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Abstract

E�ciency improvement is of great signi�cance for simulation-driven antenna

design optimization methods based on evolutionary algorithms (EAs). The

two main e�ciency enhancement methods exploit data-driven surrogate models

and / or multi-�delity simulation models to assist EAs. However, optimization

methods based on the latter either need ad-hoc low-�delity model setup or have

di�culties in handling problems with more than a few design variables, which

is a main barrier for industrial applications. To address this issue, a generalized

three stage multi-�delity-simulation-model assisted antenna design optimization

framework is proposed in this paper. The main ideas include introduction of

a novel data mining stage handling the discrepancy between simulation models

of di�erent �delities, and a surrogate-model-assisted combined global and lo-

cal search stage for e�cient high-�delity simulation model-based optimization.

This framework is then applied to SADEA, which is a state-of-the-art surrogate-

model-assisted antenna design optimization method, constructing SADEA-II.

Experimental results indicate that SADEA-II successfully handles various dis-

crepancy between simulation models and considerably outperforms SADEA in

terms of computational e�ciency while ensuring improved design quality.
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1. Introduction

In recent years, evolutionary algorithms (EAs) have been playing an impor-

tant role in antenna design optimization [1, 2, 3, 4] due to their global optimiza-

tion capability, free of an initial design, generality and robustness. High-quality

design results have been obtained, but computational e�ciency of the optimiza-5

tion process is still a major challenge. Although analytical models [5, 6] and fast

electromagnetic (EM) simulation methods [7] address e�cient optimization for

some particular types of antennas and make signi�cant contributions, a more

generalized method employing standard EM simulation is needed to complement

the state-of-the-arts [8]. Given several thousands to tens of thousands of EM10

simulations required by a standard EA to converge, and the cost of several tens

of minutes per EM simulation, e�ciency improvement without compromising

performance is highly desirable.

A general method to improve the optimization e�ciency is to introduce

data-driven surrogate modeling and coupling it with EAs [9, 10, 11]. Using15

the antenna design parameters as the input and EM-simulated responses as

the output, a computationally cheap surrogate model (which is often based on

statistical learning techniques) is constructed and is used to replace potentially

numerous computationally expensive EM simulations in optimization. Pioneer

methods are [9] and [10], applying the EGO method [12] and the ParEGO20

method [13] from the computational intelligence �eld. These pioneer research

works largely decrease the number of EM simulations, but the main challenge

is that considerable e�ciency improvement is di�cult to be maintained if the

number of design variables is larger than a few [11, 14].

The surrogate-model-assisted di�erential evolution for antenna optimization25

(SADEA) method has been proposed in [11] to address this problem. Although

SADEA ensures generality, scalability (for up to around 30 design variables)
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and e�ciency (4-8 times speed improvement compared to standard di�erential

evolution (DE) and particle swarm optimization (PSO)), it is more suitable for

problems with less than 20 minutes / simulation. In many industrial appli-30

cations, depending on the structure complexity and other circumstances (e.g.,

housing), the cost of a reasonably accurate full-wave EM simulation may be

40 minutes or more when using a regular PC machine [8]. Therefore, further

substantial e�ciency improvement is needed for SADEA for its industrial use,

which is the goal of this work.35

A straightforward idea for further speed improvement is to introduce multi-

�delity EM-simulation models to SADEA. This concept has been widely used

in local antenna optimization [8] and other domains. The general idea is to use

cheaper but less accurate low-�delity EM models to �lter out non-promising

solutions, and to use expensive but accurate high-�delity EM models to per-40

form local search around �promising� solutions obtained by the low-�delity EM

model.

The major challenge of the above method is the reliability. The success

comes from the basic assumption that the optimal points of landscapes based

on low- and high-�delity EM models are close to each other [14, 15]. Otherwise;45

local search may be performed in an area far from the true optimum. However,

the validity of the above assumption depends on the �delity used of the low-

�delity model, which is problem dependent. Handling discrepancy between

the EM simulation models of di�erent �delities is the main obstacle for using

multi-�delity antenna optimization methods in industrial software, because the50

selection and setup of the appropriate low-�delity model is ad-hoc [15].

This problem has been also a challenge in the computational intelligence �eld

until now. To the best of our knowledge, the only reliable solution is [16], which

iteratively updates a co-kriging surrogate model [17] using samples from low-

and high-�delity simulations accumulated over the entire optimization process.55

This method is general and reliable because a mathematically sound co-kriging

surrogate model uses information from multiple �delity simulation models to

address the discrepancy. Moreover, this method has been applied to antenna
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optimization [18]. However, scalability is the main challenge, since for problems

with more than a few design variables, the computational cost of obtaining60

su�cient number of samples to build a high-quality co-kriging model is often

prohibitive.

One of our main objectives is to combine generality, reliability and scala-

bility to handle discrepancy between simulation models of di�erent �delities.

To address this problem, a novel data mining method is developed considering65

characteristics of the antenna design landscape. Subsequently, a three stage

multi-�delity antenna optimization framework is proposed. This framework is

then combined with SADEA for further substantial speed enhancement. The

new method is thus called SADEA-II. The major goals of SADEA-II are:

• to considerably reduce computational e�ort compared to SADEA, so that70

global optimization can be realized in reasonable timeframe even for prob-

lems requiring 40 minutes to 1 hour / high-�delity EM simulation.

• to provide highly optimized results which are better than SADEA.

• to ensure su�cient generality so that di�erent types of antenna structures

and various low-�delity EM model selections (including various types of75

discrepancy between the EM models) can be reliably and e�ciently han-

dled.

