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Abstract. The accelerating complexity and variety of medical imaging devices and methods

have outpaced the ability to evaluate and optimize their design and clinical use. This is a sig-

nificant and increasing challenge for both scientific investigations and clinical applications.

Evaluations would ideally be done using clinical imaging trials. These experiments, however,

are often not practical due to ethical limitations, expense, time requirements, or lack of ground

truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging

trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually.

They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has

been constantly advanced over the past decades in multiple areas. We summarize the major

developments and current status of the field of VCTs in medical imaging. We review the core

components of a VCT: computational phantoms, simulators of different imaging modalities, and

interpretation models. We also highlight some of the applications of VCTs across various im-

aging modalities. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1

.JMI.7.4.042805]

Keywords: virtual clinical trials; virtual imaging trials; computational phantoms; simulations;
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1 Introduction

Medical imaging involves some of the most beneficial and advanced technologies used in medi-

cine today. However, the design and implementation of new imaging technology is incredibly

complex. Doing so through clinical trials (experiments using human subjects) is often not prac-

tical or definitive due to ethical limitations, expense, time requirements, difficulty in accruing

enough subjects, or a fundamental lack of ground truth (knowledge of the exact anatomy and

condition of the patient). Most current approaches to assess imaging technologies outside of

clinical trials rely on simplistic physical phantoms, the results from which cannot readily predict

clinical efficacy. Meanwhile, the complexity of medical imaging technologies has continued to

accelerate, outpacing our ability to assess them and optimize their design and clinical use. By the

time we have consummated the ideal trials, the technology has moved on again. Therefore, we

either work with “old validated” technology that may be less effective or put patients potentially

at risk with newer unvalidated technology.
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Virtual clinical trials (VCTs) are an efficient methodological alternative to clinical trials for

evaluating and optimizing imaging concepts and technologies. In a VCT, the human subject is

replaced with a virtual digital phantom, the imaging system with a virtual simulated scanner, and

the clinical interpretation with a virtual interpretation. In that way, a “subject” can be “imaged”

and the image can be “interpreted,” emulating the clinical process without an actual clinical trial.

A framework of a VCT in medical imaging is illustrated in Fig. 1. VCTs can be conducted

quickly and cost-effectively on a computer, providing researchers a practical way to answer

fundamental questions using the precise controls and the known ground truth, which is possible

only in the virtual domain. These virtual trials enable objective optimization of new and existing

imaging technologies (hardware and software) and their utility in terms of the desired diagnostic

task or accuracy, while minimizing risk (e.g., radiation dose).

VCTs, as a general term, can be ascribed to simulation studies that emulate clinical experi-

ments. These simulation experiments could be in the context of human models being imaged

with imaging devices or could be focused on the interactions of a treatment with human models

(e.g., pharmacokinetic and pharmacodynamics models).1 This paper only covers the VCTs that

are done in the context of medical imaging, with the purpose of imaging technology advance-

ments, clinical utility evaluations, and optimizations. The broader application of VCT to cover

other topics such as outcome prediction or comparison of alternative treatment options can be

future extensions of VCTs, but they are beyond the scope of this paper.

Over the past decades, there have been extensive efforts in development and application of

VCTs in medical imaging, from creating models of humans and imaging scanners to designing

and using interpretation models. VCTs are also challenged by computational complexity, ques-

tions relating to simulation realism, and difficulties in validations.

2 Computational, Anthropomorphic Phantoms

In VCTs in imaging, the virtual patient population is provided by computational, anthropomor-

phic phantoms that model the patient anatomy and physiology. The advantage of computational

phantoms is that, unlike actual patients, their exact anatomy is known, providing a “gold stan-

dard” or “ground truth” from which to quantitatively evaluate and improve imaging devices

and techniques. Imaging data of a computer phantom can be generated using a computerized

scanner model under various scanning parameters or protocols, and the effects quantified in

comparison with the known phantom. The user knows precisely what simulated images should

reveal in terms of organ volumes or boundaries, tumor locations, sizes, shapes, extent and

Fig. 1 Conducting a clinical imaging trial virtually. Imaging process (top) emulated by virtual

imaging trial (bottom).
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frequency of motion, presence and location of disease indicators, etc. The dose to the organs and

structures from different procedures can also be calculated to assess patient risk from radiation

exposure. None of these things is possible using live subjects.

For VCTs, it is essential to have computational phantoms that are realistic so that simulated

results emulate what should occur in actual subjects. Phantoms must realistically model patient

anatomy and physiology including the geometry of the organs and structures, the material prop-

erties of the tissues, patient motions, blood flow or contrast perfusion, alterations of the anatomy

due to disease, and any other factors that could affect medical imaging. Computational phantoms

must also be able to model the anatomical and physiological variability indicative of a clin-

ical population as anatomy and function varies from person to person, with these factors also

impacting imaging results.

2.1 Types of Phantoms

Different methods have been used over the years to create computational phantoms. Phantoms

are first constructed by defining objects to represent the necessary organs and structures of a

given subject. The anatomical objects can then be assigned tissue material properties (density,

elemental composition, radioactivity uptake, magnetic resonance, acoustical properties, etc.) for

input into corresponding imaging simulations [e.g., x-ray, computed tomography (CT), nuclear

medicine, magnetic resonance imaging (MRI), or ultrasound].

Computational phantoms have been typically categorized based on how they define the ana-

tomical structures of the body.2–4 The three main categories of models are mathematical, vox-

elized, and boundary representation (BREP) phantoms, demonstrated in Fig. 2. Mathematical

phantoms use equations or simple geometric primitives to define the organs and structures in the

body. They can easily be manipulated through these equations to simulate changes in anatomy

(alterations in organ size and shape) or motion (voluntary or involuntary), but they are lacking in

terms of realism. Voxelized phantoms use 3-D cuboids or voxels to define the anatomical struc-

tures based on the segmentation of patient medical images. Voxelized phantoms are more real-

istic, but they are not as flexible. For example, it requires great effort to modify numerous

phantom voxels to simulate anatomical variations or motion. In addition, since they are based

on segmented imaging data, voxelized phantoms are set to a particular resolution. Generation

of the phantom at other resolutions requires interpolation, which might induce error. BREP

phantoms were introduced to combine the advantages of voxelized and mathematical models.

Based on segmented patient data, they go a step further using advanced surface representations

such as nonuniform rational b-splines or polygon meshes to define each organ or structure.

Fig. 2 Three main categories of computational phantoms: (a) mathematical based on equations or

geometric primitives, (b) voxelized based on segmented imaging data, and (c) BREP based on

segmented data but fitting high-level surfaces to the structures. The MIRD,5 VIP-Man,6 and XCAT7

phantoms are shown as examples.
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The advanced surfaces can realistically model the anatomy while providing a mathematical basis

to simulate anatomical changes or motion.

Beyond these categories, computational phantoms have been recently developed using volu-

metric tetrahedral meshes8 as opposed to surfaces. These phantoms are advantageous in that they

can be directly input into some commonly used Monte Carlo (MC) simulation codes [e.g.,

Geometry and Tracking (Geant4),9 Monte Carlo N-Particle (MCNP6),10 and Particle and

Heavy-Ion Transport code System (PHITS)11]. The volumetric definition of the structures also

provides a framework for users to more easily define spatially varying material properties within

the organs and tissues, providing an added level of realism in medical simulations.

2.2 Whole Body Phantoms

Using the above techniques, hundreds of computational human phantoms by different univer-

sities and companies have been developed and used in medical imaging simulations. The review

articles by Xu3 and Kainz et al.2 provide a comprehensive guide to the various models that have

been created over the past 50 years, with phantoms growing in their ability to realistically model

the human anatomy. To achieve the level of realism necessary for VCTs in imaging, modern

computational phantoms are typically constructed as a variation of the BREP method, defining

surfaces or meshes based on the segmentation of 3-D patient imaging data (e.g., MRI and CT).

Figure 3 shows some example whole body phantoms developed by the Rensselaer Polytechnic

Institute (RPI), the University of Florida, the IT’IS Foundation, Duke University and Johns

Hopkins University (JHU) that have been commonly used for imaging research. Details on these

phantoms as well as any others can be obtained in the above review articles.

In the creation of such models, the segmentation of patient data is a time-consuming process.

