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Abs t rac t .  Modelling techniques and tools of the future must meet the 
challenges presented by today's highly demanding and schedule-oriented 
developing environment. With the emergence of high performance and 
reliability systems the problem of how to analyze such systems has be- 
come increasingly more difficult. Traditional assumptions of independent 
events, exponential distributions and other such '~convenient" assump- 
tions no longer model systems realistically. Nevertheless, the demand for 
answering performance and reliability related questions during the de- 
sign process has increased. In this paper wediscuss some of the issues 
involved in integrating modeling and design during a product develop- 
ment process. We present a broad range of existing techniques of systems 
analysis. We also describe a variety of tools that have been developed to 
make the analysis process simpler. 

1 I n t r o d u c t i o n  

One of the greatest challenges facing today's performance, reliability and per- 
formability tool designers is to meet the rapidly changing needs of computer 
and communications product designers and capacity planners. These designers 
and planners must develop those systems that  will satisfy ever more demanding 
customer expectations of reliability and performance. These challenges should 
invigorate the area of systems analysis research by introducing a vast array of 
real problems that  stress existing theoretical techniques. 

By examining these real problems commonly encountered by such designers, 
we should gain an insight into the capabilities an ideal analysis tool should 
provide. Likewise, by examining the pressures experienced by designers as they 
develop a product, as well as designer-analyst interactions, we should gain insight 
into additional features (e.g., ease of use, reusability of submodels, etc.) that  a 
successful tool should offer. As a result of these examinations, we should be able 
to suggest successful ways in which such tools, as  well as the systems analysis 
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experts that develop them, can be effectively integrated into the design process. 
This should lead to an increased viability of such tools, as well as a mutually 
beneficial relationship between tool developers and tool users. 

1.1 How should  realist ic sys tems be analyzed?  

A large number of real system characteristics cannot be easily modeled using 
present analytic techniques. Most realistic systems cannot be separated into 
small independent subsystems. Their detailed state representation then may 
be excessively large. Further, events in real systems are not "memoryless" and 
event times may differ by several orders of magnitude. All this implies that 
simple analytic models such as product form queueing networks may not be 
powerful enough, and detailed analytic models (such as Markov chains) may 
be prohibitively large and stiff. This unfortunately has led to an over-reliance 
by designers on discrete event simulation, which is often improperly used, or 
applied to situations where a simpler analytic model would suffice. When ex- 
tremely accurate predictions of final product performance/reliability (especially 
distributions) are needed, discrete event simulation is probably the best method. 
However, detailed simulation models require a great deal of time to construct, 
parameterize, validate and solve. As an example, a recently developed detailed 
simulation model of an actual ATM adapter required 12 hours of machine time on 
a very powerful server (receiving 100% of the CPU cycles) to achieve acceptable 
90% confidence intervals for the desired response time measures. The bottleneck 
resource in the model was utilized at only 40% of its capacity for the run. Runs 
with higher utilizations would have required unacceptable amounts of machine 
time, since run time for the same level of confidence increases exponentially with 
utilization. 

However, when we examine the evolution of the design process of an ac- 
tual product, it becomes apparent that simulation is often unnecessary. At the 
earliest stages of this process, a very simple, high-level analytic model of the 
product design is probably sufficient. Simulation would not be recommended at 
this stage, since actual values for many system parameters, as well as many of the 
actual design details, would not be available. However, comparisons of different 
high-level design alternatives could be made with analytic models so that the 
best high-level design could be chosen at the outset. As the design matures and 
more details of the technology, architecture, etc. are defined, more accurate ana- 
lytic techniques, hierarchical approximation, and finally, detailed discrete-event 
simulation, might be sequentially used to analyze the system. 

Using such an evolutionary modeling approach, a nearly optimal design can 
be developed from the beginning, avoiding costly 'improvements' made when the 
design is less flexible (especially when the implementation has begun). Redesign 
work late in the development process may also lead to delayed release of the 
product. This points to the value of modeling the system early on and throughout 
development. Such models typically alert the designer to potentially detrimental 
design flaws, hopefully, at a time when they can be easily fixed. 



1.2 The  needs of today ' s  p roduc t  developers 

Today's product designers need to get out the best possible product in the 
shortest period of time using the least amount of resources. This driving force 
pulls the performance and reliability of the resultant product in two opposite 
directions. On the one hand, in today's very competitive market, the developer 
who is first to market may capture the largest share of the market. Therefore, 
schedules for product release are very aggressive and sacrosanct. This means that 
product developers cannot afford a lot of time to develop and analyze models of 
their product's performance and reliability. On the other hand, customers are 
requiring far greater reliability and performance which would suggest a need for 
more careful (and, possibly, more time consuming) design and analysis. 

Tools that require very little time to learn to use and allow models to be con- 
structed very quickly will therefore be highly sought after. This suggests that 
easy-to-use graphical user interfaces and clear, self-explanatory menus should 
be developed for all future tools that target an industrial user-base. Many per- 
formance/reliability tools on the market already provide some of these features. 
Furthermore, the ability to define reusable submodels of system and network 
components that can be combined to produce large models and that provide the 
capability of multiple instances in a given model are an absolute must. A num- 
ber of tools are avoided in industry because of their inability to provide these 
capabilities. 

Another important aspect in model specification is the ability to specify 
models in a hierarchical way since this allows one to stay close to the generally 
hierarchically designed systems. When supported in a flexible way, this also 
allows for the building of a database (a model-base) of predefined model building 
blocks. Preferably, the hierarchical model structure should be exploited in the 
model solution phase, however, this is not always easily done and it almost always 
introduces approximation error. 

Tools that provide alternative analytic methods that require less time and 
memory to generate and solve the models, in conjunction with simulation, are 
extremely desirable. Such tools with multiple analysis capabilities would fit very 
well with the evolution of the design process of an actual product as described 
before. The conjunction of several techniques in a single tool might allow the 
user to input the appropriate details of his product only once, and then analyze 
it using different methods, depending upon his needs for accuracy vs. speed of 
execution. It would also facilitate the use of hybrid techniques and hierarchical 
model development. 