The remainder of this paper is organized as follows. Section 2 provides

the basic techniques. Section 3 introduces the SADEA-II framework, including

its general structure, the three optimization stages and the parameter setting.80

Section 4 discusses veri�cation results of SADEA-II. Concluding remarks are

presented in Section 5.
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2. Basic Techniques

2.1. A Brief Description to Gaussian Process Surrogate Modeling and Lower

Con�dence Bound Prescreening85

In SADEA-II, Gaussian Process (GP) surrogate modeling [19] is used to

construct data-driven surrogate models. A brief introduction is as follows. More

details are in [19].

To model an unknown function y = f(x), x ∈ Rd, GP modeling assumes

that f(x) at any point x is a Gaussian random variable N(µ, σ2), where µ and

σ are two constants independent of x. For any x, f(x) is a sample of µ+ ε(x),

where ε(x) ∼ N(0, σ2). The similarity between two points xi and xj can be

de�ned by a correlation function c(xi, xj). Hyper-parameters are included in it.

By maximizing the likelihood function that f(x) = yi at x = xi (i = 1, . . . ,K)

(where x1, . . . , xK ∈ Rd and their f -function values y1, . . . , yK are K training

data points), the optimal hyper-parameter values can be obtained. Using best

linear unbiased prediction, the predicted value f̂(x) of a new point x is as follows:

f̂(x) = µ̂+ rTC−1(y − 1µ̂) (1)

the mean squared error is:

s2(x) = σ̂2[1− rTC−1r +
(1− 1TC−1r)2

1TC−1r
] (2)

where

µ̂ = (ITC−1y)−1ITC−1y (3)

σ̂2 = (y − Iµ̂)TC−1(y − Iµ̂)n−1 (4)

r = (c(x, x1), . . . , c(x, xK))T . C is a K × K matrix whose (i, j)-element is

c(xi, xj). y = (y1, . . . , yK)T and 1 is a K-dimensional column vector of ones.90

The above method is called ordinary GP. Blind GP [20] is used in SADEA-II.

In blind GP, the linear combination of m basis functions
∑m
i=1 βibi(x) is used

to replace µ̂ to capture a portion of the variations. The goal is to represent
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the general trend of the function to be approximated, so as to alleviate the

complexity of the ordinary GP modeling, which handles the residuals. Blind95

GP often has better approximation ability, especially when the number of design

variables is larger [20].

The blind GP modeling consists of the following steps: (1) based on the

available training data points, an ordinary GP model is �rstly constructed by

identifying the hyper-parameter values; (2) given the hyper-parameters and the100

candidate features, the basis functions bi(x) are ranked based on the estimated

βi(i = 1, . . . ,m). The ranking follows a Bayes variable ranking method [20,

21]. For simplicity and e�ciency, only linear, quadratic items and two-factor

interactions are considered as the basis functions in this implementation; (3)

the most promising candidates among bi(x)(i = 1, . . . ,m) are selected and an105

intermediate GP model with the original hyper-parameters is constructed. Its

accuracy is subsequently evaluated by a leave-one-out cross-validation method

[20]. This step is repeated until no accuracy improvement can be achieved;

(4) given the selected bi(x) and the corresponding coe�cients βi, the likelihood

function is re-optimized and the �nal GP model is obtained. The details can be110

found in [21].

For a minimization problem, given the predictive distribution N(f̂(x), s2(x))

for f(x), a lower con�dence bound (LCB) prescreening of f(x) can be used to

promote explorative global search:

flcb(x) = f̂(x)− ωs(x)

ω ∈ [0, 3]
(5)

where ω is a constant, which is often set to 2. More details can be found in [22].

2.2. A Brief Description to Di�erential Evolution Algorithm

Di�erential Evolution (DE) [23] is a popular population-based metaheuristic

algorithm for continuous optimization and is used in SADEA-II. There are a few115

DE mutation strategies available which lead to various trade-o�s between the

convergence rate and the population diversity. The properties of di�erent DE
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mutation strategies under the SADEA framework have been investigated in

[24]. Based on [24] and our pilot experiments, DE/current-to-best/1 (6) and

DE/best/1 (7) are used in SADEA-II.120

Suppose that P is a population and the best individual in P is xbest. Let

x = (x1, . . . , xd) ∈ Rd (d is the number of decision variables) be an individual

solution in P . To generate a child solution u = (u1, . . . , ud) for x, DE/current-

to-best/1 and DE/best/1 work as follows: A donor vector is �rst produced by

mutation:

(1)DE/current-to-best/1

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (6)

where xi is the ith individual in P . xr1 and xr2 are two di�erent solutions

randomly selected from P ; they are also di�erent from xbest and xi. vi is the

ith mutant vector in the population after mutation. F ∈ (0, 2] is a control

parameter, often referred to as the scaling factor [23].

(2)DE/best/1

vi = xbest + F · (xr1 − xr2) (7)

Having the donor vector, the following crossover operator is applied to pro-

duce the child u:

1 Randomly select a variable index jrand ∈ {1, . . . , d},

2 For each j = 1 to d, generate a uniformly distributed random number rand

from (0, 1) and set:

uij =

 vij , if (rand ≤ CR)|j = jrand

xij , otherwise
(8)

where CR ∈ [0, 1] is a constant called the crossover rate.

2.3. The SADEA Method125

The SADEA method works as follows. More details can be found in [11].
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Step 1: Sample α (often a small number of) candidate designs from the design

space [a, b]d (a and b are the lower and upper bounds of design variables,

respectively) using Latin Hypercube Sampling [25], evaluate the objective

function values of all these solutions using EM simulations and let them130

form the initial database.