It can take months to a year to create detailed phantoms as most of the segmentation work is done

manually. As mentioned previously, it is important to model many different types of people for

VCTs so as to represent the population at large. To model the variability in populations, one can

simply deform existing surface or mesh-based phantoms to create new ones. Rigid or nonrigid

transforms can be applied to the surfaces, manipulating the anatomy to match certain anthropo-

metric characteristics, such as height, weight, BMI, or organ mass. An initial phantom can serve

as a springboard to create any number of models representing population statistics. For example,

the University of Florida created a library of 351 computational phantoms by manipulating a

Fig. 3 Example whole-body phantoms developed by (a) RPI, (b) UF/NCI, (c) IT’IS, and (d) the

XCAT series developed by Duke and JHU.
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series of male and female template phantoms.12 To this end, the development of population im-

aging biobanks such as the UK Biobank13 or the German National Cohort14 provides a vital tool

toward the further development of phantom populations constructing model variability from

epidemiologically sound studies involving multiple organ systems.15–17

Image registration methods have also been used to more efficiently create phantom popu-

lations. For this method, easy to discern organs and structures are quickly segmented from target

patient data. An existing detailed computational phantom that best matches the patient character-

istics is then selected. Using image registration, a high-level transform is calculated from the

template phantom to the segmented target. The transform is then used to fill in the unsegmented

anatomy (muscles, blood vessels, and other small details). The XCAT library of adult and pedi-

atric phantoms was created in this manner.18,19

Recent works have focused on deep learning algorithms for automatic multiorgan image

segmentation.20–22 If successful, such algorithms can replace the time-consuming manual meth-

ods previously used in the phantom development process. Patient data may be thoroughly seg-

mented within seconds or minutes and used to define computational phantoms. In this manner,

the deep learning-based segmentation works have shown promising performance toward the

high throughput development of phantom populations.

2.3 Modeling Intraorgan Structures

Earlier versions of computational phantoms included only major organs and structures. Although

sufficient for some applications (e.g., dosimetry studies or low-resolution imaging modalities),

lack of intraorgan structures would considerably limit these phantoms for VCT studies accessing

image quality in higher resolution imaging modalities. Ideally, intraorgan structures should be

segmented from clinical cases, similar to how major organs are incorporated in computational

phantoms. However, it is challenging to segment these small structures due to the limitations of

the current clinical images (e.g., noise, resolution, and contrast) and segmentation algorithms.

Over the years, many mathematical and anatomically informed models have been developed to

incorporate intraorgan heterogeneity in various organs. Specific organs are highlighted below to

illustrate these methods.

For the breasts, it is particularly important to include intraorgan structures as they are mainly

used for high-resolution imaging applications (e.g., mammography and tomosynthesis). In addi-

tion, the breast is a soft tissue organ lacking obvious anatomical landmarks. To address these

challenges, researchers have created two main types of phantoms: procedurally generated and

patient-based.

Procedurally generated phantoms are created from mathematical or statistical principles, such

that the resulting structures resemble the general appearance of anatomy. This approach has three

key advantages: (1) phantoms can be generated at an arbitrary resolution, which is important for

meeting the high-resolution needs for mammography; (2) it is possible to generate infinite num-

bers of independent phantoms with low computational cost; and (3) phantoms can be customized

to provide desired characteristics such as breast size, density, or parenchymal distribution pat-

terns. Several groups have each created phantoms, including those from UPenn,23–25 FDA,26,27

and Patras.28,29 Some examples of these phantoms can be seen in Fig. 4.

Alternatively, patient-based phantoms are derived from human subject images, which for

breast imaging is typically breast MR or dedicated breast CT. Since each phantom recreates

a real human breast, the appearance is inherently realistic, including distributions of parenchyma

that cannot be readily reproduced by procedural techniques. However, this patient-based

approach has some key limitations: (1) each subject yields one phantom, so the number and

diversity of phantoms are limited by finite human subject data, (2) the process of generating

phantoms can be computationally expensive, (3) source data come from medical images, which

have limitations of contrast, resolution, noise, and artifacts and may in turn affect the quality of

the phantom, typically by limiting its resolution. Patient-based phantoms include those from

UMass31 and Duke.32 Given the one-to-one correspondence between subject and phantom, this

approach may not scale up readily for virtual trials that require thousands of cases. To address

this limitation, investigators have created augmented patient-based phantoms using deforma-

tions and morphing,33 addition of procedurally generated details,34 and principal components
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analysis.35,36 Examples of phantoms and simulated mammograms from a principal components

approach are shown in Fig. 5.

For the lungs, it is feasible to segment the lobes and initial branches of the vasculature and

airways from volumetric images (e.g., from CT). To incorporate the remaining vasculature and

airway branches, multiple groups developed physiologically based algorithms that model air-

ways,37–39 vasculature,40 or both together.41,42 These algorithms are volume-filling branching

methods in which the parameters (branching angle, diameters, lengths, branching order, etc.)

are informed by physiological laws (e.g., flow dynamics) and anatomical measurement studies.

Similar to nonparenchyma structures, models of parenchyma structures have been developed

by synthesizing pulmonary lobules and alveolar regions, informed by high-resolution images

of lung specimen and morphometry measurements.43–45 Similar approaches have been imple-

mented to incorporate intraorgan structures for other organs such as the liver,46–48 brain,49–51

heart,52–54 and bones.55–57

Recently, some studies have showed that deep learning approaches, such as generative adver-

sarial network (GAN) models, can synthesize images that have similar visual and statistical

Fig. 5 Principal components analysis used for statistically generated phantoms. Top of each

breast is simulated mammography projection through all slices. Bottom is a single slice from each

phantom.

Fig. 4 Examples of procedurally generated phantoms from UPenn30 (top) and FDA27 (bottom).
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features of a set of training input data.58,59 These techniques can also be utilized for the purpose

of modeling intraorgan heterogeneities within the organs and structures of computational phan-

toms, particularly for the parenchymal regions where organs usually have “textural” appearan-

ces. For example, Fig. 6 shows an example of synthetic intraorgan “textures” added to an XCAT

phantom using a dual-discriminator conditional GAN network trained on 3-D CT images.59 For

the purpose of creating computational phantoms, it would be more effective if the networks are

trained based on higher resolution and higher quality images (e.g., micro-CT pathology images)

than standard medical images (e.g., CT). This is needed so that the synthesized textures, to be

added to the computational phantoms, would be true anatomical textures and not include artifacts

and noise of the particular imaging device and not be limited by the resolution.

2.4 Modeling Disease

A realistic VCT requires representative models of patients with diseased conditions and path-

ologies, especially if the VCT study is targeted on a specific application or task. Over the years,

some diseased models (lesions, cardiac diseases, pulmonary diseases, etc.) have been developed

and incorporated in the computational phantoms.

Similar to the development evolution of computational phantoms, the first generation of

lesion models (oncological, cardiac plaques, kidney stones, etc.) were based on mathematical

forms representing their general shapes.60–63 These lesion models are easy to create and have a

rough representation of an actual lesion. To make these lesions more realistic, researchers have

segmented them from clinical images.64,65 Compared with simple mathematical models, these

segmented lesions have a more realistic rendition of the lesion. However, current scanners are not

able to preserve all of the morphological or textural attributes of the diseases (e.g., lesion spicules

or lesion texture). Therefore, the segmented lesions have been enhanced to include those high

spatial frequency contents either using higher resolution images (e.g., digital pathology) or with

assumptions informed by morphometry studies.66,67 Figure 7 shows examples of simulated

oncological lesions using these methodologies. Lesion models have been further enhanced by

creating a model by incorporating cell-level biological parameters and physiologically realistic

growth mechanisms.68 This lesion model determines the most probable approximation to the

complete time evolution of a solid lesion based on known results from imaging and biology

measurements.

In addition to the presentation of lesions or other disease-related abnormalities within the

body, disease also manifests itself as an alteration in the anatomy or physiology of the organs.

To model these conditions, phantoms can be created by segmenting datasets from a specific

patient cohort. Alternatively, these abnormalities can be generated by altering phantoms that

are originally based on healthy datasets. To simulate changes due to disease, computational

phantoms can be deformed69 in a fashion similar to that described in Sec. 2.2. For example,

organs can be deformed to accommodate tumors in the lesion-local environment or structures

can grow or shrink in size.70,71Models for physiological functions as presented below can also be

altered to simulate abnormalities within them.

