497 research outputs found

    Investigation of physical processes in digital x-ray tomosynthesis imaging of the breast

    Get PDF
    Early detection is one of the most important factors in the survival of patients diagnosed with breast cancer. For this reason the development of improved screening mammography methods is one of primary importance. One problem that is present in standard planar mammography, which is not solved with the introduction of digital mammography, is the possible masking of lesions by normal breast tissue because of the inherent collapse of three-dimensional anatomy into a two-dimensional image. Digital tomosynthesis imaging has the potential to avoid this effect by incorporating into the acquired image information on the vertical position of the features present in the breast. Previous studies have shown that at an approximately equivalent dose, the contrast-detail trends of several tomosynthesis methods are better than those of planar mammography. By optimizing the image acquisition parameters and the tomosynthesis reconstruction algorithm, it is believed that a tomosynthesis imaging system can be developed that provides more information on the presence of lesions while maintaining or reducing the dose to the patient. Before this imaging methodology can be translated to routine clinical use, a series of issues and concerns related to tomosynthesis imaging must be addressed. This work investigates the relevant physical processes to improve our understanding and enable the introduction of this tomographic imaging method to the realm of clinical breast imaging. The processes investigated in this work included the dosimetry involved in tomosynthesis imaging, x-ray scatter in the projection images, imaging system performance, and acquisition geometry. A comprehensive understanding of the glandular dose to the breast during tomosynthesis imaging, as well as the dose distribution to most of the radiosensitive tissues in the body from planar mammography, tomosynthesis and dedicated breast computed tomography was gained. The analysis of the behavior of x-ray scatter in tomosynthesis yielded an in-depth characterization of the variation of this effect in the projection images. Finally, the theoretical modeling of a tomosynthesis imaging system, combined with the other results of this work was used to find the geometrical parameters that maximize the quality of the tomosynthesis reconstruction.Ph.D.Andrew Karellas, John N. Oshinski, Xiaoping P. Hu, Carl J. D’Orsi and Ernest V. Garci

    Breast Tomosynthesis: Aspects on detection and perception of simulated lesions

    Get PDF
    The aim of this thesis was to investigate aspects on detectability of simulated lesions (microcalcifications and masses) in digital mammography (DM) and breast tomosynthesis (BT). Perception in BT image volumes were also investigated by evaluating certain reading conditions. The first study concerned the effect of system noise on the detection of masses and microcalcification clusters in DM images using a free-response task. System noise has an impact on image quality and is related to the dose level. It was found to have a substantial impact on the detection of microcalcification clusters, whereas masses were relatively unaffected. The effect of superimposed tissue in DM is the major limitation hampering the detection of masses. BT is a three-dimensional technique that reduces the effect of superimposed tissue. In the following two studies visibility was quantified for both imaging modalities in terms of the required contrast at a fixed detection performance (92% correct decisions). Contrast detail plots for lesions with sizes 0.2, 1, 3, 8 and 25 mm were generated. The first study involved only an in-plane BT slice, where the lesion centre appeared. The second study repeated the same procedure in BT image volumes for 3D distributed microcalcification clusters and 8 mm masses at two dose levels. Both studies showed that BT needs substantially less contrast than DM for lesions above 1 mm. Furthermore, the contrast threshold increased as the lesion size increased for both modalities. This is in accordance with the reduced effect of superimposed tissue in BT. For 0.2 mm lesions, substantially more contrast was needed. At equal dose, DM was better than BT for 0.2 mm lesions and microcalcification clusters. Doubling the dose substantially improved the detection in BT. Thus, system noise has a substantial impact on detection. The final study evaluated reading conditions for BT image volumes. Four viewing procedures were assessed: free scroll browsing only or combined with initial cine loops at frame rates of 9, 14 and 25 fps. They were viewed on a wide screen monitor placed in vertical or horizontal positions. A free-response task and eye tracking were utilized to record the detection performance, analysis time, visual attention and search strategies. Improved reading conditions were found for horizontally aligned BT image volumes when using free scroll browsing only or combined with a cine loop at the fastest frame rate

    Amorphous In–Ga–Zn–O thin‐film transistor active pixel sensor x‐ray imager for digital breast tomosynthesis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134962/1/mp2382.pd