Step 2: If a preset stopping criterion is met (e.g., a maximum number of

allowed EM simulations is exceeded), output the best solution from the

database; otherwise go to Step 3.

Step 3: Select the λ best solutions from the database to form a population135

P .

Step 4: Apply the DE mutation (6) and crossover (8) operations to P to

generate λ new child solutions.

Step 5: Select τ nearest candidate designs from the database (based on Eu-

clidean distance in the design space) around the centroid of the λ child140

solutions. Construct a blind GP surrogate model using the selected can-

didate designs (i.e., training data points in surrogate modeling).

Step 6: Estimate the λ child solutions generated in Step 4 using the blind

GP model and lower con�dence bound method.

Step 7: Evaluate the EM simulation model at the estimated best child de-145

sign candidate from Step 6. Add this candidate design and its objective

function value to the database. Go back to Step 2.

The advantages on e�ciency and scalability of SADEA come from high-

quality surrogate modeling and the balance between exploration and exploita-

tion. In particular, the training samples are located near to the points waiting150

to be predicted (child population in Step 4), better surrogate model quality

and prediction results are therefore obtained with the same number of training

data points than surrogate model-assisted EAs with standard EA structures.
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It is shown that this framework ensures comparable results but uses consider-

ably fewer number of exact evaluations compared to several popular surrogate155

model-assisted EA frameworks, as veri�ed using more than ten benchmark test

problems [26, 24].

3. The SADEA-II Method

3.1. Key Ideas and General Structure

For simplicity, only two EM models are utilized: the low-�delity model is160

referred to as the coarse model, whereas the high-�delity one is referred to as the

�ne model. For multi-�delity optimization, it is essential that useful information

must be extracted from the computationally cheap coarse model to support �ne

model evaluation (FE)-based optimization. Hence, it is worth to study the

discrepancy between landscapes based on coarse model-based evaluation (CE)165

and FE, especially when CE is su�ciently cheap (but is often too expensive for

standard EAs).

Six di�erent types of industrial antennas with di�erent EM model �delities

are studied and some optimization runs are carried out using CEs. The following

observations are obtained: (1) When CE is su�ciently cheap, the EM response170

feature is largely misrepresented by the coarse model. (2) The best design based

on CE is often far from optimal in terms of FE when CE is su�ciently cheap. (3)

Even when the response feature is largely misrepresented, there are still often a

small number of optimal designs in terms of CE which are fair in terms of FE.

(4) There are also some fair designs in terms of FE among the points visited by175

the CE-based optimization, although their CE values are poor.

Based on the above observations, it can be seen that the points visited

by CE-based optimization represent meaningful positions of the design space.

Although the true optima are often not among them, useful patterns which may

lead to truly optimal designs in FE-based search are included in those visited180

points. Note that the useful points cannot be directly detected by CE values

due to the discrepancy. Hence, the key questions become how to use as few
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Figure 1: Flow diagram of SADEA-II

number of FEs as possible to detect a portion of the useful points visited by

CE-based optimization and how to use them to support FE-based optimization.

To address these two questions, the SADEA-II framework is proposed, which185

is shown as follows. The �ow diagram is shown in Fig. 1.

Stage 1: Pool Generation: Construct the pool of candidate designs using

SADEA with CEs. All the evaluated candidate designs are included in

the pool.

Stage 2: Data Mining: Generate the initial population for FE-based op-190

timization by clustering of the candidate design pool from Stage 1, self-

development using FEs and performing FEs to some optimal solutions in

terms of CEs.

Stage 3: FE-based optimization: Carry out a SADEA-based optimiza-

tion; however, enhanced by a surrogate-model-assisted local search start-195

ing from the initial population obtained in Stage 2 using FEs.

Compared to most multi-�delity optimization frameworks, two distinct dif-

ferences of the SADEA-II framework are: (1) The initial candidate solutions for
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FE-based search are generated based on a data mining process (it tries to gen-

erate a good starting population in terms of FE from a data pool that exhibits a200

distorted landscape but is worth to be studied from Stage 1), instead of a set of

selected �promising� candidates based on CEs. (2) Both global and local search

are conducted in FE-based search, instead of only using local exploitation. Stage

2 and Stage 3 are introduced as follows.

3.2. Stage 2: Data Mining205

The goal of the data mining stage is to provide an initial population as close

to the true optimal region as possible to support FE-based optimization (stage

3) using least number of high-�delity EM simulations. The key challenge is that

the true qualities of the candidate design pool are not known beforehand and

the number of FEs which can be used is limited. To address this, we design210

the data mining process with two phases: initial seed population Ps generation

and self-development. The former phase aims to extract fair candidate designs

in terms of FE from the pool, while the later phase aims to generate the initial

population of Stage 3 based on the extracted seed population. Remind that

even when the response feature is largely misrepresented, there are still often a215

small number of optimal designs in terms of CE which are not bad in terms of

FE (Section 3.1). Verifying some of these good designs in terms of CE can help

both of the above phases, which is called veri�cation and is included in both

phases.

The procedure and the �ow diagram (Fig. 2) are provided �rst and clar-220

i�cations are then followed. Besides the GP modelling and the DE operators

in Section 2, some operators used in this stage are de�ned in Table 1. In the

remainder of this paper, fc(x) represents the performance value in terms of CE,

while ff (x) represents the performance value in terms of FE.

