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ABSTRACT

Electronically-initiated explosives can have unintended electromagnetic emis-

sions which propagate through walls and sealed containers. These emissions, if prop-

erly characterized, enable the prompt and accurate detection of explosive threats.

The following dissertation develops and evaluates techniques for detecting and locat-

ing common electronic initiators. The unintended emissions of radio receivers and

microcontrollers are analyzed. These emissions are low-power radio signals that result

from the device’s normal operation.

In the first section, it is demonstrated that arbitrary signals can be injected

into a radio receiver’s unintended emissions using a relatively weak stimulation signal.

This effect is called stimulated emissions. The performance of stimulated emissions

is compared to passive detection techniques. The novel technique offers a 5 to 10 dB

sensitivity improvement over passive methods for detecting radio receivers.

The second section develops a radar-like technique for accurately locating

radio receivers. The radar utilizes the stimulated emissions technique with wideband

signals. A radar-like system is designed and implemented in hardware. Its accuracy

tested in a noisy, multipath-rich, indoor environment. The proposed radar can locate

superheterodyne radio receivers with a root mean square position error less than

5 meters when the SNR is 15 dB or above.

In the third section, an analytic model is developed for the unintended emis-

sions of microcontrollers. It is demonstrated that these emissions consist of a periodic

train of impulses. Measurements of an 8051 microcontroller validate this model. The

model is used to evaluate the noise performance of several existing algorithms. Results

indicate that the pitch estimation techniques have a 4 dB sensitivity improvement

over epoch folding algorithms.
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1. INTRODUCTION

Remote detection of improvised explosive devices is essential to guaranteeing

safety in conflict-prone environments. At present, there are three main techniques

for detecting explosive devices: manual search, portal screening, and chemical trace

detection. Manual search techniques utilize explosives ordinance disposal (EOD)

technicians to find and neutralize explosives. Clearing an area is a time-consuming,

dangerous task which can expose personnel and resources, such as robots, to risk.

In portal screening techniques, a secure area is defined, and persons entering the

area are subject to a thorough search. This technique results in large delays and

great expense: the United States spends $4.8 billion U.S. dollars per year on security

checkpoints for its airports [2].

Both of these search methods are often augmented with some type of explo-

sives-detection sensor. Chemical traces are the most specific indication that explo-

sives are present, and others have developed a number of different techniques for

detecting them. By characterizing the chemical composition and behavior of high-

explosives, such as ammonium nitrate [3], it is possible to build more reliable sen-

sors. Terahertz imaging techniques offer improved portal screening with an inherent

explosives-detection capability [4].

Sensors that are capable of detecting explosives from outside of their effective

range are an important, emerging area of research. This search strategy is commonly

referred to as standoff detection. These sensors must cope with the low signal-to-

noise ratio (SNR) which is inherent to long-range detection. Raman spectroscopy is

one such technique. It has the potential to detect chemical traces on surfaces, using

lasers, at great distances [5].
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These techniques have inherent disadvantages, however. Scanning a large

area can be extremely time consuming. Obstacles like hills, trees, and buildings

can prevent detection. All chemical trace systems, including canines, have difficulty

detecting explosives which are housed in air-tight containers [6]. Indirect methods,

which detect the non-explosive components, can be useful in these situations.

Explosive devices typically contain at least three components: propellant, a

payload, and an initiator. Each of these components, which are shown conceptually

in Figure 1.1, provides a different opportunity for detection. Chemical traces are the

most specific indication that explosives are present, but the payload and initiator can

have specific, detectable environmental signatures as well.

One way to indirectly detect potential explosive devices is to detect the ini-

tiator. Explosive devices are commonly initiated using proximity sensors or remote

triggers [7, 8]. These initiators are electronic devices which generate and process

high-frequency signals. Such signals can radiate from resonant features in the de-

vice’s printed circuit board (PCB) and packaging, escaping into the environment as

unintended electromagnetic emissions.

Unlike chemical traces, electromagnetic emissions can propagate freely through

closed containers and vehicles. Others have demonstrated that these emissions can

Initiator Payload

Electromagnetic

Emissions

Chemical

Traces

Propellant

Magnetic

Resonance

Figure 1.1: Each component of an explosive device has a specific environmental sig-
nature.
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reveal information about a device’s purpose and internal state [9], making it possible

to determine what types of devices are present. By detecting potential initiators, it

is possible to infer the presence of an explosive threat. This approach makes non-

line-of-sight device detection feasible at relatively long range.

In order to provide a substantial advantage over the direct methods, an elec-

tronic initiator detector must offer high sensitivity and selectivity. A high-sensitivity

detector should be capable of detecting weak, unintended electromagnetic emissions—

the power of which is strictly limited by regulation [10]. While an extraordinary

variety of electronic devices exist, a detector should be capable of separating devices

which pose an explosive-related threat from devices which do not. Selectivity and

sensitivity can be improved by using specific knowledge of the emissions’ character-

istics.

The purpose of this work is to improve techniques for detecting specific types of

electronic initiators. Radio receivers of every variety, such as doorbells, automobile

keyfobs, two-way radios, and cellular telephones, can be used as remote initiators

[8,11]. Devices may also incorporate microcontrollers and other clocked, digital logic

systems for either timing or control purposes. This dissertation includes three papers

on the detection, location, and identification of these electronic devices.

The first paper, which was originally published as [12], presents a new tech-

nique for detecting superheterodyne radio receivers. This technique, which is known

as stimulated emissions, was originally developed for super-regenerative receivers.

The extension allows stimulated emissions to work with a wide variety of new de-

vices. Numerical simulations indicate that the theoretical performance of stimulated

emissions far exceeds that of existing, passive techniques.

In the second paper, new measurements suggest that superheterodyne re-

ceivers are sensitive to a much wider band of frequencies than they are designed to
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receive. As published in [13], this new information enables the development of a time-

of-arrival technique for locating radio receivers. Radar theory is combined with the

stimulated emissions technique to determine the range to radio receivers. A hardware

test platform is developed, and the accuracy of this technique is tested in both indoor

and outdoor environments.

For the third paper, techniques are tested for positively identifying microcon-

trollers using their unintended electromagnetic emissions. It is demonstrated that

microcontrollers have clock-dependent emissions that are impulsive and periodic. An

autoregressive model is developed for simulating, and for detecting, clock emissions.

Several algorithms, including one novel algorithm, are proposed for detecting these

emissions. The applicability and usefulness of each algorithm as a clock-circuit de-

tector is considered and tested in a simulated environment.
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2. DETECTING SUPERHETERODYNE RECEIVERS

Advances in electronics and RF design have made radio receivers smaller,

cheaper, and more common than ever before. These new devices enable a plethora of

innovative applications, but they can also be used maliciously to initiate explosives.

One way to indirectly locate potential explosive devices is to locate the radio receiver,

thus mitigating this threat. Radio receivers use many different high frequency signals

that readily escape into the environment, resulting in unintended electromagnetic

emissions. It is possible to detect radio receivers using these unintended electromag-

netic emissions [14–17].

While modern devices use a variety of radio receiver designs, the superhetero-

dyne receiver remains one of the most common. Superheterodyne receivers trans-

late high-frequency signals to a lower frequency, making them ideal for reproducing

high-quality voice and data signals. Broadcast radio receivers, cellular phones, and

two-way radios frequently incorporate superheterodyne receivers.

It is well-known that superheterodyne receivers have strong, sinusoidal local

oscillator (LO) emissions. Others have demonstrated that these emissions can be

detected using periodograms [15]. In this approach, a signal which potentially con-

tains unintended emissions is sampled, and its periodogram is computed. Each bin

is compared with a threshold, and the detector is satisfied if this threshold is ex-

ceeded. Existing research focuses on broadcast radio receivers, such as the television

sets studied in [15].

Unlike television sets, two-way radios and other battery-powered devices are

intended for intermittent use. As shown herein, two-way radios cycle their local oscil-

lators on and off to conserve power. This cycling makes the emissions non-stationary,

greatly decreasing the effectiveness of periodogram techniques. The periodogram
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technique is also likely to be susceptible to interfering signals, since only the level of

emissions, in a narrow band, is observed. Improved detection methods are needed.

Unintended emissions can reveal information about an electronic device’s in-

ternal state [9], and radio receivers are no exception. Unlike other types of devices,

however, radio receivers are highly responsive to weak stimulation signals. Trans-

mitting a known stimulation signal to a receiver can change its unintended emissions

in a predictable manner. It is possible to detect radio receivers by comparing their

unintended emissions with the stimulation signal. This technique is called stim-

ulated emissions detection. This approach is similar to harmonic detection tech-

niques, which illuminate the electronic device with a strong stimulation and look for

“reflected” harmonics caused by interaction with non-linear electronic components.

Since the proposed technique modifies the intended signals within the device, it can

use a much lower power stimulation, can work at a longer range, and will have fewer

false-alarms than harmonic detection.

Others have developed stimulated emissions detectors for super-regenerative

receivers [14]. These systems offer improved sensitivity over unstimulated, passive

detectors, but they are incapable of detecting superheterodyne receivers. Existing

detectors affect the quenching signal in a super-regenerative circuit [17], which is not

present in superheterodyne receivers. Since stimulated emissions detectors outper-

form passive detectors for super-regenerative receivers, it is worthwhile to develop

stimulated emissions techniques for superheterodyne receivers.

The following paper describes the development of a superheterodyne radio de-

tector. Real radio receivers were measured during operation, and it is demonstrated

that certain unintended emissions have an identical complex envelope to the stimu-

lation signal. A stimulated emissions detector, which is detailed in Section 2.2.2, was

developed using matched filters. The performance of the stimulated emissions detec-

tor was compared with existing methods [15] using artificially-generated emissions.
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The stimulated emissions approach offers substantial quantitative and qualitative ad-

vantages over existing methods, increasing the energy of the emissions and eliminating

false-positives caused by non-radio devices.

2.1. MEASURING THE UNINTENDED EMISSIONS

Superheterodyne radios use mixers to perform channel selection and frequency

translation in a single step. Consider a bandpass radio signal x(t) centered at fRF Hz.

Multiplying this signal with a cosine at fLO Hz results in an output of y(t) such that

y(t) = x(t) cos (2πfLOt) (2.1)

By the modulation theorem [18], the frequency domain output Y (f) = F {y(t)} is:

Y (f) =
1

2
(X(f − fLO) +X(f + fLO)) (2.2)

Thus, the mixer produces two frequency-shifted copies of the signal, centered at fIF

and fH , such that

fIF = fRF − fLO (2.3)

fH = fRF + fLO (2.4)

Superheterodyne receivers translate radio signals to a fixed intermediate frequency,

fIF , by choosing the local oscillator frequency, fLO, according to (2.3).

The mixer, shown in Figure 2.1, creates several different signals of interest.

In order to make fIF relatively low, superheterodyne receivers must generate a high

frequency fLO. In addition to down-mixing the radio signal to fIF , the mixer also

up-mixes the signal to fH . This high frequency output is an unwanted byproduct,
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but it is easily removed with a low-order filter. Superheterodyne receivers frequently

use two or more mixer stages, and the operating frequencies of the second stage are

known herein as fIF2 and fLO2 .

Any of these frequencies, including fLO, fIF , fLO2 , fH2 , and fH , can escape

from the radio receiver as unintended emissions, as will be demonstrated in the fol-

lowing paragraphs.

2.1.1. Near-Field Analysis. Studies of the emissions from superhetero-

dyne receivers were performed using General Mobile Radio Service (GMRS) tran-

sceivers. GMRS radios are popular, “walkie-talkie” style radios with a range of

roughly five miles [19]. Their low cost, long battery life, built-in squelch codes, and

long range make them ideal for a number of uses, but they are also small and easily

concealed about a person or device. GMRS radios often incorporate superheterodyne

IF Filter

Image
Rejection

Filter RF Mixer

Local Oscillator

P
ow

er

RF0
Frequency

IF LO Upmix

To second
stage

Figure 2.1: A superheterodyne receiver front-end. In a superheterodyne receiver,
the mixer shifts the RF input both down in frequency (IF component)
and up in frequency (up-mixing component). These signals are plotted
conceptually above. The receiver itself keeps only the IF component;
the other signals are filtered out. The up-mixing component has a high
frequency, and—before it can be filtered out—tends to radiate into the
environment.
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receivers that have strong stimulated emissions, making them an ideal candidate for

stimulated emissions research.

Several GMRS radios were tested in the near-field to characterize their unin-

tended emissions frequencies. The radios were placed in a transverse electromagnetic

(TEM) cell, and their unintended emissions were measured with a spectrum analyzer.

To determine the difference between unstimulated and stimulated emissions, each ra-

dio was tuned to an unoccupied channel and tested with both no stimulation and

with a continuous wave (CW) stimulation. Frequency domain emissions from one

such test are shown in Figure 2.2. By comparing measurements with and without

a stimulation, it is possible to determine if a signal is a local oscillator or a mixer

output.

Local oscillator signals are always present, regardless of whether or not the

radio is receiving a signal. Superheterodyne receivers generate LO signals using

purely internal clock sources, such as crystal oscillators [20]. Since these oscillators

are designed to maintain a constant frequency—even in the presence of strong radio

signals—it is unlikely that a typical radio signal will affect LO emissions. Since it is

difficult to determine if a radio signal is present without down-mixing, superhetero-

dyne receivers must keep their LOs active—even when no radio signal is present. Any

local oscillator emissions will therefore be frequency-invariant and will not require a

stimulation signal.

