9,681 research outputs found

    Compressible homogeneous shear: Simulation and modeling

    Get PDF
    Compressibility effects were studied on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor

    Simulation and modeling of homogeneous, compressed turbulence

    Get PDF
    Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates

    Energy Spectra of Quantum Turbulence: Large-scale Simulation and Modeling

    Get PDF
    In 204832048^3 simulation of quantum turbulence within the Gross-Pitaevskii equation we demonstrate that the large scale motions have a classical Kolmogorov-1941 energy spectrum E(k) ~ k^{-5/3}, followed by an energy accumulation with E(k) ~ const at k about the reciprocal mean intervortex distance. This behavior was predicted by the L'vov-Nazarenko-Rudenko bottleneck model of gradual eddy-wave crossover [J. Low Temp. Phys. 153, 140-161 (2008)], further developed in the paper.Comment: (re)submitted to PRB: 5.5 pages, 4 figure

    Numerical Simulation and Modeling of UNSA91060 for Heat Transfer in Four-Stroke ICE Cylinder Head

    Get PDF
    This work concerns heat transfer principles in four strokes ICE from modeling and simulation standpoint.Heat transfer is one of a number of indispensable tools in studying of ICEs, due to its influence on decisive parameters of operation like temperature and pressure inside the cylinder. It is safe to say that modeling of the engine heat transfer is among the most complex problems for engineers. Application of numerical methods to predict the heat transfer in a cylinder of reciprocating ICEs is a process of high importance, which was recognized from the earliest stages of their development. This is done to examine performance optimization and design improvement in order to meet nowadays demands exhibited on the engines. This present study focuses on a 3-D transient state temperature distribution analysis on a gasoline engine model via formulated of models, simulating using FEM in-built in the COMSOL Multiphysics software 4.3a to determine the temperature distribution and gradient of the engine cylinder head model. The number of degrees of freedom solved for were 32685 in 383 s (12 minutes, 20 seconds) in the mesh optimization. From the result obtained it was discovered that the heat transfer in the combustion chamber of the ICE varies with time. Thus, it took the engine 10 minutes to complete a cycle vis-a-vis transfer of heat after combustion and that the heat transfer starts after 30 seconds of combustion. In addition, the temperature of the cylinder dropped from 1273.2 K to 301 K over a period of 10 minute.Self-sponsore

    Simulation and Modeling of Nanomaterials

    Get PDF
    This Special Issue focuses on computational detailed studies (simulation, modeling, and calculations) of the structures, main properties, and peculiarities of the various nanomaterials (nanocrystals, nanoparticles, nanolayers, nanofibers, nanotubes, etc.) based on various elements, including organic and biological components, such as amino acids and peptides. For many practical applications in nanoelectronics., such materials as ferroelectrics and ferromagnetics, having switching parameters (polarization, magnetization), are highly requested, and simulation of dynamics and kinetics of their switching are a very important task. An important task for these studies is computer modeling and computational research of the properties on the various composites of the other nanostructures with polymeric ferroelectrics and with different graphene-like 2-dimensional structures. A wide range of contemporary computational methods and software are used in all these studies

    Introductory Chapter: Simulation and Modeling

    Get PDF

    CSCI 477.01: Computer Simulation and Modeling

    Get PDF
    • …
    corecore