Ideally a tool should also have an integrated method of calibration for its 
models. That is, it should be closely coupled with databases maintained by 
manufactures about their products. These databases could provide information 
for model calibration such as failure rates, device speeds, repair times and so 
on. Using the measures contained within these databases, it should not only be 
easy to parametrize a single run, but also a series of experiments with chang- 
ing model parameters allowing for parametric studies. Tools with such multiple 
capabilities could therefore satisfy the pull by today's market forces to develop 



models quickly and in a timely manner so that products are brought to market 
in the shortest period of time. 

1.3 Relationship Between Designers and Performance Experts 

In the past, especially in large corporations, one or more performance depart- 
ments have existed independently of those departments responsible for the ac- 
tual design and implementation of products. The justification for such an ar- 
rangement has typically been that  such separate departments serve as centers of 
competency, whereby the members can consult with one another when difficult 
problems arise in their analyses. Such an arrangement also fosters departmental 
experts who can provide focus specifically on techniques that  will make the work 
of theoretically analyzing products more accurate and efficient. 

However, some inherent problems exist in this arrangement. Because analy- 
sis and design departments are separate, conflict often arises when the analyst 
exposes serious performance/reliability flaws in the product design. Although 
sometimes the feedback is appreciated, it more often leads to a sudden lack of 
cooperation between the two groups. The design team may suddenly make it 
very difficult for the performance team to obtain additional design details. This 
points to another drawback of the arrangement of separate departments. The 
analyst typically requires time from the designer's often busy schedule to verify 
his understanding of the design. As an outsider, it is a very difficult task for the 
analyst to obtain an accurate picture of the details of the design from reams of 
poorly indexed design documents that  are constantly changing as the product 
design evolves. It is especially difficult to keep up with such changes in both the 
hardware and the software (some knowledge of both are needed for such models). 

The availability of time from a product developer's schedule has become in- 
creasingly more difficult to obtain in today's schedule-driven, "more efficient" (a 
euphemism for over-worked) working environment. Given the cost to a designer 
of taking the time to cooperate, one might be sympathetic to their reluctance 
to assist the analyst. If the analyst simply verifies the correctness of the design 
(that is, it meets performance specifications, etc.), his work is often viewed as 
superfluous; if he exposes problems, his work is viewed with hostility. Therefore, 
an analyst should also provide insight into or solutions to problems encountered 
during the analyses, as well as improvements to the existing design, if his work is 
to be properly appreciated. Furthermore, those improvements should be available 
in a timely manner during the design cycle so that  they can be implemented. 

This has led to several strategies to reduce the problems inherent in a separate 
department arrangement. For those organizations that  were large enough to 
allow a separate high-level design department for a product, this department 
was often combined with the analysis department. However, with a movement 
toward a smaller, more efficient workforce, what is more typically encountered 
is a small single group with a very broad range of responsibilities for the design 
and implementation of a single product. In an extreme reaction to needed cuts 
in work force, some of the groups have no one officially responsible for analyzing 
the performance/reliability of their product. They therefore operate at the risk 



of encountering major design problems surfacing late in the implementation or 
prototype phase. 

Because of such potential exposure, these tighter design groups often allocate 
one person to be responsible either part-t ime or full-time to these performance- 
related problems. Since the person is a part of the design and implementation 
team, he is able to track the design from the very beginning and is not likely 
to be 'frozen-out'  when performance-related problems in the design are encoun- 
tered, since he is expected to provide some of the solutions. However, one major 
problem is the availability of enough qualified performance analysts that  can be 
distributed among various product design groups. This inherent variability in 
talent can be smoothed out either by means of improved training or by means 
of better  tools. 

1.4 T h e  f o c u s  o f  t h i s  p a p e r  

Recently, there have appeared a number of papers with surveys similar to this 
one. Most notably, we mention Meyer [54] who overviews the history of the con- 
cept of performability after he introduced it in the early eighties [51, 52]. De 
Souza e Silva and Gail [74] discuss the specific technique known as uniformiza- 
tion, which is now known to be the method of choice for transient analysis of 
continuous-time Markov chains (CTMCs). Trivedi st al. [79] present mathemati-  
cal evaluation techniques for performability. Haverkort and Trivedi [32] overview 
specification techniques for Markov reward models. Mulazzanni and Trivedi [59] 
overview tools for dependability, as do Geist and Trivedi [24] and Johnson and 
Malek [38]. A description of dependability analysis of real-time systems can be 
found in [78]. 

This paper differs from the above ones in that  it addresses reliability, per- 
formance and performability evaluation tools and techniques from the user's 
perspective. Former papers often were restricted to either performability, or to 
just  tools or to just techniques. In this paper you will find a mix of it all. 

The organization of the paper is as follows. In Section 2 we t ry  to answer 
questions of the form "What are we interested in?" and "Why do we actually 
model?".  Answers to these questions give us directives to approaches towards 
reliability and performance evaluation, which are discussed in Section 3; this 
section still focuses on techniques. Tools supporting the various categories of 
techniques are then discussed in Section 4. Problem areas and future perspectives 
are discussed in Section 5. The paper is concluded in Section 6. 

2 W h a t  a r e  w e  i n t e r e s t e d  i n ?  

In this section we t ry  to answer the question "Why are we doing all this?" For 
simplicity, we split the question in a number of subquestions. In Section 2.1 
we discuss system aspects we are interested in, for various classes of systems. 
Then, in Section 2.2, we discuss measures that  quantify the interest expressed 
earlier. Various approaches towards how to derive these measures are discussed 
in Section 2.3. 



