps to investigate whether this low-level features has
the power to distinguish the complex discourse of overlaps.
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Following the unsupervised study, a detailed description of the design and the technique for
modeling overlapping speech categorizer using supervised modeling approaches is presented in
Chapter 5. This chapter also includes study of the role of individual speakers with and without
context along with acoustic, linguistic and psycholinguistic features in providing information
regarding the overlap discourse.

In Chapter 6, the dissertation focus on studying long silences (between- and within- speaker)
to understand the function of long silence towards the information flow of the conversation. The
chapter includes identifying long silence, clustering them using hierarchical concept learning
technique, and selecting and merging them using human supervision for the final analysis.

In order to obtain a descriptive summary of the turn-taking dynamics for the whole conver-
sation we desgined a complete pipeline using different models. In Chapter 7, this dissertation
discusses the computational architecture, which shows different components to create aligned
speaker channel information and turn segmentation. The system also include a module to create
turn labels using heuristic rules, and a discourse classification model to automatically annotate
turn-taking dynamics.

To understand the essentials of turn-taking behavior, Chapter 8 focuses on how this behavior
can be used to predict the outcome of the conversation. The chapter describes the architecture to
automatically predict the observed user satisfaction as a measure of the conversational outcome.

In Chapter 9 this dissertation discusses the contribution towards finding the coordination
of the interlocutors behavior in different emotional segments using lexical, psycholinguistic
and turn-taking features in terms of regression coefficients, cosine similarity and correlation
analysis, respectively.

Then in Chapter 10, the dissertation is concluded with a brief summary of the work and with
pointers to motivate future works.
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Chapter 2

Relevant Studies

2.1 Fundamentals of Conversations
In a regular conversation, one speaker speaks at a time by taking turns. While small gaps and

overlaps between speakers’ speech are very frequent and rarely last more than a few millisec-
onds. This smooth interaction is one of the most essential elements in our daily conversation,
which distinguishes it from the other mode of communication such as formal monologue (e.g.,
broadcast news) and written messages. There has been many research in different fields, how-
ever, there is a lack of agreement among researchers in order to define it.

2.1.1 Turn-Taking
For studying this natural phenomenon, Sacks [4] and his colleagues created a field called

Conversation Analysis (CA) in 60s and early 70s. The main goal of the field was to study
how people interact with each other in different social settings such as informal conversation,
medical conversation, and interviews. Among all the aspects explored by CA researchers, they
have identified turn-taking as one of the prominent components of a conversation.

The study of turn-taking started very early period of CA research. In [4], Sacks et al. present
a characterization of turn-taking in conversations between two or more persons. The authors
studied a large set of conversational data and stated a detailed description of fourteen “grossly
apparent facts” about human conversation. Some of the facts are:

• “Speaker-change recurs, or at least occurs”.
• “One party talks at a time”.
• “Occurrences of more than one speaker at a time are common, but brief”.
• “Transitions (from one turn to a next) with no gap and no overlap are common. Together

with transitions characterized by a slight gap or slight overlap, they make up the vast
majority of transitions”.

Using the findings of the study, the authors then established a set of rules and constrains that
they believed any model of turn-taking in conversation should obey.

The study also proposed a minimal model of turn-taking whose key components are a turn
constructional component (TCU), which defines a turn. Turns are thus incrementally built out
of a succession of turn-constructional units (TCUs as shown in Figure 2.1). A TCU can be
made up of sentences, clauses, phrases, and/or individual words.
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Speaker 2’s TCU 

Speaker 1’s 1st TCU 

Speaker 2’s Preparation  

Speaker 1’s 2nd  TCU 

TRP TRP 

Speaker 1’s turn 

Figure 2.1: Association between TCU completion and transition- relevance, as well as the
contingent nature of turn transfer.

2.1.2 Transition Relevance Place

Transition Relevance Places (TRPs) is a concept central to the turn-constructional com-
ponent. TRPs are described as points in an utterance where it would be relevant for another
participant to take the floor, as shown in Figure 2.1.

In [4], syntactic constituents’ boundaries are considered as an indication to TRP but due
to the presence of disfluencies, mentioned in [38], this consideration of syntactic boundaries
is found to be problematic. Compared to the previous studies, a more effective definitions of
syntactic TRPs are mentioned in [39, 40] . In [39], authors defined that syntactic TRPs are
“potential terminal boundaries for a recoverable clause-so-far”. Studies in [39,40], also suggest
that reactive tokens such as backchannels (e.g., “okay”, “hmm”), assessments (e.g., “really?”)
and repetitions, in the form of acknowledgment or confirmation, are also examples of complete
syntactic units regardless of not being well-formed syntactic constituents.

Apart from syntactic units, another well researched feature for describing TRP is its prosodic
characteristics. In [41], the author proposes that the properties of TRPs are prosody, mainly the
completion of a tone unit with a non-level nucleus and with a decrease in volume (loudness).
A contrasting view with [41] is presented in different studies [39, 40, 42], where the authors
considered prosody as markers of intonation completion points for turns containing questions
or statements. Prosodic pattern such as lengthening of final word or syllable of a turn has been
studied in [35, 43]. Many studies showed that prosodic features can be used to detect which
syntactic unit can be considered as a signal of the end of the turn [44–46]. Like other fields,
psycholinguists have also investigated prosody as a feature of TRP. In [47], the results shows
that humans are able to react spontaneously, sometimes even anticipate beforehand, to the turn
boundaries with only using prosodic information.

From the semantic and pragmatic perspective, the turn completion points correspond to the
place where the turn constituents a complete meaningful utterance that is coherent with the
context of the conversation. Not surprisingly, they have been found a strong correlation with
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TRPs [40, 41]. However, all the authors addressing this point acknowledge the difficulty of
establishing an operational definition of semantic completion. As there is no simple way to
formalize semantic outcome, which till now is considered as a drawback for the field. More-
over, even if they could give a specific definition of semantic completion points, the issue of
dependency on syntax completion remains.

Non-verbal aspects of face-to-face conversation are also important with linguistic signals
for turn-taking. The daily observation of such signal is making the an eye contact with the
listeners to indicate the end of the turn [48]. On the other hand, gestures have little significance
in turn-taking [41], although Duncan in [35] did observed that the hand gestures were used
during interviews to postpone others turn-yielding signals. The gesture is usually a support to
the verbal signal. The studies of non-verbal signal has also been reported in [49].

2.2 Overlapping Speech

2.2.1 Definition of Overlapping speech
In addition to the signals indicating a clear end of a turn, there are other turn-taking signals

like overlapping speech, which are described as frequent, but brief phenomena in conversations.
According to model in [4], the briefness is explained by the fact that the onset of overlaps is
placed at a point, known as TRP, where the current turn’s completion is imminent. Therefore a
speaker can predict TRP beforehand and select him/herself as next, resulting terminal overlaps.
Thus the model explained in [4], explains overlaps as a result of turn-taking principals.

In addition to non-competitive overlaps at the TRP, as described above, there is another
type of non-competitive overlap that supports the current speakers while confirming the right
of the current speaker to continue the turn. This overlap is commonly known as continuer [50],
backchannel [51] or response token [52, 53]. Further, two other types of general overlaps that
have been indicated in [54, 55] are: 1) collaborative completions, where the second speaker
completes the current speaker’s turn by overlapping, and 2) choral productions, where speakers
producing greetings or a toast by overlapping.

Unlike the definitions of overlaps with non-competitive discourse mentioned in previous
paragraph, several studies suggested that the overlap can also be used as a device to compete
for the turn in progress. In [56], the authors defines the turn competitive incomings in overlap
as those instances in which the overlapper is heard as “wanting the floor” to him/herself at the
immediate point in conversation without considering if the current speaker finished his/her turn.
Similarly in [57–59], the authors describes overlaps as a form of simultaneous speech, which
act as a violation of the current speaker’s turn and also as an instrument for exercising power
and control in the conversation. The authors further described it as an invasion for the floor
which is initiated more than two syllables away from the initial or terminal boundary of a unit
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type [57]. In [60], the author described the overlapping speech from the overlapper’s point of
view. The authors defines overlaps as an event when the second speaker start speaking in a point
which could not be a TRP and the current speaker cuts off more than one word of overlapper’s
unit type. Likewise in [61], the author defines overlaps from the perspective of the current
speaker. The author stated that an competitive overlaps occurs when a speaker loses the floor
before the intend of relinquishing it thus leaving the current utterance incomplete. In [62], the
author characterizes competitive overlaps as the instances in which both the speaker perceives
the in-overlap speech as problematic and in need of resolution. The author further suggests that
the turn competition does not have to be one-sided, i.e., intent from overlapper’s side only but
both the speakers can compete and aim to drive each other out.

On the other hand, in [63], the author pointed out that to compete for the turn it is not always
necessary to have overlapping speech (nor the overlapping speech is sufficient for the recogni-
tion of such events) as an utterance can perform a competitive function without overlapping.
In [64], the author defined this type of competition as ‘silent interruption’. An example of such
an event can be a scenario when the overlapper starts the talking in the mid-turn pause from
which the current speaker intend to continue the utterance but failed due to the intrusion [65].

Therefore, to summarize, the non-competitive overlaps either occurs at TRPs [4] or begins
and ends while the the current speaker still holds the floor thus the incoming second utterance
does not disrupt the current utterance [66, 67] whereas competitive overlaps incoming intrude
the internal structure and the syntactic boundaries of a speaker’s utterance [66] thus disorganiz-
ing the construction of the conversation [67].

2.2.2 Classification Schema for Overlapping Speech
Over years many classification and description of overlapping speech has been proposed.

Some of these classification, proposed in the literature, has been mentioned below.
Based on the occurrence of speaker-switch, simultaneous speech, and the completion of first

speaker’s utterance, [64] devises a categorization scheme for competitive and non-competitive
overlapping speech as shown in Figure 2.2. This scheme is later adopted by [68] for studying
turn-taking styles. The scheme defines the following categories:

• Smooth-speaker switch: A smooth speaker-switch between the current and next speaker
with no presence of simultaneous speech.

• Competitive overlap: Events where simultaneous speech occurs and the utterance of the
first speaker remains incomplete.

• Non-competitive overlap: Events where simultaneous speech occurs but does not disrupt
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Figure 2.2: Ferguson’s classification of overlaps (non-competitive and compeititve overlapping
speech) and smooth speaker-switch.

the flow of the conversation and the utterance of the first speaker is finished even after the
overlap.

• Butting-in Competition: an unsuccessful attempt of competitive overlaps, the overlapper
stops before gaining control of the floor.

• Silent Competition: An incoming of competitive turn just without overlapping.

Another classification of overlapping speech is proposed by Roger and Schumacher in [69].
They categorize competitive overlaps into successful and unsuccessful competitive overlaps. A
schematic representation of their classification scheme is shown in Figure 2.3.

The schema defines the successful competitive overlaps as events in which the current
speaker is prevented from completing an utterance by the incoming overlapper’s turn while
taking the floor; and in unsuccessful events, the overlapper attempts but fails to take the floor.
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Figure 2.3: Roger and Schumacher’s classification of overlapping speech.

In comparison with the classification presented in [64], successful and unsuccessful competitive
will respectively be competitive overlaps and butting-in competitive overlaps while neglecting
silent competition events.

2.2.3 Identifying Competitiveness in Overlaps
For identifying competitive and noncompetitive overlaps in a conversation, researchers em-

ployed techniques to find properties of overlap that describes the competitiveness of the event.
One of the first properties that researchers from conversational analysis and other field studied
are the placement of the overlapping speech. In [70], the author investigated the precise place-
ment of overlap onsets and found that they occur systematically at any place in the ongoing
turn. The author mentioned three preliminary categorization of overlap onsets, according to
their position relative to the TRP.

The onsets are:
1. transitional onset – focuses on completeness of the turn and are located at the TRP.

2. progressional onset – focuses on the flow of the conversation and starts at the silence
interval of an ongoing turn, and

3. recognitional onset – focuses on the information recognized and are located at a point
where the incoming speaker has gained sufficient understanding of the content of the
current turn.

Unlike transitional and progressional overlap onset, which are the “byproduct of routine
turn-taking practices”, the recognitional onset can results in intrusion of turn and can be viewed

24



as a competitive intend [70]. This type of events is also mentioned in [5]. These findings
motivates the author to propose that the positioning of the overlap onset is related to the com-
petitiveness of the overlap. In addition to the placement of the overlap onset, the author also
identified if a speaker is aware of the overlaps and does not drop out or resolve the overlaps,
this behavior is associated with turn competition [71].

Apart from the overlap onsets, several studies such as [46, 56, 62, 72–74] have claimed that
prosodic features, including fundamental frequency height, intensity, speech rate and rhythm are
important cues for turn competition in overlap. In [62] the author also showed that the speakers
deployed these prosodic features along with cut-offs, sound stretches and repetition or recycling
of prior material to indicate competitiveness. The author also suggests that the increase in pitch
or volume can be regarded as turn competitive “hitches” that indicates competitive overlaps.
These findings are also replicated for other languages in [75, 76] representing that in Italian
human machine dialog repetitions and overlaps are not always necessarily competitive but plays
an important pragmatic role to indicate the intent.

In [56], the authors proposed that the combination of raised pitch and volume is utilized by
overlapper to compete for the turn. In addition, the authors contrast with [70] while suggesting
that the timing of the placement of overlap onset within the current speaker’s talk, is not a
relevant feature classifying competitive and non-competitive overlaps. The authors also insisted
that the overlap’s lexical design and its pragmatic function also does not provide any distinctive
separation between the two overlap classes (competitive vs non-competitive). This claim is later
supported by [46, 77]. It is also observed in [77] that competitive overlaps include high pitch
and amplitude to grab the attention from the current speaker.

Most of the above mentioned research focused on the prosodic design of overlapping speech
and how it is used by interlocutors for competitive and non-competitive intent. But while doing
so, these studies solely focused on either on a subset of prosodic features or on a particular
position of overlaps.

Some of the subset of prosodic features that has been studied are: pitch and loudness [46,
56]; intensity [73]; fundamental frequency [74], speech rate [78] ; speech rhythm [72].

As for the position of overlaps, most of the studies focused on the overlaps placed clearly
prior to possible completion [56, 62, 74]. Unlike the previous studies, in [79], the authors al-
lowed the possibility that an incoming overlapping speech in terminal position may sometimes
be competitive. The authors in the study hypothesize that both competitive and non-competitive
overlaps can occur in any place in the conversation using different prosodic and positional de-
sign. The author also suggests that a combination of fundamental frequency and intensity is one
of the most used prosodic feature in competitive overlaps where as recycling of lexical materi-
als plays a major role in describing competitive overlaps. Duration of overlaps is also found to
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be the most distinguishing feature while classifying competitive and non-competitive overlaps
using a decision tree [71, 78].

2.2.4 Research from Speech Communities
Understanding how to differentiate between the competitive and non-compeititve overlap-

ping speech improves the naturalness of many speech technologies such as virtual agents, spo-
ken dialog system (SDS) or even automatic speech recognition systems (ASR). As portrayed
in [27], differentiating between turn competitive and non-competitive overlapped incomings is
an essential part for a continuous conversation with a virtual agent. One important task for
an spoken dialog system is to know/understand when to take the turn and yield the turn to the
human partner. As a part of the task, the system should be able to recognize and manage the
scenarios where the human partner takes the turn, with competitive intent, when the system
is still talking. At the same time, the system should also be able to generate non-competitive
overlaps to signal supports or to acknowledge the current speaker [26].

Thus with the aim of improving the quality and naturalness of spoken dialog systems and
understand human-interaction, speech community has also been investigating the acoustic and
temporal properties of overlap. But compared to the other research area dealing with overlaps
and turn-taking in spoken conversations, there have been very few studies on the speakers’
competitive and non-competitive turns.

For classifying overlaps different type of features has been explored, such as hand motion
and disfluencies [73], body movement features from both speakers and contextual prosodic
features from the overlapper [80], gaze, voice quality and contextual features –preceding and
during overlaps [81].

Aiming to predict competitiveness, in [82], authors found that incoming of competitive over-
laps are not random and context can be used to predict their occurrences. A similar conclusion
is observed in [83], suggesting that interruptions are more likely to occur in intonational phrase
units (IPUs) rather being random. In [80], the author used body movement features from both
speakers along with prosodic feature from the overlapper to investigate the context that sur-
rounds the overlaps. In [81], the author extracted various context features preceding and during
overlaps to compare the performance of overlap classification for competitive and cooperative
overlaps. While doing so features such as gaze, voice quality were also introduced with the
acoustic feature set.

Apart from the few studies mentioned in above paragraph, there are some other important
studies which focuses on studying overlaps. Even though the below studies did not differentiate
between competitive and non-competitive overlaps but it gave us a ground for starting the in-
vestigation on differentiating the pragmatic role of overlaps as competitive vs non-competitive.
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To find the importance of modeling overlap and its properties, the authors carried out a quan-
titative study of overlaps on two meeting corpora from ISCI [84, 85] corpus and two telephone
corpora “The Switchboard” [86] and “CallHome English” corpora. This study is conducted
using more or less naturalistic spoken interaction which is recorded in a separate audio channel
using a close-talking microphone. The study analyzed raw acoustic data to find for recurrent
acoustic correlates of overlap. The findings of the study suggests that fundamental frequency
along with energy at the onsets of turns in overlap were higher compared to the onsets of turns
from silence.

More recently, [26] have analyzed the “Columbia Games Corpus” to identify the prosodic,
syntactic and acoustic cues that precede turn changes, turn retentions and backchannels. The
findings of the study shows that the inter-pausal units (IPUs), preceding the turn transitions with
and without overlap, exhibit comparable turn-yielding cues. The study only considered smooth
turn changes and did not address cues that potentially signal competitive and non-competitive
overlaps. As stated by [5], that turn-competitive overlaps are usually ignored due to their ten-
dency to break the flow of the conversation.

2.3 Silence
The ambiguous value of silence in daily conversation, be it written or spoken, has arise

different theories regarding the importance and function of it for many years. Silence bears
distinctive cultural characteristics in communication. In different cultures, silence conveys dif-
ferent meanings and attitudes. Silence, which one person intends as a sign of respect, may be
interpreted as rudeness by others.

For over decades researchers from many field has been studying and analyzing silence in
human interaction. The research focus includes, but are not limited to, the role of silence in
conversation [57, 87, 88]; silence as nonverbal communication [89, 90]; interpersonal silence
[91,92], silence as a conflict-management strategy [93], and the use of silence within the context
of psychotherapy [94–97].

Early studies on silence mostly focuses on theoretical speculations of the role of silence
in human interactions. However, most of the studies on communication primarily focuses on
‘talk’ relatively ignoring ‘silence’ [98]. According to [12], the author observed that even in
linguistics, the silence is recognized as an empirical datum, which is traditionally defined as the
absence of speech sounds.

The range of the interpretations may vary from one culture to another as it is subjective and
relative, which indicates silence is both context specific and culture specific [99]. Researchers
in communication community recognize silence as a semiotic unit of nonverbal communication
[100, 101]. In addition, communication scholars also realize that the meanings associated with
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silence are not universal in nature, but culturally and contextually defined [102, 103].
In the context of culture, in the eastern cultures, silence is particularly appreciated and

associated with several positive impressions in communication, while in the western culture,
silence is usually avoided as it is regarded as a kind of social weakness or a sign of withholding
and un-cooperative personality [98] or a manifest of the speaker’s lack of knowledge [104,105].

In recognition of the context specificity of the meanings of silence, [106], for example,
defines silence as an act of non-verbal communication that “transmits many kinds of meaning
depending on cultural interpretation”. Silence can also be defined as “the absence of talk”
which contains certain communicative purposes [103]. Similarly, the author in [107] insists
that silence must bear a communicative function, sometimes peculiar to the interlocutors and
sometimes to the context and culture where it appears. Silence has also been reported to have
illocutionary force to perform a speech act that seems to exist universally, naturally displaying
cultural variance [103], [14], [13], [107].

2.3.1 Role of Silence in Human Interaction
In 1973, the author in [108] investigate the possible function of silence in human interactions

when used with other nonverbal cues. The study analyze and states five functions of silence.
The functions are 1) linking, 2) affective, 3) revelation, 4) judgmental, and 5) activating. Despite
describing the functions of silence in details, the theoritical stance of the author is flawed due to
the implicit assumption that the meaning of silence is uniform for different context and culture.

At the same time, the author in [10] defined three major forms of silence. They are 1)
psycholinguistic silence, 2) interactive silence, and lastly 3) socio-cultural silence. The author
also discuss the function of silence as 1) an indication respect or disrespect for the current
authority, 2) a strategy for disapproving a ‘violent expression and anger’, 3) as a tactic by
authorities to create opportunities for sub-ordinates to think independently for themselves, and
4) as a device to rhetorically control behavior.

The study in [109] explains the role of silence in several communication contexts, such the
function it plays in human thought processes, its purpose in everyday interpersonal communi-
cation, in social and in political life, and also includes its function in counseling and psycho-
therapeutic contexts.

The study in [103] mentions two primary types of silence. These silences are pauses and
hesitations that is used as a tool in verbal turns to take short time for thinking where the second
type of silence is the long silence used intentionally, and contain certain meanings and illocu-
tionary force, which is “eloquent silence” [103, 110]. The author in [14] also focused on this
eloquent silence and investigated it in Akan society with a socio-pragmatic approach which
puts forward that silence embodies social and rhetorical influence, conveys meaning and there-
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fore, has communicative functions. [111] differentiating between intentional and unintentional
silence, states that intentional silence conveys meaning in communication.

The study in [112] outline the functions of silence using cognitive, discursive, social, and
affective functions. From cognitive perspective the author suggest that the lengths of pauses
and hesitations in a conversation is used as a processing time before speaking or listening at the
same time, pause can be used as a tool for marking utterance boundaries in discourse, while
governing or organizing social relations [113].

Similarly the author in [114] analyzed silence in conversation in interaction level suggesting
that silence may signal asymmetry between the speakers along with signaling turn-taking. The
author also analyze silence in cognitive level suggesting that silence may co-occur with mental
planning of the upcoming utterance. Moreover, as for the function of silent speech segments, the
author insists thats they may signal both agreement and disagreement. The author emphasizes
in the study that for understanding speaker’s intentions behind silence, it is essential to analyze
the context.

In literatures over decades silence has range of functions in various contexts of everyday life
varied through cultures. The next few sections includes the studies that address the meaning and
use of silences.

2.3.2 Conversation Style and Silence
Conversational styles can also be characterized using silence based on pause length, speed

and frequency of the conversation [98]. In the study [98] the author reported that New Yorkers
perceive slow speakers (Californians) as “withholding and uncooperative”.

2.3.3 Politics and Silence
Silence also plays a major part in political speech. As cited in [99] the author in [115]

mentioned two types of silence in politics; One of them occurs due to the break down of speech;
and the another one occurs due to the failure to utter relevant words which the cited author
explained as a political strategy. This type of silence is also been discussed in [14], where the
author labels this kind of silence as communicative silence in Akan culture and referred the
attitude as “absence of relevant talk” by [101], which overlap with the proposed situation of
“irrelevance” in [116].

In [117], the author defines the strategic silence as refusal to communicate verbally, by a
public figure which leads to (a) violation of expectations, (b) drawing public attributions and
fairly predictable meanings, and (c) seems intentional and directed at an audience. In [118],
the authors studied the pragmatic motivations and use of silence in Turkish political talk shows.
The author concluded in the same line of the study as [98] and insisting even though silence
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does not mean lack of knowledge or weakness but in competitive arena speech represents sign
of ‘Power’.

2.3.4 Politeness and Silence
Based on cultural perspective silence can convey different meaning and attitudes. In some

perspective silence represent respect whereas in another silence can be interpreted as an intent of
rudeness or insult. The politeness theory suggests that silence can be used as a strategy to avoid
face threats and is the most polite speech act, especially in the Eastern culture. For example,
in Japanese culture any disagreement, refusal and rejection, are the most common speech acts,
performed through silence as a politeness strategy [13].

2.3.5 Power and Silence
Author in [14] suggests that in some African societies, silence appears as a manifestation of

power. Silence is used there as tool for the powerful to show the superiority. At the same time,
the suppressed/weak remains silence in submission. The author pointed out that silence could
be also used as a tool for social control, in some societies it can be used as a way to punish the
enraged or those who committed violence.

In [119], the author investigate silence in classroom interaction and found it as one of the
important component in the interaction dynamics by studying the observed silence along with
nonverbal behaviors of both the students and teachers. The author conclude that even though
there is an inequality in status between students and teachers, the participants used silence to
negotiate power.

2.3.6 Conflict Management and Silence
In [120], the author investigates how silence can be used in conflict management in an Italian

village. The author analyzed a real scenario, he witnessed, between a father and daughter. In
the study, the author concluded that the use of silence was strategic in both father and daughter
case. The daughter used the silence to avoid any anger verbalization against her father, where
as father used it avoid any irreparable damage in family relations. Similarly in [121], the author
suggested that in a potential conflict situation, keeping silent helps to manage the situation and
substitute for an expressive of negative emotion, where as if the speaker gives way to a verbal
expression, it escalates the situation, leading to “everlastingly destructive consequences”.

2.4 Turn-Taking Models
Research in psycholinguistics suggests that humans process utterances incrementally [122].

Pointing to the fact that when we hear an utterance, at each point we try to hold a semantic

30



representation of it. So to match the human language processing and to allow natural interactive
language-based applications, computational linguists proposed and implemented incremental
parsers in [123, 124], where some of them targeted spoken dialog systems domain.

A way to analyze the turn-taking mechanism is by using an artificial agent. The study [125]
contains the most detailed work on reproducing human turn-taking behavior in artificial con-
versational agents. The author’s core work is an architecture called “Ymir” [126] that worked
with multimodal face-to-face interaction (e.g. hand gestures, gaze, backchannels, including
discourse planning), where all the turn-taking management has been done with “Gandalf”, an
embodied agent acted as a guide for the system. Rules were employed for the agent to manage
turn-taking behavior; one such example includes that the system must take the turn after a 50

ms pause following a user utterance, given it is a complete utterance and is turn-yielding.

The TRIPS spoken dialog architecture [127], has been used to develop a number of dialog
systems over almost a decade on tasks such as emergency response and evacuation planning
[128]. The initial implementation handled turn-taking in the standard rigid way, where as the
later version featured incremental interpretation and generation and some other features [129].
Another important feature of TRIPS is that it has separated the discourse from task-related
components. Discourse information is captured by a Discourse Context (DC), contains the past
log of users and system utterances and the set of current salient entities, but also discourse level
obligations, and current turn status. All the components of TRIPS run incrementally, allowing
a flexible turn-taking behavior.

