
Techniques and Tools for Reliability and
Performance Evaluation: Problems and

Perspectives

Kishor S. Trivedi 1. and Boudewijn R. Haverkort 2 and Andy Rindos 3 and
Varsha Mainkar 4

1 Dept. of Electrical Engineering, Duke University, Durham, USA
2 Department of Computer Science, University of Twente, The Netherlands

3 Networking Systems Hardware, IBM Corp., RTP, USA
4 Department of Computer Science, Duke University, Durham, USA

Abs t rac t . Modelling techniques and tools of the future must meet the
challenges presented by today's highly demanding and schedule-oriented
developing environment. With the emergence of high performance and
reliability systems the problem of how to analyze such systems has be-
come increasingly more difficult. Traditional assumptions of independent
events, exponential distributions and other such '~convenient" assump-
tions no longer model systems realistically. Nevertheless, the demand for
answering performance and reliability related questions during the de-
sign process has increased. In this paper wediscuss some of the issues
involved in integrating modeling and design during a product develop-
ment process. We present a broad range of existing techniques of systems
analysis. We also describe a variety of tools that have been developed to
make the analysis process simpler.

1 I n t r o d u c t i o n

One of the greatest challenges facing today's performance, reliability and per-
formability tool designers is to meet the rapidly changing needs of computer
and communications product designers and capacity planners. These designers
and planners must develop those systems that will satisfy ever more demanding
customer expectations of reliability and performance. These challenges should
invigorate the area of systems analysis research by introducing a vast array of
real problems that stress existing theoretical techniques.

By examining these real problems commonly encountered by such designers,
we should gain an insight into the capabilities an ideal analysis tool should
provide. Likewise, by examining the pressures experienced by designers as they
develop a product, as well as designer-analyst interactions, we should gain insight
into additional features (e.g., ease of use, reusability of submodels, etc.) that a
successful tool should offer. As a result of these examinations, we should be able
to suggest successful ways in which such tools, as well as the systems analysis

* This research was sponsored by IBM under the IBM/Duke University Research
Agreement ~ RAL-R930]0-00.

experts that develop them, can be effectively integrated into the design process.
This should lead to an increased viability of such tools, as well as a mutually
beneficial relationship between tool developers and tool users.

1.1 How should realist ic sys tems be analyzed?

A large number of real system characteristics cannot be easily modeled using
present analytic techniques. Most realistic systems cannot be separated into
small independent subsystems. Their detailed state representation then may
be excessively large. Further, events in real systems are not "memoryless" and
event times may differ by several orders of magnitude. All this implies that
simple analytic models such as product form queueing networks may not be
powerful enough, and detailed analytic models (such as Markov chains) may
be prohibitively large and stiff. This unfortunately has led to an over-reliance
by designers on discrete event simulation, which is often improperly used, or
applied to situations where a simpler analytic model would suffice. When ex-
tremely accurate predictions of final product performance/reliability (especially
distributions) are needed, discrete event simulation is probably the best method.
However, detailed simulation models require a great deal of time to construct,
parameterize, validate and solve. As an example, a recently developed detailed
simulation model of an actual ATM adapter required 12 hours of machine time on
a very powerful server (receiving 100% of the CPU cycles) to achieve acceptable
90% confidence intervals for the desired response time measures. The bottleneck
resource in the model was utilized at only 40% of its capacity for the run. Runs
with higher utilizations would have required unacceptable amounts of machine
time, since run time for the same level of confidence increases exponentially with
utilization.

However, when we examine the evolution of the design process of an ac-
tual product, it becomes apparent that simulation is often unnecessary. At the
earliest stages of this process, a very simple, high-level analytic model of the
product design is probably sufficient. Simulation would not be recommended at
this stage, since actual values for many system parameters, as well as many of the
actual design details, would not be available. However, comparisons of different
high-level design alternatives could be made with analytic models so that the
best high-level design could be chosen at the outset. As the design matures and
more details of the technology, architecture, etc. are defined, more accurate ana-
lytic techniques, hierarchical approximation, and finally, detailed discrete-event
simulation, might be sequentially used to analyze the system.

Using such an evolutionary modeling approach, a nearly optimal design can
be developed from the beginning, avoiding costly 'improvements' made when the
design is less flexible (especially when the implementation has begun). Redesign
work late in the development process may also lead to delayed release of the
product. This points to the value of modeling the system early on and throughout
development. Such models typically alert the designer to potentially detrimental
design flaws, hopefully, at a time when they can be easily fixed.

1.2 The needs of today ' s p roduc t developers

Today's product designers need to get out the best possible product in the
shortest period of time using the least amount of resources. This driving force
pulls the performance and reliability of the resultant product in two opposite
directions. On the one hand, in today's very competitive market, the developer
who is first to market may capture the largest share of the market. Therefore,
schedules for product release are very aggressive and sacrosanct. This means that
product developers cannot afford a lot of time to develop and analyze models of
their product's performance and reliability. On the other hand, customers are
requiring far greater reliability and performance which would suggest a need for
more careful (and, possibly, more time consuming) design and analysis.

Tools that require very little time to learn to use and allow models to be con-
structed very quickly will therefore be highly sought after. This suggests that
easy-to-use graphical user interfaces and clear, self-explanatory menus should
be developed for all future tools that target an industrial user-base. Many per-
formance/reliability tools on the market already provide some of these features.
Furthermore, the ability to define reusable submodels of system and network
components that can be combined to produce large models and that provide the
capability of multiple instances in a given model are an absolute must. A num-
ber of tools are avoided in industry because of their inability to provide these
capabilities.

Another important aspect in model specification is the ability to specify
models in a hierarchical way since this allows one to stay close to the generally
hierarchically designed systems. When supported in a flexible way, this also
allows for the building of a database (a model-base) of predefined model building
blocks. Preferably, the hierarchical model structure should be exploited in the
model solution phase, however, this is not always easily done and it almost always
introduces approximation error.

Tools that provide alternative analytic methods that require less time and
memory to generate and solve the models, in conjunction with simulation, are
extremely desirable. Such tools with multiple analysis capabilities would fit very
well with the evolution of the design process of an actual product as described
before. The conjunction of several techniques in a single tool might allow the
user to input the appropriate details of his product only once, and then analyze
it using different methods, depending upon his needs for accuracy vs. speed of
execution. It would also facilitate the use of hybrid techniques and hierarchical
model development.

Ideally a tool should also have an integrated method of calibration for its
models. That is, it should be closely coupled with databases maintained by
manufactures about their products. These databases could provide information
for model calibration such as failure rates, device speeds, repair times and so
on. Using the measures contained within these databases, it should not only be
easy to parametrize a single run, but also a series of experiments with chang-
ing model parameters allowing for parametric studies. Tools with such multiple
capabilities could therefore satisfy the pull by today's market forces to develop

models quickly and in a timely manner so that products are brought to market
in the shortest period of time.

1.3 Relationship Between Designers and Performance Experts

In the past, especially in large corporations, one or more performance depart-
ments have existed independently of those departments responsible for the ac-
tual design and implementation of products. The justification for such an ar-
rangement has typically been that such separate departments serve as centers of
competency, whereby the members can consult with one another when difficult
problems arise in their analyses. Such an arrangement also fosters departmental
experts who can provide focus specifically on techniques that will make the work
of theoretically analyzing products more accurate and efficient.

However, some inherent problems exist in this arrangement. Because analy-
sis and design departments are separate, conflict often arises when the analyst
exposes serious performance/reliability flaws in the product design. Although
sometimes the feedback is appreciated, it more often leads to a sudden lack of
cooperation between the two groups. The design team may suddenly make it
very difficult for the performance team to obtain additional design details. This
points to another drawback of the arrangement of separate departments. The
analyst typically requires time from the designer's often busy schedule to verify
his understanding of the design. As an outsider, it is a very difficult task for the
analyst to obtain an accurate picture of the details of the design from reams of
poorly indexed design documents that are constantly changing as the product
design evolves. It is especially difficult to keep up with such changes in both the
hardware and the software (some knowledge of both are needed for such models).