Input: The candidate design pool Dp from Stage 1225

Output: The initial population for Stage 3; Training data set with FE values
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Table 1: Operators in Stage 2

operator

name

input output purpose

Divide (1) a design set, (2)

a performance set,

(3) the number of

groups

groups of designs divide a design set into a de�ned num-

ber of groups (G) evenly based on the

performance value (f). The solutions

gathered in the ith(i = 1, 2, . . . , G)

group correspond to the perfor-

mance values in the range [min(f) +

i−1
G (max(f) − min(f)),min(f) +

i
G (max(f)−min(f))]

iKmeans (1) a design set, (2)

the number of clus-

ters

(1) the clustered

design set, (2) the

centroid of each

cluster

use the intelligent Kmeans method [27]

to cluster a design set (Euclidean dis-

tance) into a de�ned number of clusters

NearestPoint (1) a design set, (2)

a reference design

the selected design select a design from the design set that

is the closest to the reference design

(Euclidean distance)

FEV (a) design(s) the performance of

the design(s)

obtain the performance of (a) design(s)

in terms of FE(s)

Elite (1) a design set, (2)

a performance set,

(3) the number of

designs in the elite

design set

the elite design set obtain an elite design set which is com-

posed of a de�ned number of top ranked

designs (based on performance)

Refine (1) a design set, (2)

a performance set,

(3) a threshold

the re�ned design

set

obtain a re�ned design set by removing

designs whose performance values are

worse than a de�ned threshold

Elements in the design set and the performance set are in one to one corre-

spondence.
12



Step 1: Use the Divide operator to divide Dp into G groups based on fc(x)

values.

Step 2: Use the iKmeans operator to split each group of designs from Step

1 into 2 clusters to obtain in total 2×G clusters and 2×G centroids. Use230

the NearestPoint operator to obtain 2×G designs that are the closest to

the above centroids. Use the FEV operator to obtain the ff (x) values of

these designs. Remove the evaluated designs from Dp.

Step 3: Select a group Ds (among all the G groups from Step 1) in which the

current best ff (x) (from Step 2) locates. Use the iKmeans operator to235

split Ds into 0.2×λ clusters (λ is the population size, see Section 2.3) and

get 0.2 × λ centroids. Use the NearestPoint operator to obtain 0.2 × λ

designs from Dp that are the closest to the above centroids, which form

the seed population A: PsA. Use the FEV operator to obtain the ff (x)

values of PsA. Remove the evaluated designs from Dp.240

Step 4: Setting Dp as the design set, fc(x) values as the performance set,

0.5 × λ − ||PsA|| as the number of designs in the elite design set, use

the Elite operator to obtain the elite set, which forms the preliminary

seed population B. Use the FEV operator to obtain the ff (x) values

of population B. Setting the population B as the design set, its ff (x)245

values as the performance set, 0.75 quartile of PsA as the threshold, use

the Refine operator to form PsB . Remove the evaluated designs from Dp.

Step 5: Form the seed population Ps by combining PsA and PsB .

Step 6: Apply DE/best/1 (7) mutation strategy and binomial crossover (8)

to Ps to generate ||Ps|| new child solutions. Use all the solutions in Ps as250

the training data points to construct a blind GP model and estimate the

child solutions. Use the FEV operator to obtain the ff (x) value of the

estimated best child solution. Repeat the above process until 0.1× λ new

candidate designs are generated.
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Step 7: Setting Dp as the design set, fc(x) values as the performance set,255

0.1 × λ as the number of designs in the elite design set, use the Elite

operator to obtain the elite set. Use the FEV operator to obtain the

ff (x) values of the elite set. Remove the evaluated designs from Dp.

Step 8: Combine candidate designs and their ff (x) values from Step 6 and 7.

Use the Elite operator to select the top 0.1× λ candidate designs (based260

on ff (x) value) and add them to Ps.

Step 9: If ||Ps|| = λ, output Ps (the initial population for Stage 3) and ff (x)

values of candidate designs in Ps. Output all the evaluated candidate

designs and their ff (x) values as the initial training data points for Stage

3. Otherwise; go back to Step 6.265

Steps 1-5 of the above procedure realize extraction of fair candidate designs

in terms of FE to form the initial seed population Ps. Due to the limitation of

the number of FEs, clustering technique, which is essential for selecting repre-

sentative(s) from a group of candidate designs, are used. However, the candi-

date design pool from Stage 1 should not be directly clustered. In Stage 1, the270

search gradually transforms from emphasizing global exploration to emphasiz-

ing local exploitation. Hence, the solutions visited earlier exhibit much larger

distances between each other than those visited later. When directly clustering

the candidate design pool (based on the distance), the earlier visited solutions

will dominate the clustering; however, one cannot expect that many promising275

subregions will be identi�ed using the candidate designs visited in early explo-

ration. Our method to address this is to split the candidate design pool into

groups (with the distances between candidates kept on the same level within

each group); subsequently, the clustering is carried out in each group separately.

fc(x) value is selected as a reference to approximately re�ect di�erent phases of280

the search. Candidate designs visited in each phase are gathered to a group.

For each group, the design solution clustering is realized by means of the

iKmeans clustering, which is to prevent the uncertainty of the standard Kmeans

14
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Figure 2: Flow diagram of the data mining process
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clustering [27]. Furthermore, the members of the population Ps are also selected

from truly optimal candidates through veri�cation of the �optimal� solutions285

using the CE-based ranking.

Steps 6-9 implement the self-development process. Note that both the num-

ber and the quality of the extracted designs in the initial seed population are

not expected to be su�cient, because the good enough designs in terms of FE

may not exist in the pool and a portion of them may not be found due to limited290

allocated FEs. Therefore, instead of being directly used as the initial population

of Stage 3, a self-development process using FEs based on them is necessary.