In [130] a turn-taking architecture for the Reading Tutor of CMU’s Project LISTEN has been
described. Works from socio and psycholinguists, discussed in above sections, have uncovered
varieties of features that help human to detect the end of turns. But in practice, spoken dialog
systems as discussed, have adopted a simple approach. In most of the spoken dialogue system,
turn ending is considered when pause, detected using Voice Activity Detector (VAD), lasts
longer than a fixed threshold. However, this practice leads to suboptimal behavior in many
instances where chances of cases like cut-ins and latency might appear. To overcome these
problems several researchers have proposed to use features from dialog. In [131] use of decision
trees are shown to classify pauses longer than 750 ms as turn boundary (TB) or turn-internal
pause (TIP). Uses of features from semantics, syntax, dialog state, and prosody were able to
improve the classification accuracy from a baseline of 76.2% to 83.9%. After many years of
research in human-machine domain a large numbers of these systems are developed. Some of
the well-known projects are Communicator [132], “How May I Help You?” [133] and many
more.

31



2.5 Summary
This chapter has reviewed some key findings from previous literature regarding events in

turn-taking. The study, in the chapter, focused on the fundamental concept of turn-taking such
as construction of turns to transition relevance place (TRP) to the complex events such as over-
lapping speech discourse to functional meaning of silence. The study includes research from
many fields, including conversation analysis, psychology among others, and how these research
has been incorporated in spoken dialog systems and what is the state-of-the-art in speech com-
munities. From the overview of this chapter, we observed that there are very few studies in
finding the function of silence which are methodological. Most of the research on silence high-
lights the importance of context in understanding its function. Thus pointing that to categorize
function of silence, we need to design its feature from its surroundings. Similarly, for over-
lapping speech research, it is observed that most of the studies from speech focused only on
prosodic characteristics of the event, using designed feature to classify competitiveness of the
overlap and compare to turn transitions and cues for turn yielding, no research actually focused
on classifying discourse of overlaps using high-dimensional acoustic features along with other
vocal features such as linguistic cues. So this dissertation aims to address this lacking in the
state-of-the-art research to see if computational models can be designed for these turn-taking
events.
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Chapter 3

Dataset

To design computational models for turn-taking behavioral system and understand what sig-
nificant role it plays in determining the course of the spoken conversation, one of the important
challenge is the annotation of ecologically valid data with real behavioral expressions. For the
annotation, operational definitions and guidelines are required. Therefore, the content of this
chapter includes information regarding the ecological real data, the design of the annotation
scheme, followed by the corpus analysis. This chapter also includes information of other data
which is also used in this dissertation.

For the analysis, experiment and the evaluation of the computational models, a dyadic call
center spoken conversations scenarios is used. Typical scenario of call center is that both the
agent and the customer engage in real conversation to achieve a goal such as information seeking
or problem solving. Most of the previous research in turn-taking dynamics, especially overlap-
ping speech discourse, focused on meeting corpora [79] or other small datasets. There are only
a very few corpora which have been collected in real-life situations that are large enough to
understand and more importantly to model these behaviors.

The Signal and Interaction System Laboratory (SISL) Human-Human Dyadic Conversa-
tion corpus consists of Italian call-center conversations with real-users and contains manual
transcriptions of such dialogs, annotation of overlap discourse, semantic category and affective
behavior annotations, including empathy, and basic and complex emotions. For our study we
have chosen this data due to its size and naturalness. In addition, we also used Italian LUNA
Corpus for a comparative study across corpora on dialog act segmenter and classifier .

Contents published in:
Shammur Absar Chowdhury, Evgeny A. Stepanov and Giuseppe Riccardi, Transfer of Corpus-Specific Dialogue
Act Annotation to ISO Standard: Is it worth it?, in Proc. of 10th edition of the Language Resources and Evaluation
Conference (LREC), 23-28 May 2016, Portorož (Slovenia).
Shammur Absar Chowdhury, Morena Danieli, and Giuseppe Riccardi, Annotating and Categorizing Competition
in Overlap Speech, in Proc. of ICASSP. IEEE, 2015, Brisbane, Australia.
Firoj Alam, Shammur Absar Chowdhury, Morena Danieli, Giuseppe Riccardi, How Interlocutors Coordinate with
each other within Emotional Segments?, COLING, Osaka, Japan, 2016.
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3.1 SISL Conversational Discourse Corpus
The SISL Human-Human Conversational Discourse Corpus is a subset of a large Italian call-

centers corpus, which has been collected with real-users that were engaged in real conversations
with call center agents. The customers are calling the agents to solve some specific problem or
for seeking information. The inbound Italian phone conversations are recorded on two separate
audio channels with a quality of 16 bits, 8kHz sample rate. The collected corpus have an average
duration of 396.6±197.9 for all 10K conversations1. Since the motivation behind the collection
of the Italian call-centers corpus was to analyze real-life conversation dynamics along with other
affective behavior, therefore no prior knowledge has been given to the subjects during the data
collection. The data also excluded any personal information regarding the customer except the
gender due to its privacy policy.

3.1.1 Transcription
To better understand the interaction between the interlocutors in a conversation, a subset

of 955 conversations has been manually transcribed. For the transcription process, an initial
speech segment boundaries were given using an automatic turn segmenter [134]. The annotators
were allowed to change those boundaries with constrain of minimum speech segment boundary
to be 2 seconds with maximum of 10 seconds. The annotators also instructed to mark the
Cross-Talk CTK. It is defined as a background intelligible speech that are not providing any
information to the speakers. The instruction also suggests to ignore background noise such
as phone dialing, other background noises, traffic noise, are also ignored. Though the human
sounds such as cough, laughter, sneezes, has its importance, however, for our task they are
considered as environmental noise and thus labeled as NOISE in the transcription.

These manual transcriptions are also used to design an in-house Automatic Speech vs Non-
Speech Segmentation and Automatic Speech recognition systems as described in Section 7.2.1.1
and 7.2.1.2. Moreover the linguistic feature design and analysis are also presented in this dis-
sertation are based on this manual transcription along with automated transcription from ASR.

3.1.2 Overlap Discourse Annotation Scheme
A small subset of the conversations are analyzed by an expert psycholinguist who listened

each recorded call by applying a systematic direct observation protocol [135] while focusing
only on overlapping speech segments.

The observations allowed the psycholinguist to identify different kinds of overlapping speech
segments, differing with respects to their pragmatic functions, speaker intentions and linguistic

1The original dataset contains 10063 conversations where average ± std is 395.9 ± 198.2 and later some of
them has been discarded.
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structure. For instance, most of the analyzed conversations showed that overlapping speech
segments are co-occurring with greetings at the end of the phone conversation.

The occurrences of speech overlap were characterized by significant variations of their
prosodic profiles where some of them showed the intention of the intervening speaker to “grab
the floor” of the conversation, i.e., to compete with the other speaker in view of controlling the
turn taking structure of the dialog. One such case is the tendency of the agents to interrupt the
customer when they believe to have understood the customer’s question while the latter insists
on providing more information.

Sometimes, however, the intention to “grab the floor” did not show a competitive attitude
of the speaker. For example, several overlapping speech segments sound as being collaborative
completions by the intervening speaker. Those occurrences could be classified as one out of
several forms of back-channeling phenomena.

On the basis of this observational analysis, we designed the annotation guidelines for seg-
menting and annotating the speech overlaps with the competitive and non-competitive labels.
The annotation guidelines include the following:

1. Each overlapping segment may contain more than one overlap instance of the same cate-
gory. Instances may be separated from each other with a gap less than 40ms.

2. If a speaker thinks aloud during another speaker’s turn that is considered an overlap in-
stance.

3. Co-occurrences of “false start” by both the speakers are considered instances of speech
overlap if and only if the segments contain complete words and the annotator can infer
the speaker’s intention on the basis of the perceived intonation of speech.

4. Annotators are asked to reject a conversation or ignore segments if they contain poor
quality audio, unintelligible speech, background noise, human sounds like cough, sneezes
and laughs.

5. The annotator’s judgment includes the appraisal of the speakers’ intention on the basis
of supra-segmental variations including speech rhythm, accent and intonation along with
peculiarities of the semantic content of the utterance.

6. Inferring the annotation label on the basis of the annotator’s knowledge of what will occur
later in the conversation, i.e., outside the turn being considered, is to be strictly avoided.

Using the above guidelines, the annotators were asked to annotate the segments into one of
the following two categories:

Competitive (Cmp): Scenarios where 1) the intervening speaker starts prior to the comple-
tion of the current speaker, 2) both the speakers display interest in the turn for themselves, and
3) speakers perceive the overlap as problematic.
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Table 3.1: Dialog excerpts from the annotated corpus. Speech overlaps: bold form between [

and ], Hesitations: (.), Rising intonation: Ű, Falling intonation: Ů.

Non-Competitive Ncm

S1: è una piccola [cosa però] Ů se (.)

S2: [no signora Ů ha] fatto bene Ů

S1: it is a [ little thing] Ů if (.)

S2: [ no madam Ů have] done well Ů

Competitive Cmp

S1: perché questa [è la vostra ultima] che ho ŰŮ

S2: [no signora Ű dal] 31 marzo non è con noi Ű

S1: because this [ is the your latest] that have ŰŮ

S2: [ no madam Ű from] march 31 you are not with us Ű

Non-Competitive (Ncm): Scenarios where 1) another speaker starts in the middle of an
ongoing turn, 2) both parties do not show any evidence for grabbing the turn for themselves,
3) speakers perceive the overlap as non-problematic and 4) the intervening speaker use it to
signal the support for the current speaker’s continuation of speech. In Table 3.1, we report
two examples of overlap segments with their English translation. The overlap segments are
represented in bold form between square brackets and reported tone direction, based on IPA
notation [136]. In the first example, the overlap speech segments of speaker S1 and S2 have
a falling intonation: S1 hesitates and S2 intervenes for reassuring her. The opposite occurs in
the second example: S1 speech has a rising-fall intonation, whereas the tone of S2 speech is
constantly rising. S1 is surprised and overwhelmed by the sharp tone of S2.

3.1.2.1 Annotation Procedure

Two expert annotators, Italian native speakers, performed the annotation task. As specified
in the guidelines, they manually segmented the speech overlap occurrences and labeled each
segment as competitive or non-competitive in 565 conversations of approximately 62 hours of
spoken content with an average duration of 395 seconds.

The annotation of overlap discourse is carried out using the Partiture editor of EXAM-
RaLDA [137]. EXMARaLDA is an acronym of “Extensible Markup Language for Discourse
Annotation”. It is a tool of concepts, data formats, and tools for the computer assisted tran-
scriptions and annotation of spoken language, and for the construction and analysis of spoken
language corpora. The annotation of the overlap requires a specific designed tiers of annotation
that is added to the xml file by the annotator when there is presence of overlapping speech. A
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comment layer is also added in case of any atypical phenomena found or the annotator faced
any confusion. For the annotation task only audio file is used thus decreasing the influence
of transcription on the annotator. An example of annotation using Partitur-Editor is shown in
Figure 3.1, which contains overlap and comment tiers.

Overlap boundary 

Overlap discourse annotation 

Figure 3.1: Annotation example using Partitur-Editor, containing overlap discourse label and
the comment tiers. For the annotation, only audio signal was available to the annotator. Cmp
represents competitive overlap where Ncm represents non-competitive overlap discourse.

3.1.2.2 Evaluation of Annotation
To assess the reliability of the annotations we calculated inter-annotator agreement by using

the kappa statistics. Equations 3.1 - 3.3 define Cohen’s κ [138, 139] and its observed (Po) and
chance (Pe) agreements in terms of true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN). In the equations N = TP+TN+FP+FN.

κ =
Po − Pe

1− Pe

(3.1)

Po =
TP + TN

N
(3.2)

Pe =
(TP+FP)∗(TP+FN)

N + (TN+FP)∗(TN+FN)
N

N
(3.3)

For calculating the agreement two annotators worked independently over a set of 28 spoken
conversations randomly extracted from the call center corpus. The amount of spontaneous
speech annotated for the inter-annotator agreement test was around 3 hours 17 minutes. The
Kappa statistics is frequently used to assess the degree of agreement among any number of
annotators by excluding the hypothetical probability that they agree by chance. By evaluating
our data we reported κ = 0.7033.
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Additionally, to quantify the inter-annotator agreement as human-performance in catego-
rization of overlaps, a Positive (Specific) Agreement (Ppos, Equation 3.4) [140], identical to the
widely used F-measure (Equations 3.5 - 3.7) [141], was also used to obtain pair-wise F-measure
as an evaluation to the annotator agreement. In this case we obtained an F1 of 85%.

Ppos =
2 ∗ TP

2 ∗ TP + FP + FN
(3.4)

precision =
TP

TP + FP
(3.5)

recall =
TP

TP + FN
(3.6)

F1 = 2 ∗ precision ∗ recall
precision + recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(3.7)

The cases of disagreement were discussed in a consensus meeting by the annotators and the
author of the guidelines. The most relevant disagreement between annotators concerned speech
disfluencies, including false starts, repairs, and filled pauses. In most of the cases consensus
was reached between the two annotators.

3.1.3 Affective Behavioral Annotation
In the corpus the annotation of the affective behavior include empathy on the agent channel,

and anger and frustration on the customer channel. For the annotation, we adopted the modal
model of emotion by [142] in order to define empathy and design annotation guidelines for
the annotators. Gross’s modal model is based on appraisal theory, which has been studied by
many psychologists for the investigation of emotional states. Appraisal models of emotion
suggest that organisms appraise (i.e., evaluate, interpret, explain) events/situations based on the
appraisal process in order to determine the nature of ensuing emotion as discussed by [143].

According to the modal model, “emotions involve person-situation transections that compel
attention, have meaning to an individual in light of currently active goals, and give rise to coor-
dinated yet flexible multisystem responses that modify the ongoing person-situation transection
in crucial ways” [144, 145]. The key idea of the modal model is that emotional states unfold
over time, and their response may change the environmental stimuli, and that may alter the sub-
sequent instances of that and other emotional states. It is a useful framework for describing the
dynamics of the emotional states, which manifests over time, leads to the generation of an emo-
tional sequence from the interlocutors’ emotional manifestations. For example, the sequence of
emotional states between an agent and a customer could be Frustration (C)→ Empathy (A)→
Satisfaction (C), here A for agent and C for customer.
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To design the annotation guideline, we have done an extensive analysis of one hundred con-
versations (more than 11 hours), and selected dialog turns where the speech signal showed the
emergence of empathy, basic emotion, such as anger, and complex emotion such as frustration.
In our qualitative analysis, we investigated the relevant emotional speech segments, which were
often characterized by some perceivable variation in the speech signal. We observed that such
variations could co-occur with emotionally connoted words, but also with functional parts of
speech, such as adverbs and interjections, which could play the role of lexical supports for the
variations in emotional states. We hypothesized that perceivable variations in the speech are a
possible signal of an appraisal process. On the basis of those observations, we have designed
annotation guidelines whose critical principle was to focus annotators’ attention on their own
perception of the variations in the speech signal as well as the variations in the linguistic content
of the utterances.

For example the annotation guidelines include the following recommendations for the an-
notators:

• annotating the onset of the signal variations that supports the perception of the manifes-
tation of emotions,

• identifying the speech segments preceding and following the onset position, and

• annotating the context (left of the onset) and target (right of the onset) segments with a
label of an emotional state (e.g., frustration, empathy, etc.).

In addition, the annotation guidelines include operational definitions of emotional states related
to the given domain of application. For example, in this annotation task, the operational defi-
nition of empathy is defined as ‘‘an emotional state triggered by another’s emotional state or
situation, in which one feels what the other feels or would normally be expected to feel in his
situation” [146].

The annotation task was performed by two expert annotators who worked on non-transcribed
spoken conversations by following the annotation scheme reported above. In this task, the an-
notation unit is the speech segment. They annotated Empathy on the agent channel and Frus-
tration and Anger on the customer channel. The annotators labeled Neutral on the segment
that appeared before any emotional segment to define the context, as mentioned earlier. Finally,
the annotated corpus includes 1894 customer-agent conversations (210 hours and 23 minutes in
total). In order to evaluate the reliability of the annotation we measured inter-annotator agree-
ment on the annotated segments, and obtained an average κ = 0.74. More details can be found
in [147–149].
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3.1.4 Corpus Analysis
3.1.4.1 Corpus Summary

Based on the annotation guidelines, 565 conversations were annotated with overlap dis-
course, containing manual transcription. Along with the overlap discourse, agent and customer
channel and gender are also specified in the annotation information layer. The corpus consists
of 62 hours and 23 minutes of conversations. Out of 62 hours and 23 minutes of the conversa-
tion, ≈ 35% of conversational space are silences including pause, gaps, between- and within-
speaker lapses, where as other ≈ 55.43% of the conversation floor belongs to non-overlapping
speakers turn. From this dataset, a total of ≈ 5 hours and 8 minutes, which is ≈ 8.2%2.

In the corpus, the most frequent turn-taking signal is smooth-switch and gaps, includes
turn-changes like no-silence-no-overlaps, silence-in-between, i.e., gaps as shown in Figure 1.2.
Their duration distribution is presented in Figure 3.2.

Median (0.78s) 

Figure 3.2: Duration distribution of gaps (smooth-switches) labels in the corpus.

Even though overlapping speech is a violation of turn-taking rule, it is observed that around
≈ 39.53% (≈ 40%) of the turn taking (speaker changes) occurs while overlapping with the
interlocutors as shown in Figure 3.3.

After forced alignment and fixing overlap boundaries, a total 15,899 overlap segments, of a
total duration of 5 hours and 8 minutes is obtained. Among the overlapping instances, ≈ 24%

2This overlapping speech duration is based on alignment and filter technique used in Chapter 5 and 7. The
original manual annotation included extra silences surrounding the overlaps. Thus containing ≈ 7 hours and 57

minutes of overlap data.
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of overlaps are of competitive nature as shown in Figure 3.4. When the overlapping speech are
studied using unsupervised technique, in Chapter 4, a similar distribution of competitive vs non-
competitive overlaps are found, thus indicating that this is the natural distribution of overlaps in
the dataset. The duration distribution of the overlap discourse (Cmp vs Ncm) are given in Figure
3.5.

53% 40% 

7% 

Turn-taking signals 

Smooth-Switch and gaps Overlapping-Switch Lapse-Between-Speaker 

Figure 3.3: Distribution of turn-taking signals in the corpus.

Cmp 
24% 

Ncm 
76% 

Figure 3.4: Distribution of competitive vs non-competitive labels in the corpus.
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Cmp 
2.03 sec 

Ncm 
1.63 sec 

Figure 3.5: Duration distribution of competitive vs non-competitive labels in the corpus.

Another variation of switching speakers by silence in between (gaps) are between-speaker
lapses (where the silence in between in >= 2 seconds) shown in the Figure 3.3. Even though
this is a very rare (only 7%), the long gaps has the potential functions to play in determining the
conversational behavior. The distribution of these turn signal is presented in Figure 3.6.

Figure 3.6: Duration distribution of lapse (between- and within-speaker) labels in the corpus.

The duration distribution of both agent and customer’s non-overlapping turns in presented in
the Figure 3.7. This turns are created using technique described in details in Section 7.2.2, using
forced aligned transcription. For the forced aligning of the transcription, a domain specific ASR
is used which is designed with manual transcription mentioned in Section 3.1.1.
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Figure 3.7: Distribution of non-overlapping turns in the dataset.

Silence instances duration, on the other hand, covers ≈ 35.21% of the conversations. The
instances includes within speaker silences (pauses, within-speaker lapses) and between speaker
silences (gaps and between-speaker lapses).

Table 3.2 contains details of silence statistics and percentage of each type of instances
present in the data. The duration distribution of pauses and within-speaker lapses are shown
in Figure 3.8 and in Figure 3.6 respectively.

Median (0.93s) 

Figure 3.8: Duration distribution of pause (within speaker silences < 2.0seconds) labels in the
corpus.
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Table 3.2: Duration and frequency statistics of different types of silence in the corpus

Stat. Pause Within-Speaker Lapse Smooth-Switch Between-Speaker Lapse

Minimum 0.500 2.000 0.010 2.000
1st Qu. 0.680 2.450 0.420 2.300
Median 0.930 3.275 0.780 2.930
Mean 1.009 8.003 0.827 7.981
3rd Qu. 1.270 6.860 1.190 5.728
Maximum 1.990 304.3 1.990 452.3

Total silence instances 39886
Percentage 29.39 7.51 55.36 7.75

3.1.4.2 Linguistic Analysis

An analysis has been conducted using manual transcriptions to understand what has been
said while unfolding competitiveness in overlapping speech. For the study, only the overlapper
(speaker responsible for initiating the overlaps) turn is used. The study includes finding most
frequent as well as syntactic (part-of-speech) categories.

Figure 3.9: Word-cloud for Non-competitive class uni-gram feature only.
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Figure 3.10: Word-cloud for Competitive class uni-gram feature only.

Table 3.3: Most frequent bi- and tri-grams for each overlap. English translations are inside
parenthesis.

Overlaps Examples of most frequent bi and tri-grams only

Non-competitive

sì sì (yes yes), sì sì sì, va bene (well), no no, ho capito (I have under-
stood), no no no, lo so (I know), eh sì, grazie a (thanks to), la ringrazio
(thank you), grazie a lei (thanks to you), no non, ah okay, ah ho capito,
un attimo (just a moment), si figuri (never mind), mh mh, bene va (goes
well), va bene va (alright), mi dica (tell me), non si, sì perché (yes why),
sì no, non lo (not), eh eh, è stata (it was), sì infatti (yes indeed), questo
è (this is), okay allora (ok then), ah ah, va benissimo (thats great), mi
conferma (I confirmed), di nulla (nothing), non lo so (I don not know),
conferma che (confirms that), sì esatto (yes right), ci mancherebbe (God
forbid)

Competitive

no no, no no no, non è (it is not), c è (there is), ho capito (understood), un
attimo (one moment), no non (not), io non (I do not), ma non (but not),
eh ma (yeah but), sì sì (yes yes), ma io (but I), no ma (no but), mi dà (he
gives me), sì ma (yes but), mi scusi(excuse me), non mi (I do not), no
signora (no madam/lady), no perché (no because), mi dà il (gives me), io
ho (I have), però io (but I), non è possibile (it is not possible)
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Lexical Evidence The token based investigation includes n-gram and the word-cloud. Both
approaches are frequency based analysis. In Table 3.3, the few top ranked bi- and tri-grams of
each competitive and non-competitive classes are presented and the most frequent uni-grams
are presented using word cloud as shown in Figure 3.10 and 3.9.

From the token based analysis, it is observed that lexical selection of the speaker may dif-
fer depending on their attitudes towards competitiveness. Comparing the frequencies of token
for each class, the statistical significance over the observed differences with a two-tailed two-
sample t-test and p = 0.1 are tested.

The findings suggests that in non-competitive instances, most frequent words indicates that
the intervening speaker shares the opinions of the other speaker. For example, Italian words
and phrases like “bene” (“well”), “ho capito” (“I have understood”), “certo” (“sure”) are very
frequent in Ncm.

On the contrary, in the competitive distribution, occurrences of words and phrases like “no”,
“ma” (“but”), “mi scusi” (“excuse me”) in Italian may play the role of discourse markers usually
used to emphasize a discordant point of view.

The findings implicates that for the non-competitive overlaps “sì” (“yes”) is the most fre-
quently used word to start an overlap, whereas the word “no”, either alone or associated with
adversative conjunctions like “ma” (“but”), is the most frequently used for competitive starts.

Part-of-speech (POS) Analysis of the Start token To observe the most frequent token to
initiate the overlap along with what group of part-of-speech the token belongs, the lexical se-
quences are automatically annotated with Part-Of-Speech tags using Tree Tagger [150]. For the
frequency, it is observed that for competitive overlaps the most frequent starting token with pos
tag are: ADV_no, CON_e, INT_eh, CON_ma, VER:pres_è, ADV_allora, ADV_non, ADV_sì,
PRO:pers_io, CON_perché, PRO:pers_mi, NOM_signora.

As for non-competitive overlaps, the most frequent starting tokens are: CON_e, CON_sì,
INT_eh, ADV_sì, ADV_no, INT_ah, VER:pres_è, VER:pres_va, ADV_non, ADV_allora, NOM_okay,
DET:def_il, PRO:pers_mi, PRO:rela_che, PRO:pers_io, PRE_a, ADV_quindi, CON_perché.
The description of the tagset is given in Table 3.4.

Feature Ranking Since frequency based analysis does not entail that top ranked tokens or
ngrams are important. Therefore, a feature selection followed ranking based approach has been
investigated to find the tokens containing most important information. For this analysis, tri-
grams are extracted from manual transcriptions, in order to understand whether there are any
linguistically relevant contextual manifestations for competitive expression. For the analysis of
the lexical features, a Relief feature selection algorithm [151] has been used. Prior to the feature
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Table 3.4: Most frequent POS tags found in starting token of the overlap, with its description.

POS Description
ADV adverb
CON conjunction
INT interjection
VER-pres verb present
PRO-pers personal pronoun
NOM noun
DET-def definite article
PRO-rela relative pronoun

selection, the raw lexical features has been transformed into bag-of-words (vector space model).
Then, Relief feature selection algorithm has been applied and ranked the features, based on the
score computed by the algorithm.

It is observed that token sequence (tri-grams) which are unique for competitive (i.e. are
not present in any non-competitive instances) that carries important information are: "attimo
un attimo" ("wait one moment"), "ma quello" ("but that"),"scusi un attimo" ("Exceuse me for
a moment"), "scusi un" ("Exceuse me"), "e cosa devo" ("and what should I"), "e cosa" ("and
what"), "signora l" ("madam I .."), "non ho non" ("I have not .."), "ho non ho" ("I have not ..").

Similarly for non-competitive unique ranked features are : "grazie a lei" ("thanks to you"),
"grazie a" ("thanks to"), "auguro una buona" ("have a nice .."), "le auguro" ("I wish you"), "va
bene va" ("all right all"), "le auguro una" ("I wish you a"), "che oggi è" ("it is today"), "anche
a lei" ("you too"), "salve" ("Hello"), "sì mi dica" ("Yes tell me"), "bene okay" ("well okay"), "di
nulla" ("nothing").

3.1.4.3 Speaker Distribution

The SISL Human-Human Dyadic Conversation corpus consists of a total of 1403 agents
providing service on the whole 10K dataset. However, the subset of the corpus contains 565
conversations from 408 speakers. The Figure 3.11 presents the distribution of calls received per
agent. It is observed that only 30.4% of the speakers received more than one inbound call thus
resulting a skewed distribution of the call received per agent.

The metadata of the corpus contains no information of the customer. Thus the lack of
information about the customer identity prevent such analysis on customers repeated the call.
Therefore, we do not present such information.
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Figure 3.11: Distribution of the percentage of call received per agent in the corpus.

3.1.4.4 Gender Distribution
The distribution of male-female in the SISL conversational discourse corpus for both agent

and customer channel are presented in Figure 3.12. Given this distribution of male and female
conversations in the corpus, a general automatic gender identification model can be designed.

