8,147 research outputs found

    Persepsi pelajar sarjana muda kejuruteraan elektrik terhadap program latihan industri, Kolej Universiti Teknologi Tun Hussein Onn

    Get PDF
    Kajian ini dijalankan bertujuan untuk mengetahui persepsi Pelajar Sarjana Muda Kejuruteraan Elektrik Terhadap Program Latihan Industri, KUiTTHO berdasarkan kepada 4 faktor iaitu kesesuaian penempatan program latihan industri, kesesuaian pendedahan pelajaran teori di KUiTTHO dan amali di tempat program latihan industri, tahap kerjasama yang diberikan oleh pihak industri kepada pelajar d a n kesediaan pelajar melakukan kerja yang diberi semasa program latihan industri. Sampel kajian adalah terdiri daripada pelajar-pelajar Sarjana Mud a Kejuruteraan Elektrik di KUITTHO yang telah menjalani program latihan industri. Set soal selidik terdiri daripada 3 bahagian iaitu bahagian A yang bertujuan untuk mendapatkan maklumat diri responden manakala bahagian Bertujuan untuk mengetahui kesesuaian program latihan industri yang telah diikuti oleh pelajar dan bahagian C adalah cadangan untuk meningkatkan mutu program latihan industri. Data - data yang diperolehi dianalisis menggunakan perisisan SPSS 10.0 for Windows (Statistical Package for the Social Science version 10) dan dipersembahkan dalam bentuk peratusan, carta dan keterangan analisis. Dapatan kajian secara umumnya menunjukkan reaksi positif dimana bagi semua aspek menunjukkan min keseluruhan yang tingg

    Emc aerospace systems analysis Interim scientific report

    Get PDF
    Analysis and data requirements for solving potential aerospace electromagnetic compatibility problem

    Deterministic diffraction loss modelling for novel broadband communication in rural environments

    Get PDF
    This paper presents a deterministic modelling approach to predict diffraction loss for an innovative Multi-User-Single-Antenna (MUSA) MIMO technology, proposed for rural Australian environments. In order to calculate diffraction loss, six receivers have been considered around an access point in a selected rural environment. Generated terrain profiles for six receivers are presented in this paper. Simulation results using classical diffraction models and diffraction theory are also presented by accounting the rural Australian terrain data. Results show that in an area of 900 m by 900 m surrounding the receivers, path loss due to diffraction can range between 5 dB and 35 dB. Diffraction loss maps can contribute to determine the optimal location for receivers of MUSA-MIMO systems in rural areas

    Fuzzy Chance-constrained Programming Based Security Information Optimization for Low Probability of Identification Enhancement in Radar Network Systems

    Get PDF
    In this paper, the problem of low probability of identification (LPID) improvement for radar network systems is investigated. Firstly, the security information is derived to evaluate the LPID performance for radar network. Then, without any prior knowledge of hostile intercept receiver, a novel fuzzy chance-constrained programming (FCCP) based security information optimization scheme is presented to achieve enhanced LPID performance in radar network systems, which focuses on minimizing the achievable mutual information (MI) at interceptor, while the attainable MI outage probability at radar network is enforced to be greater than a specified confidence level. Regarding to the complexity and uncertainty of electromagnetic environment in the modern battlefield, the trapezoidal fuzzy number is used to describe the threshold of achievable MI at radar network based on the credibility theory. Finally, the FCCP model is transformed to a crisp equivalent form with the property of trapezoidal fuzzy number. Numerical simulation results demonstrating the performance of the proposed strategy are provided

    Detecting and locating electronic devices using their unintended electromagnetic emissions

