365 research outputs found

    High Performance Light Water Reactor : Design and Analyses

    Get PDF
    The High Performance Light Water Reactor is a nuclear reactor concept of the 4th generation which is cooled and moderated with supercritical water. The concept has been worked out by a consortium of European partners, co-funded by the European Commission. It features a once through steam cycle, a pressure vessel type reactor, and a compact containment with pressure suppression pool. The conceptual design enables to assess its feasibility, its safety features and its economic potential

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Systematic analysis of beneficial reuse in unconventional oil and gas wastewater management

    Get PDF
    2021 Spring.Includes bibliographical references.Wastewater management within the unconventional oil and gas (UOG) sector has continued to grow in importance in correlation with the rising water footprint of hydraulic fracturing (HF). The predominant UOG wastewater management method in the U.S. is to dispose of the wastewater deep underground in geologically stable formations by deep-well injection (DWI). However, this method has been plagued with concerns such as induced seismicity and decreasing capacity for DWI in various UOG regions. Further, when the wastewater is disposed of via DWI this potential resource is no longer available for beneficial purposes. An alternative method to DWI is UOG wastewater treatment for beneficial reuse which repurposes the treated wastewater for end uses such as surface discharge. The main objective of this dissertation is to analyze key aspects of UOG wastewater management to include topics within technology, logistics, regulations, and economics in order to further facilitate increased wastewater treatment and beneficial reuse. At the core of UOG wastewater treatment and beneficial reuse is an advanced treatment technology that can effectively treat hypersaline and complex UOG wastewater. For my work, I focused on membrane distillation (MD), a hybrid thermal-membrane desalination process well-suited to treat UOG wastewater. An advantage of using MD is its inherent ability to use low grade waste heat as an energy source to power treatment. I investigated the availability and sufficiency of waste heat at the well-pad to power MD for on-site UOG wastewater treatment in Weld County, Colorado. Additionally, I also investigate the availability and sufficiency of natural gas at the well-pad to power MD. The analysis showed that well-pad waste heat is insufficient while natural gas is sufficient for long term on-site MD treatment. Next, the impact of logistics, specifically transportation distance and costs, was researched for DWI and centralized wastewater treatment (CWT) powered by natural gas compressor station (NGCS) waste heat. Unlike on-site treatment, wastewater needs to be transported for DWI or CWT and thus incurs a transportation cost. Using ArcGIS software, transportation distances and associated costs were analyzed for Weld County, Colorado at various scales. At the county scale, DWI was economically favored based on transportation, however, when the scale of operation was reduced for certain areas (i.e., county to local) the economic advantage shifted towards CWT. Additionally, NGCS waste heat for Weld County was quantified and the MD treatment demand was correlated to MD treatment capacity provided by NGCS waste heat for CWT. This analysis emphasized the importance of matching treatment demand with capacity provided by waste heat. Further, MD treatment of UOG wastewater has been constrained by surfactant-induced membrane pore wetting. Surfactants, commonly found in HF fluid, reduce the surface tension of membranes inducing wetting. We investigated two mitigation strategies, pretreatment via coagulation-adsorption and fabrication of omniphobic membranes. UOG wastewater sourced from the Denver-Julesburg Basin that induced exceptional wetting of a hydrophobic polyvinylidene fluoride membrane during MD treatment was used. Both strategies proved effective at mitigating surfactant-induced wetting, however, flux decline with the use of omniphobic membrane was unacceptable due to the effects of fouling thus hindering its viability. To better understand the surfactant composition in the UOG wastewater, ultrahigh pressure liquid chromatography (UHPLC) coupled with quadrupole time-of-flight mass spectrometry (QToF/MS) was implemented to identify surfactants in the UOG wastewater and qualify the effect of pretreatment in reducing surfactants. In the UOG wastewater, 192 surfactants were identified with 91 being reduced by full pretreatment. Finally, an in-depth perspective on the motivations and barriers to increased future treatment and beneficial reuse of UOG wastewater was provided. This analysis moved beyond technology, which receives the majority of research interest, to explore and better understand other non-treatment aspects. Four major barriers to beneficial reuse were identified which are technology, economics, regulations, and social. These barriers were clearly elucidated providing insight into ways to overcome them to facilitate increased beneficial reuse. A systems-level approach requiring broad collaborations across multiple disciplines pertaining to technology, policy, legislation, economics, and social science to shift UOG wastewater management towards treatment and beneficial reuse was proposed