Step 6 generates new promising candidates based on Ps, which is not a�ected

by the discrepancy between the coarse and the �ne models. The DE/best/1

strategy is used here with the main objective being to yield a good solution at295

a low computational cost. Similarly to the initialization of Ps, veri�cation of

�optimal� solutions based on CE ranking is also used to update the Ps (Steps

7-8) for the next round of the self-development process.

Combination of self-development and veri�cation is especially useful for an-

tenna optimization. The maximum value of a response (e.g., re�ection) over300

certain frequency band of interest is a common way to evaluate antenna perfor-

mance, such as max|S11| from 3.1 GHz to 10.6 GHz (UWB range). However,

such minimax-type of design speci�cations are analytically less tractable: while

single frequency response is normally a smooth function of antenna geometry

parameters, the minimax objective is continuous but not di�erentiable. As a305

result, a larger number of training data points (i.e., FEs) are necessary to con-

struct a good quality mathematical approximation model (in particular, blind

GP model) if only depending on Step 6. Therefore, veri�cation of solutions

�optimality� using the CE-based ranking is generally recommended because of

the observation in Section 3.1. Although the success rate may be low due to310

the model discrepancy, a few decent candidate designs can be very helpful for

improving the quality of the intermediate population Ps.

Using or not using veri�cation steps are compared using six real-world an-

tenna optimization problems, four of which have coarse EM models of intention-
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ally low �delity, leading to much discrepancy (The coarse models of the other315

two are analytical models, whose �delity cannot be changed). The above data

mining stage shows clear advantages on e�ciency for all the test problems. Con-

sidering the extreme case when there is no fair design among optimal designs

in terms of CE, the discarding of low quality design in Step 4 prevents the data

mining to be failed.320

There are a few �xed numbers in the process, such as using 2 clusters for

the initial test in Step 2, generating 10% of the population size in each round of

self-development (step 6-8). They are empirical settings. Once set, they never

change and experimental results on all real-world antenna test problems show

success.325

3.3. Stage 3: SADEA Enhanced by Local Search

Stage 3 yields the �nal optimal design using computationally expensive FEs.

Clearly, SADEA can be directly applied, but Stage 3 aims to further reduce the

number of FEs compared to SADEA taking advantage of the initial population

Ps. Compared to Stage 1, the candidate designs in Ps have good quality and330

it is reasonable to assume that Ps is in a largely reduced subregion of the

search space (which is also veri�ed by pilot experiments). Hence, in many

cases, a surrogate-model-assisted local search with reduced exploration ability

may improve the design quality using fewer FEs than that required by SADEA.

On the other hand, because most landscapes of antenna are multimodal [28],335

the solution may be trapped in local optima when only performing local search.

To balance the global search ability and fast convergence, a surrogate-model-

assisted local search is used to assist SADEA. The surrogate-model-assisted

local search method of choice is ORBIT [29]. ORBIT is a very successful radial

basis function-assisted trust-region method. More details can be found in [29].340

Clearly, other successful surrogate-model-assisted local search methods can also

be adopted.

Stage 3 works as follows:
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Step 1: Calculate the Euclidean distances between each individual in the ini-

tial population (provided by Stage 2) and the centroid of it. Set the aver-345

age and the largest distance values as the initial radius and the maximum

radius of the trust-region, respectively.

Step 2: Carry out ORBIT starting from the current best design (in terms of

FE) of the initial population using Norbit FEs and / or if the RBF gradient

is smaller than a given tolerance. Update the current best design. Add350

all the FE results to the training data set.

Step 3: Carry out Steps 3-7 in Stage 1 (Section 2.3) using k FEs. Update the

current best design. Add all the FE results to the training data set. Go

back to Step 1 until the stopping criterion (e.g., predetermined computa-

tional budget setting) is met.355

Note that a surrogate-model-assisted local search method has (to some ex-

tent) ability to escape from the local optima because surrogate modeling itself

smoothens the landscape. To promote this ability, a reasonably large initial

trust-region radius is used, as is shown in Step 1.

3.4. Parameter Setting360

SADEA and ORBIT are the components of SADEA-II. Parameter setting

rules for SADEA and ORBIT are investigated and those parameters are shown

to be insensitive by experimental veri�cations. More details are provided in

[11, 29]. For parameters with a suggested �xed value, we follow [11] and [29].

For parameters with suggested ranges, we use α = 50, λ = 50, τ = 8 × d for365

all test problems. The new parameters introduced in SADEA-II are shown in

Table 2.

The recommended setting rules are as follows:

• Nce: Clearly, this number does not need to be precise. We suggest: (1)

Use 25 × d CEs as the minimum value. (2) Subsequently, stop Stage 1370

when there is no improvement with respect to the best �tness value or
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Table 2: New parameters in SADEA-II

Nce the number of CEs used in Stage 1

G the number of groups the pool is splitted into

based on fc(x) in Stage 2

k the threshold number of FEs to trigger OR-

BIT in Stage 3

Norbit the number of FEs assigned to each ORBIT

run in Stage 3

only slight improvement is recorded after 200 consecutive CEs. According

to the results of various test cases, this setting is suitable to build a good

candidate design pool. Given that CEs are much cheaper than FEs, this

process is also not expensive for SADEA (although it is often still too375

expensive for standard EAs).

• G: The value of G should be neither too small (otherwise the distances in

each group are still not on the same level) nor too large (otherwise FEs

will be wasted in later steps). We suggest to set it between [4,6].