    Get PDF
    Electronically-initiated explosives can have unintended electromagnetic emissions which propagate through walls and sealed containers. These emissions, if properly characterized, enable the prompt and accurate detection of explosive threats. The following dissertation develops and evaluates techniques for detecting and locating common electronic initiators. The unintended emissions of radio receivers and microcontrollers are analyzed. These emissions are low-power radio signals that result from the device\u27s normal operation. In the first section, it is demonstrated that arbitrary signals can be injected into a radio receiver\u27s unintended emissions using a relatively weak stimulation signal. This effect is called stimulated emissions. The performance of stimulated emissions is compared to passive detection techniques. The novel technique offers a 5 to 10 dB sensitivity improvement over passive methods for detecting radio receivers. The second section develops a radar-like technique for accurately locating radio receivers. The radar utilizes the stimulated emissions technique with wideband signals. A radar-like system is designed and implemented in hardware. Its accuracy tested in a noisy, multipath-rich, indoor environment. The proposed radar can locate superheterodyne radio receivers with a root mean square position error less than 5 meters when the SNR is 15 dB or above. In the third section, an analytic model is developed for the unintended emissions of microcontrollers. It is demonstrated that these emissions consist of a periodic train of impulses. Measurements of an 8051 microcontroller validate this model. The model is used to evaluate the noise performance of several existing algorithms. Results indicate that the pitch estimation techniques have a 4 dB sensitivity improvement over epoch folding algorithms --Abstract, page iii

    Electromagnetic modelling and simulation of a high-frequency ground penetrating radar antenna over a concrete cell with steel rods

    Get PDF
    This work focuses on the electromagnetic modelling and simulation of a highfrequency Ground-Penetrating Radar (GPR) antenna over a concrete cell with reinforcing elements. The development of realistic electromagnetic models of GPR antennas is crucial for accurately predicting GPR responses and for designing new antennas. We used commercial software implementing the Finite-Integration technique (CST Microwave Studio) to create a model that is representative of a 1.5 GHz Geophysical Survey Systems, Inc. antenna, by exploiting information published in the literature (namely, in the PhD Thesis of Dr Craig Warren); our CST model was validated, in a previous work, by comparisons with FiniteDifference Time-Domain results and with experimental data, with very good agreement, showing that the software we used is suitable for the simulation of antennas in the presence of targets in the near field. In the current paper, we firstly describe in detail how the CST model of the antenna was implemented; subsequently, we present new results calculated with the antenna over a reinforced-concrete cell. Such cell is one of the reference scenarios included in the Open Database of Radargrams of COST Action TU1208 “Civil engineering applications of Ground Penetrating Radar” and hosts five circular-section steel rods, having different diameters, embedded at different depths into the concrete. Comparisons with a simpler model, where the physical structure of the antenna is not taken into account, are carried out; the significant differences between the results of the realistic model and the results of the simplified model confirm the importance of including accurate models of the actual antennas in GPR simulations; they also emphasize how salient it is to remove antenna effects as a pre-processing step of experimental GPR data. The simulation results of the antenna over the concrete cell presented in this paper are attached to the paper as ‘Supplementary materials.

    Aircraft-sized anechoic chambers for electronic warfare, radar and other electromagnetic engineering evaluation

    Get PDF
    This paper considers capabilities and benefits of aircraft-sized radio/radar frequency anechoic chambers for Test and Evaluation (T&E) of Electronic Warfare (EW), radar and other electromagnetics aspects of air and ground platforms. There are few such chambers worldwide. Initially developed to reduce costs, timescales and risks associated with open-air range flight testing of EW systems, their utility has expanded to most areas of platforms’ electromagnetics’ T&E. A key feature is the ability to conduct T&E of nationally sensitive equipment and systems, fully installed on platforms, in absolute privacy. Chambers’ capabilities and uses are described, with emphasis on key infrastructure and instrumentation. Non-EW uses are identified and selected topics elaborated. Operation and maintenance are discussed, based on experiential knowledge from international use and the authors’ 30 years’ involvement with BAE Systems’ EW Test Facility. A view is provided of trends and challenges whose resolution could further increase chamber utility. National affordability challenges also suggest utility expansion to support continuing moves, from expensive and difficult to repeat flight test and operational evaluation trials, towards an affordability-driven optimal balance between modelling and simulation, and real-world testing of platforms
    • 

    corecore