Fig. 6 (a) An XCAT phantom lacking intraorgan structures. (b) Same phantom with inserted

synthetic textures created by deep learning algorithms.
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2.5 Modeling Functions and Deformations

In addition to human anatomy and pathologies, it is also important to model physiological func-

tions (motions, blood flow, and perfusion) and their variations as these factors can also affect

medical imaging technologies and results. Motions such as the cardiac, respiratory, and patient

voluntary motions are an important factor in medical imaging as they can cause artifacts in the

resulting images that can lead to the misdiagnosis of patients. Motion is also an important con-

sideration in radiation therapy. Tumors must be optimally targeted, sparing healthy tissues, in the

context of a changing anatomy due to patient motion.

To simulate patient voluntary and involuntary motions for research, transformations (rigid

and nonrigid) can be applied to the phantom’s anatomical structures to simulate motion over

time. For surface-based models,7,72 the transformations are applied to the surface control or ver-

tex points defining the objects. For voxel-based phantoms, the transformations are applied to the

individual voxels and interpolation is used to generate subsequent images.73 Transformations

defining motion are typically based on patient imaging data, such as 4-D CT or MRI. The ana-

tomical structures are deformed to follow what is observed in patient images. Figure 8 shows

examples of computational phantoms modeling the cardiac and respiratory motions (RMs).

Motions can vary from individual to individual, vary in health and disease, and can even vary

within the same individual (varying levels of breathing for example). To simulate variations in a

given motion, parameters can be setup to alter the deformations of a given phantom’s anatomical

objects. Such alterations can be based upon the analysis of several sets of patient motion data.74

Finite-element techniques75,76 are also being investigated to create physiologically based models

for patient motions that can be altered in a physiologically informed way to realistically simulate

normal and abnormal variations in individuals.

Another physiological factor that can affect medical imaging is blood flow and, therefore,

contrast perfusion within the body. Computational phantoms provide anatomical vessel models

with which to simulate blood flow77 and organ compartments to simulate contrast perfusion.78

Fig. 8 (a) Cardiac motion modeled in the XCAT phantom7 based on tagged MRI data. (b) RM

modeled in the VIP-man72 based on 4D CT data.

Fig. 7 Some examples of simulated lesions using different methodologies. Images adapted from

Ref. 64–67.
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Contrast perfusion is an important determinant of image quality as well as dose in imaging

applications.79 For instance, over 60% of CT images are acquired with a contrast agent. Depending

on patient attributes, each patient anatomy and physiology can produce different dynamics in the

distribution and perfusion of the contrast agent throughout the body as a function of time, which can

subsequently affect imaging results. Machine learning methods are currently being applied to

develop robust models of contrast perfusion in patients as a function of patient attributes.80

Beyond physiological functions, computational phantoms must also have the ability to be

deformed to simulate the different positions of patients for various imaging procedures.

Depending on the procedure, the arms may need to be overhead or at the sides, the legs to

be straight or bent at a certain angle, the head to be tilted, etc. Various methods have been devel-

oped to position computational phantoms.81–83 In addition to positioning, certain breast imaging

modalities, such as mammography and tomosynthesis, also require the patient to undergo vary-

ing degrees of breast compression. This type of deformation is typically simulated within a

computational phantom using finite-element methods.84

3 Imaging Simulators

With the trials taking place in silico, VCTs require simulators of the imaging system to “virtually

image” the virtual subjects. Imaging simulators can be utilized to systematically evaluate and

optimize the performance of the current and emerging technologies, including both hardware

and processing implementations. Simulators are also beneficial for optimization of new tech-

nologies prior to the production phase, making the design process more cost-effective and rapid.

For effective VCTs, imaging simulators should include rapid and low-cost generation of

simulated images as well as the ability to produce realistic images close to those obtained from

real scanners. With recent advances in computer technologies, simulators are able to image large

number of cases rapidly and cost-effectively. The realism requirement can be met by accurate

and detailed modeling of the scanner, in addition to having realistic computational phantoms.

In general, the development of an imaging simulator consists of several components. They

include: (a) modeling the physical and geometrical components of the imaging system, (b) the

physics of the imaging process (models of scanner–object interactions) that generates the data,

and in some imaging modalities, (c) additional image reconstruction and/or image processing

applied to form the final images.

Over the years, significant progress has been made in accurate models of the imaging systems

and formation processes. They include simulators for various imaging modalities, including

x-ray-based imaging (e.g., radiography, mammography, fluoroscopy tomosynthesis, CT), posi-

tron emission tomography (PET), single-photon emission computed tomography (SPECT),

MRI, and ultrasound.

3.1 X-Ray-Based Modalities

The system components needed for x-ray-based simulators are the x-ray source physics, detec-

tor physics, and acquisition geometry. For the x-ray source, models of the polyenergetic

spectrum85–100 and focal spot shape and size101–104 are essential. Detector models require esti-

mation of the detector response (quantum efficiency) to polyenergetic photons, quantum and

electronic noise, crosstalk between adjacent pixels, afterglow, antiscatter grid, and pulse-pile

up.105–114 These can be modeled either using experimental measurements or MC simulations,

accounting for the geometry and materials of the detector. Scanner-specific and accurate models

of these components are necessary to achieve simulated images with quality that is close to the

ones obtained from actual scanners. Depending on the modality and conditions, however, some

of these components have more effects on the realism of the simulations. For example, the

effects of crosstalk in smaller detectors (e.g., radiography and mammography) are more promi-

nent compared with modalities with larger detector sizes (e.g., CT), or in low-dose simulations,

the accuracy of electronic noise model is more critical than high-dose simulations.

To generate the simulated images, the acquisition geometry, system components, and com-

putational phantoms are input to an x-ray interaction simulation framework. For simulating these

interactions, the common, trusted approaches are MC methods. These methods model the
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transport of individual x-ray photons through an object, modeling several orders of x-ray-tissue

interactions (primary, secondary, and higher). A variety of MC codes have been developed for

simulating images and estimating organ doses in radiography,115–118 mammography,119–125 tomo-

synthesis,126–129 fluoroscopy,130–132 and CT.133–137 Although accurate, MC could be computation-

ally too slow for some applications like tomosynthesis or CT in which tens or thousands of

projections are needed for an acquisition.

To overcome this bottleneck, researchers have developed ray-tracing138–140 algorithms in

which only the analytical approximation of x-ray-tissues (primary signals) is estimated using

the Beer–Lambert law. To include the scatter signal, hybrid approaches in which primary signal

(using ray-tracing) is combined with scatter signal using either analytical scatter estimations or

MC methods with limited number of histories have been developed.141–143 The other limitation

with the ray-tracing methods is that they do not account for the finite size of the focal spot and

detector pixels, making the simulated images undersampled and unrealistically sharp. This can

be remedied by a subsampling strategy in which each source-to-detector ray is replaced by multi-

ple rays sampling the area of the focal spot and detector pixel.

After simulating the x-ray interactions, raw images need appropriate processing and correc-

tions depending on the modality, scanner model, and imaging task. These include scatter cor-

rections, water calibration, beam hardening corrections, histogram corrections, and image

reconstructions. Discussions of these methods are beyond the scope of this essay. In this section

and the following, we focus on the techniques used to simulate the acquisition of the raw imaging

data. Figure 9 shows examples of scanner-specific simulated images of mammography, tomo-

synthesis, and CT using state-of-the-art x-ray-based simulators.

Fig. 9 Simulated full-field digital mammography (top left), digital breast tomosynthesis (top right),26

and CT images141 all with embedded abnormalities (microcalcification cluster on the top and

spiculated lesion on the bottom).
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Although the promise and capabilities of x-ray simulators are evident, they can be further

improved in terms of scanner-specificity and compatibility with more advanced phantoms.

To date, limited scanner models have been developed and validated.141–143 For comprehensive

virtual trials, models of more diverse scanners are needed. Further, as computational phantoms

advance, they become more detailed (higher resolution) with more realistic capabilities (e.g.,

motion and perfusion models). Developers need to alter the simulators to be compatible with

these additional phantom functionalities.

3.2 PET and SPECT

Simulation of the projection data in PET and SPECT requires an accurate model of the photon

generation and detection processes, i.e., those related to the imaging system and the physics.144–146

A typical PET imaging system consists of a detector system surrounding the patient, whereas a

typical SPECT imaging system consists of a detector additionally fitted with a collimator.

The imaging characteristics of the systems can be modeled by their respective detector response

functions and the response function of the collimator in SPECT. The physics of the image

formation process can be characterized by the effects of photon attenuation and scatter photons

that emit from the radioactivity source inside the patient and traverse through the body and the

collimator (for SPECT) before reaching the detector and registering as detected signals or counts.