• k: The setting of k depends on the computational budget. When the380

number of FEs is at the level of 100 to 300 (or more), which is typical in

practice, k can be set to 50. In case the computational budged only allows

a few FEs, k can be set quite small to trade o� the global optimization

capability for e�ciency.

• Norbit: Norbit is recommended to be within the range [20,40] according385

to empirical test on mathematical benchmark problems and real-world

antenna problems. Note that ORBIT may terminate before using Norbit

simulations when the tolerance is less than the threshold 1e-4.

It can be seen that the above parameters either do not need to be precise or

the suggested ranges are narrow. This ensures that the parameter setting is not390
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a practical problem. In the experiments, we use G = 5, k = 50 and Norbit = 40.

Note that the same parameters are used throughout all test problems to verify

the robustness of SADEA-II.

3.5. Discussions on selecting surrogate models

In SADEA-II, two kinds of surrogate models, which are the GP model and395

the RBF model, are used. An interesting question is that can other kinds of

surrogate modelling methods, such as Arti�cial Neural Network, Support Vector

Machine, be used in the SADEA-II framework. We do not recommend using

other surrogate modelling methods. The reasons are as follows: (1) Stage 1

implements SADEA. In SADEA, the LCB prescreening is important to make400

SADEA jump out of local optima and the LCB presceening is only applicable

to GP modelling. (2) In Stage 2, the number of available training data points is

often insu�cient. GP modelling has advantages on tractability for such prob-

lems because of its sound mathematical foundation. [30] provides more details

on comparisons with Arti�cial Neural Network. (3) ORBIT is used in Stage405

3. The method to select the next point for evaluation in ORBIT relies on a

property of the RBF model. [29] provides more details.

4. Experimental Results and Comparisons

SADEA-II has been tested by six real-world antennas and all of them showed

success. To cover as much information as possible, two very di�erent antennas410

from the view of multi-�delity optimization and design challenges are used in

this section to demonstrate the operation and performance of SADEA-II. The

test cases include: a linear microstrip antenna array (LMA) and a Yagi-Uda

antenna (YUA). The coarse model for the �rst example is an analytical model,

whereas the coarse model for the second example is a coarsely-discretized EM-415

simulation model. The �ne models for both test problems are high-�delity EM

models. For the sake of SADEA-II veri�cation, the �delity (discretization level)

of the coarsely-discretized EM models is intentionally selected so that some
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important response features of the �ne model are misrepresented to a large

extent.420

Because of using of superposition model to replace the actual expensive

EM simulations in the LMA example, it was possible to execute a comparison

between SADEA and the standard DE based on 30 runs of each algorithm. This

also enables us to verify the robustness of SADEA-II for real-world antenna

problems. On the other hand, because of the high CPU cost of individual EM425

simulations, it is di�cult to run DE or PSO for the YUA example within a

reasonable timeframe. Hence, SADEA is used as the reference method based

on two runs. Note that in [11], the optimization capability and robustness

of SADEA is veri�ed by comparing to DE and PSO using multiple runs with

less expensive antenna optimization problems. Because advantages of SADEA430

compared to popular EAs and some surrogate model assisted EAs are shown in

[11], such comparisons will not be repeated when using SADEA as the reference

method. SADEA-II and SADEA share some of the parameters (Section 3). For

DE, a population size of 50 is used, which is a common setting [23], whereas the

other parameters (F = 0.8 and CR = 0.8) are the same as in SADEA-II and435

SADEA.

The ranges of the design variables are set by the experience of the designer,

which are reasonably wide and without any case speci�c investigation. These

examples are run on a PC with 2.7GHz Xeon CPU with 6GB RAM. The time

consumptions reported refer to the clock time.440

For antenna examples, the discrepancy between the coarse and �ne models

is di�cult to be quanti�ed analytically. To study the performance of SADEA-

II for even more complex problems with analytically quantized discrepancy, a

mathematical benchmark problem is constructed to mimic the low-�delity EM

models of various levels with increasing di�culty, which is described in Section445

4.3.
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Figure 3: Geometry of 16-variable microstrip patch antenna array

4.1. Example 1: Linear Microstrip Antenna Array

The �rst example is a 10 GHz 16-element microstrip patch antenna array

shown in Fig. 3, implemented on a �nite 1.575-mm-thick Rogers RT5880 di-

electric substrate (ε = 2.2), which extends laterally beyond the patch edges450

by xe = 18.4mm in the x-direction and ye = 9.2mm in the y-direction. The

patches have dimensions L = W = 9.2mm and the spacing between their cen-

ters is dc = 15mm. Each patch is independently fed by a wire probe, situated

at a distance xp = 6.3mm from the leftmost patch edge. There are 16 design

variables, which are excitation amplitudes ak, k = 1, 2, . . . , 16 with a range of455

[0, 1]16. The objective is minimization of the side lobes assuming ±8 degree of

the main beam:

minimize SLL (9)

where SLL is the sidelobe level, i.e., the maximum relative power for the angles

0 to 82 degrees and 98 to 180 degrees.

