10,298 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Some thoughts on neural network modelling of micro-abrasion-corrosion processes

    Get PDF
    There is increasing interest in the interactions of microabrasion, involving small particles of less than 10 μm in size, with corrosion. This is because such interactions occur in many environments ranging from the offshore to health care sectors. In particular, micro-abrasion-corrosion can occur in oral processing, where the abrasive components of food interacting with the acidic environment, can lead to degradation of the surface dentine of teeth. Artificial neural networks (ANNs) are computing mechanisms based on the biological brain. They are very effective in various areas such as modelling, classification and pattern recognition. They have been successfully applied in almost all areas of engineering and many practical industrial applications. Hence, in this paper an attempt has been made to model the data obtained in microabrasion-corrosion experiments on polymer/steel couple and a ceramic/lasercarb coating couple using ANN. A multilayer perceptron (MLP) neural network is applied and the results obtained from modelling the tribocorrosion processes will be compared with those obtained from a relatively new class of neural networks namely resource allocation network

    Ancient and historical systems

    Get PDF

    Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume VII: Module encapsulation

    Get PDF
    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20-year (later increased to 30-year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the FSA Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized in this report include the development of low-cost ultraviolet protection techniques, stable low-cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long-term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that will meet the FSA cost and performance goals. Thirty-year module life expectancies are anticipated based on accelerated stress testing results and on extrapolation of real-time field exposures in excess of 9 years

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    COMPUTATIONAL ANALYSIS OF FEASIBILITY AND UTILITY OF DIRECT-ADHESION POLYMER-TO-METAL HYBRID TECHNOLOGIES FOR USE IN LOAD BEARING BODY-IN-WHITE AUTOMOTIVE COMPONENTS

    Get PDF
    Traditionally, metals and plastics are fierce competitors in many automotive engineering applications. This paradigm is gradually being abolished as the polymer-metal-hybrid (PMH) technologies, developed over the last decade, are finding ways to take full advantage of the two classes of materials by combining them into a singular component/sub-assembly. By employing one of the several patented PMH technologies, automotive original equipment manufacturers (OEMs) have succeeded in engaging flexible assembly strategies, decreasing capital expenditures and reducing labor required for vehicle manufacture. The basic concept utilized in all PMH technologies is based on the fact that while an open-channel thin-wall sheet-metal component can readily buckle under compressive load, with very little lateral support, provided by a thin-wall rib-like injection-molded plastic subcomponent, the buckling resistance (and the stiffness) of the component can be greatly increased (while the accompanied weight increase is relatively small). In the present work, the potential of direct-adhesion PMH technologies for use in load-bearing structural automotive components is explored computationally. Within the direct adhesion PMH technology, load transfer between stamped sheet-metal and injection-molded rib-like plastic subcomponent is accomplished through a variety of nanometer-to-micron scale chemical and mechanical phenomena which enable direct adhesion between the two materials. Multi-disciplinary computations are carried out ranging from: (a) computational investigation of the sheet-metal stamping process including determination of the residual stresses and the extent of stamped-component warping; (b) computational fluid mechanics of the filling, packing and cooling stages of the injection-molding process including determination of flow-induced fiber orientation in the molded plastic and the extent of residual stresses and warping in the injection-molded sub-component: and (c) structural-mechanics computational investigation of the effect of injection-molded component residual stresses and warping on their ability to withstand thermal loading encountered in the paint shop and mechanical in-service loading. The results obtained revealed that a minimal level of the polymer-to-metal adhesion strength (5-10MPa) must be attained in order for the direct-adhesion PMH technologies to be a viable alternative in the load-bearing body-in-white (BIW) components. In the present work, also various PMH approaches used to promote direct (adhesive-free) adhesion between metal and injection-molded thermoplastics are reviewed and critiqued. The approaches are categorized as: (a) micro-scale polymer-to-metal mechanical interlocking; (b) in-coil or stamped-part pre-coating for enhanced adhesion; and (c) chemical modifications of the injection-molded thermoplastics for enhanced polymer-to-metal adhesion. For each of these approaches their suitability for use in load-bearing BIW components is discussed. In particular, the compatibility of these approaches with the BIW manufacturing process chain (i.e. (pre-coated) metal component stamping, BIW construction via different joining technologies, BIW pre-treated and painting operations) is presented. It has been found that while considerable amount of research has been done in the PMH direct-adhesion area, many aspects of these technologies which are critical from the standpoint of their use in the BIW structural applications have not been addressed (or addressed properly). Among the PMH technologies identified, the one based on micro-scale mechanical interlocking between the injection-molded thermoplastic polymer and stamped-metal structural component was found to be most promising. Lastly, the suitability and the potential of various polymer-powder spraying technologies for coating metal stampings and, thus, for enhancing the polymer-to-metal adhesion strength in direct-adhesion PMH load-bearing automotive-component applications is considered. The suitability of the spraying technologies is assessed with respect to a need for metal-stamping surface preparation/treatment, their ability to deposit the polymeric material without significant material degradation, the ability to selectively overcoat the metal-stamping, the resulting magnitude of the polymer-to-metal adhesion strength, durability of the polymer/metal bond with respect to prolonged exposure to high-temperature/high-humidity and mechanical/thermal fatigue service conditions, and compatibility with the automotive BIW manufacturing process chain. The analysis revealed that while each of the spraying technologies has some limitations, the cold-gas dynamic-spray process appears to be the leading candidate technology for the indicated applications

    Modelling of Metal-Coating Delamination Incorporating Variable Environmental Parameters

    Get PDF
    A mathematical model for metal-coat delamination of degrading metal was developed incorporating multiple variable environmental parameters. Metal-coat delamination not only depends on the electrochemical reactions at metal-coat interface but also on the factors like the type of propagating metal ions and their varying concentration with annual weather changes, time of exposure of the coated objects, type of coated objects are stationary or mobile vehicles, frequency with which certain vehicles are operating in various environments e.g. controlled or uncontrolled in terms of environmental conditions. A cutting edge model has been developed to calculate the varying environmental conditions using iteration algorithm, time dependent uncertain position of objects like vehicle in various environments using stochastic approach, effect of seasonal changes on ionic compound's concentration using algebraic method and instantaneous failure probability due to varying conditions. Based on the developed model a detailed simulation study was conducted to investigate the metal-coat delamination process and the ways to regress the under coat metal corrosion

    Photoelastic Stress Analysis

    Get PDF

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Technology for large space systems: A special bibliography with indexes (supplement 03)

    Get PDF
    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented
    corecore