    Virtual clinical trials in medical imaging: a review

    Get PDF
    The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities

    A semi-empirical model for scatter field reduction in digital mammography

    Full text link
    X-ray mammography is the gold standard technique in breast cancer screening programmes. One of the main challenges that mammography is still facing is scattered radiation, which degrades the quality of the image and complicates the diagnosis process. Anti-scatter grids, the main standard physical scattering reduction technique, have some unresolved challenges as they increase the dose delivered to the patient, do not remove all the scattered radiation and increase the cost of the equipment. Alternative scattering reduction methods based on post-processing algorithms, have lately been under investigation. This study is concerned with the use of image post-processing to reduce the scatter contribution in the image, by convolving the primary plus scatter image with kernels obtained from simplified Monte Carlo (MC) simulations. The proposed semi-empirical approach uses up to five thickness-dependant symmetric kernels to accurately estimate the scatter contribution of different areas of the image. Single breast thickness-dependant kernels can over-estimate the scatter signal up to 60%, while kernels adapting to local variations have to be modified for each specific case adding high computational costs. The proposed method reduces the uncertainty to a 4%-10% range for a 35-70 mm breast thickness range, making it a very efficient, case-independent scatter modelling technique. To test the robustness of the method, the scattered corrected image has been successfully compared against full MC simulations for a range of breast thicknesses. In addition, clinical images of the 010A CIRS phantom were acquired with a mammography system with and without the presence of the anti-scatter grid. The grid-less images were post-processed and their quality was compared against the grid images, by evaluating the contrast-to-noise ratio and variance ratio using several test objects, which simulate calcifications and tumour masses. The results obtained show that the method reduces the scatter to similar levels than the anti-scatter grids

    A new breast tomosynthesis imaging method : Continuous Sync-and-Shoot - technical feasibility and initial experience

    Get PDF
    Background Digital breast tomosynthesis (DBT) is gaining popularity in breast imaging. There are several different technical approaches for conducting DBT imaging. Purpose To determine optimal imaging parameters, test patient friendliness, evaluate the initial diagnostic performance, and describe diagnostic advances possible with the new Continuous Sync-and-Shoot method. Material and Methods Thirty-six surgical breast specimens were imaged with digital mammography (DM) and a prototype of a DBT system (Planmed Oy, Helsinki, Finland). We tested the patient friendliness of the sync-and-shoot movement without radiation exposure in eight volunteers. Different imaging parameters were tested with 20 specimens to identify the optimal combination: angular range 30 degrees, 40 degrees, and 60 degrees; pixel binning; Rhodium (Rh) and Silver (Ag) filtrations; and different kV and mAs values. Two breast radiologists evaluated 16 DM and DBT image pairs and rated six different image properties. Imaging modalities were compared with paired t-test. Results The Continuous Sync-and-Shoot method produced diagnostically valid images. Five out of eight volunteers felt no/minimal discomfort, three experienced mild discomfort from the tilting movement of the detector, with the motion being barely recognized. The combination of 30 degrees, Ag filtering, and 2 x 2 pixel binning produced the best image quality at an acceptable dose level. DBT was significantly better in all six evaluated properties (P <0.05). Mean Dose(DBT)/Dose(DM) ratio was 1.22 (SD = 0.42). Conclusion The evaluated imaging method is feasible for imaging and analysing surgical breast specimens and DBT is significantly better than DM in image evaluation.Peer reviewe

    Inter-plane artifact suppression in tomosynthesis using 3D CT image data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its superb lateral resolution, flat-panel-detector (FPD) based tomosynthesis suffers from low contrast and inter-plane artifacts caused by incomplete cancellation of the projection components stemming from outside the focal plane. The incomplete cancellation of the projection components, mostly due to the limited scan angle in the conventional tomosynthesis scan geometry, often makes the image contrast too low to differentiate the malignant tissues from the background tissues with confidence.</p> <p>Methods</p> <p>In this paper, we propose a new method to suppress the inter-plane artifacts in FPD-based tomosynthesis. If 3D whole volume CT images are available before the tomosynthesis scan, the CT image data can be incorporated into the tomosynthesis image reconstruction to suppress the inter-plane artifacts, hence, improving the image contrast. In the proposed technique, the projection components stemming from outside the region-of-interest (ROI) are subtracted from the measured tomosynthesis projection data to suppress the inter-plane artifacts. The projection components stemming from outside the ROI are calculated from the 3D whole volume CT images which usually have lower lateral resolution than the tomosynthesis images. The tomosynthesis images are reconstructed from the subtracted projection data which account for the x-ray attenuation through the ROI. After verifying the proposed method by simulation, we have performed both CT scan and tomosynthesis scan on a phantom and a sacrificed rat using a FPD-based micro-CT.</p> <p>Results</p> <p>We have measured contrast-to-noise ratio (CNR) from the tomosynthesis images which is an indicator of the residual inter-plane artifacts on the focal-plane image. In both cases of the simulation and experimental imaging studies of the contrast evaluating phantom, CNRs have been significantly improved by the proposed method. In the rat imaging also, we have observed better visual contrast from the tomosynthesis images reconstructed by the proposed method.</p> <p>Conclusions</p> <p>The proposed tomosynthesis technique can improve image contrast with aids of 3D whole volume CT images. Even though local tomosynthesis needs extra 3D CT scanning, it may find clinical applications in special situations in which extra 3D CT scan is already available or allowed.</p
    • …
    corecore