Unlike local oscillator signals, mixer outputs depend significantly on stimula-

tion input signals. From (2.2), it is clear that the mixer outputs an attenuated copy

of the input signal. If the radio is unstimulated, x(t) → 0 and the mixer’s output

y(t)→ 0, regardless of the local oscillator signal’s behavior. If the radio is stimulated,

then the mixer outputs should contain a frequency-shifted copy of the stimulation

signal—an effect that is tested in the following section. Mixer output emissions are
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easy to identify since they require a stimulation signal and will always vary with

respect to the stimulation.

GMRS radio receivers have identifiable local oscillator, intermediate frequency,

and up-mixing emissions. Consider the different unintended emissions in Figure 2.2,

which are enumerated in Table 2.1. fLO is a signal that is both always present and very

close to fRF , making it most likely a local oscillator signal. fIF and fH are only present

when the radio is stimulated, making them possible mixer outputs. Comparing the

estimated frequency of each emissions signal, it is clear that fIF ≈ fRF − fLO and

fH ≈ fRF + fLO. Since the measured emissions satisfy (2.3) and (2.4), they follow

the design rules for a superheterodyne receiver. Thus, fLO and fIF are the receiver’s

operating frequencies.

In the process of generating the above mathematically-required signals, GMRS

receivers may also generate other, secondary signals that become unintended emis-

sions. In Table 2.1, 2fLO and fH2 are examples of secondary emissions. High fre-

quency oscillators often have second harmonics, and the 2fLO emissions are just such

a signal. The fH2 emissions are the result of the second-stage LO mixing with the

stimulation signal. Since there is no reason for the receiver to mix these signals, this

signal is probably the result of poor electromagnetic isolation. While the secondary

emissions may be useful, they are not mathematically guaranteed to exist, and it is

possible to construct a superheterodyne receiver that does not generate them.

2.1.2. Time Domain Analysis. After determining the radios’ operating

frequencies, the unintended emissions were analyzed in the time domain. The emis-

sions were sampled with an Ettus Research Universal Software Radio Peripheral

(USRP), a software-defined radio which can both transmit and receive arbitrary radio

signals. Unlike traditional oscilloscopes, which are limited by their memory depth,

the USRP can record captures of nearly unlimited length. A more comprehensive

overview of software-defined radio is given in Appendix 5. The USRP’s frequency
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span is quite small [21], and thus it is necessary to know the emissions’ carrier fre-

quency in advance.

GMRS receivers essentially only have two unique emissions signals. Consider

the identified emissions frequencies in Table 2.1. All emissions that do not react to

a stimulation are local oscillator signals, and all signals that react to a stimulation

are mixer products. Since all signals of the same type contain the same information,

it suffices to record one of each. As a matter of convenience, fLO was selected for

unstimulated emissions and fH for stimulated emissions.

In order to determine if the fH emissions originate from the radio’s mixer, as

postulated, several GMRS radios were tested with a stimulation signal. A repeating

5 kHz, 1024 ms linear frequency modulated (FM) chirp was up-mixed and trans-

mitted to a nearby GMRS receiver. The transmitted signal’s power was less than

200 mW, which is less than the radiated power of most GMRS radio transmitters.

The frequency modulation used a maximum carrier deviation of ∆f = 5 kHz, which

is the same standard mandated for GMRS transmitters [22]. A USRP, placed in close

proximity to the radio receiver, recorded the fH emissions. In order to ensure that

Table 2.1: Identifiable Emissions Frequencies from Figure 2.2, fRF ≈ 462 MHz

Name
Frequency
Estimate
(MHz)

Changes
when

Stimulated

Description

fLO2 20.94 No 2nd Local Oscillator

fIF 21.4 Yes 1st Intermediate Frequency

fLO 441.0 No 1st Local Oscillator

fH2 483.5 Yes 2nd LO Up-mixing

2fLO 882.0 No Local Osc. Harmonic

fH 903.0 Yes 1st LO Up-mixing
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the USRP was not simply detecting a harmonic of the stimulation signal, a control

capture was taken with no GMRS radio present.

As predicted, GMRS receivers have stimulated emissions at fH , and these

emissions are an up-mixed version of the original radio signal. The spectrogram of

the emissions near fH , shown in Figure 2.3, clearly indicates the presence of the

original stimulation signal. The complex envelope increases from 0 Hz to 5 kHz over

a period of 1024 ms, which matches the original stimulation signal.

A second measurement was taken using a different GMRS radio and a 1 kHz,

pure-tone FM sinusoid. The emissions, shown in Figure 2.4, contain peaks that are

characteristic of an FM sinusoid. At close range, It is possible to demodulate the

emissions and recover the original tone. Other tests, not detailed here, indicate that

it is possible to achieve a similar effect with arbitrary FM signals. The gaps in the

emissions in Figure 2.3 and Figure 2.4 are caused by the local oscillator cycling on

and off as it searches for a signal—a further validation that these emissions are caused

by up-mixing in the radio.

GMRS radios periodically deactivate their local oscillators when no signal is

detected. In order to quantify how the stimulation signal affects the emissions, the

radio was placed in an RF-shielded environment, and the local oscillator emissions

were recorded. Figure 2.5 shows the AM demodulation of one such recording. The

reason for this response is explained below.

Since GMRS radios are intended for intermittent use and operate on shared

spectrum, they incorporate squelch detectors to reject unwanted signals. Squelch de-

tectors prevent unwanted audio output by muting the radio’s speakers unless certain

conditions are met. The first detector, carrier squelch, uses an energy detector to

determine if a narrowband radio signal is present on the channel’s carrier frequency.

Because this channel may be shared among many users, receivers may also use tone
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(or code) squelch to suppress unwanted calls. Both detectors must be satisfied before

the receiver un-mutes the speaker and plays back the incoming transmission.

Under this arrangement, the squelch detectors can be in one of three possible

states. Since the squelch detectors operate in series, it is possible to have no detectors

satisfied (S0), just the carrier detector satisfied (S1), or both the carrier and the tone

detectors satisfied (S2). The tone detector is optional and can be disabled by the

radio’s operator, and in this case it is always satisfied. Each state may have different

unintended emissions, making it important to test each of them.

To investigate how the radio’s squelch detectors affect its unintended emis-

sions, the receiver was stimulated with a continuous wave (CW) signal, and the fLO

emissions were measured as before. S1 was tested by enabling the tone detector.

Since the CW stimulation was a narrowband signal that lacked any frequency mod-

ulation, it satisfied the carrier detector but not the tone detector. The tone detector

was disabled to test S2, and since the stimulation satisfied both detectors, the radio

handled it like an incoming call.

According to the above test, GMRS radios deactivate their local oscillators

whenever possible. If a receiver does not detect an incoming call (states S0 and

S1), it occasionally activates its LO to poll the channel for a signal of interest. If

the squelch detectors are not satisfied, the radio deactivates its LO. If the squelch

detectors are satisfied, the radio enters state S2, and the local oscillators are kept

continuously active in order to down-mix the entire signal.

The results of this test procedure, for one GMRS receiver, are enumerated in

Table 2.2, which shows the length of time that the local oscillator is active and the

LO duty cycle. While the exact timing varies for different stimulation signals, the

duty cycle is always much higher when the radio is in state S1 than when it is in

S0. Since a receiver can only have fH emissions when its LO is active, this behavior

is clearly responsible for the gaps in Figure 2.3. The duty cycle will periodically
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interrupt the radio’s emissions, making it is important to consider this effect when

designing a radio receiver detector.

2.1.3. Frequency Selection. In order to design a robust radio receiver de-

tector, it is necessary to select emissions frequencies that are easy to detect. Time

domain analysis shows that GMRS receivers have two different emissions signals—

those that always exist (unstimulated) and those that are caused by a stimulation.

Five distinct models of GMRS radios, from different manufacturers, were tested to

check the validity of this assumption. To design an effective detector, only frequencies

that exist in all studied GMRS receivers were selected.

All superheterodyne receivers are mathematically required to have an fLO,

an fIF , and an fH frequency. These signals can theoretically be of any frequencies

that satisfy (2.2), and each superheterodyne receiver tested has observable emissions

at these frequencies. Receivers may have unwanted harmonic signals, such as the

2fLO component in Figure 2.2, but these signals are not required by design and may

not exist in all receivers. Thus, the receiver detector was designed to use fLO when

detecting unstimulated emissions and either fIF or fH when detecting stimulated

emissions.

Although GMRS radios have several different emissions frequencies, the ones

that radiate in the far-field are the most useful. Since higher frequencies do not

Table 2.2: Effect of Squelch Detectors on Local Oscillator Duty Cycle

State

Name Detectors Satisfied Active (ms) Duty Cycle (%)

S0 None 87.5 21

S1 Carrier 429.5 57

S2 Carrier & Tone N/A 100
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require large antennas to radiate efficiently, the stimulated emissions detector shown

here was designed to use the 903 MHz fH emissions.

Efficient antennas require two parts, each with a size on the order of λ/4 or

larger, where λ is the wavelength. According to this relationship, the fIF emissions at

21.4 MHz require parts on the order of 3.5 m long to radiate efficiently. In contrast,

the up-mixed emissions at 903 MHz only require parts on the order of cm, which is

roughly the same size as the radio receiver’s printed circuit board. Because of the

size of the GMRS radio, it is expected that the fH up-mixed emissions to radiate

much more strongly in the far-field than the fIF emissions.

2.2. DESIGNING THE RADIO DETECTORS

Two radio receiver detectors were designed using the knowledge gained from

these experiments. The first detector uses the traditional approach, silently listening

for the fLO signal without transmitting a signal of its own, making it a passive detec-

tor. The second detector is an active, stimulated emissions detector that transmits a

known signal and searches for this signal in the fH emissions, similar to the detectors

in [14,17]. Both detectors were implemented in GNU Radio, the companion software

for the USRP, and operate on the received emissions in real-time. To ensure a fair

comparison, both algorithms were designed to use a frequency span of 10 kHz and a

sampling rate of 64 kHz, and both algorithms produce one output statistic from N

input samples.

2.2.1. Periodogram Detector. The periodogram detector detects GMRS

radios by searching for their sinusoidal fLO emissions. An ideal periodogram detector

computes

Sx(f) =
1

M

∣∣∣∣∣
M−1∑
n=0

x(n) exp(−j2πnf)

∣∣∣∣∣
2

(2.5)
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and compares each bin Sx(f) with a pre-set threshold. The detector is satisfied if

one or more bins exceed the threshold. When used in this manner, the standard

periodogram is a minimum probability-of-error detector, but it is computationally

inefficient to compute (2.5) directly [23]. Instead, the periodogram is approximated

using the Fast Fourier Transform (FFT).

The detector approximates the periodogram using Welch’s method. Since each

LO activation is only 80 ms long (from Table 2.2), it is necessary to choose an FFT

size that is small enough to ensure that each activation has multiple FFTs—otherwise,

the periodogram averaging will be more harmful than helpful. An M = 2048 point

FFT ensures that each activation has at least two FFTs. A Hamming window is

used, with 50% overlap, to improve sensitivity.

Finally, the detector searches for peaks in the periodogram. Since local os-

cillator signals appear as peaks, each periodogram point is compared with a pre-set

threshold. If at least one point exceeds the threshold, a detection occurs (see Fig-

ure 2.6).

Since this approach does not require the use of a stimulation signal, it is a good

example of a passive radio detector, and it is the same approach used for detection

in [15]. It is far from ideal, however, since the fLO emissions are non-stationary, and

the periodogram cannot remove noise that overlaps the emissions in the frequency

domain.

FFT

M
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Hamming(M)

N
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|x|
21

M

Threshold
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Figure 2.6: A passive detection algorithm using periodograms.
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2.2.2. Matched Filter Detector: The Novel Approach. Since super-

heterodyne receivers up-mix and re-emit the signals they receive, it is possible to

detect these receivers with stimulated emissions as proposed here. Since the stimula-

tion and the emissions have identical complex envelopes, it is possible to use matched

filtering to detect superheterodyne receivers. Matched filters, which are commonly

used in radar signal processing, are the optimal linear filter for detecting any signal

that is corrupted with additive white Gaussian noise (AWGN). For a stimulation

signal s[n] of length N , its matched filter h[n] is

h[n] = s∗[N − n] (2.6)

where s∗ denotes the complex conjugate of s. The matched filter detector detects

GMRS radios by transmitting the stimulation s and applying the matched filter

h to the fH emissions. While it is possible to use recorded emissions to detect

devices [16], the stimulated emissions approach obviates the need for such recordings,

since the filter can be generated directly from the stimulation signal. It is unnecessary

to compile an exhaustive library of superheterodyne emissions—all superheterodyne

receivers will have similar emissions.

In order to use matched filtering, it is necessary to select a stimulation signal s

that is both compatible with the radio receiver and is easy to detect. In additive white

Gaussian noise, a matched filter’s performance depends only on the signal’s energy—

and not its waveform [24]. Thus, it is desirable for the emissions to have high power

and long duration, but the matched filter imposes no additional constraints on s.

The radio receiver itself is a more important factor in choosing a stimulation signal.

Stimulation signals that resemble radio calls produce higher-energy emissions.

As shown in Table 2.2, if a GMRS receiver’s carrier squelch is satisfied, then its lo-

cal oscillator remains active for a longer period of time. This increases the average
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energy of the emissions, making the receiver easier to detect. To satisfy the carrier

squelch, the stimulation signal must resemble the same type of signal used by GMRS

receivers. For maximum compatibility, s should conform to [22]—i.e., be a narrow-

band frequency modulated signal with ∆f = 2.5 kHz. In order to satisfy the squelch

detector, the stimulation signal must be transmitted on the same channel that the

GMRS receiver is tuned to.