The availability of time from a product developer's schedule has become in-
creasingly more difficult to obtain in today's schedule-driven, "more efficient" (a
euphemism for over-worked) working environment. Given the cost to a designer
of taking the time to cooperate, one might be sympathetic to their reluctance
to assist the analyst. If the analyst simply verifies the correctness of the design
(that is, it meets performance specifications, etc.), his work is often viewed as
superfluous; if he exposes problems, his work is viewed with hostility. Therefore,
an analyst should also provide insight into or solutions to problems encountered
during the analyses, as well as improvements to the existing design, if his work is
to be properly appreciated. Furthermore, those improvements should be available
in a timely manner during the design cycle so that they can be implemented.

This has led to several strategies to reduce the problems inherent in a separate
department arrangement. For those organizations that were large enough to
allow a separate high-level design department for a product, this department
was often combined with the analysis department. However, with a movement
toward a smaller, more efficient workforce, what is more typically encountered
is a small single group with a very broad range of responsibilities for the design
and implementation of a single product. In an extreme reaction to needed cuts
in work force, some of the groups have no one officially responsible for analyzing
the performance/reliability of their product. They therefore operate at the risk

of encountering major design problems surfacing late in the implementation or
prototype phase.

Because of such potential exposure, these tighter design groups often allocate
one person to be responsible either part-t ime or full-time to these performance-
related problems. Since the person is a part of the design and implementation
team, he is able to track the design from the very beginning and is not likely
to be 'frozen-out' when performance-related problems in the design are encoun-
tered, since he is expected to provide some of the solutions. However, one major
problem is the availability of enough qualified performance analysts that can be
distributed among various product design groups. This inherent variability in
talent can be smoothed out either by means of improved training or by means
of better tools.

1.4 T h e f o c u s o f t h i s p a p e r

Recently, there have appeared a number of papers with surveys similar to this
one. Most notably, we mention Meyer [54] who overviews the history of the con-
cept of performability after he introduced it in the early eighties [51, 52]. De
Souza e Silva and Gail [74] discuss the specific technique known as uniformiza-
tion, which is now known to be the method of choice for transient analysis of
continuous-time Markov chains (CTMCs). Trivedi st al. [79] present mathemati-
cal evaluation techniques for performability. Haverkort and Trivedi [32] overview
specification techniques for Markov reward models. Mulazzanni and Trivedi [59]
overview tools for dependability, as do Geist and Trivedi [24] and Johnson and
Malek [38]. A description of dependability analysis of real-time systems can be
found in [78].

This paper differs from the above ones in that it addresses reliability, per-
formance and performability evaluation tools and techniques from the user's
perspective. Former papers often were restricted to either performability, or to
just tools or to just techniques. In this paper you will find a mix of it all.

The organization of the paper is as follows. In Section 2 we t ry to answer
questions of the form "What are we interested in?" and "Why do we actually
model?". Answers to these questions give us directives to approaches towards
reliability and performance evaluation, which are discussed in Section 3; this
section still focuses on techniques. Tools supporting the various categories of
techniques are then discussed in Section 4. Problem areas and future perspectives
are discussed in Section 5. The paper is concluded in Section 6.

2 W h a t a r e w e i n t e r e s t e d i n ?

In this section we t ry to answer the question "Why are we doing all this?" For
simplicity, we split the question in a number of subquestions. In Section 2.1
we discuss system aspects we are interested in, for various classes of systems.
Then, in Section 2.2, we discuss measures that quantify the interest expressed
earlier. Various approaches towards how to derive these measures are discussed
in Section 2.3.

2.1 S y s t e m a s p e c t s o f i n t e r e s t

A first and important distinction in answering this question, is whether we take
the viewpoint of a system user or of a system provider. This distinction is most
clear when thinking of the system as a public data network as provided by
many telephone companies. System users want a good quality of service (QoS),
whatever that may be, whereas the provider wants a high profit. The latter
implies that the system should do what the user wants it to do, but at the
lowest possible cost.

The QoS asked for by a user is often subjective, e.g.,a user wants a good
video channel quality, if he is intending to use the network for video transmission.
How this good quality is expressed in terms of bit rates, bit error rates or switch
blocking probabilities is not easy determined. These latter measures express what
is known as the objective quality of service. For example, a user of a parallel
processing system will most likely be interested in the throughput and turn-
around time of his jobs, not so much in the degree of parallelism achieved by the
system. The latter is of interest to the system designer or for the cooperation
"selling" parallel processing capacity.

The above distinction is important and should be kept in mind when do-
ing practical evaluation studies; the type of viewpoint has implications on the
required results.

2.2 M e a s u r e s o f i n t e r e s t

The distinction made in the previous section directly has its implications for the
measures we want to evaluate. We distinguish between task-oriented measures
and system-oriented measures. Task-oriented measures typically say something
about the end-to-end performance as perceived by system users. Examples are
the end-to-end throughput or delay, or the expected performance level over some
time interval of system usage. System-oriented measures say something about
how, internally, the system performs its tasks. Examples are the average queue
length, the number of operational components at some time, or the utilization
of a server. As such, these measures are not so much of interest to the system
user, although they are intimately related with the task-oriented measures.

With pure performance evaluation, both task- and system-oriented measures
can be obtained. Examples of the former are job response or waiting times,
examples of the latter are average number of occupied buffers or utilizations.
These measures suffice if the assumption that the system never fails is acceptable.

With pure dependability evaluation, the emphasis is on deriving system-
oriented measures, although safety measures are user-oriented as well. However,
we think that system users are not so much interested in high availability as in a
high probability that the task they want to be performed are actually performed.
For that reason, performability measures seem more suitable.

Performability evaluation mainly aims at providing user-oriented measures. It
has been claimed by other authors as well, that the evaluation of performability
comes closest to the evaluation of objective QoS.

Another distinction that one often encounters is whether the measures are
derived over a t ime interval or for some particular time-instance. Interval-of-time
measures include the steady-state measures, when the interval is taken to be in-
finitely long. Also, cumulative measures over finite time horizons (see Section 3)
belong to this category. Instant-of-time measures are also called transient mea-
sures; they express the performability (or performance, or reliability) of a system
at some time point t.

2.3 M e t h o d s o f e v a l u a t i o n

We distinguish three classes of methods for system performance, dependabil-
ity or performability evaluation: measurement-based~ model-based and hybrid
methods.

Measurement-based evaluation (also called empirical evaluation) requires one
to have at one's disposal a measurable system. Apart from the fact that this is
often not the case in the design phase of the system, performing measurements
is often expensive since it requires special purpose hardware and software. Also,
for dependability modeling purposes, measurement is difficult. Dependability
events, i.e. ~ system failures, do not occur that often in highly-reliable systems,
requiring extremely long measurement sessions.

Measurement studies are often done to determine system parameters that
are later to be used in a modeling study, or to validate a model.

As an alternative to measurement-based evaluation, a model-based evalua-
tion can be used. A system model can be very simple, e.g.,some mathemati-
cal formula relating the system performance to the system parameters, or very
complex, e.g., a large system of differential equations or a complex simulation
program.

Once a model has been constructed, it needs to be solved. This can be done
using discrete-event simulation or using analytical techniques. Analytical tech-
niques can be fully symbolic, semi-symbolic or numerical. Fully symbolic analyt-
ical techniques provide simple functional relations between system parameters
and the measure of interest (E[N] = p/(1 - p) in the M/M/1 queue). Semi-
symbolic analytical techniques provide mathematical relations between system
parameters and measures of interest, however, some parameters in the relation
are to be determined by numerical technique (ACE [50]). Lastly, some analyti-
cal techniques require numerical solution such as linear-system solution or the
solution of a differential equation.

