3,685 research outputs found

    Techniques for the Fast Simulation of Models of Highly dependable Systems

    Get PDF
    With the ever-increasing complexity and requirements of highly dependable systems, their evaluation during design and operation is becoming more crucial. Realistic models of such systems are often not amenable to analysis using conventional analytic or numerical methods. Therefore, analysts and designers turn to simulation to evaluate these models. However, accurate estimation of dependability measures of these models requires that the simulation frequently observes system failures, which are rare events in highly dependable systems. This renders ordinary Simulation impractical for evaluating such systems. To overcome this problem, simulation techniques based on importance sampling have been developed, and are very effective in certain settings. When importance sampling works well, simulation run lengths can be reduced by several orders of magnitude when estimating transient as well as steady-state dependability measures. This paper reviews some of the importance-sampling techniques that have been developed in recent years to estimate dependability measures efficiently in Markov and nonMarkov models of highly dependable system

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project Phase 5

    Get PDF
    Motivation and Context: One of the key elements of the SERC's research strategy is transforming the practice of systems engineering and associated management practices- "SE and Management Transformation (SEMT)." The Grand Challenge goal for SEMT is to transform the DoD community 's current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first ,document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08-D-0171 and HQ0034-13-D-0004 (TO 0060).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08-D-0171 and HQ0034-13-D-0004 (TO 0060)

    [Subject benchmark statement]: computing

    Get PDF

    Model Based Mission Assurance: NASA's Assurance Future

    Get PDF
    Model Based Systems Engineering (MBSE) is seeing increased application in planning and design of NASAs missions. This suggests the question: what will be the corresponding practice of Model Based Mission Assurance (MBMA)? Contemporaneously, NASAs Office of Safety and Mission Assurance (OSMA) is evaluating a new objectives based approach to standards to ensure that the Safety and Mission Assurance disciplines and programs are addressing the challenges of NASAs changing missions, acquisition and engineering practices, and technology. MBSE is a prominent example of a changing engineering practice. We use NASAs objectives-based strategy for Reliability and Maintainability as a means to examine how MBSE will affect assurance. We surveyed MBSE literature to look specifically for these affects, and find a variety of them discussed (some are anticipated, some are reported from applications to date). Predominantly these apply to the early stages of design, although there are also extrapolations of how MBSE practices will have benefits for testing phases. As the effort to develop MBMA continues, it will need to clearly and unambiguously establish the roles of uncertainty and risk in the system model. This will enable a variety of uncertainty-based analyses to be performed much more rapidly than ever before and has the promise to increase the integration of CRM (Continuous Risk Management) and PRA (Probabilistic Risk Analyses) even more fully into the project development life cycle. Various views and viewpoints will be required for assurance disciplines, and an over-arching viewpoint will then be able to more completely characterize the state of the project/program as well as (possibly) enabling the safety case approach for overall risk awareness and communication

    Evaluation of the impact of high bandwidth energy storage systems on DC protection

    Get PDF
    The integration of high bandwidth energy storage systems (ESS) in compact DC electrical power systems can increase the operational capability and overall flexibility of the network. However, the impact of ESSs on the performance of existing DC protection systems is not well understood. This paper identifies the key characteristics of the ESS that determine the extent of the protection blinding effects on slower acting generator systems on the network. It shows that higher fault impedances beyond that of an evaluated critical level will dampen the response of slower acting generator systems, decreasing the speed of corresponding overcurrent protection operation. The paper demonstrates the limitations of existing protection solutions and identifies more suitable protection approaches to remove/minimize the effects of protection blinding
    corecore