37.81 

62.19 

49.73 50.27 

Male Female 

Gender % 

Agent Client 

Figure 3.12: Gender distribution on the agent and customer side of the datasets.

3.2 LUNA Italian Corpus
The Italian LUNA Corpus [152] is a collection of 723 human-machine (approximately

4, 000 turns and 5 hours of speech) and 572 human-human (approximately 26, 500 turns and
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30 hours of speech) spontaneous dialogs in the hardware/software help desk domain3. The
dialogs are conversations of the users involved in problem solving.

While the human-human dialogs are recording of the real user-operator conversations, the
human-machine dialogs are collected using Wizard of Oz (WOZ) technique: the human agent
(wizard) reacting to user requests is following one of the ten scenarios identified as most com-
mon by the help desk service provider. Text-to-Speech Synthesis (TTS) was used to provide
responses to the users. Through out this study, we used LUNA human-human corpus for mod-
eling dialog act segmenter and classifier. For the task, a subset of 50 dialogs are annotated with
dialogue acts using the annotation scheme given in the following sections.

3.2.1 LUNA DA annotation scheme
The LUNA DA annotation scheme [153] was inspired by DAMSL [154], TRAINS [155],

and DIT++ [156]. The most common 15 dialog acts from these taxonomies are grouped into
three categories [152]: Core Dialog Acts (8) are main actions in the dialog, such as request
of information, response, or performing the task; Conventional/Discourse Management Acts
(4) are utterances such as greetings, apologies, etc. whose function is to maintain general
dialog cohesion; Feedback/Grounding Acts (3) are utterances whose function is to acknowledge,
provide feedback, or just time fillers; and Others (1) to capture the rest. The unit of annotation
for dialog acts in LUNA Corpus is an utterance. However, due to the overlapping turns (both
speakers speaking), an utterance can span several turns.

3.2.1.1 Problem with current LUNA-DA annotation
In the absence of a single commonly accepted standard, spoken corpora, such as LUNA of-

ten adapt existing domain independent annotation schemes like DAMSL [154], TRAINS [155],
DIT++ [156] to task-specific needs; thus, creating incompatible annotations. This limits the
re-usability of the corpora and thus the models created using it.

Recently accepted international ISO standard for DA annotation – Dialogue Act Markup
Language (DiAML) [1,157], as shown in Figure 3.13 – could serve as a lingua franca for cross-
corpora DA mapping. However, such mappings might require significant amount of manual
re-annotation effort.

3.2.1.2 Mapping LUNA to ISO Standard
Full description of the DiAML annotation scheme [1] is out of the scope of this thesis.

Rather we focus on the DA tag set and dimensions. The DiAML annotation scheme consists of
56 DA tags (communicative functions), organized into 9 dimensions: 26 general (applicable to
any dimension) and 30 dimension specific (see Table 3.5, ISO column).

3The corpus is available for research purposes from http://sisl.disi.unitn.it
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Conversation

Functional Segment

Dialogue Act

Semantic Dimension
Communicative

Function

Participants

Function Qualifier

Sentiment
Certainty
Conditionality

Task
Social Obligations
...

Inform, ...
Thanking, ...
...

(1..1) sender
(1..N ) addressee
(0..N ) other

(2..N )

(1..N )

(0..N )

(1..1) (1..1)

(0..N ) functional dep. rel.

(0..N ) rhetorical/discourse rel.

(0..N ) feedback dep. rel.

Figure 3.13: Conversation as a dialog act annotation model of ISO 24617-2. A conversation
consists of several functional segments (marked as (2...N ) for number) – minimal spans of
behavior (verbal or not) that have a communicative function (56) – in multiple semantic dimen-
sions (9) (segments are dimension specific and can overlap). Thus, a dialog act consists of a
communicative function - semantic dimension pair and is defined as having participants such
as sender and one or more addressees. Function Qualifiers are describing how communicative
function is performed: e.g., with positive sentiment or uncertainty. Functional and feedback de-
pendency relations connect a dialog act with previously identified conversation units. Rhetori-
cal/discourse relations possibly relate dialog acts and semantic content to other dialog acts or
semantic content units of a conversation.
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Table 3.5: Mapping LUNA dialogue acts to DiAML ISO Standard 9 dialogue act dimensions
and communicative functions with counts per dimension.

Dimension ABBR ISO LUNA
General (Task) G 26 8
Social Obligations Management SOM 10 4
Auto-Feedback AutoFb 2

3Allo-Feedback AlloFb 3
Time Management TimeM 2
Turn Management TurnM 6 –
Discourse Structuring Disc 2 –
Own Speech Management OSM 2 –
Partner Speech Management PSM 3 –
Total 56 15

The issues of converting DAMSL-based corpus to the ISO standard were addressed by [158]
and [159]. Following the re-annotation methodology outlined in [158] we mapped LUNA DAs
to DiAML. LUNA contains only 15 tags compared to DiAML’s 56, and most of the relations
in the mapping are one-to-many. Even though, some of these relations can be disambiguated
with respect to context [160] (e.g. if the DA in the previous turn is Info-Request and the current
DA is Yes-Answer, there is a high chance that the former maps to Propositional Question and
the latter to Confirm), since both relations are one-to-many, such mapping is error prone. Thus,
automatic mapping is manually examined. Due to data distribution and for the consistency with
the legacy annotation, we did not annotate all the dimensions: Discourse Structuring, Speech
and Turn Management dimensions were mapped to Other.

3.2.1.3 Re-Annotation Methodology

In [159] the authors list segmentation differences as one of the issues of converting DAMSL-
based annotation to ISO standard. While in the former the unit of annotation usually corre-
sponds to a turn, in the latter it is a functional segment that can be shorter or longer than turn.
In LUNA, on the other hand, the unit of annotation was considered to be an utterance, which
is similar to turn, ignoring the other speaker barge-ins. Consequently, re-annotation procedure
also included re-segmentation.

As the first step of the re-annotation effort, a linguist annotated a limited set of LUNA di-
alogs to get accustomed to the procedure. Since the legacy annotation was performed by a
different person, to ensure the consistency, the annotator performed an unsupervised annota-
tion (15 dialogs) of the LUNA corpus with new DiAML scheme in the dimensions selected
previously. This set of 15 dialogs is used to compute the inter-annotator agreement between the
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Table 3.6: Mapping from LUNA DA to ISO dimensions and communicative functions. Note
that most of the relations are one-to-many and frequently are cross-dimension.

LUNA DA ISO DA

Core Dialogue Acts→ General/Task (G)
Info-Request Question, Set-Question, Choice-Question,

Propositional-Question, Check-Question
Action-Request Instruct, Suggest, Request
Yes-Answer Confirm, Accept-Offer, Accept-Request, Accept-Suggest
No-Answer Disconfirm, Decline-Offer, Decline-Suggest, Decline-Request
Answer Address-Offer, Address-Request, Address-Suggest, Answer, Correc-

tion, Disagreement, Agreement
Offer Offer, Promise
Report-On-Action Inform
Inform Inform, SOM:I-Self-Introduction, SOM:R-Self-Introduction

Conventional Dialogue Acts→ Social Obligations Management (SOM)
Greet I-Greeting, R-Greeting
Quit I-Goodbye, R-Goodbye
Apology Apology, Accept-Apology
Thank Thanking, Accept-Thanking

Feedback/Turn Management Dialogue Acts
Clarif-Request AlloFb:Positive, AlloFb:Negative
Ack AutoFb:Positive, AutoFb:Negative
Filler TimeM:Stalling, TimeM:Pausing

Non-Interpretable/Non-Classifiable Dialogue Acts
Other Other

‘legacy’ and the ‘ISO’ annotator.
For the agreement calculation ISO DAs are mapped to the ‘legacy’ DAs. Due to segmen-

tation differences the two annotations are first aligned with respect to the Levenshtein distance
and F-measure is computed with respect to alignment errors [161]. Since ‘legacy’ annotation
unit covers several functional segments, insertion errors are ignored. The overall agreement
between the ‘legacy’ and ISO annotators is F1 = 0.68.

As the second step, we have annotated 10 dialogs from an SISL corpus described in Section
3.1. The activity has two goals: (1) to check the dimension and DA distributions cross-domain
and (2) for later cross-domain evaluation on supervised classification task. The resulting anno-
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tation was compared to the random 10 dialogs from LUNA annotation, from the previous step.
The dimension and communicative function distributions were observed to be similar.

As the third step, the remaining LUNA dialogs are automatically re-annotated using the
mapping described in Section 3.2.1.2, which was refined through steps 1 and 2. The annotator’s
job at this step was to segment the turns into functional units and to disambiguate the labels.
This step is a supervised annotation, and automatic mapping is provided to ensure consistency
with the unsupervised annotation, while reducing the amount of the required effort. The dis-
tribution of the resulting annotation into dimensions is given in Table 3.7.

Table 3.7: Distribution of dialogue acts in LUNA corpus and the subset of SISL corpus (SISL).
The counts are given per annotated dimension and in total.

Dimension LUNA (50)

General (Task) 1,950 (59.7%)
Social 250 (7.6%)
Auto-Feedback 673 (20.6%)
Allo-Feedback 44 (1.3%)
Time Management 114 (3.5%)

Other 237 (7.3%)

Total 3,268 (100.0%)

SISL (10)

911 (61.9%)
99 (6.7%)

278 (18.9%)
11 (0.75%)
68 (4.62%)

105 (7.13%)

1,472 (100.0%)

3.3 Summary
This chapter focuses on describing the SISL conversational discourse corpus in details,

which is collected from naturally occurring conversations in call centers. As the experimen-
tal design aimed to collect ecologically valid data, therefore, no knowledge has been given to
the subject regarding the experiment. To model automated systems, the chapter discussed a
detailed schema for the design and evaluation of the annotation guideline for overlap discourse.
The labels in the annotation includes overlap discourse label – competitive vs non-competitive
tag among other affective behavioral labels. A detailed corpus analysis is then presented, which
includes the patterns of turn-takings, and other turn types observed in the dataset, followed by
durational distribution study of turn-taking signals, pauses, overlaps among others. The chapter
also presented in depth study of linguistic analysis of competitive and non-competitive overlap
segments.

In addition to the SISL corpus, the chapter also focused on the LUNA human-human italian
corpus which is used later in the dissertation to create a dialog act segmenter and classifier.
The ‘legacy’ dialog-act annotation of LUNA-HH was designed keeping in mind a task-specific
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needs; which limits the re-usability of the corpus and the model created with it. Thus the
chapter describes the mapping of the ‘legacy’ dialog act annotation to the ISO standard DiAML
scheme following the transfer of annotation and annotation of SISL corpus using the new DA
annotation schema. The dataset described is later used for the experiments, discussed in the
subsequent chapters of the dissertation.
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Chapter 4

Unsupervised Study of Overlaps

In this chapter, we are interested in understanding speech overlaps and their function in hu-
man conversations. The characterization of overlaps based on timing, semantic and discourse
function requires an analysis over a very large feature space. In this study, the corpus of over-
lapped speech segments was automatically extracted from human-human spoken conversations
using a large vocabulary Automatic Speech Recognizer (ASR) and a turn segmenter. Each
overlap instance is automatically projected onto a high dimensional space of acoustic and lex-
ical features. Then, we used unsupervised clustering to find the distinct and well-separated
clusters in terms of acoustic and lexical features. We have evaluated recognition and clustering
algorithms over a large set of real human-human spoken conversations. The clusters have been
comparatively evaluated in terms of feature distributions and their contribution to the automatic
classification of the clusters.

4.1 Introduction
To understand and analyze different categories of speech overlaps and their function in

human conversations, an unsupervised technique is being first applied. The motivation behind
the approach is to observe what patterns of overlapping speech is present in the data set before
involving any human judgments.

We have analyzed acoustic and lexical features that discriminate individual clusters and
compared them with the characteristics of features mentioned in previous literature on distin-
guishing overlaps. In contrast with that of previous studies, the contribution of this study differs
in a number of ways:

• Designing the corpus of speech overlaps using an automated approach.

• Extraction of a large set of acoustic and lexical features.

• Investigation of speech overlaps using unsupervised clustering.

Contents published in:
Shammur Absar Chowdhury, Giuseppe Riccardi, Firoj Alam, Unsupervised Recognition and Clustering of Speech
Overlaps in Spoken Conversations, Workshop on Speech, Language and Audio in Multimedia (SLAM 2014),
Penang, Malaysia.
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• Analysis of discriminative characteristics of speech overlaps over acoustic and lexical
features.

This chapter is organized as follows. A description of data preparation procedures in Section
4.2. In Section 4.3, we discuss the experimental methodology used in this study. We present an
analysis of our findings in Section 4.4 and provide summary of the study in Section 4.5.

4.2 Data Preparation

The overlapped segments are detected using start and end time of each speaker’s turn and
for each word unit within that turn. To get each speaker’s turns we passed the conversation to
an automatic turn segmenter [134] followed by a large vocabulary Italian ASR, as described in
Section 7.2.1.2 to get automatic transcription from the corresponding turns.

Then, the overlapping turns are detected, where each turn has an alignment between the
automated word level transcriptions and the speech recording. Using the overlapping turns, the
words that are within the overlaps are also detected. Then, the boundary of overlaps is extracted
using the start time of the first word in the overlap to the end time of the last word. The details
of the process is presented in Figure 4.1.

Automatic Turn 
Segmenter 

ASR 

Ch-1 

Ch-2 

Speaker turns 

Conversation 

0 - Listener 
1- Speaker 

Overlapping turn 

w2 

W1 W3 W2 

w3 

W4 

w4 w1 

w2start w3end 
Overlapping Segment 

Automatic transcriptions with aligned 
words, from corresponding turns. 

Figure 4.1: Unsupervised extraction of overlapping speech segments

Following this approach, 25132 instances of overlaps (average duration of 0.52s) are ex-
tracted from 515 conversations, where the duration of overlap is 3 hours and 38 minutes and
total the duration of speaking time is 41 hours and 52 minutes.
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4.3 Methodology
The work-flow of clustering and feature analysis is shown in Figure 4.2. The overlap seg-

ment’s components are shown for each channel. We extracted acoustic and lexical features from
both channels. We then merged the acoustic features from each channel to create a combined
acoustic feature vector. We then followed the same procedure to create a combined lexical
feature vector by merging the lexical features of each channel.

Figure 4.2: System architecture for overlap segment clustering. *-Trans: channel’s transcription

4.3.1 Feature Extraction
4.3.1.1 Acoustic Features

We extracted a large number of acoustic features, motivated by their successful utiliza-
tion in the paralinguistic task discussed in [162, 163]. The process extracts a large number of
Low-Level Descriptors (LLD) and then projects them onto statistical functionals using openS-
MILE [164]. These low-level features were extracted with approximately 100 frames per sec-
ond, with 25 milliseconds per frame. The 39 low-level features include frame energy, loud-
ness, mel-frequency cepstral coefficients (MFCC1-12), voice quality, fundamental frequency
(f0), exponentially smoothed f0-envelope, jitter-local, differential of jitter, shimmer-local, log-
arithmic harmonics-to-noise ratio (HNR) computed from auto-correlation, zero crossing rate of
time signal, formant frequencies (f0-f3) and spectral features with different bands (0-250Hz,
0-650Hz, 250-650Hz, 1-4kHz), roll-off points (25%, 50%, 70%, 90%), centroid, flux, max-
position and min-position. Delta and acceleration coefficients of these features have also been
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extracted. These low-level acoustic features were then projected onto 24 statistical functionals,
which included range, absolute position of max and min, linear and quadratic regression co-
efficients and their corresponding approximation errors, moments-centroid, variance, standard
deviation, skewness, kurtosis, zero crossing rate, peaks, mean peak distance, mean peak, geo-
metric mean of non-zero values, and number of non-zeros. As mentioned earlier, the overlap
segment’s components appear in two channels. Therefore, we extracted the same number of
features from each channel. The size of the feature vector in a single channel is computed as:
(39 +439 +44 39)LLD × 24 functionals = 2808. A total of 5616 features were obtained
after merging the feature vectors from both channels.

4.3.1.2 Lexical Features
Lexical features were extracted from automatic transcription using the ASR explained in

Section 7.2.1.2. The lexical features were transformed into a bag-of-words (vector space model)
[165]. The idea of this approach is to represent the words into numeric features. For this study,
we extracted bigram features and selected the top 2000 frequent features to reduce features
dimension. The frequencies in the feature vector were then transformed into tf-idf values – the
product of the logarithmic term frequency (tf) and inverse document frequency (idf).

4.3.1.3 Feature Combination
Although feature combination has been widely used in other speech processing tasks, its

relative contribution greatly varies depending on the data and experiments. For this study, we
also analyzed the contribution of feature combination. As shown in Figure 4.2, after extracting
acoustic and lexical features we merged the feature vectors into a single vector and then used
that for clustering.

4.3.2 Dimensionality Reduction
Since the complexity of any pattern recognition algorithm also depends on the number of

features, we reduced the feature space to limit the complexity and number of free parameters.
A typical approach for feature reduction is to map higher dimensional feature spaces into lower
dimensional spaces, while maintaining as much of the information as possible. In our study, we
have used Principal Component Analysis (PCA), which is one of the fundamental feature re-
duction methods. After transforming the feature space using PCA, the usual approach is to take
the leading p components that explain the data with 95% variance [166]. However, as a baseline
study we took the leading p components with 99% variance. The value of p varies for different
features sets. Hence, we reduced 63% acoustic, 11% lexical and 59% acoustic+lexical features.
The reason for obtaining a minimal reduction with lexical features is the weak correlation with
feature dimensions and sparseness.
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4.3.3 Clustering Experiments and Results

To find well-separated clusters of speech overlaps in our dataset, we used K-means [167]
where data points are classified as belonging to one of K groups. For reproducibility and trans-
ferability, we used Weka’s implementation [168]. Members of the clusters are determined by
comparing the data point with each group’s centroid and assigning it to the nearest one. The
reason for choosing K-means is that it is highly recommended for large datasets [169, 170] and
is one of the simplest methods. However, one of main limitations of K-means is in choosing
the value of K in prior. Therefore, we used cascaded K-means, which uses Calinski-Harabasz
CH [171] criterion to determine the best value of K that represents the dataset.

For each value of K, cascaded K-means calculates the between-group dispersion, BGSS,
within-cluster sum of squares, WGSS, and Calinski-Harabasz (CH) value or index, using Equa-
tions 4.1-4.3.

BGSS =
K∑
k=1

nk

∣∣∣∣Gk −G
∣∣∣∣2 (4.1)

WGSS =
K∑
k=1

∑
k∈Ik

∣∣∣∣Mk
i −Gk

∣∣∣∣2 (4.2)

CH =
(N −K) ∗BGSS
(K − 1) ∗WGSS

(4.3)

K is the number of clusters, N is number of observations, Gk is the barycenter of cluster Ck,
G is the barycenter of the entire dataset, nk is the number of elements in the Ck. Ik is the set of
the indices of the observations belonging to Ck, and Mi is the ith observation of element in Ck.

Figure 4.3 shows the values of CH corresponding to the number of clusters K. The results
of our experiments are shown in Table 4.1. The optimal number of K using acoustic and acous-
tic+lexical feature sets is 2, as can be seen in Figure 4.3. The clustering difference between the
two feature sets is minimal. The optimal number for k, which we obtained using lexical fea-
tures, is 4. The CH value for the cluster is significantly smaller compared to the CH values with
acoustic features. The minimal separability of lexical features could be due to the sparseness
and recognition error of the ASR.
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Figure 4.3: Calinski-Harabasz (CH) value for cluster decision

Table 4.1: Cluster evaluation using different feature sets: K - number of cluster, CH - Calinski-
Harabasz value, W – weighted within-cluster sum of squares, B – between group dispersion

Feature Set K CH W B
Acoustic 2 3681.12 42.31 155749.22
Lexical 4 232.66 1.38 320.04
Acoustic +Lexical 2 3568.28 43.71 155985.56
Acoustic + lexical with PCA 2 2754.82 21.28 58631.95

We applied PCA feature reduction method to the acoustic and acoustic+lexical feature sets
and with reduced dimensions we obtained 2 clusters for each set. We then calculated the cluster
agreement between the feature sets using kappa statistics [172]. We found that the agreement
between the original and reduced dimensions is fairly reasonable. The agreements for the acous-
tic and acoustic+lexical feature sets are 92% and 91%, respectively. This indicates that feature
reduction is important in reducing computational cost with minimal loss of information. To
check the validity of the clusters using cascaded K-means, we used another well-known cluster-
ing algorithm – Spectral Clustering [173, 174]. Using this algorithm, we also found 2 clusters.
Then, we compared the clusters generated by these two clustering algorithms for acoustic and
acoustic+lexical feature sets using kappa measure. The agreements between the two algorithms
on acoustic and acoustic+lexical feature sets are 90% and 87%, respectively. Detailed results of
Spectral Clustering algorithm have not been included in this dissertation, in favor of brevity.
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Figure 4.4: Overlap duration distribution of the two clusters

4.4 Findings
We analyzed different features based on the cluster decision of acoustic features, where

cluster 0 (C0) and cluster 1 (C1) contain 37% and 63% of overlapping instances, respectively.
The members of the clusters were analyzed using duration distribution of speech overlaps and
top-ranked acoustic features. Based on this cluster decision, we extracted and analyzed lexical
features. In doing so, we compared our observations with those of previous studies to determine
whether our clusters resembled competitive or non-competitive overlaps.

Figure 4.4 shows the distribution of overlap durations for C0 and C1. It can be seen that
C1 contains instances of overlaps with short durations whereas C0 has instances with compara-
tively long durations. The authors in [78] and [71] state that non-competitive overlaps tend to be
shorter and resolved soon after the second speaker has recognized the overlap, whereas compet-
itive overlaps are persistent because speakers keep on speaking despite overlapping. Therefore,
it can be inferred that competitive overlaps have longer durations than non-competitive overlaps.
With duration a key distinguishing feature, we observed that there is clear distinction between
C0 and C1. We also observed that the median duration distribution of C1 is very close to the
minimum distribution of C0. The minimum, median, third quartile and maximum durations, in
milliseconds, of the clusters are C0 - 300, 740, 950, 3590 and C1 - 40, 330, 430, 850, in that
respect. The vertical lines in the figure indicate the median of the respective distributions.

For the analysis of acoustic features we used Relief feature selection technique [151] to rank
the features, which has been useful in paralinguistic task [175]. It calculates the weight of the
features based on the nearest instances of the same and different classes. The top-ranked low-
level acoustic features include logarithmic Harmonic to Noise Ratio (logHNR), f0 envelope,
shimmer-local, jitter-local, and spectral features, with their delta and acceleration coefficients,
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whereas the statistical functionals include range, standard deviation, mean of peak, linear re-
gression with error coefficients, and centroid. Figure 4.5 shows some of the top-ranked low-
level features projected on statistical functionals as described in Table 4.2. From the Figure 4.5,
it can be seen how the two clusters differ in their distributions – the mean values for C1 are
always lower than those for C0.

Table 4.2: Acoustic features and their description

Feat. Description
F1 Logarithmic harmonic to noise (logHNR) ratio with delta coefficient projected to statistical range
F2 logHNR projected to statistical range
F3 logHNR with delta coefficient projected to statistical mean of peak
F4 logHNR projected to statistical standard deviation
F5 logHNR with linear error computed as the difference of the linear approximation and the actual contour
F6 f0 envelope projected to statistical mean of peak
F7 Local shimmer with centroid
F8 Local jitter with centroid
F9 f0 envelope projected to geometric mean of non-zero values

F10 First formant with number of non-zero values
F11 Loudness with number of non-zero values
F12 log energy with delta coefficient projected to non-zero values

Some of the voice quality features show significant difference in their distribution between
two clusters. This indicates that these features play an important role in detailing the patterns in
each cluster. logHNR is a feature which is widely used to analyze disorders such as hoarseness
and depression. However, we observed that this feature has not been applied before to the
analysis of overlaps. Other commonly used features for categorizing overlaps are f0, loudness
and energy. By observing the values of F10 in Figure 4.5, it can be inferred that the mean
value of C0 is higher than that of C1. This inference is extended to apply to the values of F11
as well. This, coupled with observations from previous research, provides the grounds for the
conclusion that our C0 exhibits patterns similar to competitive overlaps. By studying the most
frequent lexical features, it can be noted that filler and affirmative words are present in both
clusters but that C1 has higher frequencies than C0 has. For example, the token “sì/yes” is
present in C1 with a frequency of 2506, three times as much as that of the same token in C0. It
can also be noted that, in comparison with C0, C1 has a homogenous lexicon, as demonstrated
by the long tail of C0 in Figure 4.6.
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Figure 4.5: Selected acoustic features (F1 to F12) and their z-score distribution in C0 and C1.
Box-plots, representing the mean, max, upper and lower inner fences of top ranked features.
Outliers have been removed for readability.

Figure 4.6: Zipf’s plot with bigrams for C0 and C1 clusters. Frequency is plotted as a function
of frequency rank.

4.5 Summary
In this chapter, we designed an automatic system that divides speech overlaps into two

classes using unsupervised approach. We prepared our data with an automated manner, by
cascading a turn segmenter and an ASR system. For clustering, we extracted a large number of
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acoustic features from overlapped segments, and lexical features from automatic transcriptions.
Our findings suggest that acoustic features play a more important role than lexical features
in discovering well-separated clusters. Voice quality features, especially logHNR, jitter and
shimmer, are the most discriminative in clustering overlaps. Based on previous work and from
our analysis, we found that instances of C0 have a higher chance of being competitive overlaps,
while instances of C1 are more likely to be of non-competitive nature. Our observation of
lexical features, which are obtained from the clustering decision of acoustic features, is that the
frequencies of filler and affirmative words are higher in C1 than the frequencies of such words
in C0. These features may help in supervised classification, which we investigate further in
the next Chapter 5 with includes manual annotation and studying contextual features as well as
understanding the roles of acoustic, lexical features and other contextual features and different
classification techniques.
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Chapter 5

Overlapping Speech Classification

Overlapping speech is one of the most frequently occurring events in the course of human-
human conversations. Understanding the dynamics of overlapping speech is crucial for conver-
sational analysis and for modeling human-machine dialog. Overlapping speech may signal the
speaker’s intention to grab the floor with a competitive vs non-competitive act. In this chapter,
we propose and evaluate an annotation scheme for these two overlap categories in the context of
spontaneous and in-vivo human conversations. We analyze the distinctive predictive character-
istics of a very large set of high-dimensional acoustic, lexical such as Bag-of-ngrams and word
embeddings and psycholinguistic features. In addition, we explored how they can be combined
at the feature and decision level. In this chapter, we also studied the role of speakers, whether
they initiate (overlapper) or not (overlappee) the overlap, and the context of the event. Using
different feature sets and their combination we designed classifiers for overlap discourse using
supervised linear and non-linear machine learning algorithms. The evaluation of the classifier
has been carried out over call center human-human conversations. The results show that the
complete knowledge of speakers’ role and context highly contribute to the classification results,
and performance increased when we combined the acoustic and lexical features. Our findings
suggest that the lexical selections of the overlapper are good indicators of speaker’s competitive
or non-competitive intentions. We also observed that non-linear system, i.e., fully-connected
feed-forward neural network, is best suited for different feature combination.