Another distinction that sometimes is made is whether the solution of the
model requires the whole model state space to be explicitly generated or not.
The most well-known example of the former is the solution of a large but fi-
nite Markov model. An example of the latter is the use of an MVA solution
procedure [65] in a product-form queueing network or the use of fault-trees for
reliability analysis [23].

Most of the useful evaluations in practice use a judicious combination of
different modeling approaches with measurements. For example, fault-injection
simulation (or actual measurements on a prototype) can provide coverage-like

parameters in an analytic reliability model. A performability model of a multi-
processor system may have a Markov reliability submodel and a product-form
queueing network as a performance submodel.

3 A p p r o a c h e s t o p e r f o r m a n c e a n d r e l i a b i l i t y e v a l u a t i o n

In this section we discuss four approaches to performance, reliability and per-
formability analysis. In Section 3.1 we discuss so-called non-state space methods,
thereby meaning that explicit knowledge and enumeration of the state space of
the model is not needed for evaluation purposes. In Section 3.2 we discuss Markov
chain based methods, and in Section 3.3 stochastic Petri net based models. In
Section 3.4 we discuss hierarchical and approximate modeling approaches.

3.1 N o n - s t a t e space

With this class of models, our aim is to compute required performance and
reliability measures without explicitly generating overall state space. This is
a very nice property as state-space sizes tend to increase exponentially with
the problem size. Three of the most welt-known non-state space methods are
product form queueing networks (PFQNs), fault trees (FTs) and matrix geometric
methods (MGMs).

With PFQNs one needs to specify a number of resources (the queues and
servers) as well as the way in which customers make use of these resources. The
queues form the active elements that can serve customers in an order governed
by one of the scheduling discipline: FCFS, LCFSPR, PS, or IS. The customers
travel through the QN according to routing chains. Customers may be grouped in
classes. At every queue, customers belonging to a specific class request a general
differential service t ime distribution (at FCFS stations only exponential service
t ime distributions are allowed). After service completion, the customer proceeds
to the next queue along its routing chain. The state of a PFQN model is a vector
consisting of the number of customers of each class residing at each queue. The
completion of a service at a particular queue or the arrival of new jobs causes a
state change. Instead of solving such a model at the state space level, one can
employ special techniques that exploit the specific model structure and that are
much less computation and memory intensive. The convolution approach intro-
duced by Buzen [9] and the mean-value analysis (MVA) introduced by Reiser and
Lavenberg [65] and their derivatives constitute the common techniques. With the
former an efficient recursive scheme is used to calculate normalizing constants
which can be used in straightforward calculations for derived performance mea-
sures such as average queue length, utilizations and throughputs. In the MVA
approach, a recursive scheme in terms of the average performance measures is
developed.

Fault-trees(FT) are a commonly used non-state space (also called combina-
torial) method for reliability (availability, safety) analysis. With FTs the con-
ditions under which a system fails, are expressed as a tree structure containing

logic gates. Component failure events form the leaves of the tree. Subsystems
and components must have stochastically independent failure behavior.

The measures of interest are normally computed using combinatorial meth-
ods, that is, the system failure event is expressed as a logical function of the
failure events of subsystems and components. Dependability measures (such as
reliability or safety at time t or mean time to system failure) of interest are
then computed numerically or symbolically directly from the tree. Algorithms
for fault-tree analysis can be found in [55].

Specification techniques that are very closely related to FTs are reliability
block diagrams and reliability graphs. For further details, the reader is referred
to [55] and [66].

With MGMs, the repetitive structure of the underlying Markov chain in many
queueing models is exploited. When observing the (embedded) generator matrix
Q of many queueing models, it appears that apart from a number of so-called
boundary columns, from some point onwards, all columns are the same, except
for the fact that they "shift down". This appears most notably in the M/M/1
queue, however, also in more complex queueing systems this structure can be
observed. In the latter case, the columns are often columns of matrices rather
than scalars. Due to this special structure, the steady-state probabilities can be
grouped in so-called levels and the steady state probability vector for level i,
i.e.,g/ can be expressed as

z_/= Z_o Ri, i = O, 1, . . - (1)

i.e., the steady state probability vectors per level exhibit a geometric solution
in terms of the matrix R. The basis of the recursive solution is obtained by
solving a system of linear equations corresponding to the repeating portion of the
global balance equations and the normalization equation. The matrix R follows
from a quadratic equation that can easily be solved iteratively. The size of R
equals the number of states per level, typically small and finite. By contrast, the
original Markov model solution would have required an infinite system of linear
equations.

3.2 M a r k o v r e w a r d m o d e l s

In this section, we present a unified framework for performance, reliability and
performability models in terms of Markov reward models. A comprehensive ac-
count of Markov reward models for performability analysis appears in [79]. Sev-
eral references on solution methods for the measures defined below can be found
in [15, 29, 64, 74, 79].

Def in i t ions

Let {O(t) , t > 0} be a continuous-time finite-state homogeneous Markov chain
(CTMC) with state space ~P. A constant reward rate ri is associated with each
state i of the Markov chain. With the reward rate specifications, the CTMC can

10

be termed as Markov reward model (MRM). If the MRM spends 7-i t ime units
in state i, then rlv~ is the reward accumulated. It is also possible to associate
reward rates with the transitions of the CTMC. For more basic information on
MRMs, refer to [37].

Let Q be the generator matr ix and P(t) be the state probability vector of the
MRM. Here Pi(t) denotes the probability of the MRM being in state i at t ime
t. The transient behavior of this MRM is given by the Kolmogorov differential
equation:

dR(t)
dt - P(t)O , (2)

given the initial state probability vector P(0). The steady-state probability vec-
tor 7r, assuming that it exists and is unique, is obtained by setting the 1.h.s. in
Equation 2 to zero:

~_Q = 0 , (3)

subject to the condition ~ i e ~ ~ri = 1. Here ~r~ is the steady-state probability of
the MRM being in state i. Let us now define a cumulative state vector of the
MRM as Lit) = fo P (x) d x . L{(t) denotes the expected total t ime spent by the
MRM in state i during the interval [0, t). Integrating Equation 2, we obtain:

dL_(t)
dt - L (t) q + P (0) . (4)

For MI~Ms with absorbing states, the state space ~" can be parti t ioned into
two subsets: ~A (absorbing states) and ~T (transient states). Corresponding to
the non-absorbing states, the submatrix QT of Q can be defined. The mean
time spent by the MRM in state i is given by ~-~ = f o P~(x)dx, which can be
computed by integrating Equation 2 from 0 to oo:

~QT + P_T(0) = 0 . (5)

The mean time to absorption in such a Markov chain is given by:

M T T A = E ~'~ (6)
iE~T

Performability Measures

Let 7'(t) = re(t) be the instantaneous reward rate of the MRM. The accumulated
reward over a period of time [0, t) is given by:

/0]0 r r (x) d x = o(x)dx .

The expected instantaneous reward rate at t ime t of the MRM is:

E[r(t)] = r P (t)
i6@

(7)

(8)

11

k

The expected reward rate in steady-state of the MRM is:

E[T~] = V" (9)
iEk~

The expected accumulated reward in the interval [0, t) of the MRM is:

: r iLe (t) . (10)

The expected time-averaged reward in the interval [0, t) is given by ~ i riLi(t)/t.
For an MRM with absorbing states, expected accumulated reward until absorp-
tion is:

E[4~(eo)] = E ro-i �9 (l l)
i E k~T

The distribution of T(t) is computed as:

P [r (t) < x] = ~ P~(t) . (12)
ri<x,iE@

The distribution of accumulated reward until absorption and distribution of
accumulated reward over a finite period of time can also be computed.