Radio receivers have different intermediate frequencies, resulting in different

fH frequencies, and the inexpensive oscillators used in many consumer radios exhibit

subtle fluctuations with temperature and power supply voltage. Since it is impossible

to know fH precisely, the received emissions will have considerable frequency ambi-

guity. While techniques exist to compensate for frequency drift, such as quadrature

demodulation or phased-locked loops, each of these techniques require high signal-

to-noise ratio (SNR)—and the emissions are a very weak signal. Thus, s should be a

signal that match-filters well even when it is frequency-shifted.

One signal that meets the above criteria is a linear frequency modulated (LFM)

chirp. LFM chirps are generated by using a linear ramp signal as the input to a

continuous-phase frequency modulator. Applying a small frequency shift to an LFM

chirp is roughly equivalent to applying a small time shift, and this property causes

LFM chirps to match filter effectively even when frequency-shifted [25]. The chirp

bandwidth must be 5 kHz, to conform to the radio’s expected input, and the ampli-

tude should be as high as possible, making the duration the only tunable parameter.

It is worth noting that the local oscillator’s duty cycle does not impose a hard

upper bound on the stimulation duration. From Table 2.2, the radio’s local oscillator

is only active for 400 ms at a time. When it is inactive the matched filter accumulates

only noise. The amount of noise accumulated, however, is a function of the duty cycle

and not the stimulation duration. It is possible to use a chirp stimulation that extends

across multiple activations, and while the entire chirp is not received, the parts that
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are received still correlate. With the above in mind, our matched filter detector uses

a high-energy LFM chirp that is N = 216 samples long at its operating sampling rate

of 64 kHz, giving it a period of roughly 1024 ms. The stimulation signal is shown in

Figure 2.3.

The matched filter detector transmits this LFM chirp to the radio and applies

the matched filter to the received fH emissions. The matched filter is a finite impulse

response (FIR) filter, and thus it can be applied quickly using FFT techniques. Since

the matched filter detector, shown in Figure 2.7, knows that each chirp is N samples

long, it searches for a maximum of one match every N samples. The output is

then compared with a threshold detector: if the matched filter’s output exceeds the

threshold, a detection occurs. In order to determine how many chirps have been

received recently, an integrator counts the number of detections that have occurred

within the past few seconds.

2.3. THEORETICAL PERFORMANCE

Each detector’s theoretical performance was evaluated using artificial GMRS

radio emissions. Due to RF propagation, antenna, receiver sensitivity, and emissions

power differences, it is challenging to fairly compare these two algorithms in an ex-

perimental setting. The detectors use two different emissions frequencies, fLO and

fH , that radiate in a different fashion, with different power levels. This invariably re-

sults in different signal-to-noise ratios (SNR) at the receiver, giving one algorithm an
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Figure 2.7: A stimulated emissions detection algorithm using matched filters.
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advantage over the other. To compare these detectors under equal-SNR conditions,

artificial emissions were generated based on experimental data.

2.3.1. Emulating GMRS Emissions. The emissions simulator generates

two sets of emissions: fLO emissions and fH emissions. The simulated fLO emissions

start as a constant-amplitude sine wave, and the fH emissions start as a perfect-

match LFM chirp. Both signals start with exactly identical RMS powers (0 dBW).

Prior to testing, the signals are time-limited, frequency-shifted, and corrupted with

additive white Gaussian noise.

GMRS radios have different local oscillator duty cycles when they are unstim-

ulated (state S0) and when they are stimulated (state S1). To emulate this effect,

the ideal emissions are multiplied with square waves with the same duty cycles that

are listed in Table 2.2. The square wave has a value of 1 when the LO is “on” and

0 when the LO is “off,” windowing the emissions in the time domain. Finally, the

emissions are subjected to channel effects.

The artificial emissions are corrupted with a small frequency shift and additive

noise. Since the exact emissions frequencies can never be known in advance, both

emissions are subjected to a small (1 kHz) linear frequency shift. After shifting the

emissions, both the fLO and the fH signals are corrupted by the exact same additive

white Gaussian noise sequence. The amount of noise was varied to produce SNRs

from 0 dB to −35 dB. The artificial emissions and the generated noise signal are

then saved for testing.

2.3.2. Quantitative Results. The artificial emissions were used to compare

the efficacy of both detectors in terms of their Receiver Operating Characteristic

(ROC) curves. To test the case where a radio is present, the artificial fLO emissions

were run through the periodogram detector, and the artificial fH emissions were run

through the matched filter detector. To test the case where no radio is present, both

detectors were run using the generated noise signal as input. Each true positive (ptrue),
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false positive (pfalse), true negative (ntrue), and false negative (nfalse) was counted, and

the test was repeated for many different detector thresholds.

For each test, the false positive rate (fpr) and true positive rate (tpr) were

calculated as

fpr =
pfalse

pfalse + ntrue

(2.7)

tpr =
ptrue

ptrue + nfalse

(2.8)

When plotted, the false positive and true positive rates represent the ROC curve.

While both algorithms performed equally well for high SNRs, the difference became

more pronounced at lower SNRs.

Figure 2.8 shows the ROC curves for both detectors for various signal-to-noise

ratios. Since the matched filter detector has more area under each curve than the

periodogram detector, it more accurately determines whether or not a radio is present.

Since the matched filter detector outperforms the periodogram detector under high-

noise conditions, the stimulated emissions approach is a quantitative improvement

over existing algorithms for detecting radio receivers.

It may be possible to further improve the performance of both the active and

passive detectors. Wavelets are widely used in chirp radar applications [26], and

their high time/frequency resolution may assist in the location of radio receivers.

Additionally, new statistical techniques can increase the sensitivity of periodogram

detectors. By comparing the periodogram with a probability distribution, rather

than a threshold, it is possible to reliably determine if a sinusoidal signal is present—

without the need to set a threshold [27].

2.3.3. Qualitative Results. In addition to the quantitative gains, the

matched filter detector offers a qualitative reduction in false positives. High-frequency

oscillators are not unique to radio receivers. Many other types of circuits—such as
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digital logic systems—may incorporate them. If such a device has high frequency

emissions near fLO, then it may cause a false positive on a periodogram detector.

Conversely, the matched filter detector provides assurances that the detected device

is a superheterodyne receiver, since only a superheterodyne receiver will react to the

stimulation as shown here. For applications that depend on the reliable detection of

radio receivers in the presence of other electronics, the stimulated emissions approach

is clearly superior.

2.4. CONCLUSION

The proposed stimulated emissions approach outperforms existing methods for

detecting superheterodyne receivers. Measurements of unintended emissions demon-

strate that two-way superheterodyne radios have higher-energy emissions when stim-

ulated, facilitating accurate detection. Key emissions are shown to have an identical

complex envelope to the stimulation signal, making it possible to detect receivers

using a matched filter. Theoretical performance testing affirms that, under low SNR

conditions, the matched filter detector offers a 5–10 dB performance gain over passive

techniques. While an experimental performance evaluation is necessary, these results

indicate that the stimulated emissions approach is a useful technique for reliably

detecting superheterodyne radio receivers.
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3. LOCATING SUPERHETERODYNE RECEIVERS

As the preceding sections demonstrate, one strategy for mitigating explosive

threats is to detect radio receivers. Previous work has shown that radio receivers

have unintended electromagnetic emissions [15,16]. These unintended radio frequency

(RF) emissions are present any time the receiver is powered on and cannot be easily

eliminated with shielding. They are, however, limited in power and may be masked by

stronger signals from intentional radiators, making them difficult to detect. In many

cases, it is possible to improve detection by using stimulated emissions techniques.

Stimulated emissions is a well-known phenomenon [14,17] that can occur in a

variety of electronic devices. Certain types of devices—most notably, radio receivers—

are inherently sensitive to ambient RF signals. By transmitting a weak stimulation

signal, it is possible to alter the internal state of the device. The change in state causes

a change in the device’s unintended emissions. A stimulated emissions detector, such

as the one depicted in Figure 3.1, can offer improved sensitivity and selectivity over

passive detectors [12], since detection uses specific information about the emissions.

For the sake of clarity, the superheterodyne receiver that the system is attempting to

locate is referred to herein as the target device.

Knowing the position of the target device, as well as whether or not the

device is moving, would help confirm the presence of an explosive threat. The system

developed in [12] to detect radio receivers is merely a proximity detector. It can detect

the presence of a target device, but it cannot determine its location. RF sources can

be located by measuring the received signal strength, angle of arrival (AoA), or time

of arrival (ToA) of the radio signal. Any of these techniques can be applied to locate

unintentional radiators.



28

Received-signal-strength and angle-of-arrival algorithms are ill-suited to this

particular application. Received-signal-strength methods make the implicit assump-

tion that the source signal radiates isotropically [28]. This assumption does not hold

for unintended emissions, which do not have purpose-built isotropic antennas. Angle-

of-arrival techniques require directional antennas [29] or large antenna arrays [30],

which increase the size and expense of the system. Subspace techniques such as Es-

timation of Signal Parameters Via Rotational Invariance Techniques (ESPRIT) offer

high-resolution AoA estimation [31], but they are seldom realized in hardware and

are particularly sensitive to multipath [32].

ToA techniques are frequently used in radar and radio-navigation systems. In

the Global Positioning System (GPS), receivers determine their position by measuring

the ToA of synchronized signals from multiple sources [33]. This technique is known

as time difference of arrival (TDoA). The accuracy of these radio-navigation systems

is dependent, in part, on the accuracy of the TDoA measurements. In order to be of

practical use, a radio receiver locator must make highly accurate ToA measurements.

Target
Device

Detector
(USRP)

Stimulation

Emissions

Tx

Rx

467 MHz

908 MHz

Figure 3.1: The stimulated emissions detection process. A stimulated emissions de-
tector alters the unintended emissions in a predictable manner. The
modified emissions radiate back into the environment, where they are
detected. The frequencies given above are an example only.
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A ToA-based method is developed in the following paper for determining the

range to non-cooperative radio receivers using stimulated emissions. The method

extends the previous stimulated detection approach, which could not locate radio

receivers, to allow ToA measurement. The theoretical accuracy of the ToA estimates

is determined using near-field measurements. A radar-like technique is used to lo-

cate consumer radio receivers in a real RF propagation environment. Experimental

performance tests indicate that it is possible to reliably and accurately locate super-

heterodyne receivers.

3.1. METHODS

The crucial factor impacting the accuracy of a time-of-arrival estimation sys-

tem is, as the subsequent sections will demonstrate, the available bandwidth. Ex-

isting stimulated emissions techniques, which are briefly reviewed, do not take the

bandwidth limitations of the target device into account. The bandwidth of a Gen-

eral Mobile Radio Service receiver is measured, and an appropriate time-of-arrival

technique is developed based on the characteristics of the stimulated emissions. The

hardware implementation of this technique, which is based on chirp radar, is also

discussed.

3.1.1. Wideband Stimulated Emissions. In [12], it was demonstrated

that superheterodyne receivers have stimulated emissions that are a frequency-trans-

lated copy of the stimulation signal. Superheterodyne receivers, such as the one shown

in Figure 3.2, use mixers to perform frequency translation [34]. In this receiver, the

RF signal is shifted in frequency to a fixed intermediate frequency, fIF , by selecting

the local oscillator frequency, fLO, such that

fIF = fRF − fLO. (3.1)
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By the modulation theorem, the mixer also creates an up-mixing component,

fH , at

fH = fRF + fLO. (3.2)

It has been shown that superheterodyne receivers can be detected by transmitting

an arbitrary stimulation signal at fRF and searching for the fH emissions with a

correlator. In order to locate the receiver, the round-trip time of the stimulated

emissions must also be accurately measured.

Others have shown that the accuracy of time-of-arrival measurements depends

on the signal-to-noise ratio (SNR) and waveform of the received signal [35]. While

it is difficult to obtain a closed-form expression of accuracy for arbitrary signals,

closed-form solutions for specific radar signals exist. As given in [35], the accuracy of

a linear, frequency-modulated (LFM) chirp is

δRideal =
c
√

3

2πB(2E/N0)1/2
, (3.3)

fRF

IF Filter

fIF

Image
Rejection

Filter RF Mixer

Local Oscillator

fLO

fH
Radiated

Emissions

Figure 3.2: A superheterodyne front-end which uses low-side injection. The radiated
emissions originate from the RF mixer.
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where δRideal is the root mean square (RMS) position error, c is the speed of light,

B is the chirp bandwidth, and E/N0 is the SNR in linear units. The RMS error

represents the average-case, absolute position error.

From (3.3), the error δRideal decreases proportionally with respect to the band-

width used—but only with the square root of the SNR. This property makes it highly

advantageous to use wideband signals for time of arrival-based location. The narrow-

band, B = 5 kHz chirps used in [12] have an error that is too large to be of practical

use for realistic SNRs. Additional bandwidth is required to perform meaningful time

of arrival-based location.

While superheterodyne receivers were previously detected using narrowband

stimulations, which were the width of a single voice channel, superheterodyne front-

ends are sensitive to a much wider range of frequencies. Consider the simplified

receiver front-end in Figure 3.2. The mixer, which produces the fH stimulated emis-

sions, must be sensitive to the entire range of frequencies to which the radio can tune.

The bandwidth of the signal that can enter the mixer is limited only by the resonance

of the antenna and the image rejection filter.

