18,858 research outputs found

    An integrated shipment planning and storage capacity decision under uncertainty: a simulation study

    Get PDF
    Purpose – In transportation and distribution systems, the shipment decisions, fleet capacity, and storage capacity are interrelated in a complex way, especially when the authors take into account uncertainty of the demand rate and shipment lead time. While shipment planning is tactical or operational in nature, increasing storage capacity often requires top management’s authority. The purpose of this paper is to present a new method to integrate both operational and strategic decision parameters, namely shipment planning and storage capacity decision under uncertainty. The ultimate goal is to provide a near optimal solution that leads to a striking balance between the total logistics costs and product availability, critical in maritime logistics of bulk shipment of commodity items. Design/methodology/approach – The authors use simulation as research method. The authors develop a simulation model to investigate the effects of various factors on costs and service levels of a distribution system. The model mimics the transportation and distribution problems of bulk cement in a major cement company in Indonesia consisting of a silo at the port of origin, two silos at two ports of destination, and a number of ships that transport the bulk cement. The authors develop a number of “what-if” scenarios by varying the storage capacity at the port of origin as well as at the ports of destinations, number of ships operated, operating hours of ports, and dispatching rules for the ships. Each scenario is evaluated in terms of costs and service level. A full factorial experiment has been conducted and analysis of variance has been used to analyze the results. Findings – The results suggest that the number of ships deployed, silo capacity, working hours of ports, and the dispatching rules of ships significantly affect both total costs and service level. Interestingly, operating fewer ships enables the company to achieve almost the same service level and gaining substantial cost savings if constraints in other part of the system are alleviated, i.e., storage capacities and working hours of ports are extended. Practical implications – Cost is a competitive factor for bulk items like cement, and thus the proposed scenarios could be implemented by the company to substantially reduce the transportation and distribution costs. Alleviating storage capacity constraint is obviously an idea that needs to be considered when optimizing shipment planning alone could not give significant improvements. Originality/value – Existing research has so far focussed on the optimization of shipment planning/scheduling, and considers shipment planning/scheduling as the objective function while treating the storage capacity as constraints. The simulation model enables “what-if” analyses to be performed and has overcome the difficulties and impracticalities of analytical methods especially when the system incorporates stochastic variables exhibited in the case example. The use of efficient frontier analysis for analyzing the simulation results is a novel idea which has been proven to be effective in screening non-dominated solutions. This has provided the authors with near optimal solutions to trade-off logistics costs and service levels (availability), with minimal experimentation times

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    Periodic Review, Push Inventory Policies for Remanufacturing

    Get PDF
    Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. This research is focused on product recovery, and in particular on production control and inventory management in the remanufacturing context. We study a remanufacturing facility that receives a stream of returned products according to a Poisson process. Demand is uncertain and also follows a Poisson process. The decision problems for the remanufacturing facility are when to release returned products to the remanufacturing line and how many new products to manufacture. We assume that remanufactured products are as good as new. In this paper, we employ a "push" policy that combines these two decisions. It is well known that the optimal policy parameters are difficult to find analytically; therefore, we develop several heuristics based on traditional inventory models. We also investigate the performance of the system as a function of return rates, backorder costs and manufacturing and remanufacturing lead times; and we develop approximate lower and upper bounds on the optimal solution. We illustrate and explain some counter-intuitive results and we test the performance of the heuristics on a set of sample problems. We find that the average error of the heuristics is quite low.inventory;reverse logistics;remanufacturing;environment;heuristics
    corecore