The coarse model is an analytical array factor model assuming ideal isotropic460

radiators, for which each calculation costs about 5 × 10−3s. For the �ne EM

model, hexahedral mesh is used and the maximum cell density is 40 cells per

wavelength and total number of cells is about 900,000. The simulation time

is about 30 minutes. A superposition model is built as superposition of indi-
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Table 3: Statistics of the best function values (dB) obtained by SADEA-II (500 FEs), SADEA

(1000 FEs), standard DE (30,000 FEs)

Method best worst average std

SADEA-II -22.87 -21.61 -22.45 0.27

SADEA -22.24 -19.82 -21.61 0.59

Standard DE -23.14 -23.06 -23.12 0.02

 

 

 

 

 

 

Figure 4: The convergence trends of SADEA-II and SADEA (LMA)

vidually simulated far �elds of all array elements. Each element is simulated465

within the array in order to take into account electromagnetic couplings with

all other elements. Hence, we can use the computationally cheap superposition

model to replace EM simulation and compare SADEA-II, SADEA and DE in

a statistical way. For SADEA-II, a total of 500 FEs are used. The statistics of

30 runs are shown in Table 3. Fig. 4 shows the convergence trend of SADEA-II470

and SADEA using 500 FEs. The response of the best design is shown in Fig. 5.

The following conclusions can be drawn for this example using the data

gathered in Table 3: (1) SADEA-II exhibits good optimization quality (i.e., the
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Figure 5: Response of the best solution obtained by SADEA-II (LMA)

quality of the �nal design), which is better than SADEA and slightly worse than

but comparable to DE. (2) SADEA-II exhibits good robustness. (3) From Fig.475

4, it can be seen that when using 500 FEs, SADEA-II shows much faster conver-

gence rate than SADEA. To obtain the objective function value of SADEA-II

using 500 FEs, the standard DE needs 6300 FEs. Hence, more than an order of

speed improvement is obtained by SADEA-II compared to the standard DE.

To investigate the discrepancy between the coarse and �ne models and the480

function of the data mining stage, the best candidate design obtained by Stage

1 and the �nal optimal design from Stage 3 in each run are compared. Results

showed that among the 16 design variables over 30 runs, the maximum average

di�erence between them is 10% of the search range, and the maximum di�erence

spreads from 17.7% to 48.3% to some design variables. This shows that the basic485

assumption in Section 1 is not valid and the true optimum will be lost if following

the traditional multi-�delity optimization method.

4.2. Example 2: Yagi-Uda Antenna

The second example is a planar YUA [31] implemented on Rogers RT6010

(εr = 10.2, tanδ = 0.0023, h = 0.635mm). The structure comprises a driven490
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Figure 6: Geometry of 8-variable, planar Yagi-Uda antenna

Table 4: Ranges of the design variables (all sizes in mm) for antenna optimization (YUA)

V ariables s1 s2 v1 v2 u1 u2 u3 u4

Lower bound 3 1 5 2 2 2 1 1

Upper bound 7 6 12 12 6 6 5 5

element and one director fed by 50Ω microstrip-to-slot line balun based on a

power divider (Fig. 6). Design variables are x = [s1, s2, v1, v2, u1, u2, u3, u4].

Their ranges are shown in Table 4. Other parameters are �xed: w1 = w3 =

w4 = 0.6, w2 = 1.2, u5 = 1.5, s3 = 3, v3 = 17.5 (all in mm). The design

objective is to minimize the maximum re�ection coe�cient and the constraint495

is that the average gain should not be smaller than 6 (15.6dB) in the 10 to 11

GHz frequency range. The objective function is as follows:

minimize max|S11|

s.t. mean(G) ≥ 6
(10)

For both coarse and �ne EM models, hexahedral mesh is used. For the coarse

model, the maximum cell density is 15 cells per wavelength and total number of

cells is 85,680. For the �ne model, the maximum cell density is 45 cells per wave-500

length and total number of cells is 1,512,000. The simulation time of the coarse

model and the �ne model are about 2 minutes and 40 minutes, respectively. The
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�delity of the coarse model is selected to introduce considerable discrepancy in

re�ection response. Furthermore, the simulated gain of the coarse model is lower

than that of the �ne model. Consequently, the optimal solutions obtained using505

CEs are infeasible in terms of FE. A total of 110 FEs are used for SADEA-II.

For this constrained optimization problem, a penalty function method is used.

The penalty coe�cient is set to 100. Note that the surrogate models of the

two performances (i.e., those concerning re�ection and gain) are constructed

separately, rather than directly modeling the penalized function values. The510

purpose is to avoid modeling an aggregated objective function (i.e., the main

objective + the penalty term, which is very not smooth), which would reduce

the performance of blind GP modeling.

Fig. 7 shows the convergence trend of SADEA-II and SADEA. In the

two runs of SADEA-II (using 110 FEs), one result is max|S11| = −22.43dB,515

mean(gain) = 6.00, and the other result ismax|S11| = −21.96dB,mean(gain) =

6.03. The result of SADEA using 450 FEs ismax|S11| = −22.24dB,mean(gain) =

6.05. It can be seen that SADEA-II is much faster than SADEA and yields a

better �nal design even when a feasible candidate design cannot be found in

the candidate design selection pool, verifying the capability of the data mining520

stage. The response of the optimized YUA is shown in Fig. 8.

The best candidate design obtained by Stage 1 and the �nal optimal design

from Stage 3 are also compared. Results showed that among the 9 design

variables, the maximum average di�erence between them is 16.9% of the search

range. Again, directly performing a local search from the optimal point of the525

coarse model is hard to lead to the true optimum. SADEA-II, in contrast,

successfully handles the discrepancy.