The image rejection filter is designed to eliminate frequencies which are far

outside of the receiver’s tuning range. Superheterodyne receivers select two channels

at once, making it necessary to eliminate one of them with a filter. The unwanted

channel, known as the image frequency, is located at

fimage = fRF − 2fIF (3.4)

for low-side injection receivers. For receivers using the popular fIF = 21 MHz in-

termediate frequency, the image frequency is 2fIF = 42 MHz away from the RF

channel. Since the frequency separation is relatively large, the image rejection filter
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can—but does not necessarily—have a pass band that is much wider than the range

of frequencies to which the device can tune.

Receivers that use such image rejection filters, with wider-than-necessary pass

bands, can have a stimulated emission’s bandwidth which far exceeds their tuning

range. This theory is important, as higher bandwidths yield more precise position

measurements. In order to determine the usable bandwidth of real-world devices, a

number of consumer superheterodyne receivers were selected for testing in a controlled

environment.

3.1.2. Bandwidth Measurements. Initial testing was performed using

General Mobile Radio Service (GMRS) radios. GMRS radios are typical consumer

superheterodyne receivers. GMRS is a low-power land-mobile radio service, which

operates on frequencies in the 460 MHz range using analog frequency modulation.

Since superheterodyne radio receivers have been available for many years [36, 37],

most commercially-available radio receivers use very similar designs, and results with

the tested receivers are easily generalizable to other devices and services.

The stimulated emissions bandwidth that can be used with a GMRS receiver

was determined using frequency-domain measurements. While a superheterodyne

receiver is not a strictly linear system, the principal non-linearity—the mixer’s fre-

quency shift—is known from (3.2). By transmitting a stimulation signal on fRF and

measuring the corresponding stimulated emissions on fH , it is possible to determine

the linearized system’s frequency response. To improve isolation from ambient RF

signals, these measurements were conducted in an enclosed near-field environment.

A GMRS receiver was placed in a transverse electromagnetic (TEM) cell, and

its stimulated response was measured. The device under test was a double-conversion

superheterodyne receiver with an intermediate frequency of fIF = 21.4 MHz. The

stimulated response was determined using a swept-sine technique similar to that
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in [38]. A signal generator was used to produce a swept sinusoidal stimulation from

450 – 560 MHz. The stimulated emissions were measured using a spectrum analyzer.

The stimulated response is shown in Figure 3.3. The results indicate that the

GMRS receiver will generate stimulated emissions over a bandwidth of approximately

16 MHz. This measurement is significant since the GMRS receiver is only designed

to receive a 175 kHz-wide band. The receiver’s response is dominated by the pass-

band properties of the image rejection filter. The emissions are within 3 dB of the

peak power for stimulation frequencies of 455.853 MHz – 478.893 MHz. Outside of

this band, the image rejection filter attenuates the stimulation signal, limiting the

bandwidth of the emissions.

Results show that sufficient bandwidth exists for high-resolution location. Al-

though sufficient bandwidth is available, other factors may impact or impede far-field

distance measurements.
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3.1.3. Time of Arrival Method. Continuous-wave radar concepts can be

applied to locate radio receivers. Pulse-radar techniques would not work well since

superheterodyne receivers frequently incorporate low-noise amplifiers which compress

the dynamic range of the received signal and, by extension, the stimulated emissions

[39]. Signals with nearly-constant power, such as continuous-wave signals, can deliver

a higher average power through these amplifiers [40].

Frequency-modulated continuous wave (FMCW) radar methods are well-suited

to detecting superheterodyne receivers. FMCW radar uses a swept-sine signal to

achieve the bandwidth required for accurate ranging. Although a variety of FMCW

signals have been studied, efficient techniques exist for processing linear FM chirps.

As described in [41, 42], and elsewhere, delaying an LFM chirp in time is equivalent

to shifting it in frequency. The difference between the transmitted frequency and the

received frequency determines the range information.

The frequency difference, which is often referred to as the beat frequency, is

given by the relationship

fb =
τB

T
, (3.5)

where fb is the beat frequency, τ is the time delay, and T is the chirp period [41].

This relationship makes it possible to implement FMCW radar using mixers. In order

to determine the beat frequency, the received echoes are mixed with the complex

conjugate of the transmitted chirp signal. The product signal contains, among other

periodic terms, the beat frequency signal. This reduces the range estimation problem

to a frequency estimation problem.

The Fast Fourier Transform (FFT) is a numerically efficient estimate of the

beat frequency. A one-dimensional FFT estimates range, and a two-dimensional FFT

estimates range and doppler shift simultaneously [40,43]. FFTs from successive chirp

periods are typically averaged together using periodogram techniques. Due to the
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oscillator drift between the radar and the target device, the “doppler” frequency has

a different meaning in this application compared to traditional radar.

The major difference between conventional radar and the technique used here

is that the return signal is not a reflection; it is modified emissions from the target

device. Traditional radar has a strictly linear echo path, and any frequency shift

is the result of the doppler effect. This is not the case for stimulated emissions,

which are shifted in frequency by the target device’s local oscillator. In practice, the

local oscillator frequency is unknown and may drift somewhat over time. The precise

stimulated emissions frequency is, by extension, unknown, but it can be estimated

using doppler processing techniques.

Doppler shift is usually modeled as a linear frequency shift between the trans-

mitted and received radar signals [44]. Techniques for estimating doppler can thus

estimate the frequency shift between the radar and the target device. This estimate

is useful for separating multiple targets, which tend to have slightly different local

oscillator (LO) frequencies. The “doppler” estimate is also necessary to ensure that

the mutual oscillator drift between the radar and the target device does not result in

range ambiguity.

Due to the relationship between a time shift and a chirp frequency shift, ex-

cessive frequency shift will also change the estimated range. From [40], the maximum

unambiguous frequency shift ∆D is

∆D =
1

T
. (3.6)

If either the radar’s oscillator or the target’s oscillator drift in frequency by more

than ∆D, the estimated range will change. While longer chirps are preferable, since

they deliver more energy per chirp, the chirp period T must be small enough to avoid

this ambiguity.
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The mixer implementation quantizes all range estimates into discrete range

bins. As derived in [45], the range resolution for frequency-modulated sawtooth

waveforms is

∆R ≈ Tc

2B

√(
1

T − td

)2

+ ∆f 2
r , (3.7)

where td is the transition time between chirps, and ∆fr is the frequency resolution of

the receiver. Assuming a sufficiently fine-grained frequency estimate (∆fr = 0) and

instantaneous transitions (td = 0), this simplifies to

∆R ≈ c

2B
. (3.8)

The size of the range bins is thus a function of bandwidth. With B = 16 MHz of

bandwidth, each range bin is ∆R ≈ 9.4 m wide.

3.1.4. Hardware Realization. The radio receiver’s near-field bandwidth

is not, by itself, sufficient to determine the performance of a ToA range estimation

system. RF propagation, such as antenna resonance and multipath, can have a sub-

stantial impact on the stimulated emissions in the far-field. Oscillator imperfections

can result in frequency drift and phase noise, reducing resolution [40]. To test the

effects of these factors, a continuous-wave radar was designed and implemented in

hardware.

An FMCW radar-like system was designed to implement the stimulated emis-

sions process described in Figure 3.1 and in the last section. Existing FMCW radars

are designed to detect linear echoes from reflective surfaces. They are ill-suited for

detecting unintended emissions, which may have very different stimulation and emis-

sions frequencies (fRF 6= fH). This design requirement necessitates the development

of a modified FMCW radar with greater frequency agility.

The stimulated emissions radar uses a Universal Software Radio Peripheral

(USRP) to perform high-speed signal processing. The USRP is a software-defined
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radio that enables personal computers (PC) to transmit and receive radio signals. A

block diagram of the radar system is presented in Figure 3.4. Additional information

about the USRP system and software-defined radio in general is given in Appendix 5.

The USRP incorporates two independently-tuned daughtercards for RF fron-

tends. One card transmits the stimulation signal at fRF, and the other receives the

fH stimulated emissions. The receiver uses a yagi antenna for extra directionality,

additional analog filtering to attenuate the transmitted signal, and external low-noise

amplifiers to increase the SNR. The USRP’s field-programmable gate array (FPGA)

performs the high-speed radio and radar signal processing.

The USRP connects to its host PC through the Universal Serial Bus (USB)

protocol. This connection has a maximum transfer rate of 8 MSa/s [21], which is

too slow to accommodate wideband chirp radar signals and satisfy real-time perfor-

mance requirements. To reduce the required throughput, a custom FPGA bitstream

performs the chirp and de-chirp operations. The radar frontend uses a sawtooth

waveform with an adjustable period and bandwidth.

The beat frequency signal is filtered, decimated, and transferred to the host

PC. The resulting signal has an integer number of samples per chirp, N . A range-

Doppler periodogram, similar to that in [43,46], estimates range and frequency shift.
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Figure 3.4: Hardware realization of the stimulated emissions radar. A linear FM chirp
generator was added to the USRP’s FPGA. The de-chirped emissions are
down-mixed, decimated, and output to the host PC for further processing.
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To compute the periodogram, N chirps are accumulated, as column vectors, into an

N × N matrix. A Hamming window is applied to the matrix to reduce the effects

of the inter-chirp transitions. The two-dimensional FFT (2N × 2N points) of the

matrix is computed.

Multiple FFTs are averaged together, forming a two-dimensional range-doppler

periodogram [47]. The target’s range and frequency shift are estimated from the max-

imum of the periodogram. While more advanced frequency estimation [48] and track-

ing techniques are available, this estimate suffices for single-device tests. A simple

post-processor improves the effectiveness of the range-doppler processor.

The RF front-end of the USRP used in these experiments is less than ideal

for FMCW radar. Even with extra analog filtering, there is strong, in-system cou-

pling between the transmitted stimulation and the received emissions. The coupling

increases the received power of several different doppler frequencies. These spuri-

ous bands of energy make it necessary to estimate the noise floor of each doppler

frequency individually.

The post-processor estimates the noise floor of each doppler frequency using its

20-quantile power—i.e., the power that only 20% of the cells are less than. The noise

estimates are then used to equalize the power of all doppler shifts. This technique is

a simple form of the constant false-alarm rate (CFAR) processor which is commonly

used in radar systems [49].

The accuracy of the radar system was verified by using a long coaxial cable

as a delay line. The radar transmitter was connected directly to the receiver via a

34.3 meter RG-58 cable. A frequency doubler was placed in the loop to mimic the

frequency shift which occurs in a superheterodyne mixer. The radar made thirty

range estimates over a 2.5 minute period, using both 16 MHz and 32 MHz of band-

width. No drift or variance was observed in the range estimates. The USRP’s range

estimates (48.8 m) are reasonable given both its resolution and the velocity factor of
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the coax. After validation testing, the stimulated emissions radar was used to locate

superheterodyne receivers.

3.2. RESULTS

Field trials of the stimulated emissions radar were conducted using two differ-

ent target devices at two different locations. The first device was the GMRS receiver

from Section 3.1.2, which had approximately 16 MHz of usable bandwidth. The sec-

ond device was a wideband radio scanner which had a tuning range of 420 – 470 MHz

(> 50 MHz bandwidth). Both devices were commercially-available superheterodyne

receivers that were certified to comply with FCC radiated emissions limits. The

GMRS receiver is a typical low-cost consumer receiver, while the wideband scanner

is a higher-quality, more sensitive device. The range to these devices was determined

using the USRP as previously described.

The chirp parameters were chosen such that the stimulated emissions band-

width was identical for both devices. From Figure 3.3, a B = 16 MHz-wide chirp

centered on fRF = 467 MHz will pass through the GMRS receiver. Two different

tests, one outdoors and the other indoors, were conducted for each target device.

Both tests used similar hardware configurations and an identical test procedure.

During each trial, the target device was carried by hand on a fixed path,

first away from and then towards the radar unit. The target was kept in motion

continuously during each trial, with an average velocity which varied from 0.85 m/s

to 1.07 m/s.

In order to increase the SNR, the target device’s squelch detector (see [12])

was disabled, forcing the receiver to be active continuously. The stimulated emissions

radar tracked and estimated the range to the target device throughout the trial. A

chirp period of T = 0.8 ms was chosen to allow for ∆D = 1.25 kHz of unambiguous



40

frequency shift. Five seconds (1.6 × 106 samples) of stimulated emissions were used

to make each range estimate.

The range estimates were compared to the known, true position of the device

over time. Each trial included distances, in five meter increments, from five to fifty

meters away from the radar unit. No outliers were discarded. This procedure was

repeated a total of fifteen times, generating a total of thirty data points per range

increment tested.

3.2.1. Indoor Test. The test was conducted in a hallway of a modern, three-

story office building. The building’s floors were constructed from reinforced concrete

with rebar. Interior rooms are divided using drywall panels and solid wooden fire

doors. The hallway had ceramic tile flooring and drop ceilings. This setup is not

expected to “shield” the test environment from external noise.

The test results demonstrate that the stimulated emissions radar accurately

determines the range to both devices. The range estimates for the two target devices

are plotted in Figure 3.5 with standard deviation error bars. The mean range error is

less than 5 m at each distance. The 95% confidence intervals, given for each distance

in Table 3.1, indicate that the estimated means are representative of the system’s

true performance.

3.2.2. Outdoor Test. Outdoor testing was conducted in an isolated rural

area, away from large buildings or metallic reflectors. In order to increase the SNR, a

yagi antenna was added to the radar transmitter. As shown in Table 3.2, the accuracy

of the radar improves under these conditions—the mean range error is less than 4 m.