5.1 Introduction
Overlapping speech in spontaneous conversations is a naturally occurring phenomenon that

may reveal speakers’ attitudes and in particular their intentions with respect to the control of the
turn-taking structure of the conversations. In order to design conversational competent spoken
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dialog systems, the understanding of the overlapping phenomena is crucial. Over the years
many linguists, psycholinguists, and speech researchers have been studying these aspects of
spoken interactions. In the conversational analysis tradition, overlaps have been considered
as a violation of the fundamental rule [4, 35] of turn-taking, that is one person speaking at a
time. Nevertheless, it has been shown that overlapping is pervasive in human conversations,
for example, authors in [5] suggest that about 40% of all between-speaker intervals is overlap.
Further studies focused on highlighting speaker’s intentions behind the overlaps. For example,
it has been proposed that speech overlaps are related to dominance or aggression towards the
other speaker [7]. However, the picture is more complex. Not all the overlapping occurrences
are related to competitiveness. They also support cooperativeness in the conversations, for
example in providing the other speaker with cues about the mutual understanding [8].

In the computational literature, a widely accepted categorization of overlaps, over the years,
is in between Competitive (Cmp), an attempt to grab the floor, and Non-Competitive (Ncm),
an attempt to assist the speaker for the continuation of the current turn. Distinguishing the over-
laps by the overlapper’s intention is important for behavioral signal studies and for improving
the quality of the spoken dialog system.

The aim of our study is to automatically classify competitive vs non-competitive overlaps.
To classify overlaps, we focus on the followings research that:

• Design of a speech overlap annotation scheme of competitive vs non-competitive over-
lapping segments from the spoken conversation.

• Investigate different high dimensional features such as low-level acoustic features, lexical
features (represented as Bag-of-ngrams, word-embeddings), psycholinguistic feature sets
among others.

• Understands whether the competitiveness is best represented by the information from
speakers’ segments: overlapper, overlappee, context or their combination for different
feature sets.

• Design computational models using Support Vector Machine (SVM) and also by exploit-
ing many layers of the non-linear information processing (DNN) for high-dimensional
features and their linear and deep space combinations.

Therefore for automatic classification, we investigated each speakers’ segment enclosing
overlaps and their combination for each feature set, followed by feature and decision level
combination and use of different machine learning algorithm.

For the experiments, we analyzed a large dataset of Italian spoken conversations collected
in call centers, with customers and agents engaged in problem-solving tasks. Unlike most of
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Table 5.1: Dialog excerpts from the annotated corpus. Speech overlaps: bold form between [

and ], Hesitations: (.), Rising intonation: Ű, Falling intonation: Ů.

Ncm

S1: e quando [ cambiamo Ů] (.)

S2: [ sì sì Ů ho già detto ] di cambiare Ů

S1: and when [ we change Ů] (.)

S2: [ yes yes Ů I have already told ] to change Ů

Cmp

S1: io non lo so [ io devo risparmiare ] Ů(.)

S2: [ ma no la tariffa ] è buona Ű

S1: I do not know [ I had to save ] Ů(.)

S2: [ but no the ] rate is good Ű

the previous studies, we investigate the role of speakers, context using acoustic, linguistic and
psycholinguistic features on 15,899 instances of overlaps.

Examples of overlap instance of Cmp and Ncm, with their English translation, are shown in
Table 5.1. As observed in the example, in the Ncm scenario, the intention of S2 (the agent) is
to repeat something that was already mentioned in the previous turns of the dialog: S2 wants to
reassure S1 that she agrees on something that was already on the floor of the conversation; both
overlapping segments are uttered with falling intonation. On the contrary, in the Cmp scenario,
S1 (the customer) is complaining about his problem, and he does not consider what S2 (the
agent) claimed before. S2 has the intention to stop the complaints and to take the turn from the
on-going conversation, S2’s overlapping segment has rising intonation and pitch level.

The chapter is organized as follows. An overview of the description and preparation of the
dataset in presented Section 5.2. In Section 5.3, we discuss the details of the different speakers’
segments, and context that we extracted to investigate the role of speakers and the context in the
classification task. Then, we discussed a detail description of the extracted features in Section
5.4. A brief description of the evaluation technique is presented in Section 5.5. Section 5.6
presents the experimental algorithms and techniques used for modeling the overlap discourse.
After that, we presented the experiments, results, and analysis of our findings in Section 5.7.
The chapter also includes details of the designed computational model for overlap discourse
classification in mono channel scenarios, presented in Section 5.8. A summary of the chapter is
then provided in Section 5.9.
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Figure 5.1: Forced alignment between the manual overlap boundary and word token inside the
overlap. O represent the manual overlap boundary whereas Õ represent the adjusted overlap
boundary.

Table 5.2: Description of the overlap classification data set and the distribution of competitive
(Cmp) and non-competitive (Ncm) overlaps in training, development and test sets.

Dialogs Overlaps (Duration) Cmp Ncm

Train 341 (60.35%) 9,537 (2h 55m) 2,379 (24.95%) 7,158 (75.06%)
Dev 109 (19.29%) 3,019 (1h 15m) 724 (23.98%) 2,295 (76.02%)
Test 115 (20.35%) 3,343 (0h 58m) 763 (22.82%) 2,580 (77.18%)

Total 565 (100.0%) 15,899 (5h 08m) 3,866 (24.32%) 12,033 (75.68%)

5.2 Data Preparation
For the study, we selected overlapping segments containing manual speech transcription.

The exact boundary of the overlapping segments and their transcriptions are obtained using
forced alignment, as shown in Figure 5.1, between the word-level transcriptions and the speech
recording within the manual overlap segment boundary. For the alignment task, we used a
domain-specific automatic speech recognizer [176], described in Chapter 7.

After forced alignment, we obtained 15,899 overlap segments, of a total duration of 5 hours
and 8 minutes. For the experiments, we split our data into train, dev and test sets. Details of the
dataset are shown in Table 5.2.

5.3 Role of Speakers and Contexts
In order to evaluate the roles of speakers and the context for classification of Cmp vs Ncm,

we defined different speakers’ segments enclosing overlaps, as shown in Figure 5.2, which are
as follows:
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Figure 5.2: Example of different speakers’ segments enclosing an overlap and their combina-
tion. S1-speaker 1; S2-speaker 2.

• Individual speakers’ segments:

– Overlapper (O): overlap initiator

– Overlappee (P ): current turn-holder

– Left Context (L): speakers’ segment before the start of the overlap

– Right Context (R): speakers’ segment after the completion of the overlap

• Combination of speakers’ segments:

– Overlapper-Overlappee (OP )

– Left-Right Context (LR)

– Overlapper-Overlappee with Left-Right Context (OPC)

One of the main challenges of studying about context is to decide the window size, which
gives us cues for classification/prediction. The author in [80], indicates that cues can be found
in preceding segment (L) of overlapping speech but they do not exceed a window of 0.2s. The
study also showed that window of 0.3s is sufficient for the following context (R).

From the manual annotation of the context of our data, we observed that the window size
of the left context is 0.2s ±0.15s and right context is 0.8s ±0.5s. We see that the window size
of the right context varies a lot compared to the left context, which opens an avenue for further
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research. For this study, we used a window size of 0.2s and 0.3s, containing speech, for the left
and the right context respectively, motivated by [80].

The left context (L), in Equation 5.3, is defined by linearly merging speakers’ channels
where the information for speaker1’s (Ls1) and speaker2’s (Ls2) channels, are shown in Equa-
tions 5.1 and 5.2.

Ls1 =
{
l1s1, l

2
s1, ..., l

m
s1

}
(5.1)

Ls2 =
{
l1s2, l

2
s2, ..., l

m
s2

}
(5.2)

L =
{
l1s1, l

2
s1, ..., l

m
s1, l

1
s2, l

2
s2, ..., l

m
s2

}
(5.3)

The same procedure is used to design the feature vector for the right context (R).
The OP is designed by merging the overlapper (O) and overlappee (P ) and the merged

new feature vector is OP = {a1, a2, ..., am, b1, b2, ..., bm}. We used similar approach to
merge the left (L) and right (R) context to form LR.

In order to obtain the feature vector for Overlapper-Overlappee along with left and right
context, we extracted features from both speakers’ channels and merged them to obtain OPC,
as same as OP . The boundary of the speaker channel is shown in Figure 5.2, which include
overlap segments and contexts.

5.4 Features

5.4.1 Acoustic Features
The recent success of the use of low-level acoustic features and their projection onto sta-

tistical functionals has been applied to many paralinguistic tasks [148, 163, 175, 177]. The
acoustic features are extracted using openSMILE [178] with frame size of 25 milliseconds and
100 frames per second. The low-level acoustic features include prosodic, spectral, voice quality,
mfcc, and energy. These low-level features along with their derivatives are then projected onto
24 statistical functionals such as range, absolute position of max and min, linear and quadratic
regression coefficients and their corresponding approximation errors, moments-centroid, vari-
ance, standard deviation, skewness, kurtosis, zero crossing rate, peaks, mean peak distance,
mean peak, geometric mean of non-zero values and number of non-zeros [179]. The features
are selected from the observation of a pilot study presented in Section 5.7.1.

The low-level features are extracted from both agent and customer channels. As shown
in Equation 5.5, CH1 and CH2 represents the feature vectors of channel-1, and channel-2,
respectively. We merge these feature vectors to create a new feature vector S that is used for
the classification experiments.
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CH1 = {a1, a2, ..., am}
CH2 = {c1, c2, ..., cm}

(5.4)

S = {CH1, CH2}
S = {a1, a2, ..., am, c1, c2, ..., cm}

(5.5)

Table 5.3: Low level acoustic features and Statistical functionals

Raw-Signal: Zero crossing rate
Energy: Root-mean-square signal frame energy
Pitch: F0 final, Voicing final unclipped, F0 final - nonzero
Voice quality: jitter-local, jitter-DDP, shimmer-local,
log harmonics-to-noise ratio (HNR)
Spectral: Energy in bands 250-650Hz, 1-4kHz, roll-off-
points (0.25, 0.50, 0.75, 0.90), flux, centroid, entropy,
variance, skewness, kurtosis, slope band (0-500, 500-
1500), harmonicity, psychoacoustic spectral sharpness,
alpha-ratio, hammarberg-index
Auditory-spectrum: band 1-10, auditory spectra and rasta
Cepstral: Mel-frequency cepstral coefficitnts (mfcc 0-3)
Formant First 3 formants and first formant bandwidth

Statistical functionals
Relative position of max, min
Quartile (1-3) and inter-quartile (1-2, 2-3, 3-1) ranges
Percentile 1%, 99%
Std. deviation, skewness, kurtosis, centroid, range
Mean, max, min and Std. deviation of segment length
Uplevel time 25 and rise time
Linear predictive coding lpc-gain, lpc0-1
Arithmatic mean, flatness, quadratic mean
Mean dist. between peaks, peak dist. Std. deviation, ab-
solute and relative range, mean and min of peaks, arith-
matic mean of peaks, mean and Std. of rising and falling
slope
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5.4.2 Lexical Features

We extracted lexical features using the boundary of start and end of the corresponding speak-
ers’ segments with forced aligned reference transcription. The lexical features are transformed
into a bag-of-words (vector space model) [180]. The idea of the approach is to represent the
words into numeric features. For this study, we extracted trigram features, to use the contextual
benefit of n-grams, and selected the top 5000 frequent features to reduce the feature dimension.

5.4.3 Word Embedding Features

Word embeddings, also known as context predictive model or neural language model, are
new techniques to design distributional semantic models (DSMs), which differ from traditional
DSMs where co-occurrence counts are used [181]. In word embedding, distributed vector rep-
resentations are learned from a large corpus by neural network training, and represent them in a
low dimensional continuous space. It has been proven that such representation better captures
semantic and syntactic relationships [182].

For word embedding, we collected data from different sources such as PAISA1, Republica2,
itwac3, wikipedia dump 4 and automatic transcriptions from SISL behavioral corpus.

To design the word embeddings, we utilized gensim implementations [183], which is an
implementation of Mikolov et al. [184, 185] word vector model. It contains both continuous
bag-of-words (CBOW) and skip-gram algorithms. We designed our model using the CBOW
approach with a size of the feature vector 500, a context window size 5, negative-sampling with
a value of k=10. The resulting trained word-embedding model contains 6 billions words with
a vocabulary of size 2.84 millions. We filtered the words with a frequency less than 5. The
training file contains 2.4 billions of words.

5.4.4 POS Features

We automatically annotated Part-Of-Speech tags using Tree Tagger [150]. After that, we
used similar approach of lexical features for the transformation and reduction of the POS feature
set.

1The Paisà corpus is a large collection of Italian web texts. More details can be found on
http://www.corpusitaliano.it/en/contents/description.html.

2The “la Repubblica” corpus is a very large corpus of Italian newspaper text (approximately 380M to-
kens)http://dev.sslmit.unibo.it/corpora/corpus.php?path=&name=Repubblica

3http://wacky.sslmit.unibo.it/doku.php?id=corpora
4Last accessed: June, 2015
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5.4.5 Psycholinguistic Features
We automatically annotated Part-Of-Speech tags using Tree Tagger [150]. After that, we

used a similar approach of lexical features for the transformation and reduction of the POS
feature set.

5.4.6 Feature Combination
In addition to the individual feature set, we also evaluate the linear combination of acoustic

and lexical features. Let S = {s1, s2, ..., sm} and L = {l1, l2, ..., ln} denote the acoustic and lex-
ical feature vectors respectively. After the linear combination, the feature vector is represented
by Z = {s1, s2, ..., sm, l1, l2, ..., ln} with Z ∈ Rm+n.

5.5 Evaluation Methods
For the evaluation, there has not been any well-agreed metric for the task. Studies [78]

used accuracy as an evaluation measure. It is evident that accuracy is not a good measure for
imbalanced class distribution [186], therefore in our study, we considered to measure Precision
(P), Recall (R) and (F1) in Equation 5.6-5.8.

P =
TP

TP + FP
(5.6)

R =
TP

TP + FN
(5.7)

F1 = 2 ∗ P ∗ R
P + R

(5.8)

where true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).
As we want to evaluate our system considering both of the classes, we computed macro-

averaged Pavg and Ravg, which is an average of P and R for both classes, respectively. Using
Pavg and Ravg we calculated the F1 for the overall system. For the simplicity, we are only
reporting the F1 measure. Statistical significance has been reported in Section 5.7 using Mc-
Nemar’s test.

5.6 Classification Experiments
Most signal and information processing studies, until recently, have focused on ‘shallow’

supervised machine learning algorithms such as Support Vector Machines (SVM), which use a
shallow linear pattern separation model. Use of such architecture has been proved effective in
solving many classification problems.
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However, in a case of a natural speech, such a shallow representation can be problematic.
The natural way of understanding human conversation suggest the need for a deep architecture.
Due to the advancement of high-performance computing over the last years, such as modern
graphics processing unit (GPU) [187], neural networks, containing several hierarchical layers,
have been widely applied to all sorts of problems in Speech and Natural Language Processing
(NLP) and Computer Vision with the huge success [188–190]. The approach is termed as “deep
learning or deep neural networks (DNN)”.

Therefore in this study, we first model, the overlap discourse classification system, using
Support Vector Machines (SVM) to study the distinctive characteristics of acoustic features and
role of speakers and context in classifying Cmp vs Ncm overlaps. Following the experimental
study of the context, we linearly combined acoustic, AC, and lexical (bag-of-ngram represen-
tation, L-B) feature sets to model the overlaps. We then designed a Deep Neural Networks
(DNN) to compare its performance with SVM. We further exploit the CNN architecture for
designing overlap classification system using lexical word embedding (L-E) representation and
a multimodal DNN architecture for combining the lexical (L-E) feature with AC in the hidden
representation of the networks. A brief overview of the entire flow of designing the classifica-
tion system is presented in Figure 5.3.

5.6.1 Support Vector Machines
We trained our classification systems using Sequential Minimal Optimization (SMO), a sup-

port vector machine implementation of weka [191]. Prior to classification, feature values are
normalized within [0, 1] intervals. Due to the high-dimentionality of the feature vector and a
large number of instances, we used the linear kernel of SMO with its default value of the penalty
parameter, C = 1.0, for training the model.

5.6.2 Deep Neural Network
5.6.2.1 Feed-Forward Neural Network

Figure 5.4 depicts the architecture of the fully-connected feed-forward neural network. This
architecture is used to classify acoustic features (AC), lexical bag-of-ngram features (L-B) and
their combination. In the architecture, the layers are densely connected, and each layer consists
of a different number of units (u). The input to the DNN architecture is a vector x, which
consists of individual feature sets or a linear combination of the acoustic and lexical features.
The input is mapped to the output y, as shown in Equation 5.9,

y = f(x) = g(W.x) (5.9)
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Figure 5.3: System architecture for modeling competitiveness in overlapping speech.

g(z) =

{
0 for z < 0

1 for z ≥ 0
(5.10)

where the function g(.) is some activation function, and W ∈ R2 is a matrix of parameters. For
the input, the feature values are scaled with zero mean and unit variance.

In the hidden layers of the DNN, we use rectified linear unit (ReLU) [192] as an acti-
vation function, in Equation 5.10. We experimented with ReLU function due to its linear,
non-saturating form, which helps greatly to accelerates the convergence of stochastic gradient
descent compared to the other functions, such as sigmoid or tanh.

For the output layer, we use the softmax function. The number of hidden units per layer
is given in Figure 5.4. These optimal values are obtained empirically on the development set
using Adagrad [193] optimization and a batch size of 100.
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Figure 5.4: The DNN architecture for the classification of competitiveness in overlapping
speech. u represents a number of units in each hidden layer. The input layer vector x can be
acoustic feature vector S (k = m) or lexical bag-of-ngram (L-B), feature vector representation
(k = n) or their linear combination (k = m+ n)

.

5.6.2.2 Convolution Neural Network
In Figure 5.5, we present the architecture of our Convolution Neural Network (CNN). The

input to the CNN is the D dimensional word vector for each word in vocabulary V in a shared
look-up table L ∈ R|V |×D, where L is the model parameter. We initialized L using the word
embeddings discussed in Section 5.4.3. For an input transcription s = {w1, w2...wn}, we design
input vector xt ∈ RD for each word wt ∈ s, which is an index in L. This input is then passed to
the convolution layer. By applying max-pooling, we obtain a higher level feature representation,
which is an equal sized feature vector for each instance. This representation is then passed to the
one or more hidden layer(s), followed by an output layer. In each layer of this representation,
we used different activation functions.

Since input transcriptions differ in length, i.e., number of words, therefore we padded them
to make an equal length. It was required to perform convolution. The convolution operation
involves applying a series of filter u ∈ RL.D to a window of L words to produce a new feature
representation, shown in Equation 5.11.

ht = f (u.xt:t+L−1 + bt) (5.11)

where xt:t+L−1 is the concatenation of L input vectors, bt is a bias term, and f is a nonlinear
activation function. We used rectifier linear unit (ReLU).

We applied the filters with size 2, and 3 considering the fact that they can capture n-gram in-
formation. This filtering has been applied to generate a feature map hi = [h1, h2, · · · , hT+L−1].
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This feature map has been designed for all filters. Then max-pooling operation (as shown is
Equation 5.12) is applied to obtain an equal sized higher level feature representation.

m = [µp (h1) , µp (h2) , · · · , µp (hN)] (5.12)

where µp (hi) is the max pooling operation. It is applied to each window of p features in the
feature map hi. We used the value of p as 2, and 3.

In the convolution and fully connected layers we used ReLU as an activation function, and
in the output layer, we used softmax activation function.
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Figure 5.5: The CNN architecture for the classification of competitiveness in overlapping
speech using lexical word embedding feature set (L-E).

5.6.2.3 Multimodal Deep Neural Network
In Figure 5.6, we present the architecture of the multimodal deep neural network to combine

acoustic and lexical (L-E) information. The system takes audio signal and transcription as input,
and for each input modality, we have different hidden representation followed by a layer, in
which we combine the hidden representation. After the combined layer we can employ one or
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more hidden layer(s) before output layer. This architecture is heavily dependent on parameter
tunning, which includes a number of layers, a number of hidden unit in each layer, choices
of activation function such as ReLU, tanh, and optimization function such as SGD, Adadelta,
Adagrad, and Adam. As for the activation function, we used ReLU in hidden layers and softmax
in the output layer and used Adadelta as an optimization method.

Acoustic Feature Lexical content 

Word Embedding 
Features 

CNN 

Hidden Layers, Hl ={Hl1 .. Hln} Hidden Layers, Ha ={Ha1 .. Ham} 

Merged Hidden Layers, M = {M1 … Mk} 

Output Layers 

Cmp vs Ncm 

Figure 5.6: The multimodal DNN architecture for the classification of competitiveness in over-
lapping speech using lexical word embedding feature set (L-E) and low-level acoustic features
combined in deep space of the network.

5.7 Experiments, Results and Discussion

5.7.1 Experiments with Acoustic Features
The goal of this study is to understand the discriminative characteristics of each acoustic

feature group in categorizing competitive vs non-competitive overlaps and to remove any un-
necessary group. For the experiment, we selected a subset of data containing 253 conversations
with approximately 27 hours, from which we obtained 9858 overlaps segments, for a total du-
ration of 3 hours and 56 minutes. The low-level features are extracted as a group-wise and then
projected into statistical functionals, presented in Table 5.3.

As mentioned in Equation 5.4-5.5, the acoustic features are extracted for the channels and
then merged. This procedure is applied for each feature group such as Pitch, Voice quality,
MFCC (Cepstral), Energy, Formants, Spectral among others. Hence, the representation of each
group is same as S in Equation 5.5.
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Table 5.4: Classification results on pilot-study test set to observe the contribution of each acous-
tic feature set. Precision, Recall and F1 are macro-averaged. Dim. : feature dimension.

Features Dim. P(Avg) R(Avg) F1(Avg)

Prosody (P) 576 67.7 68.1 67.8
VQ (V) 576 67.8 60.2 63.8
MFCC (M) 1872 66.5 68.4 67.4
Energy (E) 144 67.4 67.5 67.5
Spectral (Sp) 1728 68. 4 69.3 68.8

For classification, we used support vector machine with its linear kernel and its default
parameters. To understand the relevance of each feature set for competitiveness and non-
competitiveness binary classification task, we designed per-category classifier using SVM. The
results of the pilot experiment are presented in Table 5.4.

From the experiment results, we observed that certain groups of acoustic features carry
information regarding the discourse of overlaps. The results indicate that spectral and prosodic
features are the key distinguishing feature groups. It is also worth noticing that some feature
groups contribute more on a specific class decision rather than overall such as Voice quality
does not at all provide any information.

Based on this study, we selected groups of acoustic features, presented in Table 5.5, to design
the acoustic feature set (AC) for all classification tasks discussed in the following sections.

AC = P ∪ V ∪M ∪ E ∪ Sp (5.13)

5.7.2 Overlapper, Overlappee and Context

The performance of different speakers’ segment and their associated feature set is reported
in Table 5.6 for both dev and test set. For comparison, a SMO classifier has been designed using
duration of overlapping segments as a feature for the baseline results. The baseline, F1 for the
dev and test set are 43.18 and 43.57, respectively. Results in Table 5.6 are significantly better
compared to the baseline with p < 0.001.
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Table 5.5: Selected Low-level acoustic features extracted using openSMILE for overlap classi-
fication, with the feature counts per channel.

Feature Group #

Prosodic 288
pitch (fundamental frequency F0, F0-envelop)
loudness, voice probability

Voice Quality 288
jitter, shimmer
logarithmic harmonics-to-noise ratio (logHNR)

MFCC 936
Mel-Frequency Cepstral Coefficients (MFCC 0-12)

Energy 72
Logarithmic signal energy from PCM frames

Spectral 864
Energy in spectral bands (0-250Hz, 0-650Hz, 250-650Hz, 1-4kHz)
roll-off points (25%, 50%, 70%, 90%)
centroid, flux, max-position, min-position

Total 2448

We obtained best results with decision combinations as shown in the Table 5.6, with F1
69.41 and 66.43 on the dev and test set respectively. The improved result on the test set is
significantly better compared to all of individual systems with p < 0.001. To combine the
decisions from the best classification models we used majority voting ensemble method as a
combiner. We selected four best models based on the performance of the dev set and the models
are: 1) overlapper with lexical features (O : Lex), 2) overlapper-overlappee and context with
acoustic features (OPC : AC), 3) overlapper-overlappee and context with psycholinguistic
features (OPC : LIWC), and 4) overlapper-overlappee with POS features (OP : POS).

The system designed with lexical features (in bag-of-ngram representation) from the over-
lapper channel performs better than any other individual system. The results on the dev set is
67.10 and on the test set is 64.99. The statistical significant test reveals that results using lexical
features (O : Lex) are highly significant with all other systems and their associated feature
set (p < 0.001) except acoustic feature set in the context of OPC. The O : Lex results are
weakly significant compared to OPC : AC with a p = 0.06 .

We are obtaining comparable results with acoustic features, and it is an ideal condition
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Table 5.6: Classification Results for speakers’ segments: overlapper O, overlappee P , left-
context L, right-context R, along with the combination of overlapper-overlappe OP , left-right
context LR and overlapper-overlappee with context OPC. Reported value is F1 measure of
overall system. S.Seg: speaker’s segment, Comb. Model: results for best model combination.

S.Seg Eval Lex AC POS LIWC

O
Dev 67.10 62.80 59.73 53.60
Test 64.99 60.38 59.37 52.60

P
Dev 59.50 58.43 55.73 50.10
Test 58.87 57.01 55.35 50.05

L
Dev 50.77 52.05 49.37 50.00
Test 50.47 52.44 51.62 50.05

R
Dev 52.04 62.34 51.24 50.05
Test 51.27 62.33 49.35 49.85

OP
Dev 64.09 62.47 61.12 57.75
Test 63.00 60.14 58.52 56.35

LR
Dev 52.07 59.82 48.26 50.00
Test 51.50 59.40 48.31 49.75

OPC
Dev 64.27 65.31 59.02 62.25
Test 62.57 64.36 58.94 59.55

Comb. Model
Dev 69.41
Test 66.43

when no transcriptions are available. The performance of the classifier designed with acoustic
features extracted from overlapper-overlappee and context, OPC, is F1 64.36 on the test set. In
the case of acoustic features, we observed that performance improves when we include context
along with OP .