The most accurate means to simulate PET or SPECT image formation is the use of photon

transport MC simulation methods.147,148 They allow accurate simulation of the photon attenu-

ation and scattering through patient’s body149,150 as well as the response of the collimator

(SPECT) and the radiation detector of the imaging systems.151

There is a wide selection of MC simulation software that is available for various PET and

SPECT imaging applications. For example, the relatively small simulation of imaging nuclear

devices MC software package152 is designed for a standard clinical SPECT system with simple

imaging configurations and applications. It is easy to use with a relatively fast processing time.

The simulation system for emission tomography MC software package153 is designed for both

PET and SPECT applications and allows more complicated imaging configuration and imaging

applications. It is also the most efficient (by factors of 10× to 100×) photon tracking system

since it is customized for PET and SPECT scanner simulations, although it has less flexibility

than more general purpose systems described next. The large MCNP11 and Geant4 MC software

packages,154 which were originally designed for high-energy physics and nuclear energy

research, have also been applied to PET and SPECT simulation. Although they provide more

accurate and complete modeling of the transport of all radiations, they are difficult and cum-

bersome to use due to their general purpose application and relatively large software pack-

age size.

The Geant4 application for emission tomography (GATE) MC simulation toolkit for PETand

SPECT155 was developed by the OpenGATE collaboration. It consists of a user application layer

with an extensible set of C++-based tools that wrap around the Geant4 MC simulation toolset.

The user application layer allows modeling of complex PET and SPECT system designs with

various detector geometries and a large number of individual detector units that are difficult

or impossible to implement using the other MC software packages. The GATE software has

become a popular MC simulation toolkit for novel PET and SPECT image systems.

A disadvantage of photon-transport tracking simulations is the required computation time.

An alternative approach, as described above for x-ray systems, is the use of ray-tracing methods

with very similar trade-offs in bias versus computation time. However, the large advantage for

VCTs is the ability to rapidly generate many (tens, hundreds, or thousands) statistically inde-

pendent but identically distributed realizations. The most well-established of these methods is

the analytic simulator (ASIM).156,157 This simulator has been successfully used in several VCTs

of PET imaging evaluation as described below.

Figure 10 shows examples of realistic simulated PETand SPECT images generated from differ-

ent human phantoms using accurate MC photon transport and ray tracing models. The images are

presented with similar clinical images from patient and phantom studies for comparison.

For SPECTand PET simulation, there remain challenges that require continuing research and

development efforts. As with CT, simulators need to adjust to work with more complicated and
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detailed phantoms and to be able to handle populations of models. MC simulations of high-

resolution phantoms can be time intensive. To find an optimal balance between accuracy and

simulation efficiency, hybrid modeling of the imaging processes that combine analytical and

MC simulation methods158 as well as integrating different MC packages159 is being investigated.

In addition, there are substantial technology changes with time-of-flight (TOF) imaging and

changes in the photon detection and processing hardware systems.

3.3 Magnetic Resonance Imaging

Several simulators have been developed for MRI since the 1980s when the foundations of MRI

imaging were laid.160–173 The fundamental component of anyMRI simulator is an efficient solver

of the generalized Bloch–Torrey equation.174–176 Several solvers have been proposed in the

literature. Most solvers operate on regular169,172,177,178 (e.g., Cartesian grids) or irregular179,180

(e.g., tetrahedral grids) grids. The first approach is typical of finite difference solvers for which

there are efficient numerical schemes. This is the most common strategy presented in the liter-

ature. Tetrahedral elements are more suitable for irregular geometries, and some authors have

proposed finite-element discretization schemes based on tetrahedra. Some authors have focused

on developing simulated MRI data with emphasis in accurately modeling the geometry while

achieving close-form expressions using polyhedral shapes.181,182 These models, however, as-

sume simplified models of the MR physics, viz., piecewise constant image intensities.

The first general purpose MRI simulators were SIMRI,161 mainly developed for medical

training and subsequently extended to produce 3-D images on an IBM Blue Gene,160 and

Jülich Extensible MRI Simulator (JEMRIS),169 offering a comprehensive, open-source solution

for complex pulse sequence design on dedicated multicore CPU clusters. These systems were

targeted to technically Savvy MRI researchers and usually required code modification to adapt

simulations to new problems.

A number of MRI simulators have been developed since the late 2000s, mostly focused on

2-D MRI and Bloch equations. Cao et al.,162 for instance, utilized a Bloch-based 2-D MRI solver

to estimate signal, noise, and specific absorption ranges when designing MRI systems. They

demonstrated application of their solver to various coil types and with parallel transmission and

reception pulse sequences/hardware. More recent developments in graphical processing units

(GPUs) have triggered efficient numerical implementations and a focus toward cloud-based

and a user-friendly simulation environment. For instance, MRISIMUL by Xanthis and Aletras

is a solver of the Bloch equations 183 based on MATLAB and CUDA-C, exploiting GPUs.

MRISIMUL was developed in cardiac MRI and includes extensions to account for cardiac, res-

piratory, and blood flow motion.171 However, this remains a Bloch solver useful for producing

realistic cine MRI but not to incorporate MR diffusion terms.

Fig. 10 Comparison of simulated SPECT and PET images with real clinical images. (a) Com-

parison of transaxial myocardial perfusion SPECT images. (b) Comparable coronal 11C-raclopride

PET images of the brain. (c) Transverse orthogonal sections through a 20-cm diameter cylindrical

phantom with hot spheres supported by plastic rods. Measured data (left) are from a Siemens/CTI

ECAT HR+ scanner and simulated data are the same acquisition generated using the ASIM.
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Recent work by Xanthis and Aletras184 repackaged MRISIMUL as a simulation as a service

system on a GPU cloud, thus providing the required scalability for large-scale in silico trials.

BlochSolver by Kose et al. provides an efficient implementation of the Bloch–Torrey equation

for Cartesian177 and non-Cartesian185 3-D MRI readouts with acceleration factors of 14× over

CPU-based implementations for the same number of processing units. Compared with physical

experiments, the authors could reproduce in their simulations the effects of the static magnetic

field inhomogeneity, radiofrequency field inhomogeneity, gradient field nonlinearity, and fast

repetition times. The possibility of simulating non-Cartesian acquisitions paves the way for sim-

ulating advanced MRI sequences like ultrafast imaging, zero echo-time imaging, functional

MRI, real-time imaging, and MR fingerprinting. Kose et al.177 demonstrated that it is possible

to simulate an acquisition with 256 × 256 × 256 matrix acquisitions in a time comparable to a

real acquisition. Xanthis et al. and Kose et al. both focused on solvers of the Bloch equation,

hence disregarding diffusion and bulk flow effects. Beltrachini et al.179 developed a parametric

finite-element solver of the generalized Bloch–Torrey equations with application, for instance, in

simulating intravoxel incoherent motion and diffusion-weighted MR imaging (DWI). Recently,

other similar FE solvers have emerged,180,186 some of which are open source and available on

the cloud.187

Simulators contributed greatly to the development of MRI understanding, optimization, and

assessment albeit important limitations remain. The major limitation of previous MRI simulators

is the simple representation for biological tissue. All previous simulators assume that all protons

belong to a single compartment. However, tissue biology seems to highlight that a better model

is that of multiple exchanging proton pools. Multipool modeling becomes critical when trying

to simulate advanced MRI techniques with the purpose of accurately characterizing tissue

composition, microstructure, or microenvironment. To this effect, Liu et al.178 presented a gen-

eralized multipool exchange tissue model; examples of these techniques are quantitative mag-

netization transfer, quantitative T1 and T2 relaxometry, chemical exchange saturation transfer,

etc. Liu et al. however noted that the same fundamental problem affects even basic MRI sequen-

ces. In relationship to diffusion-weighed MRI, recent works employ MC188,189 and other

techniques.190 These methods are impractical for tissue models with realistic microstructural

complexity, needing many hours (or even days) of processing for single simulations.191 This

has hindered development of more detailed microstructural models and optimization of MR

pulse sequences. Existing frameworks are not flexible enough to deal with arbitrary meshes due

to the difficulties imposed by the periodical boundary conditions.