The effective maximum range outdoors is only 35 m, however.
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Table 3.1: Indoor Test Results

Est. Range (m)

GMRS Scanner

Range (m) Mean 95% CI Mean 95% CI

5 3.0 0.6 5.0 1.4

10 10.7 1.3 9.8 0.5

15 12.5 0.8 15.5 1.3

20 23.3 1.6 22.3 1.1

25 24.4 1.5 27.0 1.2

30 30.5 0.8 30.8 1.3

35 33.3 1.7 34.6 1.8

40 40.2 0.6 45.0 1.9

45 48.0 1.3 49.5 1.0

50 49.7 0.5 49.7 1.4

Table 3.2: Outdoor Test Results

Est. Range (m)

GMRS Scanner

Range (m) Mean 95% CI Mean 95% CI

5 5.0 0.3 5.0 0.9

10 7.8 0.8 7.8 1.3

15 14.0 1.1 14.0 0.9

20 19.2 1.2 19.2 1.3

25 23.7 0.8 23.7 0.9

30 29.6 1.5 29.6 1.4

35 33.1 0.9 33.1 1.5

40 43.2 4.1 43.2 4.6
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3.3. DISCUSSION

Wideband stimulated emissions is, demonstrably, an effective technique for

locating superheterodyne receivers. An analysis of the system’s accuracy, which is

given below, indicates that the system has a reasonable noise performance which

corresponds well to the theoretical model. While it is possible to locate radio receivers

using wideband stimulated emissions, a number of important challenges remain. The

target device introduces a number of limitations which can reduce the effectiveness

of the system. Multipath can also pose a problem, particularly indoors. These
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challenges, and potential strategies to mitigate their impact, are discussed in the

following sections.

3.3.1. Analysis of Accuracy. The accuracy of a ToA system is tradition-

ally measured using its root mean square error performance at various signal-to-noise

ratios [35, 50, 51]. In order to quantify the accuracy, the experimental performance

results shown in Table 3.1 and Table 3.2 were compared with the theoretical SNR

performance equation (3.3). Controlling the SNR is difficult in an experimental set-

ting, however, making it necessary to estimate the SNR from the data. The SNR

of each range estimate of the outdoor tests was estimated from the peak-to-average

power ratio of its range-doppler periodogram. In order to average a sufficient number

of error terms, the SNRs were rounded to the nearest 5 dB, and the RMS position

error was calculated for each SNR.

The experimental RMS errors ε obtained above were fit to the following sim-

plified model of the measurement accuracy versus SNR:

ε =
α1

(2E/N0)
1/2

+ α0 (3.9)

where α0 and α1 are unknown constants determined by linear regression. As shown

in Figure 3.6, results indicate that the radar’s SNR performance can be predicted

from the theoretical model (3.9) with a coefficient of determination of 0.976. For the

distances tested, the RMS position error is strictly less than 5 m when the SNR is

15 dB or higher, which is reasonable given the available resolution. A similar analysis

for the indoor test data indicates an RMS position error of less than 4 m for SNRs

above 15 dB.

3.3.2. Sources of Error. Two principal sources of error act to decrease the

effectiveness of the stimulated emissions radar: noise and multipath. In both the in-

door and outdoor tests, narrowband interference from primary users was observed on
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both the stimulation and emissions frequencies. Substantial noise also originates from

the radar transmitter and couples, via the USRP board, directly into the receiver.

Although the impact of these noise sources is reduced by the spread-spectrum radar

signal and the post-processor, respectively, they still decrease the dynamic range of

the radar. Others have shown that the noise power tends to be higher outdoors [52],

and this reduced the outdoor range and noise performance. A more sensitive front-

end, with automatic gain control and a higher sampling depth, could increase the

radar’s effective range.

Multipath can cause false targets and inaccurate distance measurements, and

the effect can be severe in indoor environments. Others have conducted extensive

studies of indoor multipath in real environments. Measurements conducted in an

office building indicate that the multipath delay within a single room can exceed

100 ns, with a root mean square (RMS) delay spread of 50 ns [53]. Since each
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45

FMCW radar bin only differs by 15 ns, multipath can easily affect the results. Strong

multipath negatively impacted the accuracy of the radar during the indoor tests.

Techniques for reducing the effects of multipath and non-line-of-sight propagation

are a crucial area of future development.

3.3.3. Device Limitations. Design differences between superheterodyne re-

ceivers make it difficult, but not impossible, to determine the absolute range. The tar-

get device imposes its own delay on the stimulated emissions as they pass through the

superheterodyne front-end. This delay, while imperceptible to the user, may nonethe-

less differ from device to device. The GMRS receiver and the wideband receiver used

in this experiment have delays which differ by 94 ns, which is approximately 3∆R.

This difference is too large to measure the absolute range to an unknown device, but

the relative range estimates can still be used for two-dimensional positioning.

Time difference of arrival combines relative range estimates, taken from mul-

tiple sensors, into a two or three-dimensional position fix. Such techniques have been

applied to locate devices in both line-of-sight [50] and non-line-of-sight [51] condi-

tions. The accuracy of TDoA depends solely on the array geometry and the accuracy

of each time of arrival measurement [54]. The performance measurements collected

in this study could, in future work, be used to estimate the performance of a TDoA

stimulated emissions locator.

3.4. CONCLUSION

The proposed wideband stimulated emissions technique can determine the

range, using time-of-arrival measurements, to a superheterodyne receiver. Measure-

ments conducted with a continuous-wave radar unit demonstrate that this technique

can locate commercially-available superheterodyne receivers. The radar achieved a

root mean square position error of less than five meters outdoors, and four meters
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indoors, at 15 dB SNR or higher. The system is capable of functioning in non-ideal

propagation environments with multipath and narrowband interference sources.

Although the system presented in this study can only measure the relative

range to the device, the ability to make such measurements is crucial to the de-

velopment of a true position-finding system. Extending the stimulated emissions

radar to operate in two dimensions, using time difference of arrival, is a relatively

straightforward task with well-characterized performance. The performance of this

technique is limited chiefly by the available bandwidth. When applied to modern,

high-bandwidth communications systems, stimulated emissions has the potential to

enable high-precision indoor location—even when the target device does not intend

to be found.
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4. DETECTING AND IDENTIFYING MICROCONTROLLERS

Clocked digital systems become more and more ubiquitous with each passing

year. The market for low-end microcontrollers, which can replace costly application-

specific integrated circuits and discrete components, continues to grow. Many prod-

ucts which contain microcontrollers, including garage door openers and passive in-

frared sensors, can be used to initiate explosive devices [11]. The detection and iden-

tification of microcontrollers can therefore aid in the screening for and the evaluation

of explosive threats.

Electronic devices can be detected using their unintended electromagnetic

emissions. Any high-frequency signal, including those generated from clocks, I/O

lines, and internal switching, can radiate into the environment as electromagnetic

emissions. Microcontrollers can be responsible for a significant portion of a printed

circuit boards’ (PCB) emissions [55]. As such, they are one of the more readily-

detectable components in a digital device.

Under typical operating conditions, however, microcontroller emissions are

not the only signal that is present in the environment. A great number of radio-

frequency (RF) emitters, both intentional and unintentional, exist in the band from

1 MHz – 600 MHz where microcontroller emissions tend to occur. A selective detector

should be able to distinguish microcontroller emissions from sinusoidal signals, such

as the radio receiver local oscillators in [12] and communications signals like frequency

modulation (FM). In order to detect unknown devices, few assumptions can be made

about the pulse shape, frequency, or jitter.

Antenna arrays offer many promising results for separating signals, but they

are only part of the solution. Array processing includes spatial techniques such as

beamforming [56] and blind techniques such as independent component analysis [57].
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Wiener filtering can also attenuate signals from distant sources [58]. While these

techniques may be useful for reducing the interference caused by high-power, in-

tentional radio transmitters, they are less useful for identifying the type of signal

being radiated. Positively identifying microcontroller emissions requires some type

of classification algorithm.

Classifying devices by their unintended emissions is a well-studied topic, and

many solutions exist. Others have developed techniques for identifying super-regen-

erative receivers [17], and previous work has shown that superheterodyne receivers

can also be identified [12]. Both of these techniques use an RF stimulation signal to

alter the device’s unintended emissions.

Microcontrollers, however, are designed to resist ambient RF signals. Others

have shown that altering the emissions of a digital device requires a prohibitively-

strong electric field [59]. The stimulated detection approach from [12] cannot be

applied here, but similar modeling and simulation techniques can be used to develop

passive classification algorithms. An accurate model requires an understanding of

where the electromagnetic emissions originate.

Microcontrollers have emissions which depend on the device’s current draw.

The current which flows through a microcontroller’s package can form a loop, induc-

tively driving the PCB and attached cables to radiate electromagnetic emissions [60].

In a synchronous, clock-driven processor, the vast majority of transistor switching oc-

curs at clock edges. This results in large current spikes during each clock cycle [61].

The emissions of most microcontrollers are thus expected to be highly impulsive and

dependent on the device’s clock, which is typically periodic. Many different clock

frequencies and resonator types are in use, however, and a generalized detection ap-

proach is required in order to detect different types of microcontrollers.

The following paper compares different methods for detecting the electromag-

netic emissions of digital clock circuits. An analytic model of these clock emissions is
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developed and validated using measurements of an 8051 microcontroller. This model

is used, in a simulated environment, to evaluate the noise performance of several ex-

isting algorithms: the harmogram, the harmonic product spectrum, the fast folding

algorithm, and linear prediction. A novel detection algorithm, the harmogrant, is

proposed which uses pitch estimation with application-specific heuristics. The appli-

cability and usefulness of each algorithm as a clock-circuit detector is considered.

4.1. METHODS

The electromagnetic emissions of microcontrollers are known to be current-

dependent. If a model for the current draw at each clock cycle can be derived, it

may be possible to search for the presence of microcontrollers using model-fitting

techniques. Computer simulations of microcontroller current have been developed

[55], but these simulations can only generate data from known model parameters. A

simpler, analytic model is desirable not just for simulations, but for model-fitting as

well. Several methods for modeling and predicting the emissions are presented in the

following sections.

4.1.1. Autoregressive Model and Detector. An accurate, two-parameter

model exists for the current draw in complementary metal oxide semiconductor

(CMOS) devices. This model can be used both to simulate clock emissions and

to detect them. In most digital systems, the vast majority of transistor switching

occurs at the rising edge of the clock. This switching causes a substantial spike in the

device’s instantaneous current consumption. In [62], it was demonstrated that the

current draw at the clock transition can be modeled as an exponential rise followed

by an exponential decay.

The double-exponential model has two parameters: the damping ratio ξ and

the natural frequency ω. These parameters can be derived from measurable RLC
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properties of the device in question. As given in [62], the unit step response for the

overdamped case (ξ > 1) is:

ic(t) =
(
e−(ξ−

√
ξ2−1)ωt − e−(ξ+

√
ξ2−1)ωt

)
u(t). (4.1)

Each clock cycle, the current draw of the CMOS system is approximated by exciting

the system given in (4.1) with an impulse. This results in a periodic train of dampened

pulses. An example pulse train, with typical parameters, is given in Figure 4.1. This

current signal can drive unintended emissions.

Traditionally, pulse signals are detected using matched filters; this approach

is common in radar systems. The performance of a matched filter has been shown to

depend on the time-bandwidth product of the candidate signal [24]. The clock pulses

are already very sparse in time, which limits the effectiveness of such filters.
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Figure 4.1: The current draw of a CMOS device. The current draw has an exponential
rise and an exponential decay. The pulses shown above have ξ = 1.093
and ω = 1.22 GHz, which were taken from a real CMOS device in [1].
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More importantly, matched filters require substantial a priori knowledge of

the signal’s characteristics [16]. The shape of the clock emissions is not known and

may vary from pulse to pulse, necessitating a large matched filter bank of candidate

signals. Model-fitting techniques can offer lower computational complexity, but fitting

arbitrary functions like (4.1) to received emissions is difficult. By reformulating the

problem as a linear-time invariant filter, a simpler solution emerges.

Taking the Z-transform of (4.1) with a sampling period of Ts, it is shown that:

Ic(z) =
β1z

−1

1− e2α
√

ξ2−1+1

e
α(ξ+

√
ξ2−1)

z−1 + e−2αξz−2
(4.2)

where α = Tsω and β1 is a constant which depends on α and ξ. The filter Ic(z)

is an infinite impulse response filter with two feedback taps and one feed-forward

tap. If given an impulse train at the clock frequency as the input, it will produce an

approximation of the microcontroller’s current emissions. By inspection, Ic(z) only

has zeros at z =∞. Similar results hold for the under-damped and critically-damped

cases.

The feed-forward taps only represent a single-sample delay and attenuation of

the input. Since neither of these affect the overall pulse shape, and the time offset is

unknown to begin with, an equivalent filter is

Ic(z) =
1

1− e2α
√

ξ2−1+1

e
α(ξ+

√
ξ2−1)

z−1 + e−2αξz−2
. (4.3)

This is an all-pole filter which applies to the under-, over- and critically-damped

cases, enabling it to handle emissions from devices with any damping ratio.

Although the current signal in (4.1) drives the electromagnetic emissions, the

received signal may not have the same form. The voltage received by a loop probe

and driving an inductively coupled antenna, for example, is proportional to the first
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derivative of the current. For the over-damped case, this is not an issue, as the

current signal (4.1) is composed entirely of exponentials of the form eKt, where K is

a constant.