2.1 S y s t e m  a s p e c t s  o f  i n t e r e s t  

A first and important  distinction in answering this question, is whether we take 
the viewpoint of a system user or of a system provider. This distinction is most 
clear when thinking of the system as a public data network as provided by 
many telephone companies. System users want a good quality of service (QoS), 
whatever that  may be, whereas the provider wants a high profit. The latter 
implies that  the system should do what the user wants it to do, but at the 
lowest possible cost. 

The QoS asked for by a user is often subjective, e.g.,a user wants a good 
video channel quality, if he is intending to use the network for video transmission. 
How this good quality is expressed in terms of bit rates, bit error rates or switch 
blocking probabilities is not easy determined. These latter measures express what 
is known as the objective quality of service. For example, a user of a parallel 
processing system will most likely be interested in the throughput  and turn- 
around time of his jobs, not so much in the degree of parallelism achieved by the 
system. The latter is of interest to the system designer or for the cooperation 
"selling" parallel processing capacity. 

The above distinction is important  and should be kept in mind when do- 
ing practical evaluation studies; the type of viewpoint has implications on the 
required results. 

2.2 M e a s u r e s  o f  i n t e r e s t  

The distinction made in the previous section directly has its implications for the 
measures we want to evaluate. We distinguish between task-oriented measures 
and system-oriented measures. Task-oriented measures typically say something 
about the end-to-end performance as perceived by system users. Examples are 
the end-to-end throughput or delay, or the expected performance level over some 
time interval of system usage. System-oriented measures say something about 
how, internally, the system performs its tasks. Examples are the average queue 
length, the number of operational components at some time, or the utilization 
of a server. As such, these measures are not so much of interest to the system 
user, although they are intimately related with the task-oriented measures. 

With pure performance evaluation, both task- and system-oriented measures 
can be obtained. Examples of the former are job response or waiting times, 
examples of the latter are average number of occupied buffers or utilizations. 
These measures suffice if the assumption that  the system never fails is acceptable. 

With pure dependability evaluation, the emphasis is on deriving system- 
oriented measures, although safety measures are user-oriented as well. However, 
we think that  system users are not so much interested in high availability as in a 
high probability that  the task they want to be performed are actually performed. 
For that  reason, performability measures seem more suitable. 

Performability evaluation mainly aims at providing user-oriented measures. It 
has been claimed by other authors as well, that  the evaluation of performability 
comes closest to the evaluation of objective QoS. 



Another distinction that  one often encounters is whether the measures are 
derived over a t ime interval or for some particular time-instance. Interval-of-time 
measures include the steady-state measures, when the interval is taken to be in- 
finitely long. Also, cumulative measures over finite time horizons (see Section 3) 
belong to this category. Instant-of-time measures are also called transient mea- 
sures; they express the performability (or performance, or reliability) of a system 
at some time point t. 

2.3 M e t h o d s  o f  e v a l u a t i o n  

We distinguish three classes of methods for system performance, dependabil- 
ity or performability evaluation: measurement-based~ model-based and hybrid 
methods. 

Measurement-based evaluation (also called empirical evaluation) requires one 
to have at one's disposal a measurable system. Apart from the fact that  this is 
often not the case in the design phase of the system, performing measurements 
is often expensive since it requires special purpose hardware and software. Also, 
for dependability modeling purposes, measurement is difficult. Dependability 
events, i.e. ~ system failures, do not occur that  often in highly-reliable systems, 
requiring extremely long measurement sessions. 

Measurement studies are often done to determine system parameters that  
are later to be used in a modeling study, or to validate a model.  

As an alternative to measurement-based evaluation, a model-based evalua- 
tion can be used. A system model can be very simple, e.g.,some mathemati-  
cal formula relating the system performance to the system parameters, or very 
complex, e.g., a large system of differential equations or a complex simulation 
program. 

Once a model has been constructed, it needs to be solved. This can be done 
using discrete-event simulation or using analytical techniques. Analytical tech- 
niques can be fully symbolic, semi-symbolic or numerical. Fully symbolic analyt- 
ical techniques provide simple functional relations between system parameters 
and the measure of interest (E[N] = p/(1 - p )  in the M/M/1  queue). Semi- 
symbolic analytical techniques provide mathematical  relations between system 
parameters  and measures of interest, however, some parameters in the relation 
are to be determined by numerical technique (ACE [50]). Lastly, some analyti- 
cal techniques require numerical solution such as linear-system solution or the 
solution of a differential equation. 

Another distinction that  sometimes is made is whether the solution of the 
model requires the whole model state space to be explicitly generated or not. 
The most well-known example of the former is the solution of a large but fi- 
nite Markov model. An example of the latter is the use of an MVA solution 
procedure [65] in a product-form queueing network or the use of fault-trees for 
reliability analysis [23]. 

Most of the useful evaluations in practice use a judicious combination of 
different modeling approaches with measurements. For example, fault-injection 
simulation (or actual measurements on a prototype) can provide coverage-like 



parameters in an analytic reliability model. A performability model of a multi- 
processor system may have a Markov reliability submodel and a product-form 
queueing network as a performance submodel. 

3 A p p r o a c h e s  t o  p e r f o r m a n c e  a n d  r e l i a b i l i t y  e v a l u a t i o n  

In this section we discuss four approaches to performance, reliability and per- 
formability analysis. In Section 3.1 we discuss so-called non-state space methods, 
thereby meaning that  explicit knowledge and enumeration of the state space of 
the model is not needed for evaluation purposes. In Section 3.2 we discuss Markov 
chain based methods, and in Section 3.3 stochastic Petri net based models. In 
Section 3.4 we discuss hierarchical and approximate modeling approaches. 

3.1 N o n - s t a t e  space  

With this class of models, our aim is to compute required performance and 
reliability measures without explicitly generating overall state space. This is 
a very nice property as state-space sizes tend to increase exponentially with 
the problem size. Three of the most welt-known non-state space methods are 
product form queueing networks (PFQNs), fault trees (FTs) and matrix geometric 
methods (MGMs). 