Let the time to accumulate a given reward r be denoted by P(r). Then the
distribution of P(r) is known once the distribution of accumulated reward is
known [40]:

P [r (,) _< t] = 1 - P i e (t) < r] . (13)

For example, the distribution of time to complete a job that requires r units of
processing time on a system which is modeled by an MRM can be computed in
this manner.

D e p e n d a b i l i t y M e a s u r e s

In a dependability model, a reward rate of 1 is assigned to all the system op-
erational states and reward rate 0 is assigned to all the system failure states.
The instantaneous availability of the system is then E[T(t)] and steady-state
availability is E[T~t~]. The cumulative operational time of the system in time
interval [0, t) is E[~(t)]. Interval availability is the proportion of time a system
is operational in a given interval of time and it is given by E[~(t)]/t. Measures
related to time to first system failure are also of interest. To compute these mea-
sures, all the failure states are made absorbing (outgoing arcs from these states
are removed). Reliability is then given by E[T(t)]. The lifetime (analogous to
cumulative operational time) [74] of the system in interval [0, t) is E[~(t)] and
mean time to system failure (MTTF) is E[~5(oc)]. The repairability of the sys-
tem is computed by making all the operational states absorbing and reversing
the reward rates (i.e., making reward rate 1 to 0 and vice-versa) and computing
E[r(t)].

12

P e r f o r m a n c e M e a s u r e s

In a performance model, queue length at a resource may be the reward assign-
ment to a state. Then E[T~] and E[T(t)] will yield the average steady state
and average transient queue length, respectively. In a like manner, throughput ,
buffer overflow probabil i ty etc. can be obtained as reward measures.

In a performabil i ty model, reward assignment is typically computed from a
performance model (throughput, probabil i ty of violating a response t ime dead-
line) which is evaluated for different states of a fai lure/repair model. Throughput
and response t ime deadline violation probabili ty can then be computed including
the effects of failure/repair.

3.3 S t o c h a s t i c P e t r i n e t m o d e l s

Stochastic Petri nets (SPNs) have been developed as extensions to the non-t imed
Petri nets by Molloy [56], Ajmone Marsan et al. [2] and Meyer et al. [53]. Al-
though at first primari ly used for the performance analysis of computer systems,
SPNs are increasingly being used in other application areas such as performa-
bility and dependability evaluation.

When using an SPN specification technique, one has to define a set of places
P, a set of transitions T, and a set A of arcs between transitions and places or
vice versa: A C_ (P x T) U (T x P). Each place can contain zero or more tokens.
Graphically, places are depicted as circles, transitions as bars, tokens as dots (or
integers) inside circles, and arcs as arrows.

The distribution of tokens over the places is called a marking and corresponds
to the notion of state in a Markov chain. All places from which arcs go to a
particular transition are called the input places of tha t transition. All places to
which arcs go from a particular transition are called the output places of the
transition. A transition is said to be enabled when all of its input places contain
at least one token. If a transition is enabled it may fire. Upon firing, a transit ion
removes one token from all of its input places and puts one token in all of its
output places, possibly causing a change of marking, i.e., a change of state.

The firing of transitions is assumed to take an exponentially distributed time.
Given the initial marking of an SPN, all the markings as well as the transit ion
rates can be derived, under the condition that the number of tokens in every
place is bounded. Thus a finite Markov chain is obtained.

The reward rates are described as a function of the markings, i.e., at the SPN
level. The reward rates and the Markov chain together yield a MRM [16].

Various extensions have been made to the basic SPN model described above
[2, 16, 53]. These include arcs with multiplicity, a shorthand notat ion for multi-
ple arcs between a place-transition pair, immediate transitions tha t take no t ime
at all to fire (depicted as thin bars), and inhibitor arcs from places to transi-
tions tha t prevent the transition to fire as long as there are tokens in the place
(depicted as lines with a small circle as head). Also, more flexible firing rules
have been proposed, most notably the introduction of gates in stochastic activity

13

networks (SANs) [53, 68] and guards or enabling functions in Stochastic Reward
Nets (SRNs)[16]

Normally, SPN (look-alike) models are solved via an underlying MRM which
can automatically be derived, thereby using the wide variety of available tech-
niques as indicated in the previous section. For very large models when star-
space generation is prohibitive, simulation can be used as well. Especially in the
field of dependability and performability evaluation there might be a need for
the incorporation of fast-simulation techniques such as importance sampling [26]
or injection simulation [57]. For a restricted class of SPN models product form
solutions are available, see e.g., [36]. Given such a structure, MVA [19] and con-
volution [18] schemes have recently been devised.

3.4 Hierarchical and Approximate Models

With hybrid approaches, two or more techniques are combined in the construc-
tion and solution of a single model. Very often this takes the form of hierarchical
modeling. Submodels are specified in one formalism and the result of the sub-
model analysis are embedded in a higher-level model. Hierarchical modeling,
however, is not always hybrid modeling. The decomposition result in PFQN is a
form of non-hybrid, hierarchical modeling. Beginnings of a theory of hierarchical
models of SPN type can be found in [17]. There is less general theory for hybrid
modeling. We therefore mention some published approaches.

For pure performance studies, Balbo et al. combined queueing networks and
GSPNs for the analysis of system models with non-product form characteris-
tics [3]. The non-product form parts of the model are solved using GSPNs, the
results of which are used in load-dependent queueing stations that fall in the
category of PFQNs.

With the software tool SHARPE (see Section 4) many model types can be
analyzed, using a variety of techniques. The result of one analysis can be em-
bedded in other models. This can be done in a cyclic way as well; in that case
fixed-point iteration techniques are needed to solve the overall model.

In the dynamic queueing network concept proposed by ttaverkort et al. [28,
29] queueing networks are used for describing performance aspects, and GSPNs
are used to describe dependability aspects of fault-tolerant computer systems.
An overall model is not explicitly constructed, instead, an approximate solution
based on behavioral decomposition as is common in performability evaluation is
utilized.

For non-product-form networks (NPFQN), a number of approximate tech-
niques exist. A major concern with these techniques is in the characterization
of their error under a wide variety of realistic network situations. A number
of methods exist for closed non-product-form networks, including Marie's al-
gorithm [49]. A wide variety of methods also exist for general open networks.
A popular method, on which a number of tools are based (e.g., QNA [81]) is
a two-moment decomposition method that was developed by Whit t to handle
networks with general independent interarrival and service time distributions.

14

Mean waiting times are predicted using a two-moments of service and interar-
rival times. Mean interarrival times are computed by solving the standard traffic
equations. The coefficient of variation of the interdeparture time is computed by
means of Marshal's formula, using an approximation for the mean waiting time.
As the use of Marshal's formula implies, all interarrival processes to resources
within the network are assumed to be renewal processes. Under this assump+
tion, using heuristic methods developed by Albin and Whitt [81] that are based
on large amount of empirical evidence, a linear system of simultaneous equa-
tions is derived to solve for the coefficient of variation of interarrival times to all
resources.

4 T o o l s f o r p e r f o r m a n c e , r e l i a b i l i t y a n d p e r f o r m a b i l i t y

e v a l u a t i o n

For the basic approaches distinguished in Section 3, we discuss a number of
software tools that support them. Due to space limitations we can not go into
much detail, however, we provide references that can be tracked down for further
study.

4.1 Non-s ta te space

In the reliability domain, the tools SHARPE [66] and HARP [22] can both solve
fault-tree models. SHARPE also solves reliability block diagrams and reliability
graphs. SHARPE can provide semi-symbolic expressions (in terms of t) for the
reliability function.

Performance modeling packages QNAP [63], RESQ [47], and HIT [5] support
a wide variety of PFQN analyses, such as MVA and convolution algorithms.
The tool HIT also supports nice facilities for hierarchical modeling, both exact
(Norton's theorem, and approximate). SHARPE also solves multiclass PFQN
models using the MVA algorithm and series-parallel task precedence graphs.