As for the importance of context alone, the authors in [56] claim that no cues can be found
before the overlaps. Our results with acoustic features from left context, L, shows a similar
characteristics. We obtained lower classification results, 52.44 of F1 on the test set. The lack of
the contextual evidence affects on recall in case of Cmp. Another reason is the size of the left
context window, and in our case, it is 0.2s of speech.

For the right context, the authors in [56] and [80] agree that the effect of competitive overlap
sometimes gets extended after the end of the overlap. A similar pattern is observed in our
results using acoustic features of the right context, R, where we obtained 9.89% improvement
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compared to the left context on the test set.
We observed that psycholinguistic features can distinguish competitive instances better

when knowledge of the surrounding (OPC) overlap is provided. One of the possible rea-
sons is the presence of the change of word usage before, inside and following an overlap. We
computed correlation coefficients between LIWC features and class labels using Pearson’s cor-
relation. We found that the highly correlated features are a pronoun, cognitive processes, social
processes among others.

The best performance with the POS features is observed in overlapper-overlappee and con-
text (OPC) segment, giving a F1 of 58.52 on the test set. However, with POS features extracted
from overlapper-overlappee (OP ) we obtained 61.12 on the dev set.

In summary, the competitiveness of the overlapping speech is best predicted using: 1) over-
lapper’s lexical choice (O:Lex), 2) acoustic and psycholinguistic features while exploiting the
complete knowledge, i.e., speaker’s role and context (OPC:AC and OPC:LIWC), 3) POS
features when using overlapper information along with overlappee (OP :POS), and 4) decision
combinations of the best classification models.

5.7.3 Comparative Study: SVM vs DNN
The results of the classification experiments are reported in Table 5.7. The performances of

the SVM model for the acoustic and lexical (bag-of-ngram) features are considered as a baseline
and are taken from Table 5.6. For lexical (L-B) feature we used OPC instead of O for taking
into accounts of cases where it is not easy to find who initiated the overlaps.

Table 5.7: F1 measure for the individual classes and the macro-averaged F1 for the system as a
whole on the development and test sets. AC – Acoustic, Lex (L-B) – Lexical features in bag-of-
ngram representation, AC + Lex (L-B)– Feature combination of the acoustic and lexical feature
sets.

F1 Dev-set Test-set
Classifier Feat.Set Cmp Ncm Overall Cmp Ncm Overall

SVM
AC 0.46 0.85 0.65 0.44 0.85 0.64

Lex (L-B) 0.46 0.83 0.64 0.43 0.82 0.63
AC + Lex (L-B) 0.54 0.84 0.69 0.48 0.83 0.66

FeedForward
AC 0.54 0.84 0.69 0.50 0.83 0.67

Lex (L-B) 0.37 0.84 0.61 0.32 0.84 0.58
AC + Lex (L-B) 0.57 0.87 0.72 0.51 0.86 0.68

For the SVM, we observe a significant (p < 0.05) improvement in performance using linear
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feature combination, especially for competitive overlaps. A significant increase in F1 of 4.50%
and 5.31% on the test set is observed compared to the individual SVM models using acoustic
and lexical (L-B) features only. For the non-competitive overlap class, on the other hand, the
feature combination outperforms the lexical model only. The model trained on acoustic feature
outperforms both the lexical (L-B) and the linear combination models.

We used the same DNNs architecture for the feature combination and lexical feature, as
shown in Figure 5.4. As for acoustic feature, we used four hidden layers with a different num-
ber of units, (500,400,200,50)5. DNN architecture for the acoustic feature set significantly
outperforms both individual feature SVM models. An improvement of ≈ 6% in F1 is observed
for competitive overlap with respect to the acoustic feature set using SVM model. We do not
observe a similar pattern for the non-competitive class where SVM with acoustic features yields
F1 of 0.85 compared to F1 of 0.83 for the DNN with acoustic features only. The overall perfor-
mance for the lexical features (L-B) is poor with respects to the rest of the experimental results.
The weak performance of lexical features (L-B) has been observed especially for competitive
overlaps. This can be due to the fact that lexical pattern describing non-competitive classes are
closed set whereas for competitive they are very open, i.e., any words can be used to express
the competitiveness intension. Moreover, from an experimental point of view, lexical feature
design used here is very basic. So we have experimented with a more advanced feature extrac-
tion technique such as convolution based word embedding features (L-E), explained in Section
5.7.4.

For the combined feature set, DNN architecture not only improves the F-measure of the
competitive overlap class, but also for the non-competitive class, and, consequently, the perfor-
mance of the whole system. An improvement of 7.39% and 8.20% is observed for competitive
overlaps when compared to individual feature SVM models. A similar pattern is observed for
the non-competitive overlap class with DNNs using feature combination when compared to the
individual feature SVM models.

Comparing SVM and DNN models using the feature combination, we observe an increase
of 2.89% in F1 for competitive overlap class, 2.48% in non-competitive overlap class and 2.24%
for the system overall.

5.7.4 Word Embedding with CNN
The result of CNN architecture with word embedding lexical feature is presented in Table

5.8. It is observed that word embedding features with CNN architecture using 3 hidden layers
with units u (200,400,300) outperforms the bag-of-ngram feature with the DNN architecture
by ≈ 4%. However, when we compared bag-of-ngram feature using SVM architecture, we

5Some of the results differs from the results published in [194], due to changes in some parameters.
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observed that the results are not significantly different. The performance of CNN architecture
is heavily dependent on the tuning of hidden layers with its units, and other parameters such
as filter number, learning rate, etc. In this experiment, only the number of hidden layer, h is
tuned for h = {2, 3} and for a fixed list of neurons, leaving scope for further improvement
using a different architecture and different set of parameters. Also as it is observed that bag-
of-words are also providing important information regarding class discrimination, in future, we
will also try to combine word embedding features with a bag-of-ngram feature to exploit their
classification power together.

Table 5.8: F1 measure for the individual classes and the macro-averaged F1 for the system
using Lexical bag-of-ngrams and word embedding feature representation. Lex (L-B) – Lexi-
cal features in bag-of-ngram representation, Lex (L-E)– Lexical features in word embedding
representation.

F1 Dev-set Test-set
Architecture Feat.Set Cmp Ncm Overall Cmp Ncm Overall
FeedForward Lex (L-B) 0.37 0.84 0.61 0.32 0.84 0.58

CNN Lex (L-E) 0.46 0.82 0.64 0.43 0.82 0.62

5.7.5 Multimodal DNN
For exploting the combination of word embedding features along with acoustic feature,

we studied a multimodal DNN architecture described in Section 5.6.2.3. Similar to all DNN
experiment, this system’s performance is heavily dependent on the parameters used. Due to
the complexity of the architecture tuning and resourses it needs, we fixed the hidden layer for
individual feature set to three before merging the hidden layers with a fixed number of nuerons
in each layer. We then tuned the hidden layers (Mh) containing the combined features to: Mh =

{2, 3}. The result presented in the Table 5.9, used the following architecture: for lexical word
embedding cnn architecture Hl = 3 where units in the layers are u(Hl1) = 200, u(Hl2) = 400,
u(Hl3) = 300; for acoustic feature feed forward architecture Ha = 3 with units in layers are
u(Ha1) = 400, u(Ha2) = 500, u(Ha3) = 300; for the combined (after merge) architecture we
usedMh = 3 with hidden units of layers are u(Mh1) = 500, u(Mh2) = 300, u(Mh3) = 50. This
experiment is done to see the capabilities of such architecture. It is observed that even though
the dimension of the lexical features is different in both the experiments, the performance of
the system is quite similar. This can be due to the presence of acoustic features showing how
dominant it becomes when used with the representation power of the DNN architecture, as
observed in Table 5.7, where a feed-forward network with acoustic performs similar to the
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acoustic + lexical (L-B) settings in SVM.
Even though due to time and resource limitations we did not tuned it properly, however,

the result suggests one can utilize such an architecture to investigate further. Therefore, in
future, we will investigate this architecture in order to understand the parameters and improve
the performance of the current system.

Table 5.9: F1 measure for the individual classes and the macro-averaged F1 for the system us-
ing feature combination in two settings 1) Linear feature combination (acoustic + bag-of-ngram
lexical features) followed by a Feed Forward DNN architecture and 2) A multimodal architec-
ture with acoustic feature and word embedding feature merged in the hidden representation of
the network.

F1 Dev-set Test-set
Architecture Feat.Set Cmp Ncm Overall Cmp Ncm Overall
FeedForward AC + Lex (L-B) 0.57 0.87 0.72 0.51 0.86 0.68
Multimodal AC +Lex (L-E) 0.53 0.85 0.69 0.51 0.84 0.68

5.8 Overlap Detection and Classification in Mono Channel
The overlap classification model relies on the identification of the overlapping segments of

speech. In case conversation speakers are recorded on separate channels, the detection of these
segments is less complex. Unfortunately, sometimes conversational data are usually recorded
on a single channel; thus, an overlap detection step from a single channel is also required. The
task is known to be a hard one. For both tasks – overlap detection and classification – we train
model by remixing channels of the annotated data. The data is described in Section 5.2 and the
process is described in Section 5.8.1. Then, we describe overlap detection and classification
experiments in Sections 5.8.2 and 5.8.3, respectively.

5.8.1 Training Data and Pre-Processing
The data used for training and testing the overlap detection and classification models is dis-

cussed in details in Section 5.2, and is the same set that we used to model our overlap discourse
classifier for separate channels in this chapter.

Since some data can usually be recorded on a single channel; therefore to evaluate the
performance of the overlap classification on such data, we apply channel remixing on both
training and testing data using SoX (Sound eXchange6). The whole process is depicted in
Figure 5.7 including training and testing stages, which are described next.

6http://sox.sourceforge.net/
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Figure 5.7: Overlap detection and classification system. Channel remixing (boxed), training
(solid arrows) and testing (dotted arrows) pipelines.

5.8.2 Overlap Detection
Overlapping speech is detected using a Hidden Markov Model (HMM)-based overlap seg-

menter. In HMM, speech or overlap segment is represented with six-states and non-speech with
a five-states model. The state emission probabilities are modeled with a multivariate Gaussian
Mixture Model (GMM) with 32 components. The segmenter consists of three classes — non-
speech, speech, and overlapped speech. Speech, non-speech, and overlap regions are identified
in the training data using Automatic Speech Recognition (ASR) forced-alignment segment time,
generated from manual transcriptions. The segmentation and labeling of the conversation are
performed using a single Viterbi decoding pass on the full audio signal. The non-speech seg-
ments (mainly silence) are merged with their surrounding speech/overlap segment. The system
is evaluated using NIST speaker diarization evaluation approach [195, 196].

The performance of the system on mono-channel signal is reported in Table 5.10 as recall
and recall weighted by the duration of the overlap segment. The model can detect approximately
48% of overlaps. From the results, we can observe that it is harder to detect longer overlaps
since duration weighted recall is lower (43.35). Overall, results are promising, and the task will
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Table 5.10: Mono-channel overlap detection performance as duration weighted (WR) and un-
weighted recall (R).

Model R WR
HMM 48.05 43.35

Table 5.11: Macro- and micro- average F1 for overlap classification using mono-channel model
and a majority baseline.

Model Macro-F1 Micro-F1

Baseline 43.6 77.2

Dual-Channel 64.4 76.0
Mono-Channel 61.8 76.0

be addressed in the future study.

5.8.3 Overlap Classification
The overlap classification model is trained using Sequential Minimal Optimisation (SMO),

a support vector machine implementation of weka [191] using a linear kernel with default pa-
rameter settings. The models is an adaptation of [177] system to mono-channel data.

Models are trained using low-level acoustic features extracted using openSMILE [178] with
the FrameSize = 25 ms and FrameStep = 10 ms, which yields approximately 100 frames per
second. The groups of these low-level features such as prosodic, energy, etc. with counts are
given in Table 5.5. The extracted low-level features and their derivatives are projected onto
statistical functionals such as range, absolute position of max and min, linear and quadratic
regression coefficients and their corresponding approximation errors, moments-centroid, vari-
ance, standard deviation, skewness, kurtosis, zero crossing rate, peaks, mean peak distance,
mean peak, geometric mean of non-zero values and number of non-zeros.

The overlap classification results are given in Table 5.11. The reported numbers are without
error propagation from the overlap detection step. Due to the high ratio of non-competitive over-
laps in the test set (77.2%), the micro-averaged F1 of the majority baseline is high. However, we
are interested in both classes; thus, we also report macro-averaged F1. The described overlap
classification system significantly outperforms the baseline considering the macro-averages in
both settings – dual channel and single channel.

5.9 Summary
This chapter illustrated automatic classification of competitiveness and non-competitiveness

of overlap segments in real-world call center data. To classify competitiveness in the overlap,
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this chapter introduced and evaluated an annotation scheme for the overlap categories. The
study also focused on studying different high-dimensional acoustic feature groups to create
the acoustic feature set followed by an investigation of the role of speakers and context using
different speakers’ segments, such as overlapper, overlappee, left and right context and their
combinations. To understand their role, the study employed high dimensional low-level acous-
tic, linguistic, and psycholinguistic features. Additionally, the study also implemented different
combination, both decision, and feature-level, techniques. The purpose is to study is to de-
velop an architecture to combine different information in classifying overlaps. It is observed,
that the feature level combination of lexical information (Bag-of-ngrams or word embedding
features) along with acoustic information outperforms any individual feature models and their
decision level combination. In addition, to explore different features and their combination, the
chapter also focused on exploiting the power of linear (SVM) and different architecture of non-
linear (DNN) algorithms to classify the overlap discourse. Experimental results indicate that
by exploiting many layers of a non-linear information processing for high-dimensional features
yields significant improvement over all the individual feature sets using both SVM and DNN
architecture along with feature combination with SVM.
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Chapter 6

Functions of Long Silences in Dyadic Conversations

6.1 Introduction
Silence is a multifaceted natural phenomenon in human conversations that carries informa-

tion rich in meaning and function. Even though “silence” is generally defined as the absence
of speech [99] or a break in a conversation flow, its occurrence has the power to deliver a mes-
sage, as well as trigger human response similar to any other conversational behavior. Silence
in human conversations provides insights into the thought process, emotion, and attitude [197]
among others. At the same time, silence is used to convey power (dominance) and respect, and
manage conflicts (see Section 2.3).

Along with speech, silence is an integral part of human interaction, and the two complement
and provide information about each other. In the words of Bruneau [10]:

“Silence is to speech as the white of this paper is to this print” – Thomas J Bruneau.

Given that the reasons for silence are limitless, it also has many functions. One function
is “eloquent silences” that includes the use of silence in the funeral, at religious ceremonies,
as a legal privilege ,or in response to a rhetorical question [107]. Apart from this, silence can
be used to indicate topic avoidance, lack of information to response, agreement, disagreement,
anger, frustration, uncertainty, hesitancy and others.

The research on function of silence in human interaction is limited. Most of the studies have
focused on the location of silence in a conversation [108, 197], or as a non-verbal communica-
tion [90] and its practices in different cultures [197] or in different contexts.

Unlike research on speech, the studies on silence are either definitional (theoretical) or de-
scriptive. Even within speech research community, there are very few studies that analyzed
function of silence in methodological manner. Generally silence is not acknowledged as a
form of interaction, but rather its function in a conversation is viewed as a “pause” or a “gap”.
Whereas speech is viewed as the primary carrier of information. Thus, a further study of silence
and its functions is important as silence often does serve as a message, or at least as a means that
offers contextual cues to the surrounding speech. Moreover, silence is one of the most common
phenomena in human interaction.

The goal of this chapter is to analyze the function of long silences 1 occurring between- and
within- speakers in dyadic spoken conversations. Our focus was to understand the perceived

1In our study, we defined long silences based on the duration, which is greater than 1 second.
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reasons of such functions towards the information flow in conversations. In this study we uti-
lize the sequences of dialog acts present in the turns surrounding the silence itself and design
feature vectors for individual long silences. The designed feature vectors are used to cluster
silences using a well-known hierarchical concept formation algorithm, which is designed to
model different aspects of human concept learning. Followed by the clustering, the resulting
clusters are manually grouped into functional categories. The significance of these functional
categories of long silences is analyzed with respect to the duration distribution and their utility
for automatic classification using decision trees.

The methodology followed for grouping functions of the long silences is shown in Figure
6.1. The steps followed in the methodology are:

1. data preparation – this step involves extraction and selecting the long silences from a set
of conversation in Section 6.2;

2. modeling silence into feature space – that includes feature design for silence instances in
Section 6.3;

3. unsupervised clustering of the selected silence instancesin Section 6.4;

4. conceptualize the silence cluster based on their functional similarity in the information
flow of the conversation, as presented in Section 6.5.

6.2 Data Preparation
To study the role of silence in information flow of the conversation, we have selected 10

conversations from the data set described in Chapter 3. The conversations are manually tran-
scribed and annotated for overlap discourse and dialog acts. The dialog act annotation follows
Dialogue Act Markup Language (DiAML) [1, 157] annotation scheme. The details of the an-
notation – such as considered core dimensions and communicative functions – is described in
Chapter 3, Section 3.2.1.3.

6.2.1 Extraction of Silence
Silence positions as well as turn types are extracted using the turn segmentation and labeling

system depicted in Figure 6.2. The input to the system is the audio of the conversation, the
forced-aligned transcription and speaker information.

The forced-aligned transcription is obtained using an in-domain Automatic Speech Recog-
nition (ASR) [176]. Lexical information from these forced-aligned transcripts is used to extract
turn-taking sequences. The pipeline uses the time aligned output as tokens to create Inter-Pausal
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Figure 6.1: System framework for categorizing functions of long silences.

Units (IPUs) for each input channel. IPUs are defined as segments of consecutive tokens with
no less that 50 ms gaps in between. Using the time information of inter-IPUs and intra-IPUs,
we then define steady conversation segments where each segment maintains a steady time-line
for both interlocutors channel. The labels of each silence segment are then defined by a set of
rules as follows:

• Pause (P ): Gaps between the turns of the same speaker with no less than 0.5 second. PA

and PC represent agent and customer’s pauses respectively.

• Lapse between speakers (LB): Floor switches between the speakers with a silence dura-
tion of 2 seconds or more.

• Lapse within speaker (LW ): Gaps between a speakers’ turns with a silence duration of 2
seconds or more.

• Switch (SS): Floor switches between the speakers with silence less than 2 seconds or
with overlapping frames not more than 20 milliseconds. This category is also know as
gaps.

The labeled turn sequences are then used to select silence instances for the analysis.
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Figure 6.2: System architecture for extracting turn types and silences.

6.2.2 Silence Filtering
From the 10 conversations, we extracted 433 instances of silence with duration greater or

equal to 1 second. The instances are categorized into two groups:

• Between-Speaker Silences (B): These instances of silence include gaps between different
speaker turns that are greater or equals to 1 second. B = {Sl, LB}, where Sl stands for
gaps longer than 1 second and shorter than 2 seconds and LB are gaps longer than or
equal to 2 seconds.

• Within-Speaker Silences (W ): These instances of silence include pauses between the
same speaker’s turns that are greater or equals to 1 second. W = {Pl, LW}, where Pl

stands for pauses longer that 1 second and LW are pauses longer than or equal to 2 sec-
onds.

For the initial analysis, the instances of long silence that occur after or before overlapping
speech are ignored. As a result, the analysis is performed on 372 instances.

6.3 Modeling Silence
Even though silence is inherently valueless phenomena that possesses no function on its

own, individual instances of silence gain its meaning and function from the surrounding con-
text. Consequently, modeling function of silence requires conceptualization of the context and
features that capture it.

As it is mentioned earlier in the dissertation, dialog acts carry specific communicative func-
tions such as question, answer, expression of agreement, disagreement, etc. Since dialog acts
are assigned to the speech segments (turns) that surround the long silences, they provide the
information that could be used to model the context of silence instances.
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Table 6.1: Core dimensions and communicative functions from ISO 24617-2 standard consid-
ered for dialog act annotation.

Dimension Comm.Function Group

General (Task)

Information Transfer Functions
Question

Information Seeking
Set Question
Choice Question
Propositional Question
Check Question

Inform

Information Providing

Answer
Confirm
Disconfirm

Agreement
Disagreement
Correction

Action Discussion Functions
Offer

Commissives

Promise
Address Request
Accept Request
Decline Request

Address Suggest
Accept Suggest
Decline Suggest
Suggest

Directives

Request
Instruct
Address Offer
Accept Offer
Decline Offer

Time Management Stalling, Pausing

Auto-Feedback Positive, Negative

Allo-Feedback Positive, Negative, Feedback Elicitation

Social Obligations Management

Initial-Greeting, Return-Greeting
Initial-Self-Intro, Return-Self-Intro
Apology, Accept-Apology
Thanking, Accept-Thanking
Initial-Goodbye, Return-Goodbye
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Feature Design
The dialog act dimensions and communicative functions listed in Table 6.1 are used as

features for the analysis of between and within speaker silence instances. Each turn preceding
or following a silence is transformed into a feature vector using one-hot representation for dialog
acts.

The vectors encode information as follows. Feedback, a joined dimension of auto-feedback
and allo-feedback, (fb) = {0, 1}, where fb=0 represent the absence of feedback dialog acts in
the turn and vice-versa. Similarly, the vector also includes other dialog act dimensions like
Time Management (tm), and Social Obligations Management (s). The General dimension is
split into two: (a) information seeking (q) and (b) information providing and action discussion
functions (ac).

Since according to the DiaML annotation standard a turn can contain several dialog acts,
the vector representation specifically encodes the last dialog act of the preceding turn (lact) and
the first dialog act of the turn following the long silence (fact), according to the Equations 6.1
and 6.2.

lact = {Ac,Q, F, T imeM,Ap, Thank, Int, Other,None} (6.1)

fact = {Ac,Q, F, T imeM,Ap, Thank, Int, Other,None} (6.2)

In the equations, Ac represents communicative functions from information providing and action
discussion functions; Q represents Information Seeking functions; F represents Feedback (auto-
feedback and allo-feedback) functions; Apo represents apology and accept-apology functions;
Thank represents thanking and accept-thanking; Int represents initial and return greetings, self-
introductions, and goodbyes; Other represents all the dialog acts not used for the analysis.
None, on the other hand, indicates absence of dialog acts.

The feature vectors of preceding, pr (|pr|=6) turn, and succeeding (following), su (|su|=6)
turn, are merged to represent a silence instance for categorization (|sil| = 6∗2 = 12), as shown
in Figure 6.3.

6.4 Unsupervised Annotation of Silence Function
The designed representation of silence instances are used for clustering using Cobweb clus-

tering algorithm [198] – a well-known concept formation system designed to model human
concept learning.
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Figure 6.3: Feature extraction and merging from preceding and succeeding turns.
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Figure 6.4: Cobweb classification tree example.

6.4.1 Clustering Algorithm
Cobweb constructs clusters using “concept hierarchy” that optimally and incrementally ac-

counts for the observed regularities on a set of instances. In other words, given a set of silence
instances, Cobweb discovers a classification scheme that covers the patterns with respect to
provided feature vectors.

Instead of forming concepts at a single level of abstraction, Cobweb groups instances into a
classification tree where leaves represent similar instances, and internal nodes represent broad
concepts. The generality of a broader concept increases as the nodes approach the root of the
tree (see Figure 6.4). Each cluster is characterized with a probabilistic description.

The classification tree is constructed incrementally by inserting the instances into the tree
one by one. When adding an instance, the algorithm traverses the tree top-down starting from
the root of the tree. At each node, there are four possible operations: (a) insert (b) create
(c) merge and (d) split. These operations are selected with respect to the highest category
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utility (CU ) metric [199]. The metric is derived from the categorization studies in cognitive
psychology and is shown in Equation 6.3.

Category utility, CU , attempts to maximize both (a) the probability of the instances in the
same category to have feature values in common; and (b) the probability of the instances in
different categories to have different feature values.

CU(Cl) =
∑
i

∑
j

(Pr[fi = vij|Cl]
2 − Pr[fi = vij]

2) (6.3)

In the equation, Pr[fi = vij] represents the marginal probability that feature fi has value vij ,
whereas Pr[fi = vij|Cl] represents the conditional probability that feature fi has value vij ,
given the instance belongs in cluster Cl. CU(Cl) estimates the quality of individual cluster.

To measure the quality of overall clustering of the silences, we calculate the average cate-
gory utility function CU(C1, C2, .., Ck), as shown in Equation 6.4.

CU(C1, C2, .., Ck) =
1

k
(
∑
l

Pr[Cl]) (6.4)

In the equation, k is the total number of categories. The overfitting is controlled by 1
k
.

6.4.2 Clustering Parameters
As it is mentioned in Section 6.2, the long silences are divided into two groups –B andW –

with respect to the speakers of the turns preceding and succeeding silence. Therefore, for each
set (B,W ), we applied Cobweb clustering algorithm implemented in [191] with acuity A = 1.0

and cutoff threshold of C = 0.0028.

6.4.3 Resulting Clusters
For between-speakers silence (B), we obtained 24 leave clusters, whereas for within-speaker

silence (W ), we obtained 26 cluster leaves. Details of the clusters with the number of instances
in each cluster is shown in Figures 6.5 and 6.6.

To understand contributions of each feature (fi) and its values (vij) to cluster formation, we
designed decision trees for between speaker and within speaker silence clusters as shown in
Figures 6.7 and 6.8, respectively.

The distribution of dialog act sequences in each cluster is given in Tables 6.2 and 6.3.
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Figure 6.5: Pie chart presenting cluster id and number of instances in each cluster (c;n) of
within-speaker instances where c is cluster id and n is number of instances.
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Table 6.2: Preceding and succeeding turn communicative function sequences for each clusters
for between speaker silences.