    Solar Process Heat in Industrial Systems- A Global Review

    Get PDF
    In developing countries, industries and manufacturing sectors consume a major portion of the total consumption of energy, where most of the energy is used for low, medium or high temperature heat generation to be used for process applications known as process heat. The necessity to commercialize clean, cheap and efficient renewable sources of energy in industrial applications emerges from increasing concerns about greenhouse gas emissions and global warming and decreasing fossil fuel use in commercial sectors. As an abundant source of energy, solar energy technologies have proven potential. Recent research shows currently only a few industries are employing solar energy in industrial processes to generate process heat while replacing fossil fuels. Solar thermal power generation is already very well-known and getting popular in recent years while other potential applications of the concentrated heat from solar radiation are little explored. This review paper presents a detailed overview of the current potential and future aspects of involving solar industrial process heating systems in industrial applications. In order to keep pace with this emerging and fast growing sector for renewable energy applications, it is necessary to get in depth knowledge about the overall potential of industrial processes in individual industrial sector where solar process heat is currently in use and identifying industrial processes are most compatible for solar system integration depending on temperature level and the type of solar collector in use. Furthermore, the promising sectors needs to be identified for the use of solar heat using industrial processes for the integration of solar heat, so that countries with immense solar energy potential can use those technologies in future to reduce fossil fuel consumption and develop sustainable industrial systems. This paper presents a comprehensive review of the potential industrial processes that can adopt solar process heating systems and thus driving towards sustainable production in industries

    Nuclear Power Plants

    Get PDF
    This book covers various topics, from thermal-hydraulic analysis to the safety analysis of nuclear power plant. It does not focus only on current power plant issues. Instead, it aims to address the challenging ideas that can be implemented in and used for the development of future nuclear power plants. This book will take the readers into the world of innovative research and development of future plants. Find your interests inside this book

    Monitoring and transient modelling of Solar assisted heat pump with hybrid Panels: limits and potentials applied to an existing plant

    Get PDF
    The Solar Assisted Heat Pumps represent one of the most interesting examples in the field of heating systems based on the interface of different generators. The present work provides a general overview about the topic of the solar assisted heat pumps, with specific attention to the current limits and potentials. Then, the pilot plant at Palacus is presented: a solar assisted heat pump is interfaced with hybrid panels and it represents the missing link between laboratory prototypes and full scale working plants. The most interesting part of the plant and its core is represented by the data acquisition system which allows an almost automatic control of the plant and a continuous collection of the over 50 measured working parameters of the facility. Indeed, this extended database will be used to validate a numerical transient model developed in TRNSYS environment. Thanks to this model, different optimisation analyses will be carried out, to increase the plant efficiency. In particular the following topics will be enquired: insulation of the connection pipes between the heat pump and the solar field and strategies to exploit the SAHP-PVT from both the thermal and photovoltaic point of view. In addition, the plant will be simulated at five different locations over Italy representing the main climatic zones, to carry out a preliminary simplified assessment tool to predict the SAHP performance according to the degree days of the installation site

    XVIII International Coal Preparation Congress

    Get PDF
    Changes in economic and market conditions of mineral raw materials in recent years have greatly increased demands on the ef fi ciency of mining production. This is certainly true of the coal industry. World coal consumption is growing faster than other types of fuel and in the past year it exceeded 7.6 billion tons. Coal extraction and processing technology are continuously evolving, becoming more economical and environmentally friendly. “ Clean coal ” technology is becoming increasingly popular. Coal chemistry, production of new materials and pharmacology are now added to the traditional use areas — power industry and metallurgy. The leading role in the development of new areas of coal use belongs to preparation technology and advanced coal processing. Hi-tech modern technology and the increasing interna- tional demand for its effectiveness and ef fi ciency put completely new goals for the University. Our main task is to develop a new generation of workforce capacity and research in line with global trends in the development of science and technology to address critical industry issues. Today Russia, like the rest of the world faces rapid and profound changes affecting all spheres of life. The de fi ning feature of modern era has been a rapid development of high technology, intellectual capital being its main asset and resource. The dynamics of scienti fi c and technological development requires acti- vation of University research activities. The University must be a generator of ideas to meet the needs of the economy and national development. Due to the high intellectual potential, University expert mission becomes more and more called for and is capable of providing professional assessment and building science-based predictions in various fi elds. Coal industry, as well as the whole fuel and energy sector of the global economy is growing fast. Global multinational energy companies are less likely to be under state in fl uence and will soon become the main mechanism for the rapid spread of technologies based on new knowledge. Mineral resources will have an even greater impact on the stability of the economies of many countries. Current progress in the technology of coal-based gas synthesis is not just a change in the traditional energy markets, but the emergence of new products of direct consumption, obtained from coal, such as synthetic fuels, chemicals and agrochemical products. All this requires a revision of the value of coal in the modern world economy

    Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule

    Full text link
    corecore