Two tools that make use of MGMs are MAGIC developed by Squillante [76]
and Xmgmtool developed by Haverkort [34] respectively. MAGIC allows one
users to input the regular (repeating) block-structure of the Markov generator
matrix. It subsequently calculates the matrix R and the initial vector of the
recursion z 0. Xmgmtool provides similar facilities, however, it also provides fa-
cilities to specify queueing systems in terms of their interarrival and service time
distributions (both of phase-type). The underlying regular matrix structure is
subsequently generated and solved. The output is also given in terms of the
queueing systems originally specified.

4.2 Markov reward models

With SHARPE [67], MRMs can be input at the state level by a simple enumer-
ation of the state-change rates and the reward rates per state. SI-IARPE then
solves Markov and semi-Markov reward models for their steady-state, transient

15

and cumulative behavior. Specification is textual, but abilities include solving
the model for many different parameters using "loop" specifications.

The textual tool MARCA has been developed by Stewart [77] at North Car-
olina State University. Although not really an SPN tool, its modeling constructs,
i.e.,buckets, balls, and transitions, can easily be interpreted in an SPN context
as places, tokens and transitions. Emphasis in the the tool is on advanced steady
state numerical solvers.

There are many tools available that solve models via the underlying MRM.
The largest class of such tools exists in the context of SPNs; that is why we
discuss them separately. However, some other tools based on other modeling
paradigms are discussed below. In particular we address queueing network (QN)
based tools and tools based on production rule systems (PRS).

The tool QNAP2, developed at INRIA by Potier et al. [63, 80], is a general
QN-based performance analysis tool which supports simulation, (approximate)
product-form solutions as well as a numerical solution based on an underlying
MRM. In fact, given a textual representation of a QN, the QNAP2 model is
transformed to an intermediate model similar to the MARCA model . Only
steady-state measures are computed.

The performance analysis tool NUMAS, developed at the University of Dort-
mund by Miiller-Ctostermann [60], is a textual tool for Markovian queueing net-
work analysis. As an extension, NUMAS allows the modeling of queues with
server breakdowns and repairs. NUMAS thus allows for steady state performa-
bility analysis.

The graphical performance analysis tool MACOM, developed by Sczittnick
et al. at the University of Dortmund [73], is mainly used for the steady state anal-
ysis of blocking phenomena in communication networks. MACOM emphasizes
advanced techniques for the steady state analysis of large MRMs.

Based on PRSs [32] are the tools METFAC, ASSIST and USENUM. The
textual tool METFAC, developed by Carrasco and Figueras at the University
of Catalunya [10, 11], supports the use of a PRS specification technique and
has been used for performance, dependability and performability modeling of
computer systems. Steady state, transient, as well as cumulative measures can
be computed.

The tool ASSIST has been developed by Johnson and Butler at NASA [39]
as a front-end to the SURE package [8] for reliability analysis of (computer)
systems. This textual tool allows for the flexible specification of PRS. By the
use of arrays of state variables and loops in the production rules, compact spec-
ifications can be written. Also facilities for truncating state spaces are available.
The ASSIST program translates the PRS to input for the SURE package. This
input is an MRM. The SURE package deals with absorbing semi-Markov models.
Therefore, only transient measures are computed.

The textual tool USENUM, developed by Sczittnick et al. at the University
of Dortmund [7, 72], allows users to define Markovian models by means of a
finite state machine. USENUM can be used stand-alone, or within the QN tool
MACOM.

]6

4.3 S tochas t i c P e t r i ne t m o d e l s

A wide variety of tools for stochastic Petri nets have been developed. We briefly
discuss the most well-known tools that are based on MRMs.

GreatSPN, developed by Chiola et al. at the University of Torino [12], is a
graphical Petri net tool which is primarily used for the performance analysis
of computer and communication systems. Analysis techniques are mainly for
steady state measures.

ESP, developed by Bobbio and Cumani [6, 21], is a textual SPN tool. In this
tool, special emphasis is put on the use of phase-type distributions instead of
only exponential distributions, on transient measures and on the aggregation of
stiff MRMs.

METASAN, developed by Sanders and Meyer [68, 69] at the University of
Michigan, is based on SANs. The tool includes steady state, transient and cu-
mulative analysis methods.

The tool UltraSAN, developed by Sanders et al. [20] at the University of Ari-
zona, is also based on the SAN concept. With UltraSAN, the input of the models
is totally graphical. UltraSAN allows for a structured form of hierarchical mod-
eling which results in lumped underlying MRMs that are substantially smaller
(so-called reduced base-models [70]) than their "flat" counterparts. Steady state
as well as transient simulation are also available as solution methods.

SPNP, developed by Ciardo c ta l . [14], is a C-based SPN tool which allows
for a flexible definition of a class of SPN models known as stochastic reward
nets. Steady state, transient and cumulative measures are supported. By the
flexible use of C, it is possible to construct models hierarchically, that is, results
of one model can be used in the analysis of another model, even in a fixed point
iterative manner [17].

TOMSPIN is a general SPN tool developed at SIEMENS AG [41], for per-
formance and dependability analysis. Steady state and transient measures are
supported. An approximate solution for hierarchically structured SPN models
based on an aggregation algorithm is also included.

PENPET is a performability modeling tool developed by Lepold [42, 43] at
SIEMENS AG. It is a high-level tool built on top of TOMSPIN in which one
SPN is used for the specification of system dependability aspects, and another
for the system performance aspects.

The graphical tool DSPNexpress has been developed by Lindemann at the
Technical University of Berlin [46]. Interesting aspect of this tool is that it allows
for DSPNs, i.e., SPNs in which transitions may have deterministic timing. Under
certain conditions, an embedded Markov chain can be constructed that allows
one to solve for the steady state probabilities.

4.4 Hierarchical and Approximate Models

The performability modeling tools DyQNtool + [35] has been developed by Haverkort
et al. at the University of Twente. The tool operates along the lines of the dy-
namic queueing network concept and is an extension of its predecessor DyQNtool

17

[28, 29, 30]. DyQNtool+ has been developed as a shell of programs around the
packages SHARPE and SPNP. The SHARPE package is used for the solution
of series of PFQNs of which the results are used as reward rates in the SRNs
specified using SPNP. Thus, in a very flexible way, performability models can be
evaluated.

The tool SHARPE has been developed by Sahner and Trivedi [66, 67]. SHARPE
allows users to specify SPN, QN and FT like models as well as MRMs directly.
Also hierarchical modeling is possible, that is, the results of a model analysis
can be used in higher-level model evaluations, possibly using a different model-
ing approach.

5 Problems and perspectives

In this section, we discuss a number of recurring problems in performance, de-
pendability and performability evaluation. We discuss the issue of largeness
in Section 5.1 and the issue of stiffness in Section 5.2. The modeling of non-
exponential behavior is addressed in Section 5.3.

5.1 La rgenes s

Models of practical systems are often very large. We use special specification,
generation, storage and solution techniques to deal with the large models (large-
ness tolerance) or avoid largeness altogether.

First consider the techniques related to largeness tolerance. With this we
mean the techniques that aim at being able to handle models as large as possible
without affecting the model size itself.

For non-state space models, largeness tolerance techniques would encompass
better implementations of MVA and convolution like algorithms, using extra sig-
nificant digits to keep the normalizing constants accurate. Sparse storage tech-
niques should be used whenever matrices are involved, such as in MGM. Also,
whenever possible, special properties should be exploited. As an example of this,
the matrix R that has to be calculated when using MGM has the property
that zero entries come in rows, i.e.,whenever the first element of a row equals
zero, the rest is zero as well. This can be exploited in devising the storage and
computational schemes, as has been done in Xmgmtool [34].

For MRM-based modeling techniques, largeness tolerance techniques presup-
pose the use of a concise specification method (e.g. SPN), automated MRM
generation, sparse storage, sparsity preserving numerical techniques, e.g., using
SOR instead of Gaussian elimination for the solution of the steady-state behav-
ior of large MRMs, and orthogonal uniformization for the transient solution of
acyclic Markov chains [27].