Since d
dt

{
eKt
}

= KeKt, the derivative of i′c(t) has the same form—with the

exception of some constants—as ic(t). The same holds for higher-order derivatives as

well. Since the functions have the same form, the autoregressive model will have the

same order regardless of which derivative the antenna receives. The autoregressive

model is thus an appropriate fit for received electromagnetic emissions.

If the microcontroller emissions are assumed to be corrupted by additive white

Gaussian noise, then the overall system is an autoregressive process with two taps

(AR(2)). Linear prediction can be used to fit such an autoregressive model to received

data. This feature makes the AR model useful as a detector.

An autoregressive process, which is depicted in Figure 4.2, can be estimated

using linear prediction. In an AR process, an unknown excitation e is filtered with

an all-pole filtesr 1/A(z). The filtered signal x, which has been corrupted with white

noise, is observed. The goal of linear prediction is to estimate the all-zero filter

A(z) needed to undo (i.e., inverse filter) the unknown, all-pole system filter. Linear

prediction is often used in speech codecs [63].

Let a = A(z) be the system filter taps, which are a polynomial in z, and â

be the estimate of those taps. Since the all-zero filter has a finite impulse response

1
A(z) Â(z)e ê

xc

White
Noise

ν

Figure 4.2: An autoregressive process. The goal of linear prediction is to estimate
the taps of the all-pole filter 1/A(z).
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(FIR), it can be evaluated with convolution. As formulated in [64] and elsewhere,

the output after applying the estimated filter is

ê = x~ â (4.4)

= Xâ, (4.5)

where x is the received signal and X is its convolution matrix.

The excitation signal of the filter, e, is the portion of the signal which cannot

be predicted by the linear filter. It is therefore assumed to be small. The problem

then becomes one of minimizing the residuals ê, which from (4.5) is equivalent to

min
â
||Xâ||p subject to â0 = 1, (4.6)

where || · ||p denotes the Lp norm. The constraint avoids estimating a filter of â = 0.

Numerically-efficient solutions, such as Yule-Walker and the Burg method,

exist for the L2 norm [64]. By measuring the power of the residual signal ê, it is

possible to determine how well the system fits an autoregressive model: lower power

indicates a better fit. Residual power is commonly used in information theory metrics,

such as Minimum Description Length, to measure goodness-of-fit [65,66].

In order to detect microcontroller clocks, the received unintended emissions

are fit to an AR(2) model using the Burg method. The power difference between the

input signal and the residuals is measured as

var(x̂)− var(ê) = Ex̂

{
x̂2
}
− E2

x̂ {x̂} −
(
Eê

{
ê2
}
− E2

ê {ê}
)
, (4.7)

where Ek{·} denotes the expectation function with respect to k. A detection occurs

if (4.7) rises above a certain threshold. Several other algorithms are commonly used
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to detect periodic signals: pitch estimation and the fast folding algorithm. These

algorithms are detailed in the following sections.

4.1.2. Pitch Estimation. Since the unintended emissions are nearly peri-

odic, they have a Fourier series representation and a time-invariant power spectral

density (PSD). From Fourier theory, a periodic signal has spectral components only

at multiples of its fundamental frequency f0 [67]. This feature makes it possible to

detect periodic signals by searching for harmonically-related components in the power

spectrum. The PSD of a signal is typically estimated using a periodogram.

Periodograms, such as the Welch periodogram [68], estimate power spectral

density by averaging successive, overlapping Fast Fourier Transforms (FFTs) to-

gether. Although higher-resolution techniques, such as multi-taper estimation, are

available, the periodogram offers a reasonable (but biased) estimate at a low compu-

tational complexity [69]. The periodogram of the simulated clock emissions is given

in Figure 4.3. In the frequency domain, the emissions are a series of impulses spaced

f0 Hz apart. Due to the low-pass filter effect of the pulse-shaping filter (4.3), the

high-frequency components are attenuated.

Pitch-estimation algorithms, typically used in speech and music appications,

are designed to detect and estimate the fundamental frequency (or “pitch”) of har-

monic signals such as this. Frequency-domain pitch detectors, which are studied

herein, search PSD estimates for harmonically-related peaks. Time-domain algo-

rithms, such as YIN [70] and weighted autocorrelation [71], also exist. These algo-

rithms were designed for use in high-SNR environments, however, and may not be

reliable in the presence of interfering signals.

The two pitch detectors included in this study are the harmogram and the

harmonic product spectrum (HPS). Both algorithms function by aggregating harmon-

ically-related periodogram bins together, then comparing the result with a threshold.

From [72], the harmogram HS2(f) of a power spectra estimate S2(f) is the sum of
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power spectra

HS2(f0) =
1

N

N∑
i=1

S2(if0). (4.8)

Likewise, from [73], the harmonic product spectrum PS2(f0) is the product

PS2(f0) =
N∏
i=1

S2(if0). (4.9)

Both algorithms accept periodograms as input, and both algorithms operate

on a certain, fixed number of harmonics N . For optimal performance, N should be

set to the number of harmonics present in the input signal, if known. The pitch of the

signal is estimated using the maximum (local or global) of H or P . Both algorithms
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Figure 4.3: Welch periodogram of the CMOS clock pulses shown in Figure 4.1. A
4096 point window was used.. The pulse-shaping filter acts as a low-pass
filter, decreasing the power of the higher-order harmonics.
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are very similar: from the laws of logarithms,

lnPS2(f0) =
N∑
i=1

lnS2(if0) (4.10)

= NHlnS2(f0). (4.11)

From (4.11), the harmonic product spectrum is essentially the harmogram of

ln(S2(f0)). The logarithm acts as a non-linear amplifier: smaller values of S2 im-

pact the overall sum more than larger ones.

The choice of sum or product is a selectivity/sensitivity tradeoff. HPS requires

that all harmonics f0 through fN be large. This enables the algorithm to ignore

signals that lack higher harmonics, such as pure-tone sinusoids, but it may fail to

detect harmonic signals (like clock pulses) if one or more harmonics are not received.

The harmogram is more tolerant of missing harmonics, but a strong sinusoidal signal

can result in a false positive.

A novel pitch estimation algorithm, referred to herein as the harmogrant, was

developed with the following heuristics in mind:

1. The fundamental frequency is the strongest harmonic.

2. At least two harmonics should be detectable.

With the above assumptions, the harmogrant G is defined as:

GS2(f0) = S2(f0)
N∑
i=2

S2(if0). (4.12)

The harmogrant requires a large, detectable fundamental frequency and a large sum of

higher harmonics. It is much more tolerant of missing harmonics than HPS and should

be more resistant to pure tones than the harmogram. These properties make the
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harmogrant more ideal for detecting CMOS clock pulses in ambient electromagnetic

noise.

4.1.3. Fast Folding Algorithm. A technique known as epoch folding can

be used to estimate a single period of a periodic signal, given only noisy observations

of that signal. Epoch folding is frequently used in astronomy for detecting pulsars,

which have periodic emissions. This technique is of interest since, if the clock pulses

are periodic and the jitter is minimal, epoch folding can estimate the actual pulse

shape. Since the CMOS clock pulses have a distinctive shape, epoch folding may

prove useful for detecting CMOS devices.

The epoch folding process has a simple derivation. Let y be a vector of length

T which contains exactly one period of a sampled periodic signal. Let ŷk be a noisy

estimate of k ∈ [0, N − 1] periods, and let the estimate be corrupted by additive,

stationary random noise νk. Then,

ŷk = y + νk. (4.13)

If the noise is zero-mean and the elements of νk are independent of y then

Ek {ŷk} = Ek {y}+ Ek {νk} (4.14)

= y. (4.15)

From (4.15), an appropriate estimator of y is to fold the signal into blocks of

length T and compute the mean across equivalent samples. This process is depicted

in Figure 4.4 If the noise is stationary, using more sampling periods N will decrease

the confidence interval of the mean.

The epoch folding process requires many addition operations, but others have

shown that many of these operations are redundant. The fast folding algorithm
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(FFA), developed in [74], uses a time-memory trade-off to reduce the computational

complexity of epoch folding. It computes the epoch folding of M periods, at subsam-

ple resolution, between integer periods P0 and P0 + 1. The sub-sampling enables the

detection of signals which have non-integer number of samples per period. The com-

putational complexity is Θ (M log2M) additions, as opposed to the Θ (M2) additions

required for the direct sum [74].

In order to test the fast folding algorithm, a reference implementation in the

form of a C++ program, ffasearch, was obtained from [75]. The program is designed

to detect impulse trains using the fast folding algorithm. Once the folds have been

obtained, it is necessary to examine them for the signal of interest. Many techniques

are available for doing so.

Others have developed statistical tests which enable the use of epoch folding

as a detector for impulse trains. Folded signals can be tested, using Analysis of

Variance, to determine if a periodicity is present [76]. A χ2 test can also be used as

a periodicity detector [77]. In [75], a constant false alarm rate (CFAR) detector is

used which detects only impulse signals, which are the principle signal of interest.

Periodic Signal

1T 3T2T

Epoch Folding

0

T
=

4T0

Figure 4.4: In epoch folding, a periodic signal is estimated by folding (i.e., summing)
the received data from successive periods.
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The CFAR detector in [75] uses cell-averaging CFAR technique to generate

the test statistic d, making the detector resistant to variations in noise power from

fold-to-fold. The test statistic is calculated over a fold y as

d(y) =
max (y)− ȳ

σy
, (4.16)

where the average value of the fold, ȳ, is calculated excluding guard bins in the

vicinity of the maximum. The statistic is normalized with respect to the estimated

standard deviation of the fold, σy. If an impulse—i.e., a large peak above the noise—

is present in the fold, d(y) will be large. The ffafold program finds folds which have

large d values [75].

4.2. RESULTS

To validate the autoregressive model developed in Section 4.1.1, the unin-

tended emissions of a real microcontroller system were measured. The measurements

were compared with the AR(2) model, using epoch folding to improve SNR and in-

formation theory criterion to determine goodness of fit. After validation, the noise

performance of the detection algorithms discussed in Section 4.1 were tested in a

simulated environment. Although all of the tested algorithms can function as detec-

tors, their noise performance and resistance to interference are crucial factors which

impact their usefulness.

4.2.1. Model Validation. Validation testing was performed using an em-

bedded system which included an 8051 microcontroller. The 8051 architecture was

selected due to its ubiquity and relatively high-speed clock. The microcontroller

under test was a Philips P89LPC932A1. The embedded system incorporates a DC

power supply, mechanical push-buttons, LEDs, and a serial UART. Each of these

peripherals interface with the microcontroller, which was mounted to the PCB using
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a plastic leaded chip carrier (PLCC). The system board (see Figure 4.5) was assem-

bled by hand using discrete components. This system is expected to be similar to

embedded systems commonly used with explosive devices.

The microcontroller’s unintended emissions were measured at close range while

the device was in operation. The 8051 was configured to use its 7.377 MHz internal

RC oscillator, and it was instructed to execute a test program which did nothing other

than poll the I/O pins for input. A small magnetic field (H-field) probe was placed

near to the 8051 in order to capture its electromagnetic emissions. The emissions

were recorded using an oscilloscope.

As expected, the microcontroller has emissions which are both periodic and

impulsive. The time and frequency-domain emissions, which are plotted in Fig-

ure 4.6, indicate that the emissions are related to the system clock. The fundamental

DC power
supply

microcontroller

11 MHz XTAL

Figure 4.5: The embedded system under test. The crystal oscillator (XTAL) was not
used during the preliminary measurements; the internal RC oscillator was
used instead.
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Figure 4.6: Time and frequency-domain views of an 8051 microcontroller’s emissions.
The clock frequency is estimated at 7.45 MHz. As anticipated, the emis-
sions are a periodic impulse train. The pulses are in the negative direction
due to the alignment of the magnetic field probe. Although the 11 MHz
crystal oscillator was not used as the clock source, its harmonics are also
visible in the plots above.
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frequency of the emissions is approximately f0 = 7.45 MHz, which is within the spec-

ified tolerance of the RC oscillator’s frequency. The emissions are a harmonic signal,

and the first ten harmonics (f0 through f9) are present.

Epoch folding was used to obtain an estimate of the pulse shape. Although

the fast folding algorithm can detect the presence of microcontroller emissions, it is

less useful for estimating the period: the FFA’s output typically contains spurious

peaks in the vicinity of the true period. Since the goal is to make a very fine estimate

of the pulse shape, the period was estimated directly in the frequency domain, and

ordinary epoch folding was performed.

A multi-taper power spectral density (MTPSD) estimate was used to estimate

the period of the emissions. The MTPSD is an unbiased spectral density estimator,

and it has favorable resolution properties for making very fine frequency estimates

[69]. To limit the effects of long-term oscillator drift, the epoch fold contained only

769 clock periods of data. The emissions were then resampled, using a polyphase

filter bank, to exactly 26 samples per period.

The re-sampled emissions were folded across two separate periods (2T sam-

ples). The results of the fold, which are plotted with error bars in Figure 4.7, indicate

that the double-exponential AR model is a suitable approximation for clock emissions.

The variance of the folding bins is less than 7% of their magnitudes, which indicates

a good fit for the periodic signal model. The smaller peaks visible in the figure occur

at the falling edge of the clock, where another substantial current draw occurs due

to switching within the clock tree.

In Figure 4.8, the same data is folded across a single period. Linear prediction

is used to fit an AR(2) model to the data, and a single clock pulse is generated using

the estimated system filter. Both signals are aligned in time and normalized to a

peak value of one. The result of this process indicates that the AR(2) model is a
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good fit in the vicinity of the main peak but loses accuracy elsewhere. This loss of

accuracy is due to a secondary peak, visible at approximately 0.6T .