With PFQNs one needs to specify a number of resources (the queues and 
servers) as well as the way in which customers make use of these resources. The 
queues form the active elements that  can serve customers in an order governed 
by one of the scheduling discipline: FCFS, LCFSPR, PS, or IS. The customers 
travel through the QN according to routing chains. Customers may be grouped in 
classes. At every queue, customers belonging to a specific class request a general 
differential service t ime distribution (at FCFS stations only exponential service 
t ime distributions are allowed). After service completion, the customer proceeds 
to the next queue along its routing chain. The state of a PFQN model is a vector 
consisting of the number of customers of each class residing at each queue. The 
completion of a service at a particular queue or the arrival of new jobs causes a 
state change. Instead of solving such a model at the state space level, one can 
employ special techniques that  exploit the specific model structure and that  are 
much less computation and memory intensive. The convolution approach intro- 
duced by Buzen [9] and the mean-value analysis (MVA) introduced by Reiser and 
Lavenberg [65] and their derivatives constitute the common techniques. With the 
former an efficient recursive scheme is used to calculate normalizing constants 
which can be used in straightforward calculations for derived performance mea- 
sures such as average queue length, utilizations and throughputs. In the MVA 
approach, a recursive scheme in terms of the average performance measures is 
developed. 

Fault-trees(FT) are a commonly used non-state space (also called combina- 
torial) method for reliability (availability, safety) analysis. With FTs the con- 
ditions under which a system fails, are expressed as a tree structure containing 



logic gates. Component failure events form the leaves of the tree. Subsystems 
and components must have stochastically independent failure behavior. 

The measures of interest are normally computed using combinatorial meth- 
ods, that  is, the system failure event is expressed as a logical function of the 
failure events of subsystems and components. Dependability measures (such as 
reliability or safety at time t or mean time to system failure) of interest are 
then computed numerically or symbolically directly from the tree. Algorithms 
for fault-tree analysis can be found in [55]. 

Specification techniques that  are very closely related to FTs are reliability 
block diagrams and reliability graphs. For further details, the reader is referred 
to [55] and [66]. 

With MGMs, the repetitive structure of the underlying Markov chain in many 
queueing models is exploited. When observing the (embedded) generator matrix 
Q of many queueing models, it appears that apart from a number of so-called 
boundary columns, from some point onwards, all columns are the same, except  
for the fact that  they "shift down". This appears most notably in the M/M/1  
queue, however, also in more complex queueing systems this structure can be 
observed. In the latter case, the columns are often columns of matrices rather 
than scalars. Due to this special structure, the steady-state probabilities can be 
grouped in so-called levels and the steady state probability vector for level i, 
i.e.,g/ can be expressed as 

z_/= Z_o Ri, i = O, 1, . . -  (1) 

i.e., the steady state probability vectors per level exhibit a geometric solution 
in terms of the matrix R. The basis of the recursive solution is obtained by 
solving a system of linear equations corresponding to the repeating portion of the 
global balance equations and the normalization equation. The matrix R follows 
from a quadratic equation that  can easily be solved iteratively. The size of R 
equals the number of states per level, typically small and finite. By contrast, the 
original Markov model solution would have required an infinite system of linear 
equations. 

3.2 M a r k o v  r e w a r d  m o d e l s  

In this section, we present a unified framework for performance, reliability and 
performability models in terms of Markov reward models. A comprehensive ac- 
count of Markov reward models for performability analysis appears in [79]. Sev- 
eral references on solution methods for the measures defined below can be found 
in [15, 29, 64, 74, 79]. 

Def in i t ions  

Let {O(t) , t  > 0} be a continuous-time finite-state homogeneous Markov chain 
(CTMC) with state space ~P. A constant reward rate ri is associated with each 
state i of the Markov chain. With the reward rate specifications, the CTMC can 
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be termed as Markov reward model (MRM). If the MRM spends 7-i t ime units 
in state i, then rlv~ is the reward accumulated. It is also possible to associate 
reward rates with the transitions of the CTMC. For more basic information on 
MRMs, refer to [37]. 

Let Q be the generator matr ix and P(t)  be the state probability vector of the 
MRM. Here Pi(t) denotes the probability of the MRM being in state i at t ime 
t. The transient behavior of this MRM is given by the Kolmogorov differential 
equation: 

dR(t) 
dt - P( t )O  , (2) 

given the initial state probability vector P(0).  The steady-state probability vec- 
tor 7r, assuming that  it exists and is unique, is obtained by setting the 1.h.s. in 
Equation 2 to zero: 

~_Q = 0 , (3) 

subject to the condition ~ i e ~  ~ri = 1. Here ~r~ is the steady-state probability of 
the MRM being in state i. Let us now define a cumulative state vector of the 
MRM as Lit  ) = fo P ( x ) d x .  L{(t) denotes the expected total  t ime spent by the 
MRM in state i during the interval [0, t). Integrating Equation 2, we obtain: 

dL_(t) 
dt - L ( t ) q  + P ( 0 )  . (4) 

For MI~Ms with absorbing states, the state space ~" can be parti t ioned into 
two subsets: ~A (absorbing states) and ~T (transient states). Corresponding to 
the non-absorbing states, the submatrix QT of Q can be defined. The mean 
time spent by the MRM in state i is given by ~-~ = f o  P~(x)dx, which can be 
computed by integrating Equation 2 from 0 to oo: 

~QT + P_T(0) = 0 . (5) 

The mean time to absorption in such a Markov chain is given by: 

M T T A  = E ~'~ (6) 
iE~T 

Performability Measures 

Let 7'(t) = re(t) be the instantaneous reward rate of the MRM. The accumulated 
reward over a period of time [0, t) is given by: 

/0 ]0 r  r ( x ) d x =   o(x)dx . 