Id Preceding turn dialog acts Succeeding turn dialog acts

2

question(19); checkquestion(9); inform
question(2); inform checkquestion(2);
inform autopositive question(1); choice-
question(1); autopositive checkquestion(1)

answer(12); confirm(11); inform(3); answer
inform(3); disconfirm(2); confirm inform(2);
disconfirm answer(1); answer request(1)

3

question(2); initialselfintroduction initial-
greeting returnselfintroduction question(1);
initialselfintroduction initialgreeting initial-
selfintroduction question(1); inform check-
question(1); choicequestion(1)

other(2); autopositive(2); autopositive re-
turngreeting stalling inform(1); alloposi-
tive(1)

5 question(2) stalling answer(2)

6 question(1) stalling checkquestion(1)

8
initialgreeting initialselfintroduction ques-
tion(2)

returngreeting returnselfintroduction answer
inform(1); returngreeting inform(1)

9 initialselfintroduction question(1) returngreeting returnselfintroduction(1)

11

inform(20); request(6); confirm(2); an-
swer(2); suggest(1); stalling request(1); of-
fer(1); initialgreeting initialselfintroduction
request(1); inform none inform(1); answer
request(1); answer autopositive inform(1);
agreement(1); addressrequest(1)

inform(22); acceptrequest inform(4); inform
inform(3); confirm(3); acceptrequest(2); in-
form question(1); answer request(1); agree-
ment(1); addressrequest(1); acceptoffer in-
form stalling(1)

13 autopositive(16); allopositive(1) inform(15); inform request(1); correction(1)

15 other(6) inform(5); suggest(1)

17 answer thanking(1) inform(1)

18 pausing(2); stalling(1); inform stalling(1) inform(2); confirm(1); answer(1)

19 allopositive none(1) inform inform(1)

22
inform(23); answer(2); request(1); correc-
tion(1); confirm(1); acceptrequest inform(1)

autopositive(19); autopositive inform(4); au-
topositive question(3); autopositive check-
question(2); allopositive(1)

25 allopositive(1) autopositive(1)

29 pausing(1) autopositive(1)

31
inform(10); answer(4); confirm(3); re-
quest(1); disconfirm(1); correction(1)

question(12); checkquestion(6); question in-
form(1); question checkquestion(1)

33 autopositive(2) question(2)

34 autopositive(1) question acceptthanking(1)

37 inform(2); confirm(2); offer(1) pausing(4); stalling(1)

38 inform(1) none(1)

43 other(5) other(5)

45 other(1) returnselfintroduction(1)

46
initialgreeting initialselfintroduction ques-
tion other(1)

returngreeting(1)

47
inform(2); request(1); other inform(1); de-
clinerequest(1); answer(1); acceptrequest(1)

other(5); other stalling(1); other other ques-
tion(1)
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Table 6.3: Preceding and succeeding turn communicative function sequences for each clusters
for within speakers silences

Id Preceding turn dialog acts Succeeding turn dialog acts

2

inform(95); answer(6); request(3); stalling
inform(2); inform inform(2); correction(2);
question request(1); offer(1); inform re-
quest(1); confirm(1)

inform(90); request(5); answer(5); inform
inform(4); offer(2); inform stalling(2); in-
form question(2); suggest(1); inform stalling
inform stalling(1); correction(1); addressre-
quest(1)

3 none(1) inform(1)

7 pausing(2) question(1); checkquestion(1)

8 autopositive(1) question(1)

9
question(8); checkquestion(3); inform ques-
tion(1)

question(8); checkquestion(3); question in-
form(1)

10 question(1) other(1)

11 question(1) pausing(1)

12 question(1) autopositive autopositive(1)

14 other(1) apology inform(1)

15 other(3) other(3)

16 other(1) autopositive inform(1)

19 pausing(1) pausing(1)

20 inform stalling(1) stalling(1)

21 autopositive pausing(1) pausing autopositive inform(1)

22 stalling(1) other inform(1)

23 autopositive(1) other(1)

24 autopositive(5); autopositive autopositive(1)
autopositive(4); autopositive thanking(1);
autopositive question(1)

25 autopositive(1) stalling inform(1)

29 inform none(1) none inform(1)

33 stalling(1); pausing(1); other stalling(1) inform(3)

34 autopositive(5) inform(4); inform autopositive question(1)

36 question(4) inform(3); inform inform(1)

37 other(1) inform(1)

39 inform(9) stalling inform(7); stalling(2)

40 inform(7)
question(4); question inform(2); choiceques-
tion(1)

41 inform(2); agreement Null inform(1) autopositive(3)
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Figure 6.7: Decision Tree presenting the features and their values for between speaker silence.
−p represents preceding segment; −s represents succeeding segment
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Figure 6.8: Decision Tree presenting the features and their values for within speaker silence.
−p represents preceding segment; −s represents succeeding segment
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6.5 Categorization of Silence Functions
Assuming that each cluster represents a function of a silence, the clusters are manually

grouped with respect to their parents in the classification tree. The manual grouping of silence
clusters is performed considering conversation scenarios. For instance, in a conversation a
participant may expect an answer to a question or a contribution from another speaker that
might yield a long silence due to the time required to prepare an answer. It might take long to
get the information to the query or simply be an act of noncompliance. Strategies that follow a
long silence are often target to repair the failure to contribute and are either repeating the query,
changing the topic, or asking for more time to respond. Below we give example scenarios
observed in the silence cluster groups:

The Between-Speaker Silence cluster groups are:

• A mode of response preparation (RP ): In this group, there can be two subcategories
based on the type of response given by the speaker before the silence. The subcategories
are:

– Response to the previous turn’s question in the form of information that includes an
answer to the question, a feedback, or asking for more time to answer. This category
includes clusters RP1={2, 3, 5, 6, 8, 9}.

– A response can also be a question to the information/feedback provided in the pre-
vious turn. This category includes clusters RP2={31, 33, 34}.

• A mode of information flow (IF ): These silences can either be a: 1) conversational si-
lences, where both speakers are exchanging information or feedback 2) forced silences
(deliberate2), where the current speaker is using the silence as a tool to force the inter-
locutor to respond. The member clusters of this group are IF={11, 13, 15, 17, 18, 19, 22,
25, 29, 37, 38}.

• Silences in Other categories (B − Oth): These are the silences which are motivated by
factors not considered in the dissertation. This group includes clusters B-Oth={43, 45,
46, 47}.

The above-mentioned categories are presented in Examples 4 and 5. In Example 4, we
observe that the caller is asking the call center operator a reason behind an action, and the act
is followed by a long silence of 1.41 seconds. After the interval, the operator is passing some
information regarding the earlier query by the caller. From the operational point of view, the

2These silence instances are usually longer. For this study the threshold of this type of silences is >= 2 seconds.
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interval might have been used to either acquire information or to structure it. Similarly, in RP2
scenario in Example 4, after the operator informs that the ‘electric power’ will not be activated,
the caller is taking a long silence of 1.38 seconds to respond to the given information, asking
another question. This silence could have been again used for preparing the answer, or it might
be the time taken by the responding speaker to compose the next action. In Example 5, we
present a scenario where the silence category IF is used deliberately to force another speaker
to reply.

The silence in both examples may have other cognitive functions such as controlling emo-
tional attitudes. However, as the focus of this study is to understand the function of long silences
in information flow, these cognitive functions are not considered.

Example 4. Example of silence category RP : RP1

caller: al distacco perfetto ora eh eh su che base mi perdoni
caller: the complete interruption ... perfect! now ehm ehm due to what reason, excuse me?

(1.14) Category - RP1
operator: ah ascolti qui ci sono una serie di fatture malgrado
operator: Listen (please) we have here a number of unpaied bill in spite of

Example of silence category RP : RP2

operator: la luce non gliela riprist non viene ripristinata
operator: the electric power will not be reactiv will not be reactivated

(1.38) Category - RP2
caller: ma cosa devo pagare se io ho già conguagliato tutto con

trecentoquarantacinque euro mi perdoni cosa devo pagare la
caller: but what do I have to pay if I have already paid 345 euros I beg you pardon but what do I

need to pay the

Example 5. Example of silence category IF

caller: [lei deve fare una cosina lei ha un delle]
caller: [You have to do a small thing you have some]
operator: [però e se]
operator: [but and if]
caller: belle schermate a disposizione mi deve aprire la mia ehe il

mio fax inviato il ventitrè zero otto duemiladodici
cortesemente

caller: beautiful screens available you have to open my own and you will find my fax sent on 23rd
of August 2016
(2.12) Category - IF (deliberate silence)

operator: vediamo subito
operator: let us see immediately

The Within-Speaker Silence cluster groups are:

• Organizational silence (CS): The long pause used for the purpose of organizing the infor-
mation flow in the conversation This group contains clusters of silences where a speaker
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is providing information and the silence between turns can either be a time taken to think,
find information, or to compose and plan the next turn. CS={2, 3, 19, 20, 21, 22, 23, 24,
25, 29, 33, 34, 39}.

• Indecision or Hesitation silence (H): In this groups of silences, speaker is either confused
about some information, needs clarification, or have some queries. The member clusters
of this groups are H={7, 8, 9, 10, 11, 12, 36, 40}.

• Silences in Other categories (W − Oth): These are the silences which are motivated
by other factors, not considered for the present study. This group includes clusters
W-Oth={14, 15, 16, 37, 41}.

Example 6. Example of silence category CS and H

caller: non riesco a parl devo parlarle ho parlato con cinque suoi
colleghi e mi hanno chiamato due consulenti

caller: I cannot tal ... I need to talk ... I talked with five colleagues of you and two consultants
called me
(1.16) Category - CS

caller: io oggi pomeriggio devo andare dall avvocato per denunziarvi
per diecimila euro al giorno di danni che mi avete arrecato da
stamattina

caller: this afternoon I will go my lawayer for sueing you due to ten thousand euros in damage per
day due to this morning (power)interruption
(1.65) Category - CS

caller: ehe perché io ho già pagato tutto nel
caller: ehm because I already paid all what I due
caller: senso che tutte queste bollette sono state conguagliate con

una di trecentoquarantacinque euro incluso
caller: because all these bills were paied with another one of 345 euros including
caller: il mese di luglio e agosto
caller: the months of July and August (as well)

(1.57) Category - CS
caller: ehe avevo già chiarito il (.) primo distacco l abbiamo

sospeso mi hanno richiamato perché non trovate una vostra
lettera di risposta

caller: and I already told this when (.) there was the first interruption (that) was suspended they
called me because you are not able to find a reply letter from you
(1.01) Category - H

caller: ora devo (.) parlare con lei o devo parlare con qualcuno
sopra di lei mi perdoni se sono abbastanza

caller: now (I) have (.) to call with you or have (I) to call with you boss? sorry but (I) am enough

In Example 6, we present a dialog scenarios with assigned categories. It is observed that
the first three long silence intervals are used either to plan the next turn or to take the time to
think. Whereas in the last silence of 1.01 seconds, before threatening the operator, the caller
either hesitates, feels bad, or is not sure whether a threat is going to work.
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The duration distribution statistics for each category of silence functions are presented in
Tables 6.4 and 6.5. For between-speaker silence categories, in Table 6.4, it is observed that
median duration of silence category RP2 along with B − Oth are longer compared to RP1
and IF . As for within-speaker silence categories, it is observed that median duration of H
categories is longer than CS. The observation is explained as the speakers might need more
time to take the next turn when s/he is facing indecision, hesitation, or need clarification about
something.

To understand the utility of designed categories for prediction using the feature vector de-
signed in Section 6.3, we train a decision tree classifier (J48 implementation in [191]) for both
between and within silences using 10-fold cross validation. The resulting decision trees are
presented in Figures 6.9 and 6.10.

Table 6.4: Statistics of between-speaker long silences categories.

Between-Speaker Silence RP1 RP2 IF B-Oth

Min. 1.01 1.02 1 1.1
1st Qu. 1.205 1.33 1.27 1.357
Median 1.37 1.76 1.59 1.96
Mean 1.473 3.063 3.093 2.562
3rd Qu. 1.615 2.665 2.125 2.93
Max. 3.7 19.21 84.37 8.15

No. Instances 47 23 107 12
Total 189

Table 6.5: Statistics of within-speaker long silences categories.

Within-Speaker Silence CS H W-Oth

Min. 1 1.01 1.02
1st Qu. 1.13 1.1 1.32
Median 1.36 1.42 1.63
Mean 2.018 2.916 1.638
3rd Qu. 1.76 2.63 2.06
Max. 53.21 27.92 2.22

No. Instances 145 29 9
Total 183
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6.6 Summary
The main focus of this chapter is to understand the functions of long silence in within and

between-speaker, towards the information flow in a conversation. In an attempt to find such
functions, this chapter utilize the sequences of dialog acts present in the left and right context
(concerning speaker turns) surrounding the silence itself and design feature vector for individual
long silence. These designed feature vectors are later used to cluster silences using a well-
known hierarchical concept formation system (Cobweb), which is designed to model different
aspects of human concept learning. Followed by the clustering, we grouped the clusters into
functional categories of long silence and studied their significance, and duration distribution
while classifying using a decision tree. From the study, the observed functions of silence varies
from response preparation to hesitation to ask about some queries. It is also observed that
sometimes this long silences are used deliberately to extract a forced response from another
speaker. It can also indicate the indecisiveness of the current speaker. Even though most of
the research from speech communities ignore the silences but our observation shows that by
considering the function of long silences, we can better understand the information flow in the
conversation, as silence do contribute in explaining the information presented by the speech
signals. Silence also has the potential to explain long term behavioral traits and short term
states. This study is our first attempt to understand and categorize functions of long silence in a
dyadic conversation and there is still more research needed to be done.
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Chapter 7

Turn Segmentation and Discourse Labeling Systems

7.1 Introduction
Speech is the primary medium of human communication. With the expansion of the call

center industry, spoken conversation data is being generated in overwhelming amounts. Large
corporations often outsource their customer support and hosting call centers either monitor the
calls in real time or record them for later review. Human reviewers can evaluate only a small
random portion of the data (much less that 1%). However, they are required to produce reports
addressing various aspects of the service they are providing. These manual evaluation and
analysis services are very expensive and do not scale to the quantity of data generated by call
centers.

Therefore, to understand and summarize different behavioral aspects unfolding in the con-
versation, we need to look deep into the flow and dynamics of turn-taking and intent behind
each action. To do so, we first need to align each speaker channel, followed by segmentation of
the conversation into individual speaker’s turn and then creating the steady (uniform) timeline
for both the interlocutors to find out who is speaking when, i.e., segmentation and labeling of
the basic turn-taking scenario in the conversation. To summarize the intent of the speakers (both
agent and the customer) we need information regarding the actions each corresponding turn are
performing, i.e., discourse of the event.

Using the generated information about the turn dynamics we can design descriptive sum-
maries of behavior for each speaker and their contribution to the conversation.

As mentioned earlier that manual evaluation or preparation of data is very expensive, there-
fore the input of the system has to be designed in such way that reduces human effort.

Contents published in:
Shammur Absar Chowdhury, Evgeny A. Stepanov and Giuseppe Riccardi, Transfer of Corpus-Specific Dialogue
Act Annotation to ISO Standard: Is it worth it?, in Proc. of 10th edition of the Language Resources and Evaluation
Conference (LREC), 23-28 May 2016, Portorož (Slovenia)
E. A. Stepanov, B. Favre, F. Alam, S. A. Chowdhury, K. Singla, J. Trione, F. B’echet, G. Riccardi, Automatic
Summarization of Call-center Conversations, IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU 2015), Scottsdale, Arizona, USA, 2015
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Figure 7.1: System Architecture for Automated Turn-Taking Segmentation and Discourse La-
beling System with audio signal and speaker information only (and trascription – if available).

Therefore, in this chapter, we present a framework of an automated pipeline, which can
align, segment a conversation into low-level turn-taking behavior and extract the discourses
behind the events. The resulted framework gives us the output of the segmented turns with
discourse label and a descriptive statistic of the conversation.

7.2 System Architecture

In Figure 7.1, we present the system architecture for segmenting and labeling turn discourse
of a conversation. As an input to the system, an audio and speaker information1 of a conversa-
tion is sufficient in the absence of any transcription. The system then process the input using
Input Processing Module, as described in Section 7.2.1; followed by creating aligned speaker
channels and turn sequences using Steady Conversation Segment Creation Module, outlined in
section 7.2.2; this sequence is then passed through Discourse Module, in Section 7.2.3, to label
the function of each event.

1Includes which channel belongs to the agent and which one is the customer.
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Figure 7.2: Input Processing Module pipeline for scenarios where only audio signal is available.
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Figure 7.3: Input Processing Module pipeline for scenarios where both audio signal and tran-
scription are available.

7.2.1 Input Processing Module
The input to the system can contain:

• Audio Signal and speaker information only

• Audio Signal along with transcription and speaker information

In the absence of transcription, the input audio signal is first passed to a Speech/Non-speech
segmenter, described in Section 7.2.1.1 to extract the segments containing only speech sig-
nal from both the channel. Then these speech segments are passed into an Automatic Speech
Recognition (ASR), details in 7.2.1.2, to extract the time aligned automatic transcription, con-
taining start end pointers for each word present in the segments. The architecture of such input
processing module is presented in Figure 7.2.

In the presence of transcription of the audio, the system does not use the speech/non-speech
segmenter but only use the ASR to create forced aligned token files of the conversation, as
shown in Figure 7.3.

7.2.1.1 Speech/Non-Speech Segmentation
An in-house speech vs non-speech segmenter has been designed using a set of 150 con-

versations, 300 wave files, containing approximately 100 hours of spoken content and used
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Kaldi [200] for the training and decoding process. Training data has been prepared using force-
aligned transcriptions. Mel Frequency Cepstral Coefficient (MFCC) and their derivatives have
been used as features. Number of Gaussian and beam width have been optimized using a de-
velopment set of 50 conversations, 100 wave files. The final model has been designed using
64 Gaussians and a beam width of 50, which has been tested using a test set of 50 conversa-
tions, 100 wave files. As a part of the post-processing, three rules has been applied: 1) removed
non-speech segments, which are between speech segments and are less than 1 second, 2) added
an non-speech segment between speech segments if there is a gap greater than 3 seconds, 3)
concatenated the consecutive speech and non-speech segments, respectively. The F-measure of
the system was 66.0% on the test set. We use the term SISL speech segmenter to refer to the
segmenter mentioned here.

7.2.1.2 Automatic Speech Recognition System
The automatic speech recognizer was designed using the dataset described in Section 3.1.1

containing approximately 100 hours of spoken content and a lexicon of ∼15000 words. Mel
Frequency Cepstral Coefficient (MFCC) features have extracted from the conversations and then
spliced by taking three frames from each side of the current frame. It was followed by Linear
Discriminant Analysis (LDA) and Maximum Likelihood Linear Transform (MLLT) feature-
space transformations to reduce the feature space. Then, the acoustic model was trained using
speaker adaptive training (SAT). In order to achieve a better accuracy Maximum Mutual Infor-
mation (MMI) was also used. The Word Error Rate (WER) of the ASR system was 30.86%
(with 40.08% in customer channel and 22.97% in agent channel) on the test set and 20.87%
on the training set, using a trigram language model of perplexity 86.90. For the training and
decoding process, an open-source implementation system, Kaldi [200], was used.

7.2.2 Steady Conversation Segment Creation
The system then uses aligned lexical information to create the sequence of turn-taking. The

pipeline uses the time aligned output (tokens), to create Inter-Pausal Units (IPUs) for each input
channel. IPUs are defined as the consecutive tokens with no less that 50 ms gaps in between.

Using the time information of inter-IPUs and intra-IPUs, we then defined steady conversa-
tion segments where each segment maintain a steady timeline for both interlocutors channel.
This step is done by creating a sorted list of all the start and end time of IPUs from both chan-
nels. This sorted list is then further used to create segments, also referred as steady segments,
of the conversation with a uniform timeline in both channels. Then each IPUs in both channels
are aligned with the steady segments to form a binary representation of the information in each
steady segment for each channel as shown in Figure 7.4. The binary value for each segment
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si, in agent-channel x (Equation 7.1), and in customer-channel y (Equation 7.2), along with
the duration of each segment d in second, is then passed to through a function, f(x, y, d, t) as
shown in Equation 7.3, to define the label of the steady segments.

x = {0, 1} (7.1)

y = {0, 1} (7.2)

f(x, y, d, t) =



TA x = 1 y = 0

TC x = 0 y = 1

Ov x = 1 y = 1 d >= 0.2

PA x = 0 y = 0 xt−1 = 1 xt+1 = 1 yt−1 = 0 yt+1 = 0 d >= 0.5

TA x = 0 y = 0 xt−1 = 1 xt+1 = 1 yt−1 = 0 yt+1 = 0 d < 0.5

PC x = 0 y = 0 xt−1 = 0 xt+1 = 0 yt−1 = 1 yt+1 = 1 d >= 0.5

TC x = 0 y = 0 xt−1 = 0 xt+1 = 0 yt−1 = 1 yt+1 = 1 d < 0.5

LW x = 0 y = 0 xt−1 = 0 xt+1 = 0 yt−1 = 1 yt+1 = 1 d >= 2.0

LW x = 0 y = 0 xt−1 = 1 xt+1 = 1 yt−1 = 0 yt+1 = 0 d >= 2.0

LB x = 0 y = 0 xt−1 = 1 xt+1 = 0 yt−1 = 0 yt+1 = 1 d >= 2.0

LB x = 0 y = 0 xt−1 = 0 xt+1 = 1 yt−1 = 1 yt+1 = 0 d >= 2.0

(7.3)

The labels of each segment are then defined by a set of rules, shown in Equation 7.3. Labels of
the segments are as follows:

• Turn (T ): Maximal sequences of IPUs where one single speaker has the floor, and none
of the IPUs from the interlocutor are present [201]. TA and TC represent agent and cus-
tomer’s turns respectively.

• Pause (P ): Gaps between the turns of the same speaker with no less than 0.5 seconds, as
shown in Figure 7.5. PA and PC represent agent and customer’s pauses respectively.

• Overlaps (Ov): Overlapping turns between the two interlocutors.

• Lapse between speakers (LB): Floor Switches between the speakers with a silence dura-
tion of 2 seconds or more.

• Lapse within speaker (LW ): Gaps between a speakers’ turns with a silence duration of 2
seconds or more.

• Switch (S): Floor switches (including gaps) between the speakers with silence less than
2 seconds or with overlapping frames not more than 20 ms.

The generated steady turn sequences along with the speech signals are then passed to Dis-
course Labeling Module (DLM) for extracting intent of action behind each turn event.
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Figure 7.5: Illustration of bridging pauses within a conversation

7.2.3 Discourse Labeling Models
In conversation, turn-taking events by the speakers, are designed to convey something. To

find the motivation or intention behind each action, the automatic pipeline passes the steady
segment labels to its corresponding computation model. The models included in Discourse
Labeling Models, DLM are: 1) Dialog Act model – including segmenter and classifiers for
both dimension and communicative functions present in a speaker turn. 2) Overlap Discourse
Categorization model – automatic overlap labeling system includes Competitive (Cmp) and
Non-Competitive (Ncm) categories and 3) Functional module for long silence. The next sec-
tions explain each model that are integrated into the DLM.

7.2.3.1 Dialog Act Model
Dialogue Acts (DA) are fundamental for the analysis of conversations: they carry commu-

nicative functions such as question, answer, expression of agreement and disagreement, etc..
Consequently, the range of applications of DA analysis is quite wide and includes conversation
summarization (both spoken and written), dialog systems, etc.; and DAs have been extensively
studied in both theoretical and computational linguistics. The supervised and unsupervised
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annotation and classification of DAs (e.g. [202]) and cross-domain and cross-media classifica-
tion (e.g., forums, email, and spoken conversations [202, 203]) have been shown to yield good
results.

A subset of 50 dialogs from Italian LUNA Human-Human corpus [152], described in Sec-
tion 3.2 was annotated with dialog acts. The LUNA DA annotation scheme was inspired by
DAMSL [154], TRAINS [155], and DIT++ [156]. The most common 15 dialog acts from
these taxonomies are grouped into three categories [152]: Core Dialog Acts (8) are main ac-
tions in the dialog, such as request of information, response, or performing the task; Conven-
tional/Discourse Management Acts (4) are utterances such as greetings, apologies, etc. whose
function is to maintain general dialog cohesion; Feedback/Grounding Acts (3) are utterances
whose function is to acknowledge, provide feedback, or just time fillers; and Others (1) to cap-
ture the rest. The unit of annotation for dialog acts in LUNA Corpus is an utterance. However,
due to the overlapping turns (both speakers speaking), an utterance can span several turns. Thus,
the dialog act annotation was preceded by additional utterance segmentation. The already an-
notated dialog act was semi-automatically re-annotated with the recently accepted international
ISO standard for DA annotation – Dialog Act Markup Language (DiAML) [1,157] (see Section
3.2.1.3 for details).

The DiAML annotation scheme [1] is illustrated in Figure 3.13. The DiAML annotation
scheme consists of 56 core DA tags2 (communicative functions), organized into 9 dimensions:
26 general (applicable to any dimension) and 30 dimension specific [158] (see Table 6.1 in
Chapter 6 for a set of dimensions and communicative functions considered for LUNA Corpus
re-annotation). In the following section we present our approach to dialog act segmentation and
classification and the results obtained on both LUNA Corpus and SISL corpus.

Segmentation
The designed automatic dialog act segmenter takes speaker turns as an input. The automated

segmenter then extracts token/word with a context of±2 as the feature and uses a discriminative
approach, namely Conditional Random Fields (CRFs), [204] to simultaneously segment the turn
into its DA boundaries, in IOB format. The results of such system are shown in Table 7.1.

Table 7.1: Precision (P), recall (R) and F1 of dialog act segmentation

DA Segmenter P R F1

Overall 0.73 0.59 0.65

2In the literature the number of dimensions and dimension specific communicative functions varies.
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Table 7.2: Comparative evaluation of ‘legacy’ and ISO annotations at dimension level. F1 for
in-domain data using LUNA corpus (LUNA), cross-domain SISL corpus (SISL) evaluation
settings.

Legacy
Dimension LUNA SISL

Task 0.79 0.72
Social 0.86 0.66
Time+Fb 0.71 0.61
Other 0.18 0.15

Micro 0.72 0.60

ISO
LUNA SISL

0.78 0.74
0.84 0.78
0.73 0.64
0.24 0.22

0.72 0.67

Classification
For the dialog act classification, we use Sequential Minimal Optimisation (SMO), a support

vector machine implementation, with its linear kernel and default parameters [191]. As for the
features, the experiment only utilized bag-of-words representation extracted from dialog act
span tokens.

As it was already mentioned, the ‘legacy’ and ‘ISO’ annotations are evaluated in two set-
tings: (1) in-domain, i.e., using LUNA corpus, (2) cross-domain, i.e., using SISL corpus. We
perform classification into dimensions and into communicative functions, using bag-of-words
representation for features. The distribution of labels in each layer (dimensions and commu-
nicative functions) is unbalanced (see Table 3.7); however, we do not address balancing issues.
For consistency with the ‘legacy’ annotation and for comparing the results, we merged Feed-
back and Time Management dimensions. The Social Obligations Management dimension was
kept separate. Performance is evaluated using standard precision, recall and F1.

The results of the experiments on the dialog act classification at dimension level are reported
in Table 7.2 as F1. In dimension level classification, the number of classes (dimensions) is the
same for the ‘legacy’ and ISO annotated data. Due to the segmentation differences, the number
of instances, however, is different. The results illustrate that in-domain performances of the two
annotation schemes are comparable; however, ISO annotation scheme has better performance
in the cross-domain.

Communication function level classification settings are different for the ‘legacy’ and ISO
annotated data: for the former it is classification into 16 classes, and for the latter into 41
class. To evaluate the ISO scheme in more comparable settings, we additionally evaluate it after
mapping to the ‘legacy’ annotation (i.e., to 16 ‘legacy’ classes) using mappings in Table 3.6
in Chapter 3. The results of the experiments on the dialog act classification at communication
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Table 7.3: Comparative evaluation of ‘legacy’ and ISO annotations at communicative func-
tion level. F1 for in-domain (LUNA), cross-domain SISL corpus (SISL) evaluation settings.
For each annotation scheme, the number of communicative functions is reported in parenthe-
ses. ISO Mapped reports performance of the ISO annotations after mapping to the ‘legacy’
annotation.