This secondary peak, which is located half a period away from the main peak,

is caused by additional transistor switching. This additional switching takes place at

the falling edge of the clock, whereupon the clock tree resets itself for the next cycle.

The presence of this second peak will not affect the harmonic techniques, as the signal

is still periodic with a period of T . It may, however, reduce the effectiveness of linear

prediction with real CMOS emissions.

Although the emissions appear visually to be a good fit for the AR(2) model,

goodness-of-fit can be determined mathematically. If the signal is more complex

than the AR(2) model presumes, a higher autoregressive model order would provide

a better representation—i.e., a lower residual power. The optimum autoregressive
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Figure 4.7: Epoch folding of 8051 electromagnetic emissions. The folding includes
two separate clock periods and is plotted with standard deviation error
bars.



64

model length can be found using information theory criterion, such as the Minimum

Description Length (MDL).

As formulated in [65], the MDL finds the minimum model order that is required

to represent a signal. It is evaluated as:

MDL(i) = L log var(ê) + i logL, (4.17)

where i is the linear prediction order and L is the length of the input vector x from

(4.5). The epoch-folded emissions from the 8051 system were tested using linear

predictors of various orders, i = 1 through i = 10.

The results of this computation, given in Figure 4.9, indicate that the MDL

reaches a local minimum value at i = 2. The global minimum occurs at i = 4, but
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Figure 4.8: The epoch-folded 8051 emissions and the ideal CMOS pulse determined
by linear prediction. The epoch folding is plotted with a solid line, and the
ideal CMOS pulse is plotted with a dashed line. The second peak near
0.6T occurs at the falling edge of the clock, where another substantial
current draw takes place.
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the difference is not particularly significant. The AR(2) model is a good choice to

represent this data set.

4.2.2. Simulated Environment. Since the autoregressive model fits real

CMOS emissions, detection algorithms can be tested through simulation. As in Sec-

tion 2.3, a simulated environment allows for controlled conditions, such as signal-to-

noise ratio, which are difficult to replicate consistently in a real system. The CMOS

clock pulses from Figure 4.1 were used as a test signal. The simulator assumes that

the channel corrupts the signal with additive white Gaussian noise.

White Gaussian noise is often a poor approximation of a radio channel. Chan-

nels may exhibit Rayleigh fading [78], frequency-selective fading [79], multipath prop-

agation [53], correlated noise, or numerous sources of man-made interference. The

goal of these tests is not to simulate radio propagation, however, but to determine

the relative performance of the detectors. Remedies for non-ideal noise conditions

exist, and some of them are detailed in Section 4.3.1.
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Figure 4.9: The minimum description length (MDL) statistic. The MDL indicates
that the AR(2) model is an appropriate approximation of 8051 clock
emissions.
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The simulator generates two test vectors,

x = c+ ν (4.18)

n = ν, (4.19)

where c is the CMOS emissions and ν is white, zero mean Gaussian noise (see Fig-

ure 4.2). The power of the noise is used to control the signal-to-noise ratio. The

vectors x and n are normalized to unit variance and used, individually, to test the

algorithms. The test statistics from the linear prediction (4.7), harmogram (4.8),

HPS (4.9), harmogrant (4.12), and FFA (4.16) algorithms are evaluated on each of

these inputs, producing output vectors of true positives and true negatives.

These test statistic vectors are used to generate Receiver Operating Char-

acteristic (ROC) curves for each algorithm. The ROC curves are generated as in

Section 2.3.2. A threshold detector, with the threshold set to various values, classi-

fies each of the above test statistics as a “detection” or a “non-detection,” and the

true positive rates and false positive rates are determined through simulation. In

cases where the test statistic contains multiple values—i.e., the harmogram power at

various frequencies—only the maximum value is considered.

The area under the ROC curve (AUC) is a commonly-accepted measure of

performance. The area represents the probability that a randomly-chosen true posi-

tive will have a larger-valued test statistic than a randomly-chosen true negative [80].

If the AUC is 1.0, the test perfectly separates true and false positives with a definite

decision threshold in between. If the AUC is 0.5, the test yields no useful information

as a detector.

The algorithms included in this study are not just detectors—they have in-

herent estimation capability as well. Both linear prediction and FFA can estimate

the pulse shape, and the FFA and pitch estimators can estimate the fundamental
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frequency. For the purposes of this test, the estimation capability is not tested: only

the algorithms’ performance as a detector is considered.

In addition to white Gaussian noise, sinusoidal interference is considered. Si-

nusoidal signals can occur as communications signals (or as components thereof) or as

unintended emissions from radio receivers [12]. Since sinusoidal signals are strongly

concentrated in the frequency domain, they are among the most likely signals to cause

false positives with the pitch estimation algorithms. They may also disrupt the linear

prediction algorithms, as sinusoids also have an autoregressive representation [64].

Two test cases, with a single interfering sinusoid, were considered. The period

of the sinusoid was 0.75T , placing it halfway between two harmonics. The power of

the sinusoid was fixed at +10 dB above the noise power for the first test. For the

second test, it was defined to be +10 dB above the signal power instead, making it

a stronger signal. The interfering sinusoid is part of the noise vector n, making it

present regardless of whether or not the signal includes CMOS emissions. The results

of this simulation procedure are discussed in the following section.

4.2.3. Simulation Results. The simulation program was executed using

the CMOS emissions given in Figure 4.1 as input. SNRs between −15 dB and −35 dB

were tested, with one hundred independently-generated noise vectors ν tested at each

SNR level. Thirty thousand periods, with thirty samples per period, were simulated.

The pitch estimation algorithms and the FFA were limited to search the same

range of periods: from 0.7T to 3.33T . This limitation was put in place to reduce

the noise found in FFA folds of low-frequency data. The pitch detection algorithms

used a minimum of N = 4 harmonics and a maximum of N = 5 harmonics. After

simulating, the area under the curve (AUC) was calculated for each test case. The

results are summarized below.

For white Gaussian noise, plotted in Figure 4.10, the harmogrant outperformed

all other algorithms under each tested SNR. The results were similar to the traditional



68

harmogram, however, and the additional selectivity from the multiplication operation

provides only modest improvements. Linear prediction was less effective, and did not

perform substantially better than any of the pitch estimators. All the techniques

perfectly separated true and false positives above an SNR of -15 dB. In this test

case, the harmogrant offers a 4 dB increase in noise performance over the fast folding

algorithm.

The strong and weak sinusoidal results are plotted in Figure 4.11. The weak

sinusoidal stimulation had only a minimal effect on the algorithms. Even the har-

mogram, which has no inherent resistance to pure tones, was able to suppress the

unwanted signal. The strong sinusoid, whose results are plotted in Figure 4.11, causes

problems, however.

The unmodified harmogram selected, without fail, the strong interfering sinu-

soid as the most significant (i.e., strongest) signal of interest. Due to normalization,
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Figure 4.10: Simulation results for CMOS signal in white noise. The harmogrant
(“H-grant”) offers superior performance in all test cases.
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the periodogram-estimated power of the interfering sinusoid was slightly lower in the

“signal + noise” case than it was in the noise-only case. This reversed the behavior

of the detector statistics, resulting in AUCs that were below 0.5. The harmogrant’s

performance was also degraded by the interference—though only slightly.

The linear prediction algorithm performed well in the strong sinusoidal in-

terference case—slightly better than it did for pure additive noise. Although the

sinusoidal signal is autoregressive, it has poles near the unit circle, and the pulse

signal results in much lower-energy residuals. Since linear prediction minimizes the

residuals, it converged preferentially to the CMOS pulses.

The FFA and HPS were, predictably, unaffected by sinusoidal interference of

any variety. The FFA’s detector is highly specific to impulses, and HPS imposes a

large penalty for missing harmonics, giving them almost complete immunity to these

narrowband interferers.

4.3. DISCUSSION

The pitch estimation results clearly demonstrate the trade-off between sensi-

tivity and selectivity. The harmonic product spectrum is too selective to have good

noise performance. Due to the low-pass fall-off of the CMOS clock pulses, noise tends

to make the higher-order harmonics undetectable, rendering HPS inoperative. The

harmogram offers better noise performance, but it is quite vulnerable to single-tone

sinusoids. The harmogrant, a combination of the two algorithms, performs better in

all of above test cases.

The time-domain algorithms—linear prediction and epoch folding—have poor

noise performance. Problems with the detector statistic limited the performance of

the FFA. Despite normalizing by the estimated noise in (4.16), the statistic exhibits

frequency-dependent behavior. Epoch folds of white noise have a much higher power



71

level near DC than they do in the higher frequencies. Further study may yield

a more robust noise estimator. Although the time-domain algorithms have poorer

noise-performance, they may be more effective at discarding spurious, high-power

signals in the high-SNR regime.

Although these results are promising, the simulated environment cannot accu-

rately model all of the behaviors of a CMOS device. Devices such as microcontrollers

may execute a different instruction each clock cycle, causing the magnitude—or per-

haps even the duration—of the current pulses to vary. The impact of antennas, and

the potential availability of near and far-field radiation, is also an important con-

sideration. These behaviors are best tested by measuring real CMOS devices in an

actual RF propagation environment.

A number of issues remain before these algorithms can be implemented in a

practical digital device detector, however. Two of these issues—noise estimation and

clock jitter—are addressed in the following sections.

4.3.1. Constant False Alarm Rate. An optimum Neyman-Pearson detec-

tor uses a threshold test to determine if a signal of interest is present. The value of

the threshold depends on the desired probability of false alarm, which is set by the

user. Correctly setting this threshold requires knowledge of the probability density

function (pdf) of the noise [81], but this pdf is rarely known in practice. In order to

have a fixed probability of false alarm, it is necessary to set the threshold from the

data itself.

This family of techniques is known as Constant False Alarm Rate (CFAR). In

a CFAR algorithm, the noise level is first estimated from the data. Bins which exceed

a certain threshold, compared to the noise level, will trigger a detection. Sometimes

this threshold is set assuming that the noise has a particular distribution [82,83], but

other approaches simply use a constant gain above the noise level. CFAR can be

applied to, and is frequently applied to, power spectral density estimators.
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In periodograms, CFAR can estimate the noise level for each bin individu-

ally. This makes the periodogram more robust against frequency-selective fading.

Such fading can occur as the result of, for example, non-flat frequency response

in the receiver or multipath propagation. While equalization can remove most of

these channel effects, most equalizers depend on knowing the transmitted signal very

precisely—which is difficult in this application [84].

CFAR processors operate on the assumption that any frequency-selective ef-

fects are gradual—i.e., the channel’s gain varies slowly with respect to frequency.

This enables the detector to assume that bins which are nearby in frequency have

similar noise powers. For each bin, the noise level is estimated using the surrounding

bins. If the bin under test contains a signal, that signal may also leak or spread into

surrounding bins. Hence, the closest bins are excluded from the noise estimate. The

process is illustrated in Figure 4.12.

A number of different noise estimation techniques exist. Cell-averaging CFAR

(CA-CFAR) estimates noise using the mean average, while order-statistic CFAR (OS-

CFAR) uses an order statistic. Each method has its own set of advantages and

drawbacks, but OS-CFAR has been shown to outperform CA-CFAR in most cases

[85]. Regardless of the technique in use, a CFAR processor is indispensable for a

practical CMOS clock detector.

4.3.2. Jitter. Microcontroller oscillators can exhibit considerable drift, and

any period estimate may not be valid for long. Systems which do not have particularly

demanding real-time constraints can use low-cost RC oscillators, and these oscillators

may have substantial long and short-term drift. Even crystal oscillators, which offer

higher precision, are not immune to environmental conditions [86].

Some oscillators deliberately add jitter in order to reduce their apparent unin-

tended emissions. These oscillators, which are known as spread spectrum clock gener-

ators (SSCGs), are of particular interest since they add jitter deterministically—and
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are thus simpler to model than random drift. They are also of interest because they

may be more difficult to detect than standard oscillators—with pitch estimators in

particular. It is worth noting that an SSCG does not actually reduce the radiated

power—it merely spreads the radiated power over a wider range of frequencies.

SSCGs add jitter by making the oscillator’s target frequency a function of some

other periodic function. Each period, the time until the next clock pulse is selected

using the output of this spreading function. The spreading function is typically

symmetric about the oscillator’s “true” period, making the oscillator an accurate

timekeeper, on average. Triangle waves are popular spreading functions and are used

in practical SSCG devices [87,88].

In order to simulate the effect of a jittery oscillator, a spread spectrum clock

generator was used in the simulation. The simulated SSCG used a triangle-wave

Cell under test

Guard bins

Noise estimation bins

Frequency

P
o
w

e
r

CFAR Processing

Figure 4.12: The CFAR algorithm estimates the noise level for each bin using the
surrounding bins. The bins closest to the bin under test are ignored
(guard bins). This process is repeated for each and every periodogram
bin. The bins used for estimation are sometimes referred to as training
bins.
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spreading function that was 263 clock periods long and resulted in a maximum de-

viation of ±1% of the oscillator’s true period. These values were taken from a real

SSCG documented in [87].

The simulation results, which are plotted in Figure 4.13, show the fast folding

algorithm is particularly sensitive to jitter. The sub-sample folding accuracy of FFA

is more harmful than helpful in this case, as the peaks from the clock pulses are spread

into many different bins. The pitch estimators, which use only 2049 bins to represent

the entire signal, are much less sensitive to jitter. A decimation process may make

the FFA more resistant to jitter, but the pitch estimators offer better performance

at lower computational complexity.