Several specialized phantoms or simulators that complement the Bloch–Torrey equations,

enabling simulation or calibration of advanced MR imaging techniques, have been proposed

in the literature. For instance, Klepaczko et al.192 and Fortin et al.193 developed MRI simulators

for magnetic resonance angiography (MRA) of the cerebral circulation. TOF MRA data simu-

lated by Klepaczko et al.194 were used to generate ground-truth data for evaluating vascular

segmentation algorithms. Fortin et al.193 extend the JEMRIS simulator to be able to produce

flow-related MRA images for the main three techniques, viz., TOF MRA, phase contrast MRA,

and contrast enhanced MRA. Pannetier et al.195 developed a simulator to predict dynamic con-

trast enhancement in MRI with bolus tracking. Cheng et al.196 developed a hardware simulator

to generate reference functional blood oxygen level-dependent (BOLD) imaging data using a

quadrature digital RF generator. Drobniak et al.197 offered a software simulator for BOLD fMRI

signal using the Bloch equation and accounting for field inhomogeneity induced by magnetic

susceptibility variations (via Maxwell’s equations), rigid-body motion, chemical shift, RF field

inhomogeneity, Eddy currents, and noise. Walker et al.198 developed a simulator for magnetic

resonance spectroscopy (MRS) of hyperpolarized agents, which allows real-time detection of

metabolism in vivo. The MRS simulator is based on the Bloch–McConnell equations coupled

to a pharmacokinetic model of tissue perfusion of hyperpolarized substrates.

Realistic 3-D MRI simulations of computational phantoms with complex heterogeneous

tissue models can be extremely computationally expensive. To handle such a challenge, tech-

niques, such as parallelized computing and GPU programming, are being studied to work

with such phantoms so as to produce simulations more efficiently under a reduced computa-

tional load.
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3.4 Ultrasound

The primary goal of an ultrasound simulation software is to mimic the physical processes that

govern imaging with a transducer, including interactions of the acoustic field with the target

medium. The first step in the simulation is modeling the response of the transducer materials

to electrical excitation and the resulting properties of the acoustic field. This step can be done

using finite-element analysis tools [e.g., PzFlex (Onscale, California)], particularly to compute

the physical behavior of an array and its corresponding acoustic response, for a wide variety of

materials and transducer designs including piezoelectric and capacitive micromachined ultra-

sonic transducer array technologies. Other tools have been developed to design the specific

device characteristics, such as PiezoCAD (Sonic Concepts, Inc., Woodinville, Washington,) for

piezoelectric stacks and PRAP (TASI Technical Software Inc., Kingston, Ontario, Canada) for

the complex impedance of various piezoelectric materials. Imaging simulations often model

arbitrary transducer geometries using small elements with simplified physical characterizations

or include precomputed geometries.

The spatiotemporal acoustic field produced by the transducer is then input into a physics-

based model of propagation to describe how the field evolves through time. The transmitted field

propagates away from the transducer governed by an acoustic wave equation that relates the

evolution of acoustic pressure through space and time to material properties. The simulated field

can then be used to study the spatial distribution of energy with respect to a target.

Acoustic field simulation tools are divided into linear and nonlinear methods. One of the

standard tools for simulating the linear wave equation is field II,199 which uses the spatial

impulse response model. The transducer is divided into sufficiently small elements such that

the field points are in the “far-field,” where approximations can be made to simplify the numeri-

cal computation of the response. Temporal responses at a given point are then given by the

superposition of the responses of the individual elements and can be quickly calculated.

Because propagation is not directly modeled, field II199 can only simulate homogeneous media

although it can apply frequency-dependent attenuation. Another tool for linear simulation is

DELFI,200 which takes a similar approach to Field II but is optimized for calculating the spatial

response at a single point in time. FOCUS201 is another linear tool that provides high accuracy at

lower temporal sampling rates using a time-space decomposition approach with the fast nearfield

method for certain transducer geometries.

Nonlinear simulation methods include additional terms in the wave equation to model non-

linear propagation as well as other effects such as absorption and diffraction. The Khokhlov–

Zabolotskaya–Kuznetsov (KZK) equation provides a numerical simplification of the Westervelt

equation through the assumption of directionality of the transmitted beam and is used by many of

the available toolboxes. The KZK equation can be solved both in the time domain (e.g., Texas

code202) and frequency domain (e.g., Bergen code203). To remove the paraxial assumption made

in the KZK equation, a simulation software Abersim204 was developed. This simulator solves the

equation using the angular spectrum method. The Texas, Bergen, and Abersim all assume propa-

gation through homogeneous media. A more recent ultrasound simulator, K-wave,205 uses pseu-

dospectral methods to efficiently solve the nonlinear time domain equation for propagation

through heterogeneous media (sound speed, density, attenuation, and nonlinearity). The solution

of this full-wave equation also includes the effects of multiple scattering in the wave field, sim-

ulating reverberation acoustic clutter.

Many models not only allow for forward propagation of a wave but also the reflection and/or

scattering of the wave. Backward propagating waves return to the transducer, undergoing trans-

duction from an acoustic signal to an electrical one (the complementary process of the transducer

simulation described previously). An imaging simulation outputs the recorded electrical sig-

nal(s) from this process for further signal processing, just as would be required from a physical

ultrasound scanner. For example, Field II199 computes the response to individual scatterers of

selected amplitude in the field just as it does the transmit field, linearly combining the transmit

and receive impulse response. CREANUIS206 is designed like Field II to provide the response to

individual scatterers except using both the fundamental and harmonic field (computed in the

frequency domain), including heterogeneity in the nonlinear coefficient. K-wave205 can be used

for imaging simulation by recording the spatial field signals at the array surface that have been
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multiply scattered and nonlinearly propagated through the heterogeneous media, making it use-

ful for simulating realistic human body imaging. Figure 11 shows a real image of a breast as well

as a simulated image created by solving a second-order linear wave equation with heterogenous

media, qualitatively demonstrating the visual realism of the simulated images.207,208 The sim-

ulation creates a realistic scattering field from the complex numerical breast phantom.

Several other tools exist to model various acoustic interactions with specific targets. For

example, BubbleSim209 provides the nonlinear response of ultrasound contrast agents to ultra-

sound excitation. Finite-element method tools from Palmeri et al.210 are available to model the

mechanical response of tissue to radiation force, as calculated using the acoustic field simulation

tools above. The FDA provides a high-intensity therapeutic ultrasound simulation software211

that integrates the bioheat transfer equation with continuous wave nonlinear simulation.

Ultrasound simulators still face several challenges. Acoustic scattering depends on subreso-

lution features, so most simulations are based solely on relative echogenicity or bulk material

properties. It is, therefore, common to approximate using multiple realizations of the scatterer

position and/or scattering strength, increasing computational cost. A particular simulation tool

may limit the complexity of the targets to be simulated, such as describing tissue as either a

collection of discrete points or on a fixed property grid. Multiphysics simulations are increas-

ingly important, combining effects such as transducer simulation, acoustic propagation, scatter-

ing, and target response (thermal, motion, etc.). These tools are still fairly rudimentary, making

simplifications such as using the output of an acoustic simulation as the input to a finite-element

tissue simulation to model shear wave generation210 or the interpolation of a computational fluid

dynamics model to update scatterer positions in a flow imaging simulation.212

4 Interpretation Models

Medical images are valuable to the extent they can be used for their intended purposes: detecting

an abnormality, qualifying a disease, or assessing its progress or remission. As an analogue to

clinical imaging trials, virtual imaging trials in medical imaging should likewise provide a

mechanism to render a judgment (or a set of judgments) about a virtual imaging case, a function

that we characterize here as “interpretation.” Without such a provision, VCT cannot deliver its

promised utility to provide answers to image-based clinical or technological questions.

Image interpretation is a process by which an imaging case (or a combination of cases from

the same patient) is understood in the context of the clinical task at hand. In the real domain, this

interpretation is primarily performed by an expert imaging physician (usually a radiologist).

In the virtual domain, the physician is replaced by a virtual observer, with its performance

aspired to match that of a real human expert, just like virtual patients and virtual imaging systems

aim to emulate their corresponding real counterparts as closely as possible.

Observer models refer to a class of mathematical constructs that aim to emulate diagnostic

tasks performed by human observers.213–236 The term “model” here is a substitute for the term

“virtual” in the VCT framework. These models are grounded on the definition of task-based

image quality, i.e., the effectiveness in which an image can be used for its intended task,237 with

Fig. 11 Real and simulated ultrasound images of breast. The simulations were done by solving

a second-order linear wave equation.
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the premise to predict human observers’ (e.g., radiologists) performance for a specific task. In

their most common implementation, they provide binary decisions (e.g., signal present/signal

absent, normal/abnormal) across an ensemble of images for which the ground truth is known.