Legacy (16)
Dimension LUNA SISL

Task 0.31 0.20
Social 0.64 0.39
Time+Fb 0.68 0.55
Other 0.25 0.26

Micro 0.44 0.30

ISO (41)
LUNA SISL

0.24 0.27
0.60 0.41
0.84 0.63
0.22 0.26

0.40 0.37

ISO Mapped (16)
LUNA SISL

0.35 0.39
0.70 0.52
0.84 0.62
0.24 0.36

0.47 0.45

function level are reported in Table 7.3 as F1. Individual communication function performances
are aggregated to dimension level and reported numbers are micro-averaged F1s.

7.2.3.2 Overlap Discourse Categorization Model
To automatically label overlap instances these two categories of overlaps, Competitive

(Cmp) and Non-Competitive (Ncm) categories, we use an in-domain overlap categorization
model [177]. The model was trained using acoustic features with the left and right context of
0.2 and 0.3 seconds of speech. The overall F-measure of the system using acoustic features is
64.36% on the test set as reported in [177]. Details of the techniques and evaluation are given
in Chapter 5.

7.2.3.3 Silence Function Module
For assigning functions of silence instances, both between and within-speaker silence, we

used J48 decision tree discussed in Chapter 6. The tree takes silence instance as input which
is >= 1 second. For between speaker silences, the function labels are: response preparation
function (RP1 and RP2), information flow functions (IF) such as conversational and delib-
erate silence and the other (B-Oth). Similarly for within-speaker long silence the functional
categories includes: indecision or hesitation silence (H), organizational silence (CS) and other
categories (W-Oth). Details of functions can be found in Chapter 6.

7.3 Summary
In this chapter, we presented a designed a framework that can automatically segment the

turns and turn-taking events, such as silence, and categorizes its discourse labels. Such a sys-
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tem can work even when an audio signal is available as the only input to the system. The
system uses state-of-the-art ASR pipeline with other discourse module researched in this dis-
sertation (including dialog act segmenter and classifier, and overlap discourse model) to label
the turn-taking behavior in the conversation. This framework can also be used to predict dif-
ferent characteristics of conversation on the real-time scenario. Such usage of the pipeline are
presented in the next following chapters.
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Chapter 8

Modeling User Satisfaction with Turn-Taking

User satisfaction is an important aspect of the user experience while interacting with ob-
jects, systems or people. Traditionally user satisfaction is evaluated a-posteriori via spoken or
written questionnaires or interviews. In automatic behavioral analysis we aim at measuring the
user emotional states and its descriptions as they unfold during the interaction. In our approach,
user satisfaction is modeled as the final state of a sequence of emotional states and given ternary
values positive, negative, neutral. In this chapter, we investigate the discriminat-
ing power of turn-taking in predicting user satisfaction in spoken conversations. Turn-taking
is used for discourse organization of a conversation by means of explicit phrasing, intonation,
and pausing. In this study, we train different characterization of turn-taking, such as competi-
tiveness of the speech overlaps. To extract turn-taking features we design a turn segmentation
and labeling system that incorporates lexical and acoustic information. Given a human-human
spoken dialog, our system automatically infers any of the three values of the state of the user sat-
isfaction. We evaluate the classification system on real-life call-center human-human dialogs.
The comparative performance analysis shows that the contribution of the turn-taking features
outperforms both prosodic and lexical features.

8.1 Introduction
A satisfying communication plays an important role in social interaction such as multiparty

and dyadic conversations in call-center, doctor-patient, and student-teacher scenarios. Over the
years, user satisfaction has been evaluated using spoken or written questionnaires and inter-
views. In such an evaluation, users are usually asked to fill up questionnaires or rate certain
aspects of a conversation that address users’ satisfaction, as reported in [15]. User satisfaction
has been addressed in other research fields as well – consumer satisfaction with products [205]
and Spoken Dialog Systems (SDS) such as problem-solving [16] and tutoring [17]. In SDS, user
satisfaction is used as one of the metrics to assess the quality of a dialog system [18, 19]. Thus,

Contents published in:
Shammur Absar Chowdhury, Evgeny A. Stepanov and Giuseppe Riccardi, Predicting User Satisfaction from Turn-
Taking in Spoken Conversations, in Proc. of Interspeech-2016, San Francisco, USA.
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the increasing importance of user experience as a quality assessment demands a computational
model for observed user satisfaction rather than self-reported measure.

In a natural conversation, parallel to the exchange of information, there is also a flow of
speakers’ emotional states, unfolding with or without any intent. A sequence of emotional states
manifested during a conversation is a strong cue for predicting user experience. The goal of this
study is to exploit these sequences of emotional states, specifically the final state, to model
user satisfaction. For the automatic prediction of the user satisfaction, the final emotional states
are categorized into three labels as Positive (Pos), Negative (Neg), and Neutral (Neu). We
investigate how the organizational structure of a conversation, such as turn-taking, contributes
to the prediction of user satisfaction along with other more common levels of conversation
description such as lexical and prosodic.

Turn-taking is a remarkable phenomenon that is fundamental for human communication
[206]. Over decades the intriguing cues of turn-taking attracted researchers from conversational
analysis, linguistics, psycholinguistics, and speech. One of the first studies on turn-taking was
conducted by [4], where turn-taking is defined as a way to signal and perceive cues for Transi-
tion Relevance Place (TRP). The authors also suggest that the transition from the current speaker
to the next should occur very frequently with minimum gap or overlap in speech. In [4,35], over-
laps have been considered as a violation of the fundamental rule, but the authors in [5] suggest
that about 40% of all between-speaker intervals are overlaps. It has been proposed that speech
overlaps relate to the dominance, aggression, competitiveness or cooperativeness towards the
other speaker [7, 8, 177]. Other relevant studies include overlap detection [207, 208] (including
word-level as overlap vs. clean-speech [209]), interruption detection [82], and studies on types
of turn-taking and their correlation with speakers’ turn-taking behavior [206].

Considering the literature on overlaps and turn-taking in spoken conversations, competi-
tiveness and non-competitiveness of the speaker turns did not receive enough attention. Among
the few, [210] demonstrate the importance of the onset position of the overlap along with the
temporal features. On the other hand, in [56], the author argue that overlap is better described
by the phonetic design rather than its precise location; which is later supported by [46, 77].

Previous work on incorporating turn-taking with social signals have mainly focused on
group dynamics or task-oriented dialogs, like modeling participant’s affects from turn-taking
with post-meeting ratings [211] or studies about participant’s involvement or interest [212,213].

To the best of our knowledge, turn-taking has not been utilized for predicting user satis-
faction as emotional manifestation. Hence, in this study, we focus on turn-taking features for
predicting user satisfaction; to achieve this goal we are:

• modeling the state of the user satisfaction in terms of the final emotional manifestation of
the customer.
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• automatically predicting the state of the user satisfaction as Pos, Neg, Neu, using the
lexical, prosodic and turn-taking feature sets.

• designing a turn segmentation and labeling system by utilizing automatic transcriptions
and acoustic features, to extract turn-taking features.

• comparatively evaluating and analyzing the turn-taking features to understand their dis-
criminative power.

For the study, we analyzed a large dataset of Italian call-center spoken conversations where
customers and agents are engaged in problem-solving tasks, as described in Chapter 3, Section
3.1.2.

The chapter is organized as follows. An overview of dataset preparation is given in Sec-
tion 8.2. Followed by details of the system framework, extracted features and classification
experiments in Section 8.3. Section 8.4 presents the results and analysis of the observations.
Summary of the chapter is provided in Section 8.5.

8.2 Data Description
In this study, we consider a corpus of 1894 call-center conversations [147], collected over

the course of six-months (210 hours of speech, with an average length of 406 seconds per
conversation). The conversations were recorded on two separate channels with 16 bits and
8kHz sampling rate.

The corpus was annotated for basic and complex emotions following the modal model of
emotions developed by Gross [142, 144]. The model emphasizes the attentional and appraisal
acts underlying the emotion-arousing process. For the annotation, the considered basic emotion
was anger; and the complex social emotions were satisfaction, dissatisfaction, frustration and
empathy. Empathy was annotated for the agent channel only; the rest of emotions for the
customer channel. The inter-annotator agreement of the annotation has kappa = 0.74 (additional
details of the annotation process can be found in [148]).

A subset of 739 conversations (≈ 86 hours) was selected such that conversations annotated
with customer emotion has also been annotated with empathy in the agent channel.

With respect to the annotation, the final manifested emotional state can be satisfaction, anger
or frustration, or there might be no emotional manifestation. As shown in Figure 8.1, we define
three labels for modeling user satisfaction concerning the final emotional state in the conver-
sations. Positive, Pos is used for the conversations where the final emotional manifestation
of the customer is satisfaction. Satisfaction may be the only manifested emotion in the cus-
tomer channel (S1) or it may come as a results of a change from anger or frustration due to
agent’s manifestation of empathy (S2); thus, yielding a sequence Customer: Anger/Frustration
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No emotion manifested by Agent or Customer 

Start 

Negative 

Positive 

Neutral 

End Flow of a conversation 

User Satisfaction: 
‘Final’ emotional 

state of the Customer 

Emotional transitions in between 

 Customer manifested Satisfaction throughout the 
conversation 

Customer manifested Anger or Frustration or both 
emotions  
Agent  was successful in resolving the issues 
Customer manifested Satisfaction 

Customer manifested Anger or Frustration or both 
emotions  
Agent was unsuccessful in resolving the issues 

S1 

S2 

S3 

S4 

Figure 8.1: Different scenarios of emotional manifestation with associated class labels repre-
senting user satisfaction.

Table 8.1: Train, Dev and Test set split and their distribution for the prediction task.

Sets Pos (%) Neg (%) Neu (%) Total(%)

Train 205 (34.0%) 198 (32.84%) 200 (33.17%) 603 (100%)
Dev 21 (30.43%) 22 (31.88%) 26 (37.68%) 69 (100%)
Test 19 (28.36%) 25 (37.31%) 23(34.33%) 67 (100%)

→ Agent: Empathy → Customer: Satisfaction. Negative, Neg is used for the conversations
where the final emotional manifestation of the customer is either anger, frustration or both (S4).
The conversations that do not have any emotional manifestations are labeled as Neutral, Neu
(S3). The split of the data into training, development and test sets are given in Table 8.1.

8.3 System Framework
In Figure 8.2, we present a pipeline for predicting the state of the user satisfaction, which

takes an audio and speaker information of a conversation as an input. The speech signals are
then passed through Automatic Speech Recognition (ASR) pipeline, which consists of a speech
vs. non-speech detector and domain-specific ASR. Each detected speech segment is passed to
the ASR [176]. The time aligned output of the ASR along with speech signal is then used to
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ASR pipeline 

Lexical Turn-Taking Prosodic 

Individual Classification and Combination 

User satisfaction states: 
Postive/Negative/Neutral 

Feature  
Extraction 

System 

Audio signal and 
Speaker information 

Aligned tokens 

Figure 8.2: Computational system for classifying the state of user satisfaction.

extract turn-taking, lexical and prosodic features.
The individual feature sets – lexical, prosodic, and turn-taking – are then used to train

and evaluate classifiers. Additionally, we perform feature-level and decision-level fusion. For
decision-level fusion, we are using weighted majority voting, where the weight of each clas-
sifier is the overall F1 of the system on dev set. Moreover, to understand the discriminative
characteristics of the turn-taking features, they are analyzed using logistic regression model.

8.3.1 Feature Extraction
8.3.1.1 Turn-Taking Features

The Turn-Taking Feature Extraction System, described in Figure 8.3, consists of a turn
segmentation and labeling system and the feature generation step. The system uses lexical and
acoustic information to extract the features. The pipeline uses the time aligned ASR output
as tokens to create Inter-Pausal Units (IPUs) for each input channel. IPUs are defined as the
consecutive tokens with no less that 50 ms gaps in between. Using the time information of inter-
IPUs and intra-IPUs, we defined steady conversation segments where each segments maintain
a steady timeline in both interlocuters channel. The labels of each segment are then defined by
a set of rules. Labels of the segments are as follows:

• Turn (T ): Maximal sequences of IPUs where one single speaker has the floor, and none of
IPUs from the interlocutor are present [201]. TA and TC represent agent and customer’s
turns respectively.

• Pause (P ): Gaps between the turns of the same speaker with no less than 0.5 sec. PA and
PC represent agent and customer’s pauses respectively.

• Overlaps (Ov): Overlapping turns between the two interlocutors.
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Figure 8.3: Schematic diagram of automated Turn-Taking Feature Extraction System with
speech signal and asr transcription as input. TA, TC , PA: agent and customer’s turn and Pause,
Ov:overlaps, LB:Lapse between speakers, S:Smooth switch, TA/C −DA: TA/C with DA,
Dialog Act dimension, where DA ∈ {Social, Task, Feedb, Other}, Cmp: Competitive over-
lap.

• Lapse between speakers (LB): Floor Switches between the speakers with a silence dura-
tion of 2 sec or more.

• Lapse within speaker (LW ): Gaps between a speakers’ turns with a silence duration of 2
sec or more.

• Switch (S): Floor Switches between the speakers with silence less than 2 secs or with
overlapping frames not more than 20 ms.

The generated turn sequences along with the speech signals are then passed to Discourse La-
beling Module (DLM) followed by the Turn-Taking Feature Generation module for extracting
turn-taking features.

Discourse Labeling Module: The DLM module includes Overlap Categorization and Dia-
log Act Dimension Classification systems as described below.

Overlap Categorization: The automatic overlap labeling includes Competitive (Cmp) and
Non-Competitive (Ncm) categories. In Cmp scenario, the intervening speaker starts prior to
the completion of the current speaker and both the speakers perceive the overlap as problematic
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and display interest in the turn for themselves. In Ncm scenario, the intervening speaker starts
at the middle of an ongoing turn with no evidence for the intent to grab the turn.

To automatically label these two categories of overlaps we use an in-domain overlap cate-
gorization model [177]. The model was trained using acoustic features with the left and right
context of 0.2 and 0.3 seconds of speech. The overall F-measure of the system using acoustic
features is 64.36% on the test set as reported in [177].

Dialog Act Dimension Classification: To get an overview of the function of each turn in
the conversation, we use an in-house developed dialog act segmenter and dialog act dimension
classifier [214]. The labels of output turns are the dimensions of the dialog acts from DiaML
ISO specification [1] including dimensions such as: Task (e.g., question, instruct, suggest), So-
cial (e.g., greeting, apology), TimeManagement and Feedback (e.g., stalling, positive-negative
feedback), Others or None. The overall F-measure of the system, using bag-of-word features,
is 72% (in-domain test set) and 60% (out-of-domain test set).

Turn-Taking Feature Generation: The turn-taking features are generated using the turn
sequence output from the DLM module (see Figure 8.3). To understand the impact of overlaps
– Cmp vs. Ncm, silence and other predictability factors of turn-taking structure are extracted as
turn-taking features at both conversation and individual speaker levels. A brief description of
extracted features are as follows:

• Participation equality [215], Peq:

Peq = 1− (

∑N
i (Ti − T )2/T

E
) (8.1)

where T is the average speech duration of the speakers. Ti is the total speech duration for
each speaker. E represents the total speech duration. N = 2, represents two speakers as
agent and customer.

• Turn-taking Freedom, as defined in [211], Fcond:

Fcond = 1− Hmax(Y |X)−H(Y |X)

Hmax(Y |X)
(8.2)

where we calculateH(Y |X), the conditional entropy of speaker Y being the next speaker
after X begins the turn, Hmax(Y |X) being the maximal possible value for this. W =

{agent, customer}, X ∈ W , Y ∈ W and X 6= Y .

The value of Fcond is between 0 and 1, where 0 represents a strict turn-taking.

• Percentage of overlaps.

• Percentage of Cmp and Ncm on total overlap duration.
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• Percentage of agent’s and customer’s speech

• Median duration of TA, TC , PA, PC , Cmp, Ncm, LW and LB.

• Probability of speaker X’s turn after a Cmp: P (X|Cmp) or Ncm: P (X|Ncm).

• Probability of Cmp after speaker X’s turn: P (Cmp|X) or Ncm after speaker X’s turn :
P (Ncm|X).

• Rates of each dialog act dimension with respect to speaker’s speech duration.

8.3.1.2 Prosodic Features
We extracted prosodic features using openSMILE [178] with the frame size of 25 ms and

a frame step of 10 ms. These low-level features such as pitch, loudness, and voice-probability
together with their derivatives are then projected onto 24 statistical functionals such as mean
and range among others. More details of these features are in [179].

We extract the prosodic features for agent and customer channels separately, then linearly
merge them to design an equal sized vector for each conversation. Let As1 = {A1,A2, ...,Am}
and Cs2 = {C1,C2, ...,Cm} denote agent and customer channels’ feature vectors respec-
tively. The combined feature vector is Pc = {A1,A2, ...,Am,C1,C2, ...,Cm} with Pc ∈
Rm+m.

8.3.1.3 Lexical Features
Lexical features are extracted from automatic transcriptions for the whole conversation from

the ASR pipeline. The features are then transformed into a bag-of-words (vector space model)
[180], to represent the words as numeric features. For this study, we extracted trigram features,
to use the contextual benefit of n-grams. The frequencies in the feature vectors were then
transformed into tf-idf values - the product of the logarithmic term frequency (tf) and inverse
document frequency (idf).

8.3.1.4 Feature Combination
For this study, we also analyze the combined contribution of the feature sets. As shown

in Figure 8.2, after extracting turn-taking, prosodic and lexical features we merge the feature
vectors into a single vector and then use that for classification.

8.3.2 Classification and Evaluation
A Sequential Minimal Optimization (SMO), a support vector machine implementation of

weka [191], is used to train the classifiers with feature values normalized within [0, 1] interval.
Due to the difference between the dimensionality of the feature vectors, we experiment with
different kernels such as linear and RBF of SVM on the dev set. As for the evaluation, we
report F-measure (F1) for individual classes, along with macro-averaged F-measure.
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Table 8.2: Classification results for predicting user satisfaction state. Feat.Comb: Feature-level
combination, D.Fuse: Decision level fusion, Oracle-D.Fuse: Oracle of D.Fuse. Reported value
is F1 measure on the test set.

Experiments Pos Neg Neu Overall

Chance-Baseline 0.24 0.30 0.27 0.27

Lexical 0.44 0.58 0.35 0.48
Prosodic 0.33 0.32 0.52 0.40
Turn-Taking 0.61 0.57 0.62 0.61

Feat.Comb 0.49 0.57 0.55 0.54
D.Fuse 0.57 0.57 0.60 0.59
Oracle-D.Fuse 0.90 0.86 0.80 0.85

8.4 Results and Discussion

In Table 8.2 we present the results for predicting the state of user satisfaction in terms of
Pos, Neg and Neu, using individual feature sets and their combination and decision level fusion.
For comparison, a random baseline is calculated by randomly generating class labels based on
prior class distribution.

It is observed that all the systems have higher performance than the baseline. Regarding
overall system F1, the turn-taking features outperform all other systems. As for individual
classes, turn-taking is noticed to be the best discriminator for Pos and Neu classes and has 1%
F1 less in Neg class compared to the lexical feature set. This indicates the potential of lexical
features to predict for Neg state of user satisfaction.

It is important to note that we have used the linear kernel of SVM for all the experiments
except for turn-taking feature set, for which we used the RBF kernel, tuned on the dev set.
The F1 of turn-taking features with linear kernel (Tt− L) and an optimized penalty parameter
C = 0.4 are: Pos: 0.55, Neg: 0.52, Neu: 0.63 and Overall: 0.58. Even with linear kernel the
turn-taking feature set exceeds the lexical and prosodic features by 10% and 18%, respectively.

Using feature combination (Feat.Comb), we have 6% and 14% improvement over lexical
and prosodic feature sets but not over turn-taking feature set. One possible reason could be the
fact that these feature sets vary in terms of dimensionality and their representations (dense vs
sparse). The vector size for turn-taking feature is 34, which is very small compare to prosodic
and lexical feature sets. The performance of the individual system is reflected in decision fusion
result and the upper bound of decision fusion is shown by Oracle results in Table 8.2.

We use multilevel logistic regression [216], to understand the impact of turn-taking feature
for predicting each state of user satisfaction. The result shows a significant positive effect on
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the presence of non-competitive overlaps and use of social turns by customers in Pos class,
while the median duration of TA has a negative effect. That is, the customer tends to be more
satisfied when there is an increase of feedback and social turns flow rather than agent taking long
turns. Similarly, the use of the time-management/feedback DA turns decrease the likelihood of
the conversation to be Neg significantly, whereas the likelihood of Neg class increases when
the percentage of competitive overlaps along with the use of DA-Other by agent increases.
In [217], the authors reported that the automatic feature "BargeIns" were highly correlated with
user satisfaction, which also supports our findings with Neg class.

8.5 Summary
In this study, we investigate the use of turn-taking in predicting user satisfaction in spoken

conversations. We model user satisfaction as the final emotional manifestation of a conver-
sation, which can be either positive, negative or neutral. We extract turn-taking features by
designing a turn segmentation and labeling system. We compare turn-taking features with lex-
ical, prosodic feature sets along with feature level combination and decision level fusion. We
observe that turn-taking features outperform all other systems. The analysis of turn-taking fea-
tures suggests that the use of non-competitive turns and social dialog acts increase the chance
of a positive user experience, whereas competitive turns tend to decrease the chance of positive
experience.
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Chapter 9

Coordination between Interlocutors in Emotional Episodes

In this chapter, we aim to investigate the coordination of interlocutors behavior in different
emotional segments. Conversational coordination between the interlocutors is the tendency of
speakers to predict and adjust each other accordingly on an ongoing conversation. In order to
find such a coordination, we investigated 1) lexical similarities between the speakers in each
emotional segments, 2) correlation between the interlocutors using psycholinguistic features,
such as linguistic styles, psychological process, personal concerns among others, and 3) re-
lation of interlocutors turn-taking behaviors such as competitiveness. To study the degree of
coordination in different emotional segments, we conducted our experiments using real dyadic
conversations collected from call centers in which agent’s emotional state include empathy and
customer’s emotional states include anger and frustration. Our findings suggest that the most
coordination occurs between the interlocutors inside anger segments, where as, a little coor-
dination was observed when the agent was empathic, even though an increase in the amount
of non-competitive overlaps was observed. We found no significant difference between anger
and frustration segment in terms of turn-taking behaviors. However, the length of pause sig-
nificantly decreases in the preceding segment of anger where as it increases in the preceding
segment of frustration.

9.1 Introduction
Behavioral and social signal processing are emerging interdisciplinary areas of research,

which combine social science, psychology, and computer science. The aim of the research is to
design computational models for processing human behavioral aspects, which can facilitate dif-
ferent domain experts while counseling, consulting and (or) providing services [2, 3, 218–220].
The idea is to analyze different overt and covert behavioral signals during social interactions
and label them with some short and long term functional aspects (i.e., states and traits) in order
to quantitatively measure them. The functional aspects include empathy, politeness, agreement,
engagement, uncertainty, competitiveness and other typical, atypical, distressed and affective

Contents published in:
Firoj Alam, Shammur Absar Chowdhury, Morena Danieli, Giuseppe Riccardi, How Interlocutors Coordinate with
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social behaviors. Using these short and long term states and traits, one can design an informa-
tive behavioral profile of an individual from the daily-life interactions. The measured behavioral
profile can help to predict the next behavioral outcome/consequence and/or actions of an indi-
vidual. This kind of behavioral profile can help domain experts in different application scenarios
such as call center, health-care and teacher-student interactions.

In the field of social and psychological science, researchers have been trying to understand
these functional aspects for a very long time, however, very recently there are attempts to design
automatic computational models for real-world applications. Designing such automatic systems
for measuring these behavioral and social functional aspects is still infancy due to many differ-
ent challenges.

One of the important challenges is to understand how different behavioral cues are associ-
ated with one another and how we express them in different interaction scenarios. In this study,
we investigated, the coordination of interlocutors behavior in different emotional segments and
how conversational turn-taking dynamics are associated with emotional manifestations of the
agent and customer. For the study, the conversational coordination between the interlocutors
is defined as the tendency of speakers to predict and adjust each other accordingly on an on-
going conversation. We explored the coordination in terms of psycholinguistic features, lexical
and turn-taking features using correlation analysis, cosine similarity, and regression analysis,
respectively. For this study, we analyzed dyadic human-human spoken conversations, collected
from the call centers in the domain of after-sale customer care, which has been annotated with
turn-taking dynamics and emotional expressions. The turn-taking dynamics include compet-
itiveness of overlaps, pauses, and lapses among others. Emotional expressions has been an-
notated for agent and customer separately with agent’s emotional state include empathy, and
customer’s emotions include anger and frustration.

It has been a few decades to the study of automatically recognizing emotion in affective
computing, which has been done in the lab as well as in real settings. The study includes
classifying Ekman’s six basic categorical emotions [221] or dimensional levels of emotion such
as valence and arousal [222]. Still, there are challenges to make emotion recognition research
in its practical use, which includes lack of publicly available realistic databases, issues of fusing
multi-modal information, automatic segmentation, robustness in terms of generalizability across
the domain, cross-corpus [163, 223]. A detailed overview of emotion recognition research in
terms of theories, computation models, and relevant applications is provided in [224].

The study of turn-taking dynamics such as speech overlap has also a long history. One of
the first studies on speech overlap, as discussed in [4], suggested that turn changes with overlap
is a very rare case and occurs as a result of self-selection, which projects turn endings. Where
as a recent study of [5] suggests that overlap is, in fact, a frequent phenomenon and is much
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more than just a turn-taking signal, which has also been discussed in [177].

There has been a very few study, which explores finding how different turn-taking features
are associated with emotional states. The association of turn-management labels, such as grab,
accept, back-channel, and emotional states have been studied in [225]. The importance of turn-
taking information for predicting user-satisfaction in terms of user manifested emotion have
been studied in [226]. They discussed that turn-taking cues significantly helps in the automatic
prediction of user-satisfaction. To the best of our knowledge, a very little study have been
conducted to examine what actually happens within an emotional segment in terms of turn-
taking. In our study, we present a call center conversation corpus (in Section 9.3) in which we
have the manual annotation of emotional states and overlap discourse. Using which we explored
the coordination of interlocutors behaviors as our preliminary study, presented in Section 9.2
and 9.6, which can shade a light in future for designing automated computational model.