In future work, cyclostationarity analysis may yield a more sensitive detector

for SSCGs. Unlike a stationary process, which has time-invariant statistical prop-

erties, a cyclostationary process has statistical properties which vary cyclically (i.e.,
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periodically) in time [89]. In this case, the power spectrum of SSCGs varies cyclically

with respect to the spreading function. Cyclostationarity analysis has been proven

to be effective at detecting chirp radar [90], and it may be useful for detecting these

triangle wave-spread pulse trains as well.

4.4. CONCLUSION

Simulations indicate that pitch estimation algorithms offer the best noise per-

formance for detecting digital devices. These algorithms operate in the frequency

domain using periodograms as input, which makes them simple to implement on any

real-time device which has an FFT library. Periodograms have behaviors and trade-

offs, such as time/frequency resolution and windowing, which are well-understood

[23, 47, 91]. The harmogram, harmogrant, and the harmonic product spectrum do

not substantially increase the computational complexity of the periodogram, which

is given in [68].

While all of the pitch estimation algorithms performed well, the harmogrant

provided the best sensitivity and selectivity for this application. The harmogrant,

which is a minor, heuristic modification to the harmogram, has proven to be robust

against sinusoidal interference, low SNR, and typical jitter. This pitch estimation

technique offers a 4 dB gain in noise performance over the fast folding algorithm.

These findings re-enforce the usefulness of the Welch periodogram, and its relatives,

for detecting periodic signals.

Although the pitch estimation methods offer the highest performance, the

time-domain techniques are also useful. With sufficient signal-to-noise ratio, linear

prediction and the fast-folding algorithm also function “perfectly” with a ROC area

of 1.0. The fast folding algorithm is the most selective technique available: it only
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detects impulse train signals. This selectivity may prove essential in real-world sce-

narios, where unexpected interference signals are present. Additional refinements

may make the FFA more robust against noise and jitter.

Linear prediction offers no particular advantage over the other techniques,

but the autoregressive model it is based on is useful for modeling clock emissions.

Comparisons with real data, gathered from an 8051 microcontroller, indicate that a

second-order autoregressive model is a reasonable approximation of clock emissions.

The model holds even when the emissions are received via a loop probe, which uses

inductive coupling.

These findings, while preliminary, demonstrate the feasibility of building a

digital device detector. The harmogrant and fast folding algorithms have promising

simulated results and, in future work, could be tested in a real-time detector under

real propagation conditions. With additional measurements and testing, the methods

proposed herein could enable the rapid discovery of digital devices.
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APPENDIX

Measuring stimulated emissions requires two vital radio frequency (RF) com-

ponents: a transmitter and a receiver. In prior research conducted in Seguin [92],

these measurements were conducted using traditional lab equipment: signal genera-

tors, spectrum analyzers, and oscilloscopes. This approach has a number of important

drawbacks, however. Most signal generators are strictly-analog systems which can

only perform analog modulations, such as AM and FM. This necessitates the use of

additional hardware, such as waveform generators, to produce the desired stimulation

signal.

The receiver side, depending on the exact configuration, was similarly compli-

cated. A variety of analog mixers and filters were used to lower the frequency of the

unintended emissions, allowing them to be sampled at lower rates. Digital sampling

was performed using oscilloscopes, which posed their own set of difficulties. Oscil-

loscopes have a finite memory space for digital samples, and the oscilloscopes used

in [92] could only capture several consecutive milliseconds of data before exhausting

this space.

Once the samples were obtained, they were transferred to a personal computer

(PC) for further processing. This step required the use of slow, low-throughput IEEE-

488 (GPIB) interfaces. As a result, the stimulated emissions system developed in [92]

could only sample intermittently, and the data transfer itself introduced over one

second of latency. The complete measurement setup consisted of numerous pieces of

bulky, fragile equipment, and it was not particularly portable. This system was built

as part of the preliminary investigation of the stimulated emissions approach, which

was successful, however more convenient solutions exist.
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Software-defined radio (SDR) platforms replace purpose-built analog commu-

nications circuitry with high-speed digital signal processing (DSP). As its name im-

plies, most of the radio signal processing takes place in software: typically on a

standard PC. An SDR digitizes radio signals in much the same way that a sound

card digitizes audio, except that the process takes place at a much higher speed. The

components of an SDR system are illustrated in Figure 5.1

The hardware component of an SDR system, often referred to as the “front-

end,” is designed to be minimalist and flexible. An analog radio receiver—either

superheterodyne or direct-conversion—is used to select the desired frequency and

bandwidth. The signal is then sampled using high-speed analog to digital converters

(ADCs). A comprehensive overview of the digitization process can be found in [93].

Some ADCs operate fast enough that the analog front-end can be omitted entirely.

The limiting factor in an SDR system is, typically, the interconnect between

the front-end and the host computer. This interconnect, such as Universal Serial Bus

(USB) or PCI Express, has limited throughput—i.e., USB 2.0 has a maximum transfer

Tuning Down-
conversion

Analog to
Digital

Host
Interface

Analog
Hardware

Real-time
Digital System

Host
Computer

Figure 5.1: A software-defined radio system. The hardware components, including
the real-time digital system, are designed to be as minimalist as possible.
This grants the host computer more flexible access to the radio signal and
spectrum.
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rate of about 32 MiB/s. In order to meet real-time deadlines, it is necessary to limit

the data rate to that of the interconnect. This is accomplished by discarding the

unnecessary portions of the radio signal: a process known as digital down-conversion.

Digital down-conversion is the digital equivalent of analog frequency trans-

lation. The signal is shifted in frequency until the band of interest is centered at

baseband. (Quadrature sampling is used to preserve the magnitude and phase of

the signal.) The signal is then band-limited, using digital filters, to the frequency

range of interest. Once it has been filtered, the sampling rate can be reduced without

distorting the signal. The reduction in sampling rate greatly decreases the amount

of data that must be transferred and processed.

Once the data is transferred to the host computer, application-specific signal

processing is performed. Typically, these tasks include demodulation and, for data

signals, framing. In stimulated emissions, the goal is to search the down-converted

radio signal for the presence of some known stimulation signal. The algorithms to do

so can be written in ordinary, general-purpose computer languages such as C++ and

Python.

The principal advantage of software-defined radio is flexibility. The same SDR

platform can perform many different tasks, often simultaneously. Changing the DSP

algorithm is as simple as altering the software. Computer systems have access to

advanced user interfaces, built-in debuggers, and nearly-unlimited storage, making

them an attractive alternative to dedicated hardware. It is no surprise that SDRs

are popular with research and other non-recurring engineering tasks [94].

The papers in Section 2 and Section 3 developed two major software-defined

radio projects, both for research and for demonstration purposes. These projects,

which are detailed in the next two sections, are intended to validate the effectiveness

of stimulated emissions. They also, by extension, demonstrate the usefulness of SDR

to research and academia.
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MATCHED FILTER DETECTOR

Many different SDR platforms are available, ranging from hobbyist kits

($20 U.S. Dollars) to purpose-built computer systems for maximum sensitivity and

throughput ($7000 U.S. Dollars or more). The matched filter detector used in

Section 2 was built using the Ettus Research Universal Software Radio Peripheral

(USRP), which was selected due to its proven performance and wide range of avail-

able transceiver modules. The USRP’s companion software, GNU Radio, is designed

to support real-time designs. The DSP operations (i.e., functions) are described us-

ing the Python scripting language. When the system is started, these operations are

executed continuously on the incoming data from the SDR [21].

The matched filter detector is designed to detect superheterodyne receivers

using the method outlined earlier in this chapter. As per Figure 2.7, the system

detects radio receivers by transmitting a 5kHz linear FM chirp and searching for the

chirp on another, defined frequency using a matched filter. When the program is

started, it generates a baseband, complex-sampled chirp of a user-specified length.

The chirp’s matched filter, which is a finite impulse response (FIR) digital filter, is

then derived and stored. This detector is implemented entirely using the USRP’s

companion software, GNU Radio.

The program then instructs the USRP to transmit this chirp repetitively and

sample the radio spectrum at the up-mixing emissions frequency. The received signal

is then filtered through the matched filter. If a radio receiver is present, the matched

filter will output an impulse-like spike every chirp period. A threshold detector is

used to decide if a radio receiver has been detected: The power output of the matched

filter is compared with a fixed, user-specified threshold, and a detection is declared

if the power exceeds the threshold [81].
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The matched filter detector includes a simple GUI, shown in Figure 5.2, for

setting and viewing the detector’s threshold. A visual and audible alarm are activated

if a radio receiver is detected. The detector operates in real-time, updating its display

continuously as new data is received. The complete hardware setup, as shown in

Figure 5.3, fits neatly on a tabletop and is easy to transport.

This real-time implementation offers substantial advantages over the sample-

then-process design used for initial investigations in Seguin. Long-duration chirps,

Figure 5.2: The simple GUI for the matched filter detector. The image of the radio
receiver indicates that a device has been detected.

Amp

USRP

Laptop

RX Ant

TX Ant

Figure 5.3: The assembled USRP test setup fits neatly on a table top. It can be
disassembled and stored in a small box for transport.
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which exceed one second in length, can be used without difficulty. Troubleshooting

physical problems, such as antenna leakage or cross-coupling, is vastly simplified when

the detector statistic updates quickly. The matched filter detector program offers an

easy-to-understand demonstration of the stimulated emissions technique. Although

the hardware used in [92] was commonly available, and more than adequate for a

preliminary study, the SDR platform resulted in a much simpler, easy-to-use system.

SOFTWARE-DEFINED RADAR

Locating superheterodyne receivers using the time-of-arrival method, as dis-

cussed in Section 3, requires high-precision timing. The SDR must be capable of

accurately measuring the time difference between the transmission of the stimula-

tion and the reception of the emissions. For speed-of-light signals, a timing error of

just ten nanoseconds translates into one meter of range error. This is a strict real-

time synchronization demand which cannot be met using general-purpose computer

programs. Designing an SDR to meet these demands is a challenging task.

From [12], it is known that superheterodyne receivers are highly responsive

to linear FM chirps. Using a technique known as frequency-modulated continuous

wave (FMCW) radar, it is possible to use similar chirp signals for ranging in addition

to detection. In continuous-wave radar, the power of the transmitted stimulation is

kept constant. Constant-power signals perform well with systems that use solid-state,

low-noise amplifiers—as superheterodyne receivers typically do [40]. FMCW has a

computationally-efficient implementation which makes it ideal for SDR.

In [95], it is demonstrated that delaying a linear FM chirp in time is equivalent

to shifting it in frequency. In radar systems, the time-delayed return signal—in

this case, the emissions from the target device—appears to be slightly shifted in

frequency. This frequency shift, as shown in Figure 5.4, can be estimated by finding
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the instantaneous difference in frequency between the transmitted stimulation and

the received emissions. This difference can be found using mixers.

In the mixer implementation, the received emissions are mixed with a time-

reversed version of the transmitted stimulation. The result is a low-frequency “beat”

signal which contains the range information. Traditional estimators of frequency,

such as the Fast Fourier Transform (FFT), can be used to estimate the beat signal’s

frequency—and thus the range. This design is ideal for use on software-defined radio

platforms: The mixing is a mathematically simple—but time-sensitive—operation,

whereas the frequency estimation can benefit from the processing power of a general-

purpose computer.

To fulfill the real-time requirement, an FMCW front-end was added to the

USRP. The front-end generates the linear FM chirps and performs a simultaneous

de-chirp of the received emissions. To guarantee a fixed delay, these operations were
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Figure 5.4: Delaying a linear FM chirp in time by some amount dt is equivalent to
shifting it in frequency by some amount df . This relationship is easy to
visualize from the proportional triangles given above. By estimating the
frequency difference df , it is possible to estimate the time delay dt.
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implemented in the USRP’s field-programmable gate array (FPGA). The FPGA typi-

cally performs the high-speed digital down-conversion (see Figure 5.1), but it supports

loading user-customized instruction sets as well. This customization is made possi-

ble, in part, by the USRP’s open-source design. After de-chirping, the resulting beat

signal is down-converted and sent to the host computer.

The host computer then estimates the frequency of the beat signal. A two-

dimensional FFT, as per [43], simultaneously estimates both the range to and Doppler

shift of a target. The entire software-defined radar system is depicted in Figure 5.5.

Since it was designed for stimulated emissions, this radar system has one additional

feature: it can transmit and receive on different, arbitrary frequencies. This enables

the radar system to receive and detect up-mixing emissions from superheterodyne

receivers.

This prototype system demonstrates the extensibility of software-defined ra-

dio platforms. Owing to their advanced computer software and re-programmable

circuitry (i.e., FPGAs), such platforms can be modified to function far beyond their
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Figure 5.5: Block diagram of the software-defined radar. A chirp generator, and
a synchronized de-chirp function, were added to the USRP’s FPGA
firmware. The range-doppler processing is carried out on the host PC.
Adapted from [13], c© 2013, IEEE. Used with permission.
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original design specifications. The system described above was successfully tested

in [13], where it accurately measured the range to various superheterodyne receivers.

While isolation problems between the transmitter and receiver substantially reduced

the system’s performance, these problems occurred in the analog front-end and are

not specific to SDR.

As this research demonstrates, software-defined radio products greatly increase

the accessibility of the radio spectrum to academic researchers. These devices can

facilitate the development of novel communications and signal processing techniques,

and it is worthwhile to consider them whenever rapid prototyping is desired.
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