The most common observer model paradigm is the signal-known-exactly/location-known-

exactly paradigm in which the observer “knows” the size, shape, contrast, and location of the

signal to be detected. Given an image, the observer is tasked to decide if the signal is present or

not. More advanced (and perhaps more realistic) paradigms include signal-known-statistically,

location-known statistically, and various combinations of the above.238–241 There have also been

formulations of the observer models incorporating visual search,242–244 visual discrimina-

tion,245,246 nonbinary tasks,247,248 and estimation249 that can be considered depending on the

goals of the VCT.

Observer models have been deployed in numerous studies across a variety of clinical imaging

tasks.215,217,227,230,231,233,250–261 Traditionally, there have been two general approaches to observer

model estimation using spatial or frequency domain computations. In the spatial domain, a large

ensemble of image data is used to estimate task performance directly from the signal-present and

signal-absent images.240,262 This approach is well-suited to virtual trials in which a vast number

of images with known ground truth can be synthesized under clinically relevant conditions.

Frequency domain computation is more practical when a smaller number of images are available,

enabling practical comparison of image quality across patients, abnormalities, and imaging sys-

tems, further expandable to cross-system and cross-modality comparisons.227,263,264 They, how-

ever, are restricted to conditions of local stationarity and small-signal linearity, conditions that

can be met in many imaging applications.106,227,265,266 Samei and Krupinski248 provided a com-

prehensive review of observer models.

Most observer models have primarily been oriented toward the detection of abnormalities.

Image interpretation, however, often goes beyond detection to the tasks of characterization. In

characterization, images are quantified in terms of features that are deemed most relevant to the

diagnostic process. One form of this characterization is through radiomics and image quanti-

fications. Radiomics or image quantification in general is not a subsection of a VCT, rather it

is one way of quantifying images that can be and has been applied to virtual data. Readers are

encouraged to read further on radiomics through Refs. 267–269.

Although most image interpretations today are based on human observers, the process is

increasingly positioned to be aided and even replaced (currently in niche applications) by com-

putational algorithms. This is primarily due to the increasing power of computers and the utility

of machine learning in pattern recognition and quantification.270–272 As there is a growing

progress toward AI interpretations of images, to be effective and relevant, VCTs should adapt

and have provisions for virtual images to be interpreted by these emerging “AI observers.” In

fact, the field of computer-aided diagnosis (which includes computer-aided detection, machine

learning, and AI) and image perception (which includes model observers) have always shared

many of the same methodologies going back several decades.224,273 That work has continued to

coalesce in recent years with “deep learning model observers” that report better agreement with

or outperform human observers.274–277

5 VCT Applications

The developments in virtual humans, virtual scanners, and virtual interpretations, as summarized

in previous sections, have enabled medical imaging researchers to conduct clinical trials virtually

to explore with various applications. In the following, we present examples of VCT studies that

demonstrate their potentials in substituting clinical trial studies in various applications across

imaging modalities.

5.1 Breast Imaging

One of the earliest applications of VCTs was in the area of breast imaging for investigations

of image quality, dosimetry, optimization, and technology evaluation.30,213,278–289 Recent VCTs

have attempted to predict the ranking and the magnitude of improvement of breast imaging

technologies as seen by human observers.26,278,290–292
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In one example, VCTs were used in the Optimam project to evaluate the smallest detectable

diameter of various lesions, showing that digital breast tomosynthesis (DBT) is superior to dig-

ital mammography (DM) for masses,290 while the converse is true for calcifications.291

Subsequent work292 confirmed a significant difference between DM and DBT in mass detection

but showed no significant difference between narrow and wide angle DBT although a trend

toward superior performance for wide angle DBTwas noted. This work also showed that detect-

ability was affected by the radiation dose, with lower detectability (larger diameters) at lower

radiation doses. The results, reported in terms of the smallest lesion diameter, yielded rankings

concordant with clinical trials of DM and DBT. This work showed that VCTs could replicate the

ranking of modalities in terms of lesion type and radiation dose.

To predict the degree of improvement afforded by new technologies by radiologists accu-

rately, VCTs need to be conducted in terms of metrics used in clinical trials, such as receiving

operating characteristic (ROC) curve and the area under the curve (AUC). Researchers at the US

Food and Drug Administration (FDA) compared the performance of DBT and DM with predi-

cate premarket approval data for masses and calcifications based on differences in AUC.26 In

further work, Bakic et al.213 compared the performance of DBT and DM in the detection of

calcifications and masses, simulating the Hologic Selenia Dimensions under clinically realistic

conditions. The results of the VCT were compared with data reported by Rafferty et al.293 To

compare differences in AUC, the VCT performance was calibrated to the predicted DM results;

the DBT results were calculated for matching conditions. The results of the VCT closely match

those of the clinical trial, with the VCT predicting the AUC for masses and calcifications to

within 4% (Table 1). Note that while the results match the difference in AUC, they do not predict

the shape of the ROC curves accurately (Fig. 12). ROC shape is determined by the admixture of

lesion complexity. In Fig. 12, the slope of the ROC curve is greater near the origin for the clinical

results than for the VCT; this implies that the clinical cases varied in difficulty, while the VCT

cases were more homogeneous. Thus while VCTs have now been shown to predict human per-

formance in terms of changes in AUC and d
0, future work is still needed to improve VCT

realism.

Table 1 Detectability of calcifications and masses in terms of AUC for the Hologic Selenia

Dimensions (adapted from Ref. 213).

Calcifications Masses

DM (AUCp) DBT (AUCs) AUCs − AUCp DM (AUCp) DBT (AUCs) AUCs − AUCp

VCT 0.802 0.799 −0.003 0.794 0.900 0.106

Rafferty 0.811 0.836 0.025 0.825 0.921 0.096

Fig. 12 ROC curves for the detection of microcalcifications and masses in DM and DBT, compar-

ing clinical trial and VCT results.
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The above presents just some representative examples for the use of VCTs in breast imaging

research. Many additional studies have been conducted using breast imaging VCT pipelines and

pipeline components, including the assessment of image processing, image registration, imaging

device design, and optimization.30,213,278–289

5.2 CT Imaging

In CT imaging, a broad range of VCT studies have been conducted with more focus on dosimetry

and image quality assessments. With CT being the single largest source of medical radiation

exposure,294 reducing the dose to patients without sacrificing image quality is desired. Dose

can be studied using VCTs in which computational phantoms are “imaged” using MC-based

CT simulators. Studies of this nature cannot be performed using live subjects due to ethical

concerns.

Organ doses have been estimated under various imaging protocols across virtual populations

of adults,295–297 pediatrics,296,298,299 and pregnant patients.300,301 In addition, these studies inves-

tigated the relationship between the estimated organ doses and CT parameters and patient attrib-

utes. These dosimetry studies showed an exponential relationship between the organ doses (as

well as effective dose) and body diameter.298,299 This relationship was found to be stronger for the

organs inside the scan coverage.295 Based on these studies, a smart phone application295,302 was

developed to estimate organ doses given the patient attribute and the imaging protocols. Further,

Zhang et al. investigated the uncertainties in organ dose estimations for four computational phan-

toms with matched organ mass, body weight, and height. Results showed that variation in organ

locations and anatomy, as well as dose approximation, can result in large differences in the esti-

mations, especially for partially irradiated organs.303

Another VCT study investigated the dose reduction to breast while using an organ-based

tube current modulation (TCM) and a breast-positioning technique. TCM was set up to reduce

the current within a 120 deg anterior zone. The breasts in the computational phantoms were

morphed to model a support brassiere, constraining the majority of the organ to be inside the

120 deg anterior zone. The study showed that compared with angular TCM, the combination of

organ-based TCM and the breast positioning technique reduced the dose by 38.6� 8.1%.

In a recent VCT study, Sahbaee et al.304 investigated the effects of an iodinated contrast

agent on organ dosimetry. The study incorporated a contrast material propagation model in

a library of computational phantoms (Sec. 2.5). Organ doses were estimated at different injec-

tion times. Results showed that dose increased due to the presence of iodine, suggesting the

need for considering both image quality and patient dose while optimizing contrast-enhanced

CT protocols.

Several groups have utilized VCTs to evaluate their novel CT image reconstruction

algorithms.305–307 Abadi et al.141,308 characterized the noise texture across filtered back projection

and iterative reconstruction algorithms. In this study, an XCAT phantom41,55 was imaged 50

times using a validated CT simulator, setup to mimic the parameters and settings of a specific

scanner model (Siemens Definition Flash). The simulated images were reconstructed with both

filtered backprojection and iterative reconstruction algorithms using a commercial software. The

results showed nonstationarity of noise texture in iterative reconstructions and spatial depend-

ence of the peak frequencies in the noise power spectra. The images with iterative reconstruction

had lower noise in general but higher noise in the high spatial frequency (edges) regions.