With largeness avoidance, we try to circumvent the generation of very large
models. Although the capacity of modern day workstations is enormous, there
will always remain systems that yield models that become too large to be handled
directly.

18

As mentioned before, an important largeness avoidance technique widely ap-
plicable is hierarchical modeling which is based on the "divide and conquer"
principle. The basic idea is to split a large model in smaller ones that can be
analyzed in isolation. The results of the submodels are integrated in a single
overall model that is small enough to be analyzed.

In the field of PFQN, it has been shown that such a decomposition approach
can be performed in an exact way ("Norton's theorem", due to Chandy, Herzog
and Woo [71]). For non-PFQNs, the decomposition is approximate. The theory
developed by Courtois and which is used for the analysis of the degradable QN in
NUMAS establishes bounds on the error made in the steady-state probabilities
thus obtained. In fact, the performability evaluation approach based on MRM
is motivated by these decomposition properties. An approximate way of solving
large SPN models by decomposition is discussed by Ciardo and Trivedi [17].
They use a fixed-point iteration scheme. In this context, the work on automatic
lumping as performed in UltraSAN by Sanders et al. is also of interest [20, 70].

The truncation of "the least important states", i.e.,those states that have
a small probability mass is another way to avoid large models. Work in this
direction has been done by tlaverkort [33], Li and Silvester [44], Muppala et
al. [61], Bavuso et al. [4] and de Souza e Silva and Ochoa [75]. It is especially
appropriate in case MRM or SPN models are used.

5.2 St i f fness

Informally speaking, stiffness is a property of a model to take very long to be
solved. Often this is caused by the fact that in the model parameters of widely
varying order of magnitude play an important role; this clearly is the case in
dependability-related models where failure rates are very small and repair rates
are orders of magnitudes larger.

Given a particular model type, one can specialize the above informal defini-
tion of stiffness. For Ml{Ms, stiffness is often defined as ratio between the largest
and smallest rate in the transition rate matrix; the higher this ratio, the more
stiff the model. Even more refined are the definitions related to a solution tech-
nique for a specific model. In using uniformization for instant-of-time measures
of MRMs, the value of qt is often called the stiffness index, where t is the time
epoch of interest and q is the maximum over the absolute values of the diagonal
entries of the rate matrix, i.e.,the uniformization rate. The recently developed
extensions of the uniformization technique such as steady-state detection [62]
and adaptive uniformization [58] decrease the impact of stiffness.

For very stiff MRMs, implicit integration techniques (such as Runge-Kutta)
seem to be the most efficient [48]. The use of these techniques in combination
with uniformization also seems fruitful [48].

When discrete-event simulation is the used as a solution method, stiffness
can often be circumvented by using importance sampling [26] as implemented in
SAVE [25] and UltraSAN [20] or by using injection simulation [57].

Model decomposition, where the fast and slow rates are separated from each
other, is another way of avoiding stiff models. This is implicitly done in many
hierarchical solution techniques [23].

19

5.3 Non-exponen t i a l behavior

In many model solution techniques, the only allowed time-distributions are ex-
ponential distributions. This is the case for the FCFS stations in PFQNs and for
the timed transitions in SPNs. To include more variability in a model is generally
not much of a problem since a hyper-exponential distribution with two phases
can be used to create very large coefficients of variation. More of a problem is
the inclusion of (quasi-)deterministic timing.

When simulation is used as a solution technique, non-exponential timing is
not a problem. Moreover, it often reduces simulation time as less variance is put
in.

One common way to "Markovize" a non-exponential distribution is to use
phase-type distributions. In combination with MGMs this is a very attractive
approach, although it increases the size of the models to be dealt with. In the
context of SPN models or MRMs, this method of phases is often less easy to
apply: the state space suffers tremendously.

Recent developments in the field of DSPNs (introduced by Ajmone Marsan
and Chiola [1] and further developed by Lindemann [45]) and Markov-regenerative
SPNs, introduced by Choi et al. [13], alleviate the exponential assumption in SPN
models significantly. When one deals with product-form SPNs [36], insensitivity
properties known from stochastic-processes theory establish that in many cir-
cumstances it does not really matter what the form of the distributions is; only
their means matter.

6 F u t u r e W o r k a n d C o n c l u d i n g R e m a r k s

The challenge in the future lies in developing modeling tools that will operate
in a highly constrainted and schedule-oriented environment. The availability of
such tools will provide a means of effectively integrating performance experts
into the product design team.

In the future, tools must be made sophisticated enough so that an expert
system might even eliminate the need for the human expert. Then the designer
himself could perform the analyses without any special expertise in the theories
of reliability, queues, Markov chains and stochastic Petri nets. At the very least,
it would help to smooth variations in the competence of the analyst from one
group to the next. A performance/reliability 'center of competency' department,
that provides upgrades and maintenance to and advice on, the tools itself might
then arise; but the actual analysis would shift to the designers themselves.

A great deal of progress has been made in the last decade in techniques for
the generation and solution of large performance, reliability and performability
models. Correspondingly, software tools have also been built and distributed.
Due to the increased capacity of modern-day workstations, mathematical eval-
uation techniques for performability and dependability evaluation have become

20

much more feasible. Because modern-day workstations have large internal mem-
ories (up to a few hundred MB) and very fast processors (at least 50 MHz clock
frequency) the numerical evaluation of large to very large models has become
possible. Also, simulation experiments that were unthinkable are now within
reach by using only moderate ly priced workstations.

However, the need to construct and evaluate even larger models continues.
Modern computer-communicat ion systems have reached such a complexity tha t
evaluation of their performabil i ty and dependabili ty during the design process
is an absolute necessity in order to build high-performance systems that provide
the requested service for a reasonable price.

Despite the above need, there is still a long way to go to a really integrated
design-evaluation path. Still, a lot of progress has been made over the last two
decades. In this paper we overviewed that progress and indicated some issues we
think will be of importance in the coming years.

R e f e r e n c e s

1. M. Ajmone-Marsan and G. Chiola. On Petri nets with deterministic and exponen-
tially distributed firing times. In Lecture Notes in Computer Science, volume 266,
pages 132-145. Springer-Verlag, 1987.

2. M. Ajmone Marsan, G. Conte, G. BMbo, "A Class of Generalized Stochastic Petri
Nets for the Performance Evaluation of Multiprocessor Systems", A CM Transac-
tions on Computer Systems 2(2), pp.93-122, 1984.

3. G. Balbo, S.C. Bruell, S. Ghanta, "Combining Queueing Networks and Stochas-
tic Petri Nets for the Solution of Complex Models of System Behaviour", IEEE
Transactions on Computers 37(10), pp.1251-1268, 1988.

4. S.J. Bavuso, J. Bechta Dugan, K.S. Trivedi, E.M. Rothmann, W.E. Smith, "Anal-
ysis of Typical Fault-T01erant Architectures using HARP", IEEE Transactions on
Reliability 36(2), pp.176-185, 1987.

5. H. Beilner, J. MKter, N. Weissenberg, "Towards a Performance Modelling Environ-
ment: News on HIT", in: Modelling Techniques and Tools for Computer Performance
Evaluation, Editors: D. Potier, R. Puigjaner, Plenum Press, pp.57-75, 1989.

6. A. Bobbio, "Petri Nets Generating Markov Reward Models for Perfor-
mance/Reliability Analysis of Degradable Systems", in: Modelling Techniques and
Tools for Computer Performance Evaluation, Editors: D. Potier, R. Puigjaner,
Plenum Press, pp.353-365, 1989.