9.2 Methodology

In Figure 9.1, we present the experimental system of our study. In the data preparation
phase, we selected a subset of conversations in which we have annotations of emotional states
and overlap discourse. The turn-taking information extraction system utilized an Automatic
Speech Recognition (ASR) system [176] to create turn segments and extract turn information
(see Section 9.4). Later, this information was aligned with the annotations of emotional seg-
ments to find the turn-taking information (more details can be found in Section 9.4.1). Using
the aligned turn-taking information for an emotional segment, we extracted turn-taking fea-
tures. We also used turn information to obtain lexical and psycholinguistic features per speaker
from the segment. In the analysis phase of our experiment, we investigated lexical similarities
and correlation of psycholinguistic features between speakers for different emotional segments.
We also used multilevel logistic regression method to understand the association between turn-
taking features and emotional segments, and how the association differs from one emotion to
another.

9.3 Data Preparation

For the analytical study, we selected a set of 523 conversations with the manual annotation
of emotional states and overlap discourse. This set includes 310 conversations with emotional
segments. Among the emotional segments around 11.28% of emotion are annotated as anger,
26.11% as frustration and 62.61% of annotated emotion in agent channel has empathy. From
the rest of the 213 conversations, containing no emotional annotations, we selected segments
and labeled them with no-emotion (NoEmo).
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Figure 9.1: System diagrams.

During the data preparation, we faced two important problems in order to define and align
the emotional segment in association with turn-taking discourse: 1) emotional segment are
very short in length, which made the task very difficult to get sufficient turn information, 2)
an speaker respond to other speaker’s emotion with a latency. To overcome these problems,
we re-defined the following boundary of manual emotion segment with an impact window of
length 2 ∗ d, where d is the length of the manual annotation of the emotional segment. Hence,
the length of our emotional segment is d + 2 ∗ d = 3 ∗ d. We also investigated preceding
context of each customer’s emotional segment and defined it as Pre.Emo with a window of
length 3 ∗ d. The NoEmo segments have been selected from conversations where no emotion
in both agent and customer side has been annotated. From the middle of each conversation, we
selected and extracted two NoEmo segments with a length of the average emotional segment,
(≈ 42 sec). We extracted the NoEmo segments from both agent and customer channels. As
mentioned earlier, empathy, Emp, has been annotated in the agent channel only. Thus the
preceding context of agent’s emotional segment is defined as Pre.Emp. Hence, the investigated
emotional and non-emotional segments include Pre.Emp, Emp, Ang, Fru, Pre.Ang, Pre.Fru and
NoEmo.

9.4 Turn-taking Information Extraction
The Turn-Taking Information Extraction System, described in Figure 9.1 (b), consists of a

turn segmentation and labeling system. The system uses lexical and manual overlap discourse
annotation information to segment and labels the turn types. The pipeline uses the time aligned
ASR output as tokens to create Inter-Pausal Units (IPUs) for each input channel. IPUs are
defined as the consecutive tokens with no less that 50 ms gaps in between. Using the start and
end time information of inter-IPUs and intra-IPUs, we created a steady time line and binary
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representation (presence or absence of speech information) segments for both the channels. We
then defined these segments as steady conversation segments. The labels of each segment were
then defined by a set of rules. Labels of the segments are as follows:

• Turn (T ): Maximal sequences of IPUs where one single speaker has the floor, and none
of the IPUs from the interlocutor are present [201]. TA and TC represent agent and cus-
tomer’s turns respectively.

• Pause (P ): Gaps between the turns of the same speaker with no less than 0.5 sec. PA and
PC represent agent and customer’s pauses respectively.

• Overlap TypesOv= {Cmp,Ncm}: Overlapping turns between the two interlocutors with
competitive or non-competitive intention (see section 3.1.2 for details).

• Lapse between speakers (LB): Floor switches between the speakers with a silence dura-
tion of 2 sec or more.

• Lapse within speaker (LW ): Gaps between a speakers’ turns with a silence duration of 2
sec or more.

• Switch (S): Floor switches between the speakers with silence less than 2 secs or with
overlapping frames, not more than 20 ms.

9.4.1 Alignment: Turns and Emotional Segments
For the turn level analysis, it is important to align the turn sequences with the boundary of

emotional segments. It is evident from manual annotation that an emotional segment consist
of different turn types and not all the turns start inside the boundary. There are some cases, as
shown in Figure 9.2 where the start/end of emotional episode can be at the middle of a turn. We
solved this problem using a rule-based approach. For example, if half of a mismatched turn fall
inside an emotional segment we considered that as a part of emotional segment.

9.5 Feature Extraction

9.5.1 Lexical Features
We extracted lexical features from automatic transcriptions from an in-house developed Au-

tomatic Speech Recognition (ASR) System [176]. The word error rate of the system is 31.78%
on the test set. To understand the utility of the automated transcriptions with such as error rate,
in a different study we compared the performance between automatic and manual transcriptions
for a automatic classification of emotions. The results show that performance differences are
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Figure 9.2: Type of mismatch between emotion segment boundaries and turns. Es and Ee are
the manual emotion segment boundaries. Ss and Se are the turn boundaries. T1, T2, and T3
represents the type of turn boundary mismatch.

very low, only 1.2% drop with automated transcriptions [227]. Therefore, we found that the use
of automatic transcriptions are reasonable for the experiment given that manual transcriptions
are not available in call cases. For the experiments, the transcriptions of each segment were
converted into bag-of-words vectors weighted with logarithmic term frequencies (tf) multiplied
with inverse document frequencies (idf). We also reduced the size of the dictionary by removing
stop-words and lower frequent words.

9.5.2 Psycholinguistic Features
Psycholinguistic features were extracted from the transcriptions, using Linguistic Inquiry

Word Count (LIWC) [228]. It has been used to study personality, the role of speakers in overlaps
[177, 229] among other social behaviors in order to understand the correlation between these
attributes and word uses. The feature category includes linguistic (e.g., preposition, verb, word
count), psychological (affect, positive, negative emotion, anxiety), personal concern (e.g., work,
home, money), swear words, relativity among others. The LIWC is a knowledge-based system,
which was designed using a set of dictionaries for different languages including Italian. In the
dictionary, each word was labeled with feature categories mentioned above. During the feature
extraction process the word in the transcriptions was matched with the dictionary. Then, the
matched category was computed as frequency or relative frequency. The Italian version of the
dictionary contains 85 word categories [230]. We also extracted 5 general and 12 punctuation
categories constituting a total of 102 features. We then removed LIWC features that are not
observed in our training dataset.

9.5.3 Turn-Taking Features
The turn-taking features were generated using the turn sequence output of the Turn-Taking

Information Extraction System, described in Section 9.4. The sequences were first aligned
with each corresponding emotional segment (see Section 9.4.1). To understand the impact of
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the choice of turn-taking behavior, we divided the feature sets, at both segment and individual
speaker levels, into two groups. A brief description of extracted features, in the segment, are as
follows:

• General information about emotional segment (G1):

– Participation equality, shown in Equation 9.1

Peq = 1− (

∑N
i (Ti − T )2/T

E
) (9.1)

where T is the average speech duration of the speakers. Ti is the total speech dura-
tion for each speaker. E represents the total speech duration. N = 2, represents two
speakers as agent and customer inside the emotional segment.

– Percentage of overlaps.

– Percentage of Cmp and Ncm on total overlap duration.

• Length of different turn types (G2):

– Median duration of TA, TC , PA, PC , Cmp, Ncm, LW and LB, inside emotional
segment normalized by the median of speaker’s respective turn in the whole conver-
sation.

9.6 Analysis and Results
For different feature sets, we investigated different experimental configurations. For the

study of lexical similarities, our experimental conditions include: 1) lexical features from paired
(i.e., agent and customer channel from same conversation) speakers’ non-overlapping vs over-
lapping turns, 2) lexical features from non-paired (i.e., agent and customer channel extracted
from unrelated conversation) speakers’ non-overlapping vs overlapping turns. Where as for psy-
cholinguistic features, we investigated features obtained from non-overlapping vs overlapping
turns. For turn-taking features, we have not made any such distinctions. The non-overlapping
turns include all the turns of the speakers excluding the overlaps. Where as the overlapping
turns includes competitive (Cmp) and non-competitive (Ncm) overlaps.

9.6.1 Lexical Similarities
For the analysis, we computed cosine similarity of the agent and customer aligned segment

representing different emotional states. For the lexical similarity we designed feature vector
for agent

−→
VSA

and customer
−−→
VSC

emotional segment using bag-of-word model and transformed
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Figure 9.3: Lexical similarity between the emotional segment of the agent and the customer
channel. Pre. represents preceding segments. Ang - anger, Fru - frustration, Emp - empathy,
NoEmo - no-emotion

them into tf-idf. Then, we computed cosine similarity, as shown in Equation 9.2 between the
feature vector of the agent and customer’s segment. For a pair-wise comparison of emotional
states, then, we computed mean and standard deviation with statistical significance using t-test.

sim(SA, SC) =

−→
VSA
·
−−→
VSC∣∣∣−→VSA

∣∣∣ · ∣∣∣−−→VSC

∣∣∣ (9.2)

As mentioned earlier, we have four different experimental configurations for the analysis of
lexical similarities. As a baseline, we computed the similarities between non-paired speakers
using the lexical features from non-overlapping turns for different emotional segments. The re-
sults are presented in a form of similarity map in Figure 9.3. From the results, we observed that
the interlocutors entrain each other in non-overlapping turns when the customer is expressing
anger, and the value of similarity (sim = 0.181) is significantly (p < 0.05) higher than the
similarities in any other emotional segment.

In the experiment with competitive overlapping turns, we observed the highest similarity
of 0.035 and 0.031 in preceding-anger and anger segments, respectively. In the case of non-
competitive overlapping turns, a similarity of 0.034 was observed between the interlocutors in
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frustration segments. The results on overlapping turns are insignificant.

9.6.2 Psycholinguistic Features

We explored the degree of coordination using Pearson correlation coefficient (r) between
the interlocutors’ behaviors by correlating psycholinguistic features obtained from overlapping
and non-overlapping turns, presented in Figure 9.4. For the sake of simplicity, the magnitude
of r values are presented using colors where as ‘5’ symbol represent the corresponding r is not
significant. These analyses are based on entire emotion segments from the agent and customer
channels, irrespective of turns. The r is calculated for each psycholinguistic feature by correlat-
ing the agent and customer feature vectors of the conversations. We calculated the significance
of the correlation coefficient r using t-test with a degree of freedom equal to n − 2, where n
represent the total number of instances.

From the correlation plot, it is apparent that the non-overlapping turns of the interlocutors in
anger (Ang) segments has high correlation values compared to other emotional segments non-
overlapping turns and also compared to overlapping turns (Ncm and Cmp). Not surprisingly
the magnitude of the correlation is significantly higher for psychological features like anxiety,
affect, and sad between anger segments compared to frustration and empathy segments. Look-
ing at the preceding-anger segments, we observed that the magnitude of r for personal concern
along with psychological features are also stronger. It indicates that the cues of anger segment
can be found in its preceding segments. The results also show that the uses of pronouns or
negation words is directly proportional to the another speaker’s usage. We also observed simi-
lar patterns in the uses of tenses. The magnitude of r is much higher for past-tense uses in anger
compared to others emotional segment and preceding emotional context.

In the case of frustration, the strength of r decrease compared to the preceding segment
of frustration. Unlike preceding-frustration segment, we observed that in frustration, there is
less coordination between the interlocutors with an exception in preposition and word count
features. Though a slight increase in r is observed in verb (they) feature. It is also observed that
the interlocutors seem to be more coordinated in the use of swear words in preceding-frustration
segments compared to all other segments.

In empathy segments, the coordination of the agent and customer improves compared to
preceding-empathy, frustration, and no-emotion segments but the magnitude of coordination is
not as impressive as anger segments.
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Figure 9.4: Correlation analysis at the non-overlapping segment, and overlapping segments,
where ‘5’ symbol represents that the corresponding r is not significant. Pre. represents preced-
ing segments. Ang - anger, Fru - frustration, Emp - empathy, NoEmo - no-emotion

In competitive and non-competitive overlapping turns, a very few significant coordination
has been observed. The experiment with non-competitive turns shows that the interlocutors co-
ordinate in anger segment with the features such as affect, achieve, negative emotion, tentative,
and verb (they). In the case of competitive overlaps, we observed weak positive correlations be-
tween the interlocutors in preceding-frustration segment with feature inclusive, preceding-anger
segment with a verb (they), and in empathy segment with space feature.

138



9.6.3 Turn-Taking Features
For the experiment with turn-taking features, we applied a multilevel logistic regression to

understand the association of turn-taking features with emotional expressions and how they dif-
fer from one emotional state to another. The association of turn-taking features with emotional
segments are presented in Table 9.1, in terms of regression coefficients. In Table 9.1 (a), the co-
efficients are reported with respect to the preceding segment of each emotion, where as in Table
9.1 (b), the coefficients represents the association of each turn-taking feature with the preceding
emotion segment vs. no-emotion segments.

The results indicates that compared to the preceding context of empathy (Pre.Emp) and no
emotion (NoEmo) segments, participationEquality, MedianTurnC and MedianPauseC

has a negative effect on empathy (Emp) segment, where as %Overlap and length of non-
competitive overlap (MedianNcm) has a significant positive effect. Thus indicating the impor-
tance of non-competitive overlap in the empathic segment (Emp). The results also hypothesize
that during this emotional episode, agents tends to talk more allowing less participation equal-
ity between the agent and the customer. The duration of customer’s turn and pause tends to be
small.

The features %Overlap, the length of overlaps (MedianNcm and MedianCmp) has a
positive effect for anger segment compared to no-emotion segment. We also observed similar
findings for MedianCmp for preceding-anger w.r.t to no-emotion segment. It is observed that
the length of non-competitive overlaps (MedianNcm) has a positive association where as the
length of the lapse between the speakers (MedianLb) has a negative effect on anger with respect
to preceding context (Pre.Ang). From the result of comparing preceding-anger w.r.t to no-
emotion segments, we noticed that the positive association of the length of competitive overlap
is present from the preceding context as an indication of anger.

The features %Overlap, the length of overlaps (MedianNcm andMedianCmp) has a pos-
itive effect for anger segment compared to the no-emotion segment. We also observed similar
findings for MedianCmp for preceding-anger w.r.t to the no-emotion segment. It is observed
that the length of non-competitive overlaps (MedianNcm) has a positive association where as
the length of the lapse between the speakers (MedianLb) has a negative effect on anger with
respect to preceding context (Pre.Ang). From the result of comparing preceding-anger w.r.t
to no-emotion segments, we noticed that the positive association of the length of competitive
overlap is present from the preceding context as an indication of anger.

Apart from the results presented in Table 9.1, we also compared the association of turn-
taking features with empathy, anger, and frustration with respect to each other. We found no
significant difference between anger and frustration segments. However, the preceding context
of anger and frustration shows that compared to the preceding-frustration, decrease of pause
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length is positively associated with preceding-anger segment, especially in agent’s side. It is
observed that an increase in the length of competitive overlap duration, MedianCmp, is posi-
tively associated with anger segments w.r.t empathy segments.

Table 9.1: Regression coefficient w.r.t preceding segment of each emotion and no-emotion
segments.

Groups Features
(a) Compared to preceding segment (b) Compared to noemo segment
Emp Ang Fru Emp Ang Fru Pre.Emp Pre.Ang Pre.Fru

G1

participationEquality -0.948 0.259 -1.381 -0.244 1.018 0.253 0.823 0.060 1.669
% Overlap 0.069 0.059 0.131 0.099 0.112 0.083 0.035 0.046 -0.046
% Cmp 0.002 0.008 -0.005 0.005 0.015 0.011 0.001 0.009 0.015
% Ncm 0.007 0.000 -0.009 0.010 -0.002 0.000 0.002 0.000 0.008

G2

MedianTurnA 0.001 -0.002 -0.001 0.000 -0.001 -0.001 0.000 0.000 -0.001
MedianTurnC -0.003 0.001 0.003 -0.001 0.002 0.003 0.002 0.001 0.000
MedianPauseA 0.001 0.001 -0.004 0.002 -0.005 -0.002 0.001 -0.004 0.005
MedianPauseC -0.005 -0.008 -0.008 -0.003 0.002 -0.002 0.002 0.003 0.006
MedianCmp 0.001 0.002 0.001 0.003 0.006 0.005 0.002 0.004 0.005
MedianNcm 0.004 0.007 0.002 0.003 0.003 0.002 0.001 0.001 0.000
MedianLb -0.002 -0.011 -0.006 -0.005 -0.004 -0.003 -0.002 0.000 0.000
MedianLw 0.000 -0.002 -0.001 -0.002 -0.003 -0.001 -0.001 0.000 0.000

We also compared the duration of competitive and non-competitive overlap within different
emotions and preceding emotional segments. In case of competitive, as shown in Figure ??, we
observed that duration of mean competitive overlap in anger (1.25s) and frustration (1.09s) are
significantly more compared to the empathy (0.93s), no-emotion (0.80s) while there is not sig-
nificant difference between the duration of competitive in anger and frustration segment. In the
case of preceding emotion segments, the duration of competitive overlap in frustration is signif-
icantly higher than that of preceding-frustration (0.91s), where as preceding-anger (1.12s) and
preceding-frustration is significantly higher than no-emotion. It is also observed that competi-
tive duration in empathy segment is also longer (p < 0.05) than no-emotion segments. As for
non-competitive duration, shown in Figure ??, there is no significant difference between anger
(0.72s), frustration (0.68s) and empathy (0.69s) segment. But it is observed that empathy has
significantly longer non-competitive overlap compared to no-emotion (0.53s) and preceding-
empathy (0.61s) segment. Even, the preceding context of empathy (Pre.Emp) has significantly
longer non-competitive overlap duration than the non-competitive overlap where there is no
emotion. While in anger and frustration, the non-competitive overlap length is significantly
higher than the no-emotion segment.
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Figure 9.5: Duration distribution of competitive overlaps in different emotional segments.

Figure 9.6: Duration distribution of non-competitive overlaps in different emotional segments.
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Table 9.2: An automatic generated excerpt of a conversation between agent and customer, inside
an anger segment. A: Agent, C: Customer. Each row represents a turn in the conversation.
[X]Cmp presents competitive overlaps and [X]Ncm presents non-competitive overlaps.

A: [negare quello che lei ci]Cmp

[deny what you us]
C: [no no no non so non]Cmp

[no no no I do not know not]
C: andate in diffida perché

gone on a warning because

C:
[io ho chiamato ho mandato anche una raccomandata]Cmp [anche una raccomandata mi
scusi mi faccia]Cmp
[I have called (I) have send also a registered (mail)] [also a registered (mail) excuse me let
me]

A: [una signora io il sistema davanti quindi]Cmp

[one, Madame, I (am in front of) the system, then]
C: [parlare]Ncm

[speak]
A: [eh]Ncm

[huh]
A: eh però sul se scadesse al

huh however on if expires at
A: [sistema risultano in diffida]Cmp

[(the) system (they)appear (to be on) warning]
C: [sì un computer sono andate in]Cmp

[yes a computer (they) are gone in]
C: diffida quelle lì non io non le ho assolutamente pagate perché il la lettura del

warning those ones (I) do not have paid them absolutely because the reading of the
C: [del del]Ncm

[of the of the]
A: [eh]Ncm

[huh]
C: contatore

meter
C: [è stato fermo per sì]Ncm

[(it) was stopped for yes]
A: [certo lei]Ncm

[of course you]
A: non le ha pagate quindi sono andate in diffida quindi c è stato un interesse di mora

did not payed them so they had gone on warning so there has been a default interest ...
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9.7 Summary
In this study, we explored the coordination of interlocutors in different emotional segments

using lexical, psycholinguistic and turn-taking features. We investigated such feature sets in
terms of regression coefficients, cosine similarity and correlation analysis, respectively. We
observed that the interlocutors match each other turns, in terms of lexical similarity and psy-
cholinguistic features, significantly more in anger segment compared to other emotional seg-
ments. We also observed that in preceding segment of anger the speakers shows significant
correlation with each other in terms of psycholinguistic features. In terms of turn-taking fea-
tures, no significant differences between anger and frustration have been noticed, apart from
the difference in length of pauses in the preceding segment of the emotion. It indicates that
preceding context of anger has shorter pause with respect to frustration. Unlike anger, we found
less coordination in the segment where the agent is empathic even though an increase in the per-
centage of non-competitive overlaps has been observed. This is our preliminary study towards
utilizing these feature sets for the classification of emotional states and turn-taking discourse,
which we will investigate in future.
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Chapter 10

Conclusion and Future Works

10.1 Contributions and Discussion
The motivation of this dissertation is to design computational approaches for modeling turn-

taking dynamics. To model turn-taking dynamics, this thesis focused on two aspects of conver-
sational dynamics: 1) design automated computational models for analyzing turn-taking be-
havior in a dyadic conversation, and 2) predict the outcome of the conversations, i.e., observed
user satisfaction, using turn-taking descriptors and understanding the coordination between the
interlocutors inside emotional episodes.

Towards achieving this goal, the dissertation first studied what are the available research in
turn-takings. It is observed that even though overlapping speech and long silences are common
in every day conversation and carries behavioral information, however, a very little work has
been done to model this behavior and their functions towards the conversational flow. Therefore,
to model the turn-taking dynamics, we found that our primary priority is to push the boundary
of the research on overlapping speech and silence.

Towards the goal of modeling discourse of overlapping speech, we needed an operational
model to classify the competitiveness in overlapping speech. However, to model such dis-
courses, we needed a novel overlap annotation guideline. Therefore, we designed an annotation
guideline for segmenting and annotating the speech overlaps with the competitive and non-
competitive discouses, which is one of the main contributions of this thesis.

A significant effort has been given on designing the discourse model of overlaps. The re-
search first focused on the low-level acoustic features, such as spectral, mfcc, and prosodic
feature, to evaluate the distinguishing capabilities of the features while categorizing competi-
tiveness in overlaps. This investigation has been done by incorporating both the interlocutors’
channel information. It is observed that spectral features along with prosodic features provide
sufficient power to the model for classifying overlaps in absence of any other information. Later,
the thesis also studied the linguistic features such as psycholinguistic and lexical features. In
addition, this study presents how most relevant lexical ngrams act as a window for describing
the overlap discourse.

To understand the role of speakers and the context, the study also focused on designing clas-
sifier using contextual information such as overlapper, overlappee, left, right, and their different
combinations. Examining the results, it is observed that lexical choice of the overlapper is a
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good indicator of competitiveness in overlaps, where as for other information such as acous-
tic, the information regarding the discourse of overlaps can be found in both the interlocutors’
segment along with the context.

Apart from investigating individual feature set, this thesis also focused on different combina-
tion techniques such as decision level or feature level combination. The purpose is to study is to
develop an architecture to combine different information in classifying overlaps. It is observed,
that the feature level combination of lexical information (Bag-of-ngrams or word embedding
features) along with acoustic information outperforms any individual feature models and their
decision level combination. In addition to explore different features and their combination, the
thesis also focused on exploiting the power of linear (SVM) and non-linear (DNN) algorithms
to classify the overlap discourse. We have observed that the unbalanced natural distribution
presents a challenge for the performance of the discourse model especially for competitive
class.

The dissertation also attempts to shed some lights on the functional aspects of long silence
in between- and within- speaker turns. This is one of the most challenging tasks because as most
of the literature on silence points out the silence is valueless, but the function of the silence is
based on the context and the situation. But there is no operational categories or properties to
define the functions. Therefore, to model the silence function, we first need to code silence in
feature space. We designed the silence feature space using the preceding and succeeding turns
of silences. To code the action in the surrounding turns, we used dimension and communicative
functions of dialog acts. Following the design of the features, we categorized the functions
of between- and within- speaker silences using a hierarchical concept learning technique, and
defined general functional categories by selecting and merging the clusters (i.e., sub-trees), from
a hierarchical tree, based on their functional similarity. We observed that there are different
functions of these long silences, varying from response preparation to hesitation about some
queries. Even though there can be other cognitive functions, however, they are out of scope
of this dissertation. This study is our first attempt to understand long silence, and there is still
more research needed to be done.

To model the turn-taking dynamics, we designed a framework that automatically segments
the turns and turn-taking events, such as silence, and categorizes its discourse labels. Such a
system can take the audio signal as an input to the system and uses state-of-the-art ASR pipeline
with other discourse module researched in this dissertation (including dialog act segmenter and
classifier, and overlap discourse model) to label the turn-taking behavior in the conversation.

To understand the role of the coded turn-taking behavior in predicting the outcome of the
conversation, the dissertation also focused to design a computational model to automatically
predict observed user satisfaction, as a measure of the conversational outcome. The dissertation
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defines the observed user satisfaction, as the final emotional manifestation of the conversation,
which can be either positive, negative or neutral. Moreover, to predict user satisfaction, the
dissertation also focused on engineering the turn-taking behavioral features. Our experimental
finding suggests that turn-taking features are a powerful tool to predict the phenomena. A
detailed analysis of turn-taking features suggests that the use of frequent non-competitive turns
and social dialog can be a key to having a satisfied conversation.

To study the association of turn-taking dynamics with different emotional segments, the
dissertation also focused on studying how the turn-taking behavior along with other features
changes with different basic and complex emotional segments such as anger, frustration, empa-
thy. The analysis of the study showed that in the preceding segments before anger, the pause
length tends to be shorter with respect to frustration. The study also observed that interlocutors
coordinate more with each other in anger segments compared to other emotional segments.

According to all the observations and experimental results found in this dissertation, turn-
taking contains many behavioral information of the spoken conversation and can be used to
predict human long and short time behavioral characteristics such as personality, dominance
or even atypical conditions such as “flight of ideas”. The studies presented in the dissertation
opens many new avenues of research which can incorporate the turn-taking dynamics.

10.2 Possible Extensions
Throughout this dissertation, we designed, implemented, and evaluated computational mod-

els for overlap discourse classification, functions of silence, to segment and label turn-taking
dynamics and to predict the outcome of the conversation. While this dissertation tried to address
most of the possible queries regarding the models, but there are still scope for further extension
of the research.

In regards to the study of overlapping speech discourse, one important study that can be ex-
plored in future is to investigate an adaptation or transfer learning approach to exploit unlabeled
data. It is also necessary to understand how the computational model works across corpora in
order to understand the generability of the model and the designed architecture. A small part of
this thesis also focused on segmenting and classifying overlaps in a mono channel scenarios. To
improve the performance, the mono-channel models needs more research attentions from the
speech community.

The contribution in this thesis for modeling the functions of silence is the first step towards
this research areas. Even though for decades many studies have tried to conceptualize the
function of silence, however, there is a very little contribution from speech communities. To
understand more about functions of silence, we need to combine the observational cognitive
aspects along with the experimental techniques. This is a vast unexplored area which needs a
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lot of attention.
To improve the quality of artificial agents or enhance the research on behavioral studies of

human interaction, we need to learn how to utilize the designed turn-taking dynamics models
with expressive affective behavior models and design a combined system.
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