5.3 Nuclear Imaging

In nuclear imaging, VCT studies have been performed to study the effects of anatomical param-

eters, PET309–311 and SPECT312,313 image reconstruction methods, and acquisition energy win-

dows on SPECT image quality, and the ability of observers to detect myocardial perfusion (MP)

defects in MP SPECT.314–316 The results from VCT studies have propelled the clinical imple-

mentation of new quantitative image reconstruction methods and acquisition protocols that are

designed to compensate for image degrading factors to improve detection of defects or lesions

in nuclear imaging, leading to improved clinical diagnosis and improved statistical power for

clinical trials.317–320
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Recently, VCT studies have played an important role in the understanding of the blurring

effects of RM on static 3-D image quality and in the evaluation and development of 4-D image

reconstruction methods that reduce RM blurring and improve image quality in both SPECT and

PET.321,322 Also they have been used in the development of a new generation of 4-D image

reconstruction methods that include additional compensation of cardiac motion for significant

improvement in 4-D cardiac-gated MP SPECTand PET images in terms of reduced RM blur and

lower noise levels in the 4-D cardiac-gate MP SPECT and PET images.323 Similar VCT studies

have also been done to evaluate motion-compensated reconstruction algorithms in the context of

head motions and PET brain imaging.324

VCTs have also contributed significantly to the research and development of radiopharma-

ceuticals used in diagnostic nuclear medicine and recently in targeted radionuclide therapy or

radioimmunotherapy. Using more realistic human phantoms and combining them with biodis-

tribution data of a given radiopharmaceutical, VCT studies have provided more accurate esti-

mates of average radiation dose to different organs of humans of different sexes, ages, and body

builds.325,326 For diagnostic imaging purposes, the results are useful in setting guidelines for the

maximum allowable injected dose for the best possible image quality while protecting patients

from the harmful effects of radiation, especially to critical organs that are most sensitivity to

radiation. Accurate radiation dosimetry estimation of the radiopharmaceutical to different organs

and cancer tissue is also important in targeted radionuclide therapy. For individualized treatment

planning and precision medicine, accurate radiation dosimetry estimation before treatment is

important in determining the maximum possible injected dose for the individual patient,327,328

especially children and newborns,329 and after treatment for predicting treatment success.

5.4 MRI Imaging

Modeling and simulation of MR imaging physics is a rich and mature field as shown in Sec. 3.3.

Applications of these simulation techniques to VCT, however, are confined to relatively few

areas. A key application is breast imaging in which VCTs addressed image quality, dosimetry,

optimization, and technology evaluation studies. Realistic breast models were developed by

Elangovan et al.285 for these purposes.

Other virtual studies in MRI have focused on brain applications. In the studies by Kwan330

and Aubert-Broche,331 they developed a simulator to quantitatively evaluate image analysis

methods in brain MRI under different imaging conditions by varying scan parameters. Such

simulations allow for the testing of different methods with complete user control over the im-

aging parameters and with the known ground truth offered by the computational phantoms.

Studies have also investigated 4-D MRI imaging techniques and their applicability to radi-

ation therapy.332–334 For example, Lui et al.334 investigated the feasibility of a 4-D diffusion-

weighted MR imaging (4D-DWI) technique for imaging RM for radiation therapy applications.

In evaluating their technique, the authors utilized the 4-D XCAT computational phantom setup to

include a pancreatic tumor and to simulate different RMs. The tumor motion trajectories from the

simulated images were extracted and compared with the known RM from the phantoms.

Through the simulations and additional patient studies, it was shown that 4D-DWI can lead

to more accurate RM measurement, which can improve the visualization and delineation of

cancer tumors for radiotherapy.

Beyond RM, recent VCTs in MRI have focused on cardiac applications.53,335–339 In such

studies, simulation methods, providing the known anatomy and cardiac motion, are used to

investigate acquisition and reconstruction methods in cardiac imaging. Image reconstruction

is a significant area of research in MRI as different techniques are being investigated to reduce

scan times and increase spatial and/or temporal resolution. Figure 13 from Ref. 338 shows a

comparison of two reconstruction methods, k-t PCA340 and k-t SPARSE,341 for use in MP

imaging.

Another area seeing considerable work is the study of electromagnetic compatibility of medi-

cal devices within an MRI scanner and, particularly, to understand device and tissue heating and

to evaluate device safety as part of regulatory processes.342,343 Once more we see the role that

modeling and simulation play in uses in which experimental data are impractical or unethical

to collect.
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Modeling and simulation in MRI have been used amply in the development and validation of

novel MRI technology.344–352 With the advancement of phantoms in becoming more and more

realistic, VCTs will find even more applications in MRI.

5.5 Ultrasound Imaging

VCTs in ultrasound are primarily used in the development of new ultrasound transmission

sequences, beamforming strategies, and postprocessing algorithms given a ground truth target

with which to compare.

The FDA, in line with several professional societies, recommends the “as low as reasonably

achievable” principle for acoustic output to minimize the risk of tissue heating, cavitation dam-

age, and other possible bioeffects. The FDA also mandates maximum exposure levels for diag-

nostic imaging, which requires an understanding of the spatial and temporal average intensities

as well as peak pressures achieved.353 Acoustic field modeling provides estimates of these quan-

tities during the design phase, with experimental measurements for further validations. Nonlinear

simulation, especially including heterogeneous media, is particularly valuable for understanding

the distribution of acoustic energy in the body, as shown in Fig. 14. The complex acoustic envi-

ronment often violates simplifying assumptions made in the conventional derating scheme.354

It is a challenging task to control the focus of sound through the skull due to the complex

aberrations and reverberations induced. A patient-specific understanding of these phenomena is

essential for effective high-intensity focused ultrasound therapy in which localized energy dep-

osition is required. It has been demonstrated that CT scans of ex vivo skull samples can be used

with nonlinear simulation software to perform adaptive focusing through the skull by modeling

the distortions of the propagating wave, both increasing the energy delivered and reducing the

spatial spot size.355 The use of these models for pulse echo imaging is even more difficult due to

higher frequencies and two-way propagation, but it is an important application as well.

VCTs are instrumental in improving image quality through beamforming and image post-

processing algorithm development. Fundamental mechanisms of image degradation due to

acoustic clutter are just beginning to be understood through simulation study using nonlinear

tools356 combined with digitized histological samples357 or tissue models derived from other

imaging methods.358 Point targets can provide information on resolution not available in clinical

imaging, whereas anechoic and echogenic targets with known geometry and scattering contrast

predict clinical imaging performance using a ground truth with which to compare across imaging

methods.359–363 Blood vessels of varying geometries have been simulated by pairing computa-

tional fluid dynamics software with pulse echo acoustic simulation for the development of

flow estimation techniques, mimicking in a controlled environment the complex flow patterns

observed in vivo.212

Fig. 13 (a) Reference short-axis image of a cardiac phantom compared with (b) k -t PCA and

(c) k -t SPARSE reconstruction results. In both reconstructions, the acquired imaging data were

undersampled by eightfold to see the effects on reconstruction. The error distribution in k -t PCA

can be seen to be more homogeneous.
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The Quantitative Imaging Biomarkers Alliance is developing standards for using ultrasound

to estimate shear wave speed as an indicator of disease state. To support the development of

algorithms to estimate various tissue properties from these data, they have published simulation

tools that combine finite-element methods with acoustic simulation and have provided stand-

ardized digital phantoms.364 These digital phantoms are also being provided to physical phantom

manufacturers to ensure that they are designed and manufactured with accurate performance.

As in other medical imaging fields, machine learning is poised to revolutionize the process-

ing and interpretation of ultrasound images. Development of these algorithms would be greatly

accelerated if repositories of large numbers of well-labeled ultrasound images and data were

made available. Medical privacy concerns and competitive advantage are both likely factors in

limiting the widespread distribution of these types of data sets, but a few have been made pub-

licly available.365–367 With sufficiently accurate human models and imaging simulators, VCT

techniques can drastically increase the amount of data available for such training.

5.6 Summary

The above studies provide many different examples showing the use of virtual tools toward

improved medical imaging devices and techniques. VCTs are still a relatively new concept, with

challenges to be overcome in terms of their components (phantoms, simulators, and image ana-

lysis). As such, they are still not quite at the point where they can fully replace human trials.