7. P. Buchholz, Die strukturierte Analyse Markoffscher Modelle, Informatik Fach-
berichte 282, Springer Verlag, 1991.

8. R.W. Butler, "The SURE Refiability AnMysis Program", NASA Technical Memo-
randum 87593, 1986.

9. J. P. Buzen. Computational algorithms for closed queueing networks with exponen-
tial servers. Commun. ACM., 16(9):527-531, Sept. 1973.

10. J.A. Carrasco, Modelacion y Evaluacion de la Tolerancia a Fallos de Sistemas Dis-
tribuidos con Capacidad de Reconfiguracion, PhD thesis, University of Catalunya,
Spain, 1986.

11. J.A. Carrasco, J. Figueras, "Metfac: Design and Implementation of a Software Tool
for Modeling and Evaluation of Complex Fault-Tolerant Computing Systems", Pro-
ceedings FTCS 16, IEEE Computer Society Press, pp.424-429, 1986.

21

12. G. Chiola, "A Graphical Petri Net Tool for Performance Analysis", in: Mod-
elling Techniques and Performance Evaluation, Editors: S. Fdida, G. Pujolle, North-
Holland, pp.323-333, 1987.

13. H. Choi, V. G. Kulkarni, and K. S. Trivedi. Markov Regenerative Stochastic Petri
Nets. In 16th IFIP W.G. 7.3 Int'l Sym. on Computer Performance Modelling,
Measurement and Evaluation (PerformanceS93), Rome, Italy, Sep. 1993.

14. G. Ciardo, J. Muppala, K.S. Trivedi, "SPNP: Stochastic Perti Net Package", Pro-
ceedings of the Third International Workshop on Petri Nets and Performance Mod-
els, IEEE Computer Society Press, pp.142-151, 1989.

15. G. Ciardo~ J. Muppala, and K. Trivedi, "Analyzing Concurrent and Fault-Tolerant
Software using Stochastic Reward Nets," Journal of Parallel and Distributed Com-
puting, Vol. 15, pp. 255-269, 1992.

16. G. Ciardo, A. Blakemore, P.F.J. Chimento, J.K. Muppala, K.S. Trivedi, "Auto-
mated Generation and Analysis of Markov Reward Models using Stochastic Reward
Nets", in: Linear Algebra, Markov Chains, and Queueing Models, Editors: C. Meyer
and R. J. Plemmons, Vol.48 of IMA Volumes in Mathematics and its Applications,
Springer-Verlag, 1992.

17. G. Ciardo, and K. S. Trivedi, " Decomposition Approach for Stochastic Reward
Net Models," Performance Evaluation, Vol. 18, No. 1, pp. 37-59, July 1993.

18. J. L. Coleman, W. Henderson, P. G. Taylor, Product Form Equilibrium Distri-
butions and a Convolution Algorithm for Stochastic Petri Nets Research Report,
University of Adelaide, 1992

19. A. J. Coyle, W. Henderson, P. G. Taylor, "Reduced Load Approximations for Loss
Networks", to appear in Telecommunications Systems.

20. J. A. Couvillion, R. Freire, R. Johnson, W.D. Obal II, A. Qureshi, M. Rai,
W.H. Sanders, J.E. Tvedt, "Performability Modelling with UltraSAN", IEEE Soft-
ware, pp.69-80, September 1991.

21. A. Cumani, "ESP--A Package for the Evaluation of Stochastic Petri Nets with
Phase-Type Distributed Transition Times", Proceedings of the International Work-
shop on Timed Petri Nets, IEEE Computer Society Press, pp.144-151, 1985.

22. J. Bechta Dugan, R. Geist and M. Smotherman, "The Hybrid Automated Relia-
bility Predictor", AIAA Journal on Guidance, Control and Dynamics, Vol. 9, No.
3, May-June 1986, pp. 319-331.

23. R. Geist, M. Smotherman, K. S. Trivedi, J. Bechta Dugan, "Reliability Analysis
of Life-Critical Systems 'j, Acta Informatica, Vol. 23, No. 6, Nov. 1986.

24. R. Geist, K.S. Trivedi, "Reliability Estimation of Fault-Tolerant Systems: Tools
and Techniques", IEEE Computer 23(7), pp.52-61, 1990.

25. A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Lavenberg, K.S. Trivedi, "The
System Availability Estimator", Proceedings FTCS 16, IEEE Computer Society
Press, pp.84 89, 1986.

26. A. Goyal, P. Heidelberger, and P. Shahabuddin. Measure specific dynamic impor-
tance sampling for availability simulations. In A. Thesen, H. Grant, and W. D.
Kelton, editors, Proc. of the 1987 Winter Simulation Conference, 1987.

27. D. Gross, D.R. Miller, "The Randomization Technique as a Modelling Tool and
Solution Procedure for Transient Markov Processes '~, Operations Research 32(2)~
pp.343-361, 1984.

28. B.R. Haverkort, I.G. Niemegeers, "Using Dynamic Queueing Networks as a Tool
for Specifying Performability Models", ACM Performance Evaluation Review 17(1),
p.225, 1989.

22

29. B.R. Haverkort, Performability Modelling Tools, Evaluation Techniques, and Ap-
plications, Ph.D. thesis, University of Twente, 1990.

30. B.R. Haverkort, I.G. Niemegeers, P. Veldhuyzen van Zanten, "DyQNtool--A Per-
formability Modelling Tool Based on the Dynamic Queueing Network Concept",
in: Computer Performance Evaluation: Modelling Techniques and Tools, Editors:
G. Balbo, G. Serazzi, North-Holland, pp.181-195, 1992.

31. B.R. Haverkort, "Approximate Performability Modelling using Generalized
Stochastic Petri Nets", Proceedings of the 1991 International Workshop on Patti
Nets and Performance Models, IEEE Computer Society Press, 1991, pp.300-309.

32. B. Haverkort and K. Trivedi. Specification and generation of Markov reward mod-
els. Discrete-Event Dynamic Systems: Theory and Applications3 , pp.219-247, 1993.

33. B.R. Haverkort, "Approximate Performability and Dependability Modelling using
Generalized Stochastic Petri Nets", Performance Evaluation 18(1), pp.61-78, 1993.

34. B. R. Haverkort, A.P.A. van Moorsel, and D-J Speelman. Xmgm: Performance
modeling using matrix geometric techniques. In Proceedings of the 2nd Int'l work-
shop on modeling, analysis and simulation of computer and telecommunication sys-
tems, 1994.

35. B.R. Haverkort, "Performability Evaluation using DyQNtool + ' , submitted for
publication, 1994.

36. W. Henderson and P. G. Taylor, "Aggregation Methods in exact performance anal-
ysis of stochastic Petri nets", Proceedings of the 3rd Int'l Workshop on Petri Nets
and Performance Models, pp.12-18, 1989.

37. R.A. Howard, Dynamic ProbabiIistic Systems, Vol. II: Semi-Markov and Decision
Processes, New York, Wiley, 1971.

38. A.M. Johnson Jr., M. Malek, "Survey of Software Tools for Evaluating Reliability,
Availability, and Serviceability", A CM Computing Surveys 20(4), pp.227-269, 1988.

39. S.C. Johnson, R.W. Butler, "Automated Generation of Reliability Models", Pro-
ceedings of the 1988 Annual Reliability and Maintainability Symposium, pp.!7-22,
1988.

40. V. Kulkarni, V. F. Nicola, R. M. Smith, and K. S. Trivedi. "Numerical evaluation
of performability measures and job completion time in repairable fault-tolerant sys-
tems" In Proc. 16th Intl. Syrup. on Fault Tolerant Computing, Vienna, Austria,
July 1986. IEEE.

41. R. Lepold, "Tomspin: Benutzerhandbuch", internal report Siemens AG, 1991.
42. R. Lepold, "PENPETt: A New Approach to Performability Modelling using

Stochastic Petri Nets", Proceedings of the First International Workshop on
Performability Modelling of Computer and Communication Systems, Editors:
B.R. Haverkort, I.G. Niemegeers, N.M. van Dijk, University of Twente, pp.3-17,
1991.