The expected instantaneous reward rate at t ime t of the MRM is: 

E[r(t)]  = r P (t) 
i6@ 

(7) 

(8) 
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k 

The expected reward rate in steady-state of the MRM is: 

E[T~] = V" (9)  
iEk~ 

The expected accumulated reward in the interval [0, t) of the MRM is: 

: r iLe ( t )  . (10)  

The expected time-averaged reward in the interval [0, t) is given by ~ i  riLi(t)/t. 
For an MRM with absorbing states, expected accumulated reward until absorp- 
tion is: 

E[4~(eo)] = E ro-i �9 ( l l )  
i E k~T 

The distribution of T(t) is computed as: 

P [ r ( t )  < x] = ~ P~(t) . (12) 
ri<x,iE@ 

The distribution of accumulated reward until absorption and distribution of 
accumulated reward over a finite period of time can also be computed. 

Let the time to accumulate a given reward r be denoted by P(r). Then the 
distribution of P(r) is known once the distribution of accumulated reward is 
known [40]: 

P [ r ( , )  _< t] = 1 - P i e ( t )  < r] . (13)  

For example, the distribution of time to complete a job that requires r units of 
processing time on a system which is modeled by an MRM can be computed in 
this manner. 

D e p e n d a b i l i t y  M e a s u r e s  

In a dependability model, a reward rate of 1 is assigned to all the system op- 
erational states and reward rate 0 is assigned to all the system failure states. 
The instantaneous availability of the system is then E[T(t)] and steady-state 
availability is E[T~t~]. The cumulative operational time of the system in time 
interval [0, t) is E[~(t)]. Interval availability is the proportion of time a system 
is operational in a given interval of time and it is given by E[~(t)]/t. Measures 
related to time to first system failure are also of interest. To compute these mea- 
sures, all the failure states are made absorbing (outgoing arcs from these states 
are removed). Reliability is then given by E[T(t)]. The lifetime (analogous to 
cumulative operational time) [74] of the system in interval [0, t) is E[~(t)] and 
mean time to system failure (MTTF) is E[~5(oc)]. The repairability of the sys- 
tem is computed by making all the operational states absorbing and reversing 
the reward rates (i.e., making reward rate 1 to 0 and vice-versa) and computing 
E[r(t)]. 
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P e r f o r m a n c e  M e a s u r e s  

In a performance model, queue length at a resource may  be the reward assign- 
ment  to a state. Then E[T~] and E[T(t)] will yield the average steady state 
and average transient queue length, respectively. In a like manner,  throughput ,  
buffer overflow probabil i ty etc. can be obtained as reward measures. 

In a performabil i ty model, reward assignment is typically computed from a 
performance model ( throughput,  probabil i ty of violating a response t ime dead- 
line) which is evaluated for different states of a fai lure/repair  model. Throughput  
and response t ime deadline violation probabili ty can then be computed including 
the effects of failure/repair.  

3.3 S t o c h a s t i c  P e t r i  n e t  m o d e l s  

Stochastic Petri nets (SPNs) have been developed as extensions to the non-t imed 
Petri nets by Molloy [56], Ajmone Marsan et al. [2] and Meyer et al. [53]. Al- 
though at first primari ly used for the performance analysis of computer  systems, 
SPNs are increasingly being used in other application areas such as performa- 
bility and dependability evaluation. 

When using an SPN specification technique, one has to define a set of places 
P,  a set of transitions T, and a set A of arcs between transitions and places or 
vice versa: A C_ ( P x T) U (T x P). Each place can contain zero or more tokens. 
Graphically, places are depicted as circles, transitions as bars, tokens as dots (or 
integers) inside circles, and arcs as arrows. 

The distribution of tokens over the places is called a marking and corresponds 
to the notion of state in a Markov chain. All places from which arcs go to a 
particular transition are called the input places of tha t  transition. All places to 
which arcs go from a particular transition are called the output  places of the 
transition. A transition is said to be enabled when all of its input places contain 
at least one token. If a transition is enabled it may  fire. Upon firing, a transit ion 
removes one token from all of its input places and puts one token in all of its 
output  places, possibly causing a change of marking, i.e., a change of state. 

The firing of transitions is assumed to take an exponentially distributed time. 
Given the initial marking of an SPN, all the markings as well as the transit ion 
rates can be derived, under the condition that  the number of tokens in every 
place is bounded. Thus a finite Markov chain is obtained. 

The reward rates are described as a function of the markings, i.e., at the SPN 
level. The reward rates and the Markov chain together yield a MRM [16]. 

Various extensions have been made to the basic SPN model described above 
[2, 16, 53]. These include arcs with multiplicity, a shorthand notat ion for multi-  
ple arcs between a place-transition pair, immediate  transitions tha t  take no t ime 
at all to fire (depicted as thin bars), and inhibitor arcs from places to transi- 
tions tha t  prevent the transition to fire as long as there are tokens in the place 
(depicted as lines with a small circle as head). Also, more flexible firing rules 
have been proposed, most notably the introduction of gates in stochastic activity 
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networks (SANs) [53, 68] and guards or enabling functions in Stochastic Reward 
Nets (SRNs)[16] 

Normally, SPN (look-alike) models are solved via an underlying MRM which 
can automatically be derived, thereby using the wide variety of available tech- 
niques as indicated in the previous section. For very large models when star- 
space generation is prohibitive, simulation can be used as well. Especially in the 
field of dependability and performability evaluation there might be a need for 
the incorporation of fast-simulation techniques such as importance sampling [26] 
or injection simulation [57]. For a restricted class of SPN models product form 
solutions are available, see e.g., [36]. Given such a structure, MVA [19] and con- 
volution [18] schemes have recently been devised. 

3.4 Hierarchical  and Approximate  Models  

With hybrid approaches, two or more techniques are combined in the construc- 
tion and solution of a single model. Very often this takes the form of hierarchical 
modeling. Submodels are specified in one formalism and the result of the sub- 
model analysis are embedded in a higher-level model. Hierarchical modeling, 
however, is not always hybrid modeling. The decomposition result in PFQN is a 
form of non-hybrid, hierarchical modeling. Beginnings of a theory of hierarchical 
models of SPN type can be found in [17]. There is less general theory for hybrid 
modeling. We therefore mention some published approaches. 

