8,568 research outputs found

    Prey aggregation is an effective olfactory predator avoidance strategy

    Get PDF
    Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a) the inability of the predator to consume all prey in a group and (b) detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation) experiments using a fish predator and (dead) chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water) led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues), aggregated (large groups) and semi-dispersed prey survived for longer than dispersed prey—including long termsurvival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators

    ÉlƑlĂ©nyek kollektĂ­v viselkedĂ©sĂ©nek statisztikus fizikĂĄja = Statistical physics of the collective behaviour of organisms

    Get PDF
    Experiments: We have carried out quantitative experiments on the collective motion of cells as a function of their density. A sharp transition could be observed from the random motility in sparse cultures to the flocking of dense islands of cells. Using ultra light GPS devices developed by us, we have determined the existing hierarchical relations within a flock of 10 homing pigeons. Modelling: From the simulations of our new model of flocking we concluded that the information exchange between particles was maximal at the critical point, in which the interplay of such factors as the level of noise, the tendency to follow the direction and the acceleration of others results in large fluctuations. Analysis: We have proposed a novel link-density based approach to finding overlapping communities in large networks. The algorithm used for the implementation of this technique is very efficient for most real networks, and provides full statistics quickly. Correspondingly, we have developed a by now popular, user-friendly, freely downloadable software for finding overlapping communities. Extending our method to the time-dependent regime, we found that large groups in evolving networks persist for longer if they are capable of dynamically altering their membership, thus, an ability to change the group composition results in better adaptability. We also showed that knowledge of the time commitment of members to a given community can be used for estimating the community's lifetime. Experiments: We have carried out quantitative experiments on the collective motion of cells as a function of their density. A sharp transition could be observed from the random motility in sparse cultures to the flocking of dense islands of cells. Using ultra light GPS devices developed by us, we have determined the existing hierarchical relations within a flock of 10 homing pigeons. Modelling: From the simulations of our new model of flocking we concluded that the information exchange between particles was maximal at the critical point, in which the interplay of such factors as the level of noise, the tendency to follow the direction and the acceleration of others results in large fluctuations. Analysis: We have proposed a novel link-density based approach to finding overlapping communities in large networks. The algorithm used for the implementation of this technique is very efficient for most real networks, and provides full statistics quickly. Correspondingly, we have developed a by now popular, user-friendly, freely downloadable software for finding overlapping communities. Extending our method to the time-dependent regime, we found that large groups in evolving networks persist for longer if they are capable of dynamically altering their membership, thus, an ability to change the group composition results in better adaptability. We also showed that knowledge of the time commitment of members to a given community can be used for estimating the community's lifetime

    Initiation and spread of escape waves within animal groups

    Get PDF
    The exceptional reactivity of animal collectives to predatory attacks is thought to be due to rapid, but local, transfer of information between group members. These groups turn together in unison and produce escape waves. However, it is not clear how escape waves are created from local interactions, nor is it understood how these patterns are shaped by natural selection. By startling schools of fish with a simulated attack in an experimental arena, we demonstrate that changes in the direction and speed by a small percentage of individuals that detect the danger initiate an escape wave. This escape wave consists of a densely packed band of individuals that causes other school members to change direction. In the majority of cases this wave passes through the entire group. We use a simulation model to demonstrate that this mechanism can, through local interactions alone, produce arbitrarily large escape waves. In the model, when we set the group density to that seen in real fish schools, we find that the risk to the members at the edge of the group is roughly equal to the risk of those within the group. Our experiments and modelling results provide a plausible explanation for how escape waves propagate in Nature without centralised control

    An Individual-based Probabilistic Model for Fish Stock Simulation

    Get PDF
    We define an individual-based probabilistic model of a sole (Solea solea) behaviour. The individual model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA), a new formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision process. A given EPDTA model can be probabilistically model-checked by giving a suitable translation into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given population of soles in different environmental scenarios, an agent-based simulation environment is defined in which each agent implements the behaviour of the given EPDTA model. By varying the probabilities and the characteristic functions embedded in the EPDTA model it is possible to represent different scenarios and to tune the model itself by comparing the results of the simulations with real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon. The simulator is presented and made available for its adaptation to other species.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata

    Get PDF
    © 2015 The Association for the Study of Animal Behaviour. Increasing turbidity (either sedimentary or organic) from anthropogenic sources has significant negative impacts on aquatic fauna, both directly and indirectly by disrupting behaviour. In particular, antipredator responses of individuals are reduced, which has been attributed to a reduced perception of risk. Here, we explored the effect of turbidity on shoaling behaviour, which is known to carry important antipredator benefits, predicting that fish in turbid water should show reduced shoal cohesion (increased interindividual distances) and reduced responses to a simulated predatory threat. We explored both the individual and shoal level responses to a predation threat at four different levels of turbidity. At the shoal level, we found that shoals were less cohesive in more turbid water, but that there was no effect of turbidity on shoal level response to the predation threat. At an individual level, guppies in turbid water were more likely to freeze (rather than dart then freeze), and those that darted moved more slowly and over a shorter distance than those in clear water. Fish in turbid water also took longer to recover from a predation threat than fish in clear water. We suggest that because fish in turbid water behaved in a manner more similar to that expected from lone fish than to those in a shoal, the loss of visual contact between individuals in turbid water explains the change in behaviour, rather than a reduced perception of individual risk as is widely supposed. We suggest that turbidity could lead to a reduced collective response to predators and a loss of the protective benefits of shoaling

    Modelling the spatial behaviour of a tropical tuna purse seine fleet.

    Get PDF
    Industrial tuna fisheries operate in the Indian, Atlantic and Pacific Oceans, but concerns over sustainability and environmental impacts of these fisheries have resulted in increased scrutiny of how they are managed. An important but often overlooked factor in the success or failure of tuna fisheries management is the behaviour of fishers and fishing fleets. Uncertainty in how a fishing fleet will respond to management or other influences can be reduced by anticipating fleet behaviour, although to date there has been little research directed at understanding and anticipating the human dimension of tuna fisheries. The aim of this study was to address gaps in knowledge of the behaviour of tuna fleets, using the Indian Ocean tropical tuna purse seine fishery as a case study. We use statistical modelling to examine the factors that influence the spatial behaviour of the purse seine fleet at broad spatiotemporal scales. This analysis reveals very high consistency between years in the use of seasonal fishing grounds by the fleet, as well as a forcing influence of biophysical ocean conditions on the distribution of fishing effort. These findings suggest strong inertia in the spatial behaviour of the fleet, which has important implications for predicting the response of the fleet to natural events or management measures (e.g., spatial closures)

    Methods and Tools for the Microsimulation and Forecasting of Household Expenditure - A Review

    Get PDF
    This paper reviews potential methods and tools for the microsimulation and forecasting of household expenditure. It begins with a discussion of a range of approaches to the forecasting of household populations via agent-based modelling tools. Then it evaluates approaches to the modelling of household expenditure. A prototype implementation is described and the paper concludes with an outline of an approach to be pursued in future work

    Methods and Tools for the Microsimulation and Forecasting of Household Expenditure

    Get PDF
    This paper reviews potential methods and tools for the microsimulation and forecasting of household expenditure. It begins with a discussion of a range of approaches to the forecasting of household populations via agent-based modelling tools. Then it evaluates approaches to the modelling of household expenditure. A prototype implementation is described and the paper concludes with an outline of an approach to be pursued in future work
    • 

    corecore