As they stand now, however, they do provide a key mechanism with which to comprehensively

study the vast number of factors (patient, scanner, and physical) that can affect medical imaging,

providing a means to narrow these factors down to the ones most likely to succeed, paving the

way toward more targeted and efficient patient trials.

6 Verification, Validations, and Inference

Any model can be trusted to the extent that it can replicate or predict reality. VCTs aim to reflect

the output of actual clinical trials. As such their effectiveness and utility hinge on their repre-

sentational ability. Toward that objective, VCTs are expected to follow certain processes and

expectations:

In the simulation and scientific computing community, verification is done to confirm that the

“equations were solved correctly,” and validation is done to confirm that the “correct equations
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Fig. 14 Ultrasound simulations of tissue using (a) linear and (b) nonlinear techniques showing

that nonlinear techniques are valuable for understanding the distribution of acoustic energy in

the body.
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were solved.”368 In other words, verifications ensure that there is no major misassumption or

coding errors in the algorithms, and validations demonstrate how close the outputs of the

simulation are against experimentally measured data. Each component of a VCT, whether being

the patient, the imaging system, or the image interpreter, should be independently verified

and validated. They should ideally take place at multiple levels of granularity. They can be

applied to a simulation in its subcomponents41,369,370 (e.g., model of x-ray spectrum), whole

component141,142,262,371,372 (e.g., accuracy in creating realistic simulated images), or multi-

component26,278 (e.g., accuracy in creating the complete human imaging process from the patient

to the output of the imaging task).

One approach for these validations has been through the simulation of IEC standard tests.

In this process, computational models of physical phantoms with known properties are simulated

and compared with actual measurements.141 Further, the American Association of Mechanical

Engineers V&V 40 subcommittee373 provides a comprehensive standard framework for evalu-

ating the relevance and adequacy of verification and validations of medical devices, suggesting

that the credibility of a simulation framework should be judged based on its context and

application.

The choice of evaluatory metrics is critical in designing and validating VCTs. For example,

the Optimam results290–292 were reported in terms of minimum detectable diameter. Although

these VCTs accurately predicted rankings of the imaging technologies that were concordant with

clinical data, precise validation was not possible since ground truth is lacking for the minimum

detectable diameter of lesions in clinical cases (such data do exist for phantoms). As discussed in

Sec. 5.1, the use of AUC as a metric requires that the VCT be calibrated to the predicate tech-

nology in terms of the AUC, or the results must be reported in terms of d 0.278 Additionally,

accurate prediction of the ROC curve requires that the VCT match the admixture of case diffi-

culty seen in a given clinical population. The goal is to achieve and claim equivalency.

Ascertaining the equivalency of a VCT to a corresponding real trial is a statistical task.

Equivalency is never 100% assured. Even if two clinical trials are undertaken at the same time,

the results will likely not match exactly. So how close is close enough? Although this question

may not be answerable perfectly, it can be answered practically. The equivalency can be estab-

lished based on expected variability in an actual trial. AVCT process can be considered valid and

reliable in terms of its concordance to replicate a clinical scenario. If the VCT results statistically

fall within the ranges of variability expected of a trial, the VCT can be considered valid. For

example, if an observer model output falls within the range of the results from varied results of

multiple observers, one can claim that the observer model is as good as any of those observers.

The statistical reliability of VCT can be ascertained through uncertainty analysis in which

simulation parameters are perturbed and the corresponding effects to final results are evaluated.

In the context of imaging simulations, these parameters could be attributes of a computational

phantom (e.g., organ shape) or characteristics of an imaging simulator (e.g., source spectrum of

an x-ray system). The goal is to identify the sources of uncertainties and determine how much

they influence the final performance measure by repeating simulations while perturbing these

parameters and examining the results.368 Such studies can enhance the confidence in the VCT

predictions and thus offer validation confidence.

In verification and validation of VCT, one may see concordance with absolute performance.

This is often challenging, as it is nearly impossible to model all of the nuances and permutations

of the patient, the technology, or the interpretation. One may obtain absolute performance con-

cordance by tweaking model parameters with the goal of matching the results. However, such

a study provides little confidence in the generalizability of the approach to other data when such

tweaking is not possible. However, matching the differentials across conditions and relative

rankings in the performance between system configurations is easier because these rankings

or differences tend to be less sensitive to small biases in the VCT models. Therefore, validation

and the applicability of VCT are higher when targeted to predict rankings of technologies or

conditions.

Related to closeness is the question of generalizability. Can a VCT be reliably applied to

answer a question for which there is no clinical data? After all, if every VCT required a validation

of its own to be deemed reliable, the very purpose of VCT to make the process of trials easier and

more efficient is defeated. The answer lies in the diversity of the space within which the prior
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VCT is validated. AVCT can be considered reasonably reliable if it is applied to conditions and

claims that are in close proximity of a validated space. For example, an MC simulation of dose

validated for one CT scan can be expected to be reliably applied to another CT scan. There are of

course different levels of closeness here as well. The generalizability of such a simulator will be

strongest when it is applied to the same scanner and less when applied to other scanners, geom-

etries, energy ranges, etc. Ideally, as practically as possible, a VCT should represent and be

validated within the diversity of conditions (in patient, technology, and analysis) within which

it is expected to be applied. In that way, the VCT is generalized to an “interpolated” set of con-

ditions as opposed to an “extrapolated” set, e.g., VCTs validated for 5- and 12-year-old models

can be readily trusted (unvalidated) for 7-year-old patients but not for bariatric adult models.

In the discussion of validation and generalizability, it should further be noted that the goal

of a VCT is often not to predict the outcome of the imaging process for an individual patient

for which 100% realism is unachievable. The most frequent objective is rather to reasonably

represent a variety of human imaging conditions with diversity beyond what is possible with

simple phantoms so that the outcome of imaging processes can be more reliably understood

and optimized in the context of clinically relevant tasks. VCTs generally do not claim perfect

realism nor individual realism, rather results that are close enough to offer imaging technology

assessment from a population perspective.

In a VCT, simulation parameters can be tweaked to match almost any desired result.

Therefore, an important feature in a credible virtual trial is to design a formalized study plan

before the trial is started and followed through. Patient models, imaging simulators, and observer

models should be tested, verified, and validated individually before the entire sample is run

through the pipeline and the final predetermined performance metric is calculated. In addition,

pilot testing sets should be separate from pivotal testing sets, and deviations from the protocol

should be explained in the results.

7 Future Directions

It can be argued that VCTs in general and VCT in the context of medical imaging (so-called

virtual imaging trials) are still in their infancy. VCTs are taking an increasing role to ascertain

and qualify the effectiveness of medical imaging technologies, as evidenced in a few recent FDA

approvals based on VCTs. Yet, they are still far from mainstream to be trusted as a primary

method to answer qualification, research, or clinical questions. Yet the promise is worthwhile

as their use can significantly advance medicine and medical science. One can imagine a future in

which VCTs are embraced as a mainstream methodology in medical science to provide reliable

experimentation without excessive cost or ethical roadblocks. To attain that level of reliability,

much still needs to be done. Progress is needed to increase the realism and the diversity of the

space covered, in terms of modeling both patients (individuals and populations) as well as

systems and analyses.

For patient modeling, there remains work in progress for modeling subjects that diversely

sample the population, the comprehensive suborgan anatomy and function, and the disease, all

with adequate targeted diversity for the questions at hand. For imaging simulators, efforts are

being spent on creating more detailed, accurate, and system-specific models of imaging systems.

Similarly, it is a challenging task to simulate the myriad of observer models (from residents to

attendings to domain leaders to AI). There is also a need to include all aspects of clinical inter-

pretation beyond simple detection and classification or focal abnormalities. These remain the

exciting prospects for the future role and potential of VCTs in medicine and in advancing human

health.

Further, VCTs would be more impactful if the methods are standardized and disseminated.

A disseminated platform enables concurrent development by multiple groups, thus promoting

innovation. Today, most algorithms are published without a reference implementation. The sci-

entific process is undermined when published results cannot be reproduced by others, and it is

exceedingly difficult to evaluate how a VCT or the pipeline components will perform given

different input data. For researchers to build upon the work of others, reimplementation of pre-

vious work is frequently required, but this is often difficult or infeasible and is prone to errors.
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VCT researchers are encouraged to collaborate to establish standards for conducting VCTs.

As more work is done to advance and standardize the individual components of VCTs achieving

greater levels of realism, VCTs stand to alter the paradigm of medical imaging research and

applications.
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