For pure performance studies, Balbo et al. combined queueing networks and 
GSPNs for the analysis of system models with non-product form characteris- 
tics [3]. The non-product form parts of the model are solved using GSPNs, the 
results of which are used in load-dependent queueing stations that  fall in the 
category of PFQNs. 

With the software tool SHARPE (see Section 4) many model types can be 
analyzed, using a variety of techniques. The result of one analysis can be em- 
bedded in other models. This can be done in a cyclic way as well; in that  case 
fixed-point iteration techniques are needed to solve the overall model. 

In the dynamic queueing network concept proposed by ttaverkort et al. [28, 
29] queueing networks are used for describing performance aspects, and GSPNs 
are used to describe dependability aspects of fault-tolerant computer systems. 
An overall model is not explicitly constructed, instead, an approximate solution 
based on behavioral decomposition as is common in performability evaluation is 
utilized. 

For non-product-form networks (NPFQN), a number of approximate tech- 
niques exist. A major concern with these techniques is in the characterization 
of their error under a wide variety of realistic network situations. A number 
of methods exist for closed non-product-form networks, including Marie's al- 
gorithm [49]. A wide variety of methods also exist for general open networks. 
A popular method, on which a number of tools are based (e.g., QNA [81]) is 
a two-moment decomposition method that  was developed by Whit t  to handle 
networks with general independent interarrival and service time distributions. 
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Mean waiting times are predicted using a two-moments of service and interar- 
rival times. Mean interarrival times are computed by solving the standard traffic 
equations. The coefficient of variation of the interdeparture time is computed by 
means of Marshal's formula, using an approximation for the mean waiting time. 
As the use of Marshal's formula implies, all interarrival processes to resources 
within the network are assumed to be renewal processes. Under this assump+ 
tion, using heuristic methods developed by Albin and Whitt [81] that are based 
on large amount of empirical evidence, a linear system of simultaneous equa- 
tions is derived to solve for the coefficient of variation of interarrival times to all 
resources. 

4 T o o l s  f o r  p e r f o r m a n c e ,  r e l i a b i l i t y  a n d  p e r f o r m a b i l i t y  

e v a l u a t i o n  

For the basic approaches distinguished in Section 3, we discuss a number of 
software tools that support them. Due to space limitations we can not go into 
much detail, however, we provide references that can be tracked down for further 
study. 

4.1 Non-s ta te  space 

In the reliability domain, the tools SHARPE [66] and HARP [22] can both solve 
fault-tree models. SHARPE also solves reliability block diagrams and reliability 
graphs. SHARPE can provide semi-symbolic expressions (in terms of t) for the 
reliability function. 

Performance modeling packages QNAP [63], RESQ [47], and HIT [5] support 
a wide variety of PFQN analyses, such as MVA and convolution algorithms. 
The tool HIT also supports nice facilities for hierarchical modeling, both exact 
(Norton's theorem, and approximate). SHARPE also solves multiclass PFQN 
models using the MVA algorithm and series-parallel task precedence graphs. 

Two tools that make use of MGMs are MAGIC developed by Squillante [76] 
and Xmgmtool developed by Haverkort [34] respectively. MAGIC allows one 
users to input the regular (repeating) block-structure of the Markov generator 
matrix. It subsequently calculates the matrix R and the initial vector of the 
recursion z 0. Xmgmtool provides similar facilities, however, it also provides fa- 
cilities to specify queueing systems in terms of their interarrival and service time 
distributions (both of phase-type). The underlying regular matrix structure is 
subsequently generated and solved. The output is also given in terms of the 
queueing systems originally specified. 

4.2 Markov  reward  models  

With SHARPE [67], MRMs can be input at the state level by a simple enumer- 
ation of the state-change rates and the reward rates per state. SI-IARPE then 
solves Markov and semi-Markov reward models for their steady-state, transient 
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and cumulative behavior. Specification is textual, but abilities include solving 
the model for many different parameters using "loop" specifications. 

The textual tool MARCA has been developed by Stewart [77] at North Car- 
olina State University. Although not really an SPN tool, its modeling constructs, 
i.e.,buckets, balls, and transitions, can easily be interpreted in an SPN context 
as places, tokens and transitions. Emphasis in the the tool is on advanced steady 
state numerical solvers. 

There are many tools available that solve models via the underlying MRM. 
The largest class of such tools exists in the context of SPNs; that is why we 
discuss them separately. However, some other tools based on other modeling 
paradigms are discussed below. In particular we address queueing network (QN) 
based tools and tools based on production rule systems (PRS). 

The tool QNAP2, developed at INRIA by Potier et al. [63, 80], is a general 
QN-based performance analysis tool which supports simulation, (approximate) 
product-form solutions as well as a numerical solution based on an underlying 
MRM. In fact, given a textual representation of a QN, the QNAP2 model is 
transformed to an intermediate model similar to the MARCA model . Only 
steady-state measures are computed. 

The performance analysis tool NUMAS, developed at the University of Dort- 
mund by Miiller-Ctostermann [60], is a textual tool for Markovian queueing net- 
work analysis. As an extension, NUMAS allows the modeling of queues with 
server breakdowns and repairs. NUMAS thus allows for steady state performa- 
bility analysis. 

The graphical performance analysis tool MACOM, developed by Sczittnick 
et al. at the University of Dortmund [73], is mainly used for the steady state anal- 
ysis of blocking phenomena in communication networks. MACOM emphasizes 
advanced techniques for the steady state analysis of large MRMs. 

Based on PRSs [32] are the tools METFAC, ASSIST and USENUM. The 
textual tool METFAC, developed by Carrasco and Figueras at the University 
of Catalunya [10, 11], supports the use of a PRS specification technique and 
has been used for performance, dependability and performability modeling of 
computer systems. Steady state, transient, as well as cumulative measures can 
be computed. 