43. R. Lepold, "Performability Evaluation of a Fault-Tolerant Computer Systems using
Stochastic Petri Nets", Proceedings of the Fifth International Conference on Fault-
Tolerant Computing Systems, Springer Verlag, Niirnberg, 1991.

44. V.O.K. Li, J.A. Silvester, "Performance Analysis of Networks with Unreliable
Components", IEEE Transactions on Communications32(lO), pp.1105-1110, 1984.

45. C. Lindemann, "An improved numerical algorithm for calculating steady-state so-
lutions of deterministic and stochastic Petri net models", Proceedings of the 4th Int'l
Workshop on Patti Nets and Performance Models, 1991.

46. C. Lindemann, R. German, "DSPNexpress: A Software Package for Efficiently
Solving Deterministic and Stochastic Petri Nets", in: Performance Tools 1992, Ed-
itors: R. Pooley, J. Hillston, Edinburgh University Press Ltd., forthcoming, 1992.

23

47. E. A. MacNair and C. H. Sauer. Elements of practical performance modeling.
Prentice Hall, Englewood Cliffs, New Jersey, USA, 1985.

48. Manish Malhotra Specification and Solution of Dependability Models of Fault-
Tolerant Systems, Ph.D. Thesis, Dept. of Comp. Sc., Duke University, April 1993.

49. R. A. Marie. An approximate analytical method for general queueing networks.
IEEE Trans. Software Engg., SE-5:530-538, 1979.

50. R. A. Marie, A. L. Reibman, K. S. Trivedi "Transient Analysis of Acyclic Markov
Chains", Performance Evalution 7, 1987.

51. J.F. Meyer, "On Evaluating the Performability of Degradable Computer Systems",
IEEE Transactions on Computers 29(8), pp.720-731, 1980.

52. J.F. Meyer, "Closed-Form Solutions of Performability", IEEE Transactions on
Computers 31(7), pp.648-657, 1982.

53. J.F. Meyer, A. Movaghar, W.H. Sanders, "Stochastic Activity Networks: Struc-
ture, Behavior, and Application", Proceedings of the International Workshop on
Timed Petri Nets, IEEE Computer Society Press, pp.106-115, 1985.

54. J.F. Meyer, "Performability: A Retrospective and Some Pointers to the Future",
Performance Evaluation, 14(3~4)i pp.139-156, 1992.

55. K. B . Misra (Ed.), New Trends in System Reliability Evaluation, Elsevier Science
Publishers, 1993.

56. M.K. Molloy, "Performance Analysis using Stochastic Petri Nets", IEEE transac-
tions on Computers 31(9), pp.913-917, 1982.

57. A.P.A. van Moorsel, Performability Evaluation Concepts and Techniques, Ph.D.
thesis, University of Twente, Department of Computer Science,]993.

58. A.P.A. van Moorsel, W.H. Sanders, "Adaptive Uniformization', forthcoming in
Stochastic Models, 1994.

59. M. Mulazzani, K.S. Trivedi, "Dependability Prediction: Comparison of Tools and
Techniques", Proceedings IFA C SA FECOMP, pp. 171-178, 1986.

60. B. Mfiller-Clostermann, "NUMAS--A Tool for the Numerical Analysis of Com-
puter Systems", in: Modelling Techniques and Tools for Computer Performance
Analysis, Editor: D. Potier~ North-Holland, pp.141-154~ 1985.

61. 3. K. Muppala, A. Sathaye, R. Howe, K. S. Trivedi, '~Dependability Modeling of
a Heterogeneous VAXcluster System Using Stochastic Reward Nets", in: Hardware
and Software Fault Tolerance in Parallel Computing Systems, Editor: D. Averesky,
Ellis Horwood Ltd., 1992, forthcoming.

62. J. Muppala and K. S. Trivedi, "Numerical Transient Solution of Finite Markovian
Queueing Systems", in: Queueing and Related Models, U. N. Bhat and I. V. Basawa
(ed.), pp. 262-284, Oxford University Press, 1992.

63. D. Potier, M. Veran, "The Markovian Solver of QNAP2 and Examples", in: Com-
puter Networking and Performance Evaluation, Editors: T. Hasegawa, H. Takagi,
Y. Takahashi, pp.259-279, 1986.

64. A.L. Reibman, K.S. Trivedi, "Transient Analysis of Cumulative Measures of
Markov Model Behavior", Stochastic Models 5(4), pp.683-710, 1989.

65. M. Reiser and S. S. Lavenberg. Mean value analysis of closed multichain queueing
networks. J. ACM., 27(2):313-322~ Apr. 1980.

66. R.A. Sahner, K.S. Trivedi, "Reliability Modelling using SHARPE', IEEE Trans-
actions on Reliability 36(2), pp.186- 193, 1987.

67. R.A. Sahner, K.S. Trivedi, "A Software Tool for Learning About Stochastic Mod-
els', IEEE Transactions on Education 36(1), 1993.

68. W.H. Sanders~ J.F. Meyer, "Performability Evaluation of Distributed Systems us-
ing Stochastic Activity Networks ~, Proceedings of the 1987 International Workshop

24

on Petri Nets and Performance Models, IEEE Computer Society Press, pp.111-120,
1987.

69. W.H. Sanders, Construction and Solution of Performability Models Based on
Stochastic Activity Networks, Ph.D. dissertation, University of Michigan, USA, 1988.

70. W.H. Sanders, J.F. Meyer, "Reduced Base Model Construction for Stochastic Ac-
tivity Networks", IEEE Journal on Selected Areas in Communications 9(1), pp.25-
36, 1991.

71. C. H. Saner and K.M. Chandy. Computer Systems Performance Modeling.
Prentice-Hall, 1981.

72. M. Sczittnick, Techniken zur funktionalen und quantitativen Analyse yon Markoff-
schen Rechensystemmodellen, M.Sc. thesis, University of Dortmund, August 1987.

73. M. Sczittnick, B. Miiller-Clostermann, "MACOM--A Tool for the Markovian
Analysis of Communication Systems", in: Proceedings of the Fourth International
Conference on Data Communication Systems and Their Performance, Editor:
R. Puigjaner, pp.456-470, 1990.

74. E. de Souza e Silva, H.R. Gaff, "Performabihty Analysis of Computer Systems:
from Model Specification to Solution", Performance Evaluation, 14(38z4), pp.157-
196, 1992.

75. E. de Souza e Silva, P.M. Ochoa, "State Space Exploration in Markov Models",
ACM Performance Evaluation Review 20(1), pp.152-166, 1992.

76. M.F. Squillante, "MAGIC: A Computer Performance Modelhng Tool based on
Matrix-Geometric Techniques", in: Computer Performance Evaluation: Modelling
Techniques and Tools, Eds.: G. Balbo, G. Serazzi, North-Holland, pp.411-425, 1992.

77. W. J. Stewart, "MARCA: Markov Chain Analyzer", in: Numerical Solution of
Markov Chains, Editor: W.J. Stewart, Marcel Dekker, 1991.

78. L. Tomek, V. Mainkar, R. Geist, and K. Trivedi. Reliability analysis of life-critical
reM-time systems. Proceedings of the IEEE, January 1994.

79. K.S. Trivedi, J.K. Muppala, S.P. Woolet, B.R. Haverkort, "Composite Perfor-
mance and Dependability Analysis", Performance Evaluation, 14(3&:4), pp.197-215,
1992.

80. M. Veran, D. Potier, "QNAP2: A Portable Environment for Queueing System
Modelling", in: Modelling Techniques and Tools for Computer Performance Evalu-
ation, Editor: D. Potier, North-Holland, pp.25-63, 1985.

81. W. Whitt. The queueing network analyzer. The Bell System Technical Journal,
62(9), Nov. 1983.