4.3. Benchmark Problem Tests

To test SADEA-II with analytically quanti�ed discrepancy between the

coarse and the �ne models, we construct a mathematical benchmark problem-530

based test instance. The basic function is the 20-dimensional Ackley function

[32] (see Appendix). The Ackley function has a nearly �at outer region with a
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Figure 7: The convergence trends of SADEA-II and SADEA (YUA)

 

Figure 8: Response of the solution obtained by SADEA-II (YUA): max|S11| = −22.43dB,

mean(gain) = 6.00
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Table 5: Mathematical Benchmark Problems with Increasing Discrepancy

Problem missing peaks spatial shift

P1 5% 0% of the search ranges

P2 10% 5% of the search ranges

P3 15% 10% of the search ranges

narrow peak, which is similar to some landscapes obtained by EM simulation.

On the other hand, the landscape of the Ackley function is highly multimodal

(numerous local optima) which is often much more complex than antenna prob-535

lems. When the optimum is shifted, the numerous local optima bring more

di�culties for the data mining method to locate the truly optimal area.

In the constructed test problems, the Ackley function is served as the coarse

model. [33] provides an e�ective method to construct test problems for multi-

�delity optimization, which analytically quanti�es the discrepancy: fc(x) and540

ff (x) are the coarse and �ne model evaluations, respectively.

ff (x) = fc(sf × (x− ss)) (11)

where fc(x) (also ff (x)) is a periodic function, and there exist minimal and

maximal values in each period. sf mimics the loss of the peaks of fc(x). In our

problem, this is similar to missing of some resonances. For example, ff (x) =

cos(sf × (x− ss)) and fc(x) = cos(x). When sf is set to 1.15, it indicates that545

15% of the peaks are lost by fc(x). ss shifts the positions of the optimal points.

In our problem, this is similar to the response shifts in frequency. Based on this

method, three problems with increasing di�culties are constructed, which is

shown by Table 5. The formulas can be found in the Appendix. The ss number

are randomly generated according to the requirements of Table 5.550

20 runs have been performed for each problem using SADEA-II. The com-

puting budget of Stage 1 is 500 CEs and that of Stage 2 is 350 FEs. The results

are shown in Fig. 9 and in Table 6. It can be seen that for the 20-dimensional
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 Figure 9: The convergence trends (Stage 2 and Stage 3) of SADEA-II for three mathematical

benchmark problems

Table 6: Statistics of the best function values obtained by SADEA-II over 20 runs

Method best worst average std

P1 0.0005 0.0019 0.0010 0.0004

P2 0.0006 0.0091 0.0025 0.0017

P3 0.0020 1.4470 0.1274 0.3842
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Ackley problem, which is often much more complex than antenna optimiza-

tion problems, the discrepancy between CE and FE are successfully handled by555

SADEA-II. For P1 and P2, all the �nal results are close to the global optimum.

For P3, only in 2 runs over 20 runs, SADEA-II is trapped in a reasonably good

local optimum. Pilot experiments showed that by removing the veri�cation

steps using optimal solutions in terms of fc(x) and using DE mutation strate-

gies which can provide larger population diversity (DE/best/2 [23]) in the data560

mining stage, even larger discrepancy than that of P3 can be well handled at the

cost of slower convergence. However, given the necessity (i.e., experiments show

that the function landscapes of antenna optimization are often not as complex

as the 20-dimensional Ackley problem) and the high cost of EM simulations in

antenna optimization problems, such method is not recommended for antenna565

optimization.

5. Conclusions

In this paper, the SADEA-II method has been proposed. Comprehensive

experimental veri�cation indicates that SADEA-II successfully handles various

kinds and extents of discrepancy between simulation models of di�erent �delities570

without problem speci�c �delity study (it is di�cult to be realized for global

optimization) and is scalable. Therefore, SADEA-II has addressed the main

challenge for multi-�delity optimization-based antenna design. With SADEA-

II, there is a large �exibility for the coarse EM model setup, which does not need

to be ad-hoc. This is because of the new three-stage multi-�delity optimization575

framework and the data mining methods specially designed for antenna design

optimization problems.

Thanks to the co-working of data-driven surrogate models and mutli-�delity

EM simulation models in a reliable way, SADEA-II performs as expected ac-

cording to the description in Section 1 by: (1) obtaining even better result580

than SADEA (a state-of-the-art method for antenna optimization) using much

less computing e�ort, addressing antenna global optimization problems with
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long EM simulation time (e.g., 40 minutes per high-�delity simulation) within

a practical timeframe for the �rst time; (2) ensuring su�cient generality for

handling various low-�delity models reliably and e�ciently. Also, SADEA-II585

inherits the scalability of SADEA, which is able to handle 30 design variables.

This is su�cient for most antenna design optimization problems. Consequently,

SADEA-II is suitable for industrial use. The future work will focus on the

software tools implementing SADEA-II.
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Ackley Problem and the constructed multi-�delity optimization problems

fc(x) = −20e−0.2
√

1
d

∑d
i=1 x

2
i − e 1

d

∑d
i=1 cos(2πxi)

ff (x) = −20e−0.2
√

1
d

∑d
i=1(xi−ssi)2

−e 1
d

∑d
i=1 cos(2×sf×πxi−ssi)

i = 1, . . . , d

x ∈ [−5, 5]20

P1 : sf = 1.05, ss = 0

P2 : sf = 1.1, ss = [0.1, 0.2,−0.2, 0.2, 0.1,

−0.1,−0.1, 0,−0.1, 0,−0.2, 0, 0.2, 0, 0.1,

−0.2, 0, 0.1, 0.2, 0.3]

P3 : sf = 1.15, ss = [0.2,−0.3, 0.4, 0.4, 0.2,

0.3, 0.3,−0.1, 0.2,−0.3, 0.2,−0.1,−0.2,−0.1,−0.4,

0.3, 0.2,−0.2, 0.5,−0.5]

(.1)
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