The tool ASSIST has been developed by Johnson and Butler at NASA [39] 
as a front-end to the SURE package [8] for reliability analysis of (computer) 
systems. This textual tool allows for the flexible specification of PRS. By the 
use of arrays of state variables and loops in the production rules, compact spec- 
ifications can be written. Also facilities for truncating state spaces are available. 
The ASSIST program translates the PRS to input for the SURE package. This 
input is an MRM. The SURE package deals with absorbing semi-Markov models. 
Therefore, only transient measures are computed. 

The textual tool USENUM, developed by Sczittnick et al. at the University 
of Dortmund [7, 72], allows users to define Markovian models by means of a 
finite state machine. USENUM can be used stand-alone, or within the QN tool 
MACOM. 
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4.3 S tochas t i c  P e t r i  ne t  m o d e l s  

A wide variety of tools for stochastic Petri nets have been developed. We briefly 
discuss the most well-known tools that  are based on MRMs. 

GreatSPN, developed by Chiola et al. at the University of Torino [12], is a 
graphical Petri net tool which is primarily used for the performance analysis 
of computer and communication systems. Analysis techniques are mainly for 
steady state measures. 

ESP, developed by Bobbio and Cumani [6, 21], is a textual SPN tool. In this 
tool, special emphasis is put on the use of phase-type distributions instead of 
only exponential distributions, on transient measures and on the aggregation of 
stiff MRMs. 

METASAN, developed by Sanders and Meyer [68, 69] at the University of 
Michigan, is based on SANs. The tool includes steady state, transient and cu- 
mulative analysis methods. 

The tool UltraSAN, developed by Sanders et al. [20] at the University of Ari- 
zona, is also based on the SAN concept. With UltraSAN, the input of the models 
is totally graphical. UltraSAN allows for a structured form of hierarchical mod- 
eling which results in lumped underlying MRMs that  are substantially smaller 
(so-called reduced base-models [70]) than their "flat" counterparts. Steady state 
as well as transient simulation are also available as solution methods. 

SPNP, developed by Ciardo c ta l .  [14], is a C-based SPN tool which allows 
for a flexible definition of a class of SPN models known as stochastic reward 
nets. Steady state, transient and cumulative measures are supported. By the 
flexible use of C, it is possible to construct models hierarchically, that  is, results 
of one model can be used in the analysis of another model, even in a fixed point 
iterative manner [17]. 

TOMSPIN is a general SPN tool developed at SIEMENS AG [41], for per- 
formance and dependability analysis. Steady state and transient measures are 
supported. An approximate solution for hierarchically structured SPN models 
based on an aggregation algorithm is also included. 

PENPET is a performability modeling tool developed by Lepold [42, 43] at 
SIEMENS AG. It is a high-level tool built on top of TOMSPIN in which one 
SPN is used for the specification of system dependability aspects, and another 
for the system performance aspects. 

The graphical tool DSPNexpress has been developed by Lindemann at the 
Technical University of Berlin [46]. Interesting aspect of this tool is that  it allows 
for DSPNs, i.e., SPNs in which transitions may have deterministic timing. Under 
certain conditions, an embedded Markov chain can be constructed that  allows 
one to solve for the steady state probabilities. 

4.4 Hierarchical and Approximate Models 

The performability modeling tools DyQNtool + [35] has been developed by Haverkort 
et al. at the University of Twente. The tool operates along the lines of the dy- 
namic queueing network concept and is an extension of its predecessor DyQNtool 
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[28, 29, 30]. DyQNtool+ has been developed as a shell of programs around the 
packages SHARPE and SPNP. The SHARPE package is used for the solution 
of series of PFQNs of which the results are used as reward rates in the SRNs 
specified using SPNP. Thus, in a very flexible way, performability models can be 
evaluated. 

The tool SHARPE has been developed by Sahner and Trivedi [66, 67]. SHARPE 
allows users to specify SPN, QN and FT like models as well as MRMs directly. 
Also hierarchical modeling is possible, that is, the results of a model analysis 
can be used in higher-level model evaluations, possibly using a different model- 
ing approach. 

5 Problems and perspectives 

In this section, we discuss a number of recurring problems in performance, de- 
pendability and performability evaluation. We discuss the issue of largeness 
in Section 5.1 and the issue of stiffness in Section 5.2. The modeling of non- 
exponential behavior is addressed in Section 5.3. 

5.1 La rgenes s  

Models of practical systems are often very large. We use special specification, 
generation, storage and solution techniques to deal with the large models (large- 
ness tolerance) or avoid largeness altogether. 

First consider the techniques related to largeness tolerance. With this we 
mean the techniques that  aim at being able to handle models as large as possible 
without affecting the model size itself. 

For non-state space models, largeness tolerance techniques would encompass 
better implementations of MVA and convolution like algorithms, using extra sig- 
nificant digits to keep the normalizing constants accurate. Sparse storage tech- 
niques should be used whenever matrices are involved, such as in MGM. Also, 
whenever possible, special properties should be exploited. As an example of this, 
the matrix R that  has to be calculated when using MGM has the property 
that  zero entries come in rows, i.e.,whenever the first element of a row equals 
zero, the rest is zero as well. This can be exploited in devising the storage and 
computational schemes, as has been done in Xmgmtool [34]. 

For MRM-based modeling techniques, largeness tolerance techniques presup- 
pose the use of a concise specification method (e.g. SPN), automated MRM 
generation, sparse storage, sparsity preserving numerical techniques, e.g., using 
SOR instead of Gaussian elimination for the solution of the steady-state behav- 
ior of large MRMs, and orthogonal uniformization for the transient solution of 
acyclic Markov chains [27]. 

With largeness avoidance, we try to circumvent the generation of very large 
models. Although the capacity of modern day workstations is enormous, there 
will always remain systems that  yield models that  become too large to be handled 
directly. 
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As mentioned before, an important largeness avoidance technique widely ap- 
plicable is hierarchical modeling which is based on the "divide and conquer" 
principle. The basic idea is to split a large model in smaller ones that  can be 
analyzed in isolation. The results of the submodels are integrated in a single 
overall model that  is small enough to be analyzed. 

