8,466 research outputs found

    A Generalized Method for Efficient Global Optimization of Antenna Design

    Get PDF
    Efficiency improvement is of great significance for simulation-driven antenna design optimization methods based on evolutionary algorithms (EAs). The two main efficiency enhancement methods exploit data-driven surrogate models and/or multi-fidelity simulation models to assist EAs. However, optimization methods based on the latter either need ad hoc low-fidelity model setup or have difficulties in handling problems with more than a few design variables, which is a main barrier for industrial applications. To address this issue, a generalized three stage multi-fidelity-simulation-model assisted antenna design optimization framework is proposed in this paper. The main ideas include introduction of a novel data mining stage handling the discrepancy between simulation models of different fidelities, and a surrogate-model-assisted combined global and local search stage for efficient high-fidelity simulation model-based optimization. This framework is then applied to SADEA, which is a state-of-the-art surrogate-model-assisted antenna design optimization method, constructing SADEA-II. Experimental results indicate that SADEA-II successfully handles various discrepancy between simulation models and considerably outperforms SADEA in terms of computational efficiency while ensuring improved design quality

    An Improved NSGA-II and its Application for Reconfigurable Pixel Antenna Design

    Get PDF
    Based on the elitist non-dominated sorting genetic algorithm (NSGA-II) for multi-objective optimization problems, an improved scheme with self-adaptive crossover and mutation operators is proposed to obtain good optimization performance in this paper. The performance of the improved NSGA-II is demonstrated with a set of test functions and metrics taken from the standard literature on multi-objective optimization. Combined with the HFSS solver, one pixel antenna with reconfigurable radiation patterns, which can steer its beam into six different directions (θDOA = ± 15°, ± 30°, ± 50°) with a 5 % overlapping impedance bandwidth (S11 < − 10 dB) and a realized gain over 6 dB, is designed by the proposed self-adaptive NSGA-II

    Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array

    Get PDF
    In this paper, we proposed a newly modified cuckoo search (MCS) algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL) and/or nulls control. The basic cuckoo search (CS) algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA) techniques include particle swarm optimization (PSO) and genetic algorithms (GA)

    Evolutionary optimization of all-dielectric magnetic nanoantennas

    Full text link
    Magnetic light and matter interactions are generally too weak to be detected, studied and applied technologically. However, if one can increase the magnetic power density of light by several orders of magnitude, the coupling between magnetic light and matter could become of the same order of magnitude as the coupling with its electric counterpart. For that purpose, photonic nanoantennas have been proposed, and in particular dielectric nanostructures, to engineer strong local magnetic field and therefore increase the probability of magnetic interactions. Unfortunately, dielectric designs suffer from physical limitations that confine the magnetic hot spot in the core of the material itself, preventing experimental and technological implementations. Here, we demonstrate that evolutionary algorithms can overcome such limitations by designing new dielectric photonic nanoantennas, able to increase and extract the optical magnetic field from high refractive index materials. We also demonstrate that the magnetic power density in an evolutionary optimized dielectric nanostructure can be increased by a factor 5 compared to state of the art dielectric nanoantennas. In addition, we show that the fine details of the nanostructure are not critical in reaching these aforementioned features, as long as the general shape of the motif is maintained. This advocates for the feasibility of nanofabricating the optimized antennas experimentally and their subsequent application. By designing all dielectric magnetic antennas that feature local magnetic hot-spots outside of high refractive index materials, this work highlights the potential of evolutionary methods to fill the gap between electric and magnetic light-matter interactions, opening up new possibilities in many research fields.Comment: 13 pages, 4 figure

    Efficient Detectors for MIMO-OFDM Systems under Spatial Correlation Antenna Arrays

    Full text link
    This work analyzes the performance of the implementable detectors for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system condi- tions, including antenna correlation and array configuration. Time-domain channel model has been used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order and antenna arrays configurations. A bunch of MIMO-OFDM detectors were analyzed for the purpose of achieve high performance combined with high capacity systems and manageable computational complexity. Numerical Monte-Carlo simulations (MCS) demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.Comment: 26 pgs, 16 figures and 5 table

    Optimal Wideband LPDA Design for Efficient Multimedia Content Delivery over Emerging Mobile Computing Systems

    Get PDF
    An optimal synthesis of a wideband Log-Periodic Dipole Array (LPDA) is introduced in the present study. The LPDA optimization is performed under several requirements concerning the standing wave ratio, the forward gain, the gain flatness, the front-to-back ratio and the side lobe level, over a wide frequency range. The LPDA geometry that complies with the above requirements is suitable for efficient multimedia content delivery. The optimization process is accomplished by applying a recently introduced method called Invasive Weed Optimization (IWO). The method has already been compared to other evolutionary methods and has shown superiority in solving complex non-linear problems in telecommunications and electromagnetics. In the present study, the IWO method has been chosen to optimize an LPDA for operation in the frequency range 800-3300 MHz. Due to its excellent performance, the LPDA can effectively be used for multimedia content reception over future mobile computing systems

    Integrating continuous differential evolution with discrete local search for meander line RFID antenna design

    Get PDF
    The automated design of meander line RFID antennas is a discrete self-avoiding walk(SAW) problem for which efficiency is to be maximized while resonant frequency is to beminimized. This work presents a novel exploration of how discrete local search may beincorporated into a continuous solver such as differential evolution (DE). A prior DE algorithmfor this problem that incorporates an adaptive solution encoding and a bias favoringantennas with low resonant frequency is extended by the addition of the backbite localsearch operator and a variety of schemes for reintroducing modified designs into the DEpopulation. The algorithm is extremely competitive with an existing ACO approach and thetechnique is transferable to other SAW problems and other continuous solvers. The findingsindicate that careful reintegration of discrete local search results into the continuous populationis necessary for effective performance

    Comparison of Weighted Sum Fitness Functions for PSO Optimization of Wideband Medium-gain Antennas

    Get PDF
    In recent years PSO (Particle Swarm Optimization) has been successfully applied in antenna design. It is well-known that the cost function has to be carefully chosen in accordance with the requirements in order to reach an optimal result. In this paper, two different wideband medium-gain arrays are chosen as benchmark structures to test the performance of four PSO fitness functions that can be considered in such a design. The first one is a planar 3 element, the second one a linear 4 element antenna. A MoM (Method of Moments) solver is used in the design. The results clearly show that the fitness functions achieve a similar global best candidate structure. The fitness function based on realized gain however converges slightly faster than the others
    corecore