In the field of PFQN, it has been shown that  such a decomposition approach 
can be performed in an exact way ("Norton's theorem", due to Chandy, Herzog 
and Woo [71]). For non-PFQNs, the decomposition is approximate. The theory 
developed by Courtois and which is used for the analysis of the degradable QN in 
NUMAS establishes bounds on the error made in the steady-state probabilities 
thus obtained. In fact, the performability evaluation approach based on MRM 
is motivated by these decomposition properties. An approximate way of solving 
large SPN models by decomposition is discussed by Ciardo and Trivedi [17]. 
They use a fixed-point iteration scheme. In this context, the work on automatic 
lumping as performed in UltraSAN by Sanders et al. is also of interest [20, 70]. 

The truncation of "the least important states", i.e.,those states that  have 
a small probability mass is another way to avoid large models. Work in this 
direction has been done by tlaverkort [33], Li and Silvester [44], Muppala et 
al. [61], Bavuso et al. [4] and de Souza e Silva and Ochoa [75]. It is especially 
appropriate in case MRM or SPN models are used. 

5.2 St i f fness  

Informally speaking, stiffness is a property of a model to take very long to be 
solved. Often this is caused by the fact that  in the model parameters of widely 
varying order of magnitude play an important role; this clearly is the case in 
dependability-related models where failure rates are very small and repair rates 
are orders of magnitudes larger. 

Given a particular model type, one can specialize the above informal defini- 
tion of stiffness. For Ml{Ms, stiffness is often defined as ratio between the largest 
and smallest rate in the transition rate matrix; the higher this ratio, the more 
stiff the model. Even more refined are the definitions related to a solution tech- 
nique for a specific model. In using uniformization for instant-of-time measures 
of MRMs, the value of qt is often called the stiffness index, where t is the time 
epoch of interest and q is the maximum over the absolute values of the diagonal 
entries of the rate matrix, i.e.,the uniformization rate. The recently developed 
extensions of the uniformization technique such as steady-state detection [62] 
and adaptive uniformization [58] decrease the impact of stiffness. 

For very stiff MRMs, implicit integration techniques (such as Runge-Kutta) 
seem to be the most efficient [48]. The use of these techniques in combination 
with uniformization also seems fruitful [48]. 

When discrete-event simulation is the used as a solution method, stiffness 
can often be circumvented by using importance sampling [26] as implemented in 
SAVE [25] and UltraSAN [20] or by using injection simulation [57]. 

Model decomposition, where the fast and slow rates are separated from each 
other, is another way of avoiding stiff models. This is implicitly done in many 
hierarchical solution techniques [23]. 
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5.3 Non-exponen t i a l  behavior  

In many model solution techniques, the only allowed time-distributions are ex- 
ponential distributions. This is the case for the FCFS stations in PFQNs and for 
the timed transitions in SPNs. To include more variability in a model is generally 
not much of a problem since a hyper-exponential distribution with two phases 
can be used to create very large coefficients of variation. More of a problem is 
the inclusion of (quasi-)deterministic timing. 

When simulation is used as a solution technique, non-exponential timing is 
not a problem. Moreover, it often reduces simulation time as less variance is put 
in. 

One common way to "Markovize" a non-exponential distribution is to use 
phase-type distributions. In combination with MGMs this is a very attractive 
approach, although it increases the size of the models to be dealt with. In the 
context of SPN models or MRMs, this method of phases is often less easy to 
apply: the state space suffers tremendously. 

Recent developments in the field of DSPNs (introduced by Ajmone Marsan 
and Chiola [1] and further developed by Lindemann [45]) and Markov-regenerative 
SPNs, introduced by Choi et al. [13], alleviate the exponential assumption in SPN 
models significantly. When one deals with product-form SPNs [36], insensitivity 
properties known from stochastic-processes theory establish that in many cir- 
cumstances it does not really matter what the form of the distributions is; only 
their means matter. 

6 F u t u r e  W o r k  a n d  C o n c l u d i n g  R e m a r k s  

The challenge in the future lies in developing modeling tools that will operate 
in a highly constrainted and schedule-oriented environment. The availability of 
such tools will provide a means of effectively integrating performance experts 
into the product design team. 

In the future, tools must be made sophisticated enough so that an expert 
system might even eliminate the need for the human expert. Then the designer 
himself could perform the analyses without any special expertise in the theories 
of reliability, queues, Markov chains and stochastic Petri nets. At the very least, 
it would help to smooth variations in the competence of the analyst from one 
group to the next. A performance/reliability 'center of competency' department, 
that provides upgrades and maintenance to and advice on, the tools itself might 
then arise; but the actual analysis would shift to the designers themselves. 

A great deal of progress has been made in the last decade in techniques for 
the generation and solution of large performance, reliability and performability 
models. Correspondingly, software tools have also been built and distributed. 
Due to the increased capacity of modern-day workstations, mathematical eval- 
uation techniques for performability and dependability evaluation have become 
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much more feasible. Because modern-day workstations have large internal mem-  
ories (up to a few hundred MB) and very fast processors (at least 50 MHz clock 
frequency) the numerical evaluation of large to very large models has become 
possible. Also, simulation experiments that  were unthinkable are now within 
reach by using only moderate ly  priced workstations. 

However, the need to construct and evaluate even larger models continues. 
Modern computer-communicat ion systems have reached such a complexity tha t  
evaluation of their performabil i ty and dependabili ty during the design process 
is an absolute necessity in order to build high-performance systems that  provide 
the requested service for a reasonable price. 

Despite the above need, there is still a long way to go to a really integrated 
design-evaluation path. Still, a lot of progress has been made over the last two 
decades. In this paper  we overviewed that  progress and indicated some issues we 
think will